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Abstract 

This paper addresses the issues and techniques for Property/Casualty actuaries using data 
mining techniques. Data mining means the efficient discovery of previously unknown 
patterns in large databases. It is an interactive information discovery process that includes 
data acquisition, data integration, data exploration, model building, and model validation. The 
paper provides an overview of the information discovery techniques and introduces some 
important data mining techniques for application to insurance including cluster discovery 
methods and decision tree analysis. 

1. Introduction 

Because of the rapid progress of information technology, the amount of information stored in 
insurance databases is rapidly increasing. These huge databases contain a wealth of data and 
constitute a potential goldmine of valuable business information. As new and evolving loss 
exposures emerge in the ever-changing insurance environment, the form and structure of 
insurance databases change. In addition, new applications such as dynamic financial analysis 
and catastrophe modeling require the storage, retrieval, and analysis of complex multimedia 
objects, which are often represented by high-dimensional feature vectors. Finding the valuable 
information hidden in those databases and identifying appropriate models is a difficult task. 

Data mining (DM) is the process of exploration and analysis, by automatic or semi-automatic 
means, of large quantities of data in order to discover meaningful patterns and rules (Berry and 
Linoff, 2000). A typical data mining process includes data acquisition, data integration, data 
exploration, model building, and model validation. Both expert opinion and data mining 
techniques play an important role at each step of this information discovery process. 

This paper introduces two important data mining techniques for application to insurance: 
cluster discovery methods and decision tree analysis. 

Cluster analysis is one of the basic techniques that are often applied in analyzing large data 
sets. Originating from the area of statistics, most cluster analysis algorithms have originally 
been developed for relatively small data sets. In recent years, the clustering algorithms have 
been extended to efficiently work on large data sets, and some of them even allow the 
clustering of high-dimensional feature vectors (see Ester, Kriegel, Sander, and Xu, and 
Hinneburg, and Keim, 1998, for example). 



Decision tree analysis is another popular data mining technique that can be used in many areas 
of actuarial practice. We discuss how to use decision trees to make important design decisions 
and explain the interdependencies among the p~operties of insurance data. We will also 
provide examples of how data mining techniques can be used to improve the effectiveness and 
efficiency of the modeling process. 

The paper is organized as follows. Section 2 provides an overview of data mining and a list of 
potential DM applications to insurance. Section 3 demonstrates the cluster analysis data 
mining techniques. Section 4 presents application of predictive data mining process. This 
section identifies factors that influence auto insurance claims using decision tree techniques 
and quantifies the effects and interactions of these risk factors using logistic regression. 
Model assessment is also discussed in this section. Section 5 concludes the paper. 

2. Data Mining 

In this section, we will provide an overview of the data mining process (2.1), data mining 
operations (2.2), data mining techniques and algorithms (2.3), and their potential applications 
in the insurance industry (2.4). 

2.1 Data Mining Process 

Data mining combines techniques from machine learning, pattern recognition, statistics, 
database theory, and visualization to extract concepts, concept interrelations, and interesting 
patterns automatically from large corporate databases. Its primary goal is to extract knowledge 
from data to support the decision-making process. Two primary functions of data mining are: 
prediction, which involves finding unknown values/relationships/patterns from known values; 
and description, which provides interpretation of a large database. 

A data mining process generally includes the following four steps. 

STEP 1: Data acquisition. The first step is to select the types of data to be used. Although a 
target data set has been created for discovery in some applications, DM can be performed on a 
subset of variables or data samples in a larger database. 

STEP 2: Preprocessing data. Once the target data is selected, the data is then preprocessed for 
cleaning, scrubbing, and transforming to improve the effectiveness of discovery. During this 
preprocessing step, developers remove the noise or outliers if necessary and decide on 
strategies for dealing with missing data fields and accounting for time sequence information or 
known changes. In addition, the data is often transformed to reduce the effective number of 
variables under consideration by either converting one type of data to another (e.g., categorical 
values into numeric ones) or deriving new attributes (by applying mathematical or logical 
operators). 

STEP 3: Data exploration and model building. The third step of DM refers to a series of 
activities such as deciding on the type of DM operation; selecting the DM technique; choosing 



the DM algorithm; and mining the data. First, the type of DM operation must be chosen. The 
DM operations can be classified as classification, regression, segmentation, link analysis, and 
deviation detection (see Section 2.2 for details). Based on the operation chosen for the 
application, an appropriate data-mining technique is then selected. Once a data-mining 
technique is chosen, the next step is to select a particular algorithm within the DM technique 
chosen. Choosing a data-mining algorithm includes a method to search for patterns in the 
data, such as deciding which models and parameters may be appropriate and matching a 
particular data-mining technique with the overall objective of data mining. After an 
appropriate algorithm is selected, the data is finally mined using the algorithm to extract novel 
patterns hidden in databases. 

STEP 4: Interpretation and evaluation. The fourth step of the DM process is the interpretation 
and evaluation of discovered patterns. This task includes filtering the information to be 
presented by removing redundant or irrelevant patterns, visualizing graphically or logically the 
useful ones, and translating them into understandable terms by users. In the interpretation of 
results, we determine and resolve potential conflicts with previously found knowledge or 
decide to redo any of the previous steps. The extracted knowledge is also evaluated in terms of 
its usefulness to a decision maker and to a business goal. Then extracted knowledge is 
subsequently used to support human decision making such as prediction and to explain 
observed phenomena. 

The four-step process of knowledge discovery should not be interpreted as linear, but as an 
interactive, iterative process through which discovery evolves. 

2.2 Data Mining Operations 

Assuming you have prepared a data set for mining, you then need to define the scope of your 
study and choose the subject of your study. This is referred as choosing a DM operation. 

There are five types of DM operations: classification, regression, link analysis, segmentation, 
and deviation detection. Classification and regression are useful for prediction, whereas link 
analysis, segmentation, and deviation detection are for description of patterns in the data. A 
DM application typically requires the combination of two or more DM operations. 

Classification 
The goal of classification is to develop a model that maps a data item into one of several 
predefined classes. Once developed, the model is used to classify a new instance into one of 
the classes. Examples include the classification of bankruptcy patterns based on the financial 
ratios of a firm and of customer buying patterns based on demographic information to target 
the advertising and sales of a firm effectively toward the appropriate customer base. 

Regression 
This operation builds a model that maps data items into a real-valued prediction variable. 
Models have traditionally been developed using statistical methods such as linear and logistic 
regression. Both classification and regression are used for prediction. The distinction between 
these two models is that the output variable of classification is categorical, whereas that of 



Table i. DM Techniques for DM Operations 

DM Technique Induction ~Teural Genetic 2lustering Logistic Association Sequence r 
~letworks Algorithms ~,egression Discovery Discovery 

DM Operation 
Classification x x x 
~.egression x x 
Link analysis x x 
Segmentation x x 
Deviation X X 

Induction Techniques 
Induction techniques develop a classification model from a set of records -- the training set of 
examples. The training set may be a sample database, a data mart, or an entire data warehouse. 
Each record in the training set belongs to one of many predefined classes, and an induction 
technique induces a general concept description that best represents the examples to develop a 
classification model. The induced model consists of patterns that distinguish each class. Once 
trained, a developed model can be used to predict the class of unclassified records 
automatically. Induction techniques represent a model in the form of either decision trees or 
decision rules. These representations are easier to understand, and their implementation is 
more efficient than those of neural network or genetic algorithms. A more detailed discussion 
on decision tree techniques and their applications will be presented in Section 4. 

Neural Networks 
Neural networks constitute the most widely used technique in data mining. They imitate the 
way the human brain learns and use rules inferred from data patterns to construct hidden 
layers of logic for analysis. Neural networks methods can be used to develop classification, 
regression, link analysis, and segmentation models. A neural net technique represents its 
model in the form of nodes arranged in layers with weighted links between the nodes. There 
are two general categories of neural net algorithms: supervised and unsupervised. 

Supervised neural net algorithms such as Back propagation (Rumelhart, Hinton, and 
Williams, 1986) and Perceptron require predefined output values to develop a 
classification model. Among the many algorithms, Back propagation is the most 
popular supervised neural net algorithm. Back propagation can be used to develop not 
only a classification model, but also a regression model. 

Unsupervised neural net algorithms such as ART (Carpenter and Grossberg, 1988) do 
not require predefined output values for input data in the training set and employ self- 
organizing learning schemes to segment the target data set. Such self-organizing 
networks divide input examples into clusters depending on similarity, each cluster 
representing an unlabeled category. Kohonen's Feature Map is a well-known method 
in self-organizing neural networks. 

For organizations with a great depth of statistical information, neural networks are ideal 
because they can identify and analyze changes in patterns, situations, or tactics far more 



regression is numeric and continuous. Examples of regression are the prediction of change 
between the yen and the Government Bond Market and of the crime rate of a city based on the 
description of various input variables such as populations, average income level and 
education. 

Link Analysis 
Link analysis is used to establish relevant connections between database records. Its typical 
application is market-basket analysis, where the technique is applied to analyze point-of-sales 
transaction data to identify product affinities. A retail store is usually interested in what items 
sell together -- such as baby's diapers and formula -- so it can determine what items to display 
together for effective marketing. Another application could find relationships among medical 
procedures by analyzing claim forms submitted to an insurance firm. Link analysis is often 
applied in conjunction with database segmentation. 

Segmentation 
The goal is to identify clusters of records that exhibit similar behaviors or characteristics 
hidden in the data. The clusters may be mutually exclusive and exhaustive or may consist of a 
richer representation such as hierarchical or overlapping categories. Examples include 
discovering homogenous groups of consumers in marketing databases and segmenting the 
records that describe sales during "Mother's Day" and "Father's Day." Once the database is 
segmented, link analysis is often performed on each segment to identify the association among 
the records in each cluster. 

Deviation Detection 
This operation focuses on discovering interesting deviations. There are four types of deviation: 

�9 Unusual patterns that do not fit into previously measured or normative classes, 
�9 Significant changes in the data from one time period to the next, 
�9 Outlying points in a dataset -- records that do not belong to any particular cluster, and 
�9 Discrepancies between an observation and a reference. 

Deviation Detection is usually performed after a database is segmented to determine whether 
the deviations represent noisy data or unusual casualty. Deviation detection is often the source 
of true discovery since deviations represent anomaly from some known expectation or norm. 

2.3 Data Mining Techniques and Algorithms 

At the heart of DM is the process of building a model to represent the data set and to carry out 
the DM operation. A variety of DM techniques (tools) are available to support the five types 
of DM operations presented in the previous section. The most popular data mining techniques 
include Bayesian analysis (Cheeseman et al., 1988), neural networks (Bishop, 1995; Ripley, 
1996), genetic algorithms (Goldberg, 1989), decision trees (Breiman et al., 1984), and logistic 
regression (Hosmer and Lemeshow, 1989), among others. 

Table 1 summarizes the DM techniques used for DM operations. For each of the DM 
techniques listed in Table 1, there are many algorithms (approaches) to choose from. In the 
following, some of the most popular technologies are discussed. 



quickly than any human mind. Although the neural net technique has strong representational 
power, interpreting the information encapsulated in the weighted links can be very difficult. 
One important characteristic of neural networks is that they are opaque, which means there is 
not much explanation of how the results come about and what rules are used. Therefore, some 
doubt is cast on the results of the data mining. Francis (2001) gives a discussion on Neural 
Network applications to insurance problems. 

Genetic Algorithms 
Genetic algorithms are a method of combinatorial optimization based on processes in 
biological evolution. The basic idea is that over time, evolution has selected the "fittest 
species." For a genetic algorithm, one can start with a random group of data. Afitness 
function can be defined to optimizing a model of the data to obtain "fittest" models. For 
example, in clustering analysis, a fitness function could be a function to determine the level of 
similarity between data sets within a group. 

Genetic algorithms have often been used in conjunction with neural networks to model data. 
They have bee/n used to solve complex problems that other technologies have a difficult time 
with. Micha61ewicz (1994) introduced the concept of genetic algorithms and applying them 
with data mining. 

Logistic Regression 
Logistic regression is a special case of generalized linear modeling. It has been used to study 

odds ratios (e pj', j = 1, 2,. . . ,  k as defined in the following), which compares the odds of  the 
event of one category to the odds of the event in another category, for a very long time and its 
properties have been well studied by the statistical community. Ease of interpretation is one 
advantage of modeling with logistic regression. Assume that the data set consist of i = 1, 2, 
.... n records. Let p~, i = 1, 2,..., n be the corresponding mortality rate for each record and 

x~ = (x,, x2i, ..-, x~ ) be a set of k variables associated with each record. A linear-additive 

logistic regression model can be expressed as 

logi t=lo~( Pi I=flo+~fljxj~,wherei=l, 2,...,n" 
- L I - P ,  ) j~ 

If the model is correctly specified, each dependent variable affects logit linearly. 

Exponentiation of the parameter estimate of each slope, e pj , j = 1, 2, ..., k ,  can be interpreted 

as the odds ratio of the probability that Pi is associated with input variable xji (Kleinbaum, 

D., Kupper, L., and Muller, K., 1988). However, it poses several drawbacks especially with 
large data sets. The curse of dimensionality makes the detection of nonlinearities and 
interactions difficult. If the model is not correctly specified, the interpretation of the model 
parameter estimates becomes meaningless. In addition, the data might not be evenly 
distributed among the whole data space. It is very likely that some segments of the data space 
have more records than other segments. One model that fits the whole data space might not be 
the best choice depending on the intended application. Although there are many existing 
methods such as backward elimination and forward selection that can help data analyst to 



build logistic regression model, judgment should be exercised regardless of the method 
selected. 

Clustering 
Clustering techniques are employed to segment a database into clusters, each of which shares 
common and interesting properties. The purpose of segmenting a database is often to 
summarize the contents of the target database by considering the common characteristics 
shared in a cluster. Clusters are also created to support the other types of DM operations, e.g. 
link analysis within a cluster. Section 3 will introduce more details of clustering and its 
application to insurance. 

Associated Discovery 
Given a collection of items and a set of records containing some of these items, association 
discovery techniques discover the rules to identify affinities among the collection of items as 
reflected in the examined records. For example, 65 percent of records that contain item A also 
contain item B. An association rule uses measures called "support" and "confidence" to 
represent the strength of association. The percentage of occurrences, 65 percent in this case, is 
the confidence factor of the association. The algorithms find the affinity rules by sorting the 
data while counting occurrences to calculate confidence. The efficiency with which 
association discovery algorithms can organize the events that make up an association or 
transaction is one of the differentiators among the association discovery algorithms. There are 
a variety of algorithms to identify association rules such as Apriori algorithm and using 
random sampling. Bayesian Net can also be used to identify distinctions and relationships 
between variables (Fayyad et al., 1996). 

Sequence Discovery 
Sequence discovery is very similar to association discovery except that the collection of items 
occurs over a period of time. A sequence is treated as an association in which the items are 
linked by time. When customer names are available, their purchase patterns over time can be 
analyzed. For example, it could be found that, if a customer buys a tie, he will buy men's shoes 
within one month 25 percent of the time. A dynamic programming approach based on the 
dynamic time warping technique used in the speech recognition area is available to identify 
the patterns in temporal databases (Fayyad et al., 1996). 

Visualization 
A picture is worth thousands of numbers! Visual DM techniques have proven the value 
in exploratory data analysis, and they also have a good potential for mining large databases. 
Visualizations are particularly useful for detecting phenomena hidden in a relatively small 
subset of the data. This technique is often used in conjunction with other DM techniques: 
features that are difficult to detect by scanning numbers may become obvious when the 
summary of data is graphically presented. Visualization techniques can also guide users when 
they do not know what to look for to discover the feature. Also, this technique helps end users 
comprehend information extracted by other DM techniques. Specific visualization techniques 
include projection pursuit and parallel coordinates. Tufte (1983, 1990) provided many 
examples of visualization technique s that have been extended to work on large data sets and 
produce interactive displays. 



2.4 Using Data Mining in the Insurance Industry 

Data mining methodology can often improve existing actuarial models by finding additional 
important variables, by identifying interactions, and by detecting nonlinear relationships. DM 
can help insurance firms make crucial business decisions and turn the new found knowledge 
into actionable results in business practices such as product development, marketing, claim 
distribution analysis, asset liability management and solvency analysis. An example of how 
data mining has been used in health insurance can be found in Borok, 1997. To be more 
specific, data mining can perform the following tasks. 

Identify Risk Factors that Predict Profits, Claims and Losses 
One critical question in ratemaking is the following: "What are the risk factors or variables 
that are important for predicting the likelihood of claims and the size of a claim?" Although 
many risk factors that affect rates are obvious, subtle and non-intuitive relationships can exist 
among variables that are difficult if not impossible to identify without applying more 
sophisticated analyses. Modem data mining models such as decision trees and Neural 
Networks can more accurately predict risk than current actuarial models, therefore insurance 
companies can set rates more accurately, which in turn can result in more accurate pricing and 
hence a better competitive position. 

Customer Level Analysis 
Successfully retaining customers requires analyzing data at the most appropriate level, the 
customer level, instead of across aggregated collections of customers. Using the Associated 
Discovery DM technique, insurance firms can more accurately select which policies and 
services to offer to which customers. With this technique insurance companies can: 

�9 Segment the customer database to create customer profiles. 
�9 Conduct rate and claim analyses on a single customer segment for a single product. For 

example, companies can perform an in-depth analysis of a potential new product for a 
particular customer segment. 

�9 Analyze customer segments for multiple products using group processing and multiple 
target variables. For example, how profitable are bundles of policies (auto, home, and 
life) for certain customer segments of interest? 

�9 Perform sequential (over time) market basket analyses on customer segments. For 
example, what percentage of new policyholders of auto insurance also purchases a life 
insurance policy within five years? 

Database segmentation and more advanced modeling techniques enable analysts to more 
accurately choose whom to target for retention campaigns. Current policyholders that are 
likely to switch can be identified through predictive modeling. A logistic regression model is a 
traditional approach to predict those policyholders who have larger probabilities of switching. 
Identifying the target group for retention campaigns may be improved by modeling the 
behavior of policyholders. 

Developing New Product Lines 
Insurance firms can increase profitability by identifying the most lucrative customer segments 
and then prioritize marketing campaigns accordingly. Problems with profitability can occur if 



firms do not offer the "right" policy or the "right" rate to the "right" customer segment at the 
"right" time. For example, for an insurer or reinsurer to use the log normal distribution for 
rating when the Pareto distribution is the true distribution would likely prove to be an 
expensive blunder, which illustrates the importance of having the right tool to identify and 
estimate the underlying loss distribution. With DM operations such as segmentation or 
association analysis, insurance firms can now utilize all of their available information to better 
develop new products and marketing campaigns. 

Reinsurance 
DM can be used to structure reinsurance more effectively than the using traditional methods. 
Data mining technology is commonly used for segmentation clarity. In the case of reinsurance, 
a group of paid claims would be used to model the expected claims experience of another 
group of policies. With more granular segmentation, analysts can expect higher levels of 
confidence in the model's outcome. The selection of policies for reinsurance can be based 
upon the model of experienced risk and not just the generalization that it is a long tailed book 
of business. 

Estimating Outstanding Claims Provision 
The settlement of claims is often subject to delay, so an estimate of the claim severity is often 
used until the actual value of the settled claim is available. The estimate can depend on the 
following: 

�9 Severity of the claim. 
�9 Likely amount of time before settlement. 
�9 Effects of financial variables such as inflation and interest rates. 
�9 Effects of changing social mores. For example, the tobacco industry has been greatly 

affected by the changing views toward smoking. 

DM operations such as Link Analysis and Deviation Detection can be used to improve the 
claim estimation. 

The estimate of the claims provision generated from a predictive model is based on the 
assumption that the future will be much like the past. If the model is not updated, then over 
time, the assumption becomes that the future will be much like the distant past. However, as 
more data become available, the predictive DM model can be updated, and the assumption 
becomes that the future will be much like the recent past. Data mining technology enables 
insurance analysts to compare old and new models and to assess them based on their 
performance. When the newly updated model outperforms the old model, it is time to switch 
to the new model. Given the new technologies, analysts can now monitor predictive models 
and update as needed. 

An important general difference in the focus between existing actuarial techniques and DM is 
that DM is more oriented towards applications than towards describing the basic nature of the 
underlying phenomena. For example, uncovering the nature of the underlying individual claim 
distribution or the specific relation between drivers' age and auto type are not the main goal of 
Data Mining. Instead, the focus is on producing a solution that can improve the predictions 
for future premiums. DM is very effective in determining how the premiums related to 
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multidimensional risk factors such as drivers' age and type of automobile. Two examples of 
applying data mining techniques in insurance actuarial practice will be presented in the next 
two sections. 

3. Clustering - Descriptive Data Mining 

Clustering is one of the most useful tasks in data mining process for discovering groups and 
identifying interesting distributions and patterns in the underlying data. Clustering problem 
is about partitioning a given data set into groups (clusters) such that the data points in a 
cluster is more similar to each other than points in different clusters (Guha et al., 1998). For 
example, segmenting existing policyholders into groups and associating a distinct profile with 
each group can help future rate making strategies. 

Clustering ~ethods perform disjoint cluster analysis on the basis of Euclidean distances 
computed from one or more quantitative variables and seeds that are generated and updated by 
the algorithm. You can specify the clustering criterion that is used to measure the distance 
between data observations and seeds. The observations are divided into clusters such that 
every observation belongs to at most one cluster. 

Clustering studies are also referred to as unsupervised learning and/or segmentation. 
Unsupervised learning is a process of classification with an unknown target, that is, the class 
of each case is unknown. The aim is to segment the cases into disjoint classes that are 
homogenous with respect to the inputs. Clustering studies have no dependent variables. You 
are not profiling a specific trait as in classification studies. 

A database can be segmented by: 

�9 Traditional methods of pattern recognition techniques, 
�9 Unsupervised neural nets such as ART and Kohonen's Feature Map, 
�9 Conceptual clustering techniques such as COBWEB (Fisher, Pazzani and Langley, 

1991) and UNIMEM, or 
�9 A Bayesian approach like AutoClass (Chessman, 1996). 

Conceptual clustering algorithms consider all the attributes that characterize each record and 
identify the subset of the attributes that will describe each created cluster to form concepts. 
The concepts in a conceptual clustering algorithm can be represented as conjunctions of 
attributes and their values. Bayesian clustering algorithms automatically discover a clustering 
that is maximally probable witti respect to the data using a Bayesian approach. The various 
clustering algorithms can be characterized by the type of acceptable attribute values such as 
continuous, discrete or qualitative; by the presentation methods of each cluster; and by the 
methods of organizing the set of clusters, either hierarchically or into flat files. K-mean 
clustering, a basic clustering algorithm is introduced in the following. 

3.1 K-means clustering 
Problem Description: 
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Given a data set with N n-dimensional data points x",  the goal is to determine a natural 
partitioning of  the data set into a number of clusters (k) and noise. We know there are k 
disjoint clusters containing Njdata points with representative vector/.tj where j= l  . . . . .  k. The 

K-means algorithm attempts to minimize the sum-of-squares clustering function given by 

k 2 

= x" -  ill 
j=l r~S i 

where/ , t j  is the mean of the data points in cluster Sj and is given by 

1 

The training is carried out by assigning the points at random to k clusters and then computing 

the mean vectors flj of the Njpoints in each cluster. Each point is re-assigned to a new 

cluster according to which is the nearest mean vector. The mean vectors are then recomputed. 

K-means clustering proceeds as follows: 
1. Specify the number of clusters (classes) k. 
2. Choose k initial cluster seeds. 
3. Assign cases closest to seed j as belonging to cluster j, j =  1 ..... k. 
4. Calculate the mean of the cases in each cluster, and move the k cluster seeds to the mean of 
their cluster. 
5. Reassign cases closest to the new seed j  as belonging to cluster j. 
6. Take the mean of the cases in each cluster as the new cluster seed. 

This procedure is repeated until there is no further change in clustering. 

K-means clustering is an unsupervised classification method. It is computationally efficient 
provided the initial cluster seeds are intelligently placed. Clustering methods depend on a 
measure of distance or similarity between points. Different distance metrics used in k-means 
clustering can result in different clusters. 

3.2. Example: Clustering Automobile Drivers 
The ABC Insurance Company periodically purchases lists of drivers from outside sources. 
Actuaries at ABC want to evaluate the potential claim frequency for underwriting purposes. 
Based on their experience, they know that driver claim frequency depends on geographic and 
demographic factors. Consequently, they want to segment the drivers into groups that are 
similar to each other with respect to these attributes. After the drivers have been segmented, a 
random sample of prospects within each segment will be used to estimate the frequency. The 
results of this test estimate will allow the actuaries to evaluate the potential profit of prospects 
from the list, both overall as well as for specific segments. 

The synthetic data that was obtained from the vendor is given in Table 2. 
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After preprocessing the data, which might include selecting a random sample of the data for 
initial analysis, filtering the outlying observations, and standardizing the variables in some 
way, we use the K-means clustering to form the clusters. 

Table 2. Automobile Drivers Data 

Var/ab/e 
Age 
Car age 
Car type 
Gender 
Coverage level 
Education 
Location 
Climate 
Credit rating 
ID 

Variable Type 
Continuous 

Measurement Level 
Interval 

Continuous Interval 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Continuous 
Input 

Nominal 
Binary 
Nominal 
Nominal 
Nominal 
Nominal 
Interval 
Nominal 

Description 
Driver's age in years 
Age of the car in years 
Type of the car 
F=female, M=male 
Policy coverage 
Education level of the drive 
Location of residence 
Climate code for residence 
Credit score of the driver 
Driver's identification number 

The following pie chart provides a graphical representation of key characteristics of the 
clusters. 

Figure 1 Clusters Pie Chart 

Ck~s|er, for EMDATA.DRIVERS 
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In the pie chart, slice width is the root-mean-square distance (root-mean-square standard 
deviation) between cases in the cluster; the height means the frequency and the color 
represents the distance of the farthest cluster member from the cluster. Cluster 5 contains the 
most cases while cluster 9 has the fewest. 

Figure 2 below displays the input means for the entire data set over all of the clusters. The 
input means are normalized using a scale transformation 

x -min (x )  
y=  

max(x)-  min(x) 

Input 

Encoded EDUCATION. 

Encoded COVERAGE. 

Encoded CAR_TYPE. 

Encoded CLIMATE. 

Encoded LOCATION. 
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Figure 2. Overall Input Means 
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The Normalized Mean Plot can be used to compare the overall normalized means with the 
normalized means in each cluster. Figure 3 compare the input means from cluster 1 (red 
blocks) to the overall input means (blue blocks). You want to identify the input means for 
clusters that differ substantially from the overall input means. The plot ranks the input based 
on how spread out the input means are for the selected cluster relative to the overall input 
means. The input that has the biggest spread is listed at the top and the input with the smallest 
spread is listed at the bottom. The input with the biggest spread typically best characterizes 
the selected cluster (Cluster 1 in Figure 3). Figure 3 shows that the variable "Car-Type" and 
"Location" are key inputs that help differentiate drivers in Cluster 1 from all of the drivers in 
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the data set. Drivers in Cluster 1 tend to have higher than average education levels than 
average drivers in the data set. 

Figure 3. Comparing the Input Means for Cluster 1 to the Overall Means 
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Cluster 5, as shown in Figure 4, has higher than average education and better than average 
credit scores. Most  drivers in Cluster 5 live in location zone 4 and they drive newer car than 
average drivers. These characteristics can also be observed from Table 3. 
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Figure 4. Comparing the Input Means for Cluster 5 to the Overall Means 
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Table 3 displays information about each cluster. The statistics Root-Mean-Square Standard 
Deviation means the root-mean-square error across variables of the cluster standard 
deviations, which is equal to the root-mean-square distance between cases in the cluster. 

Table 3. Clustering Summary Statistics 

Maximum 
Distance Distance 
from to 

Frequency Cluster Nearest Nearest Credit Car Car 
Cluster of Cluster Seed  Cluster Cluster Score Age Age Gender Location Climate Type Coverage Education 

9 7 2.87 5 2.82 0.86 3.29 35.57 1.00 3.43 1.29 3.57 2.43 1.86 
8 20 3.22 7 2.40 0.62 2.15 46.65 0.65 2.80 2.55 2.25 2.85 1.85 
7 22 3.25 2 2.25 0.65 2.73 24.59 0.27 1.95 2.09 1.45 2.36 2.27 
6 21 3.38 4 2.41 0.81 6.52 35.19 0.43 2.00 1.48 1.67 1.19 1.76 
5 33 3.41 4 2.37 0.82 3.00 32.79 0.58 3.82 2.33 2.03 2.39 3.03 
4 18 3.83 5 2.37 0.59 5.17 34.44 0.39 3.50 1.83 2.72 1.44 2.56 
3 7 3.21 7 3.14 0.46 8.00 20.57 0.43 3.57 2.43 1.14 1.43 2.00 
2 18 3.38 7 2.25 0.56 3.56 26.00 0.28 2.89 2.67 1.28 2.28 1.39 
1 27 3.40 5 2.55 0.75 2.37 44.15 0.07 2.04 1.52 3.30 2.70 3.00 

During the clustering process, an importance value is computed as a value between 0 and 1 for 
each variable. Importance is a measure of worth of the given variable to the formation of the 
clusters. As shown in Table 4, variable "Gender" has an importance of 0, which means that 
the variable was not used as a splitting variable in developing the clusters. The measure of 
"importance" indicates how well the variable divides the data into classes. Variables with 
zero importance should not necessary be dropped. 

Table 4. Variable Importance 

Name Importance 
GENDER 0 

ID 0 
LOCATION 0 
CLIMATE 0 

CAR_TYPE 0.529939 
COVERAGE 0.363972 

CREDIT_SCORE 0.343488 
CAR_AGE 0.941952 

AGE 1 
EDUCATION 0.751203 

Clustering analysis can be used by the property/casualty insurance industry to improve 
predictive accuracy by segmenting databases into more homogeneous groups. Then the data of 
each group can be explored, analyzed, and modeled. Segments based on types of variables 
that associate with risk factors, profits, or behaviors often provide sharp contrasts, which can 
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be interpreted more easily. As a result, actuaries can more accurately predict the likelihood of 
a claim and the amount of the claim. For example, one insurance company found that a 
segment of the 18- to 20-year old male drivers had a noticeably lower accident rate than the 
entire group of 18- to 20-year old males. What variable did this subgroup share that could 
explain the difference? Investigation of the data revealed that the members of the lower risk 
subgroup drove cars that were significantly older than the average and that the drivers of the 
older cars spent time customizing their "vintage autos." As a result, members of the subgroup 
were likely to be more cautious driving their customized automobiles than others in their age 
group. 

Lastly, the cluster identifier for each observation can be passed to other nodes for use as an 
input, id, group, or target variable. For example, you could form clusters based on different 
age groups you want to target. Then you could build predictive models for each age group by 
passing the cluster variable as a group variable to a modeling node. 

4. Predictive Data Mining 

This section introduces data mining models for prediction (as opposed to description, such as 
in Section 3). Section 4.1 gives an overview of the Decision Tree DM algorithm. Section 4.2 
presents a claim frequency model using Decision Trees and Logistic Regression. 

4.1 Decision Trees 

Decision trees are part of the Induction class of DM techniques. An empirical tree represents 
a segmentation of the data that is created by applying a series of simple rules. Each rule 
assigns an observation to a segment based on the value of one input. One rule is applied after 
another, resulting in a hierarchy of segments within segments. The hierarchy is called a tree, 
and each segment is called a node. The original segment contains the entire data set and is 
called the root node of the tree. A node with all its successors forms a branch of the node that 
created it. The final nodes are called leaves. For each leaf, a decision is made and applied to 
all observations in the leaf. The type of decision depends on the context. In predictive 
modeling, the decision is simply the predicted value. 

The decision tree DM technique enables you to create decision trees that: 
�9 Classify observations based on the values of nominal, binary, or ordinal targets, 
�9 Predict outcomes for interval targets, or 
�9 Predict the appropriate decision when you specify decision alternatives. 

Specific decision tree methods include Classification and Regression Trees (CART; Breiman 
et. al., 1984) and the count or Chi-squared Automatic Interaction Detection (CHAID; Kass, 
1980) algorithm. CART and CHAID are decision tree techniques used to classify a data set. 

The following discussion provides a brief description of the CHAID algorithm for building 
decision trees. For CHAD, the inputs are either nominal or ordinal. Many software packages 
accept interval inputs and automatically group the values into ranges before growing the tree. 
For nodes with many observations, the algorithm uses a sample for the split search, for 
computing the worth (measure of worth indicates how well a variable divides the data into 
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each class), and for observing the limit on the minimum size of a branch. The samples in 
different nodes are taken independently. For binary splits on binary or interval targets, the 
optimal split is always found. For other situations, the data is first consolidated, and then either 
all possible splits are evaluated or else a heuristic search is used. 
The consolidation phase searches for groups of values of the input that seem likely to be 
assigned the same branch in the best split. The split search regards observations in the same 
consolidatiori group as having the same input value. The split search is faster because fewer 
candidate splits need evaluating. A primary consideration when developing a tree for 
prediction is deciding how large to grow the tree or, what comes to the same end, what nodes 
to prune off the tree. The CHAID method of tree construction specifies a significance level of 
a Chi-square test to stop tree growth. The splitting criteria are based on p-values from the F- 
distribution (interval targets) or Chi-square distribution (nominal targets). For these criteria, 
the best split is the one with the smallest p-value. By default, the p-values are adjusted to take 
into account multiple testing. 

A missing value may be treated as a separate value. For nominal inputs, a missing value 
constitutes a new category. For ordinal inputs, a missing value is free of any order restrictions. 

The search for a split on an input proceeds stepwise. Initially, a branch is allocated for each 
value of the input. Branches are alternately merged and re-split as seems warranted by the p- 
values. The original CHAID algorithm by Kass stops when no merge or re-splitting operation 
creates an adequate p-value. The final split is adopted. A common alternative, sometimes 
called the exhaustive method, continues merging to a binary split and then adopts the split 
with the most favorable p-value among all splits the algorithm considered. 

After a split is adopted for an input, its p-value is adjusted, and the input with the best-adjusted 
p-value is selected as the splitting variable. If the adjusted p-value is smaller than a threshold 
you specified, then the node is split. Tree construction ends when all the adjusted p-values of 
the splitting variables in the unsplit nodes are above the user-specified threshold. 

Tree techniques provide insights into the decision-making process, which explains how the 
results come about. The decision tree is efficient and is thus suitable for large data sets. 
Decision trees are perhaps the most successful exploratory method for uncovering deviant data 
structure. Trees recursively partition the input data space in order to identify segments where 
the records are homogeneous. Although decision trees can split the data into several 
homogeneous segments and the rules produced by the tree can be used to detect interaction 
among variables, it is relatively unstable and it is difficult to detect linear or quadratic 
relationships between the response variable and the dependent variables. 

4.2 Modeling claim frequency 
We now start the modeling process by studying the relationship between claim frequency and 
underlying risk factors including age, gender, credit score, location, education level, coverage, 
.... and car age. Again, the synthetic data is used. A hybrid method is developed for this 
study - the modeling process is a combination of the decision tree techniques and logistic 
regression. 
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First, we use the decision tree algorithm to identify the factors that influence claim frequency. 
After the factors are identified, the logistic regression technique is used to quantify the claim 
frequency and the effect of each risk factor. 

The data for the study has the following variables as shown in Table 5: 

Table 5. Automobile Driver's Claim Information 

Variab/e 
Age 
Car age 
Car type 
Gender 
Coverage level 
Education 
Location 
Climate 
Credit rating 
ID 
No. of claims 

Variable Type 
Continuous 

Measurement Level 
Interval 

Continuous Interval 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Categorical 
Continuous 
Input 
Categorical 

Nominal 
Binary 
Nominal 
Nominal 

Description 
Driver's age in years 
Age of the car 
Type of the car 
F=female, M=male 
Policy coverage 
Education level of the drive 

Nominal Location of residence 
Nominal Climate code for residence 
Interval 
Nominal 
Nominal 

Credit score of the driver 
Driver's identification number 
Number of claims 

We now use the decision tree algorithm to analyze the influences and the importance of the 
claim frequency risk factors. The tree algorithm used in this research is SAS/Enterprise Miner 
Version 4.2 (2002). We built 100 binary regression trees and 100 CHAD-like trees for 
optimal decision tree. Our decision tree analysis reveals that the credit score has the greatest 
impact on the claim frequency. The claim frequency, and the interaction among different 
factors that affect the claim frequency, vary as the credit score status changes. Furthermore, 
there is a significant climate influence within the "higher credit score" status. 

A Tree diagram contains the following items: 
�9 Root node -- top node in the tree that contains all observations. 
�9 Internal nodes - non-terminal nodes (including the root node) that contain the splitting 

rules. 
�9 Leaf nodes -- terminal nodes that contain the final classification for a set of 

observations. 

The tree diagram displays node (segment) statistics, the names of variables used to split the 
data into nodes, and the variable values for several levels of nodes in the tree. Figure 5 shows 
a partial profile of the tree diagram for our analysis: 
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Figure 5. Tree Diagram 
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In Figure 5, each leaf node displays the percentage and n-count of the values that were used to 
determine the branching. The second colunm contains the learning from the training data 
including the percentage for each target level, the count for each target level, and the total 
count. The third column contains the learning from the validation data including the 
percentage for each target level, the count for each target level, and the total count. For 
example, among these drivers with credit score below 75.5%, 53% of them submitted a claim 
from the training data. 

The assessment values are used to re.cursively partition the data in homogenous subgroups. 
The method is re.cursive because each subgroup results from splitting a subgroup from a 
previous split. The numeric labels directly above each node indicate at which point the tree 
algorithm found significant splits in interval level variable distributions or in categorical splits 
for nominal or ordinal level distributions. The character labels positioned central to each split 
are the variable names. You can trace the paths from the root to each leaf and express the 
results as a rule. 

As shown in Figure 5, the claim frequency varies with the most important risk factor (the 
credit score status, in this study) among all the other variables. Based on tree analysis, the car 
age, coverage, and car-type are the irrelevant factors. They should not be included in the claim 
frequency model. 

Based on the tree analysis, we now use logistic regression to estimate the probability of claim 
occurrence for each driver based on the factors under consideration. As discussed in Section 2, 
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logistic regression attempts to predict the probability of  a claim as a function of  one or more 
independent inputs. Figure 6 shows a bar chart of the effect T-scores from the logistic 
regression analysis. An effect T-score is equal to the parameter estimate divided by its 
standard error. 

Figure 6. Effect T-scores from the logistic regression 

Age I~e~r Location 1 E ducatk~l 2 CKm=e 1 Education 1 
Credit Sc~e Locati~ 0 Location 3 Cl~ate 2 EduczCi~ 0 

Effect Label 

The scores are ordered by decreasing absolute value in the chart. The color density legend 
indicates the size of the score for a bar. The legend also displays the minimum and maximum 
score to the left and right of the legend, respectively. The vertical axis represents the absolute 
value for the effect. In this example, the first variable, Age has the largest absolute value, 
Credit Score has the second largest absolute value, and so on. The estimates for Location and 
Education are positive, so their bar values is colored a shade of  orange. The estimates for Age 
and Credit Score have negative values, so their bars are displayed in yellow. 

Assessment is the final part of the data mining process. The Assessment criterion is a 
comparison of the expected to actual profits or losses obtained from model results. This 
criterion enables you to make cross-model comparisons and assessments, independent of all 
other factors (such as sample size, modeling node, and so on). 

Figure 7 is a cumulative % claim-occurrence lift chart for the logistic regression model. Lift 
charts show the percent of captured claim-occurrence (a.k.a. the lift value) on the vertical axis. 
In this chart the target drivers are sorted from left to right by individuals most likely to have an 
accident, as predicted by each model. The sorted group is lumped into ten percentiles along 
the X-axis; the left-most percentile is the 10% of the target predicted most likely to have an 
accident. The vertical axis represents the predicted cumulative % claim-occurrence if the 
driver from that percentile on down submitted a claim. 
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Figure 7. Lift Chart for Logistic Regression 

The lift chart displays the cumulative % claim-occurrence value for a random baseline model, 
which represents the claim rate if you chose a driver at random, given the logistic regression 
model. 

The performance quality of a model is demonstrated by the degree the lift chart curve pushes 
upward and to the left. For this example, the logistic regression model captured about 30% of 
the drivers in the 10th percentile. The logistic regression model does have better predictive 
power from about the 20th to the 80th percentiles. At about the 90th percentile, the cumulative 
% claim-occurrence values for the predictive model are about the same as the random baseline 
model. 

5. Conclusions 

This paper introduced the data mining approach to modeling insurance risk and some 
implementation of the approach. In this paper, we provide an overview of data mining 
operations and techniques and demonstrate two potential applications to property/casualty 
actuarial practice. In section 3.2, we used k-means clustering to better describe a group of 
drivers by segmentation. In section 4.2, we examined several risk factors for automobile 
drivers with the goal of predicting their claim frequency. The influences and the correlations 
of these factors on auto claim distribution were identified with exploratory data analysis and 
decision tree algorithm. Logistic regression is then applied to model claim frequency. 
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Due to our use of synthetic data, however, the examples show limited advantages of DM over 
traditional actuarial analysis. The great significance of the data mining, however, can only be 
shown with huge, messy databases. Issues on how to improve data quality through data 
acquisition, data integration, and data exploration will to be discussed in the future study. 

The key to gaining a competitive advantage in the insurance industry is found in recognizing 
that customer databases, if properly managed, analyzed, and exploited, are unique, valuable 
corporate assets. Insurance firms can unlock the intelligence contained in their customer 
databases through modern data mining technology. Data mining uses predictive modeling, 
database segmentation, market basket analysis, and combinations thereof to more quickly 
answer crucial business questions with greater accuracy. New products can be developed and 
marketing strategies can be implemented enabling the insurance firm to transform a wealth of 
information into a wealth of predictability, stability, and profits. 
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Martian Chronicles: Is MARS better than Neural Networks? 

by Louise Francis, FCAS, M A A  

Abstract: 
A recently developed data mining technique, Multivariate Adaptive Regression Splines 
(MARS) has been hailed by some as a viable competitor to neural networks that does not 
suffer from some of the limitations of neural networks. Like neural networks, it is 
effective when analyzing complex structures which are commonly found in data, such as 
nonlinearities and interactions. However, unlike neural networks, MARS is not a "black 
box", but produces models that are explainable to management. 

This paper will introduce MARS by showing its similarity to an already well-understood 
statistical technique: linear regression. It will illustrate MARS by applying it to insurance 
fraud data and will compare its performance to that of neural networks, 
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Martian Chronicles: Is MARS better than Neural Networks? 

The discipline of artitlcial intelligence has contributed a number of promising techniques 
to the analyst's toolkit. The techniques have names such as "machine learning", "genetic 
algorithms" and "neural networks". These techniques are collectively known as data 
mining. Data mining uses computationally intensive techniques to find patterns in data. 
When data mining tools are applied to data containing complex relationships they can 
identify relationships not otherwise apparent. These complexities have been a challenge 
for traditional analytical procedures such as linear regression. 

The casualty actuarial literature contains only a few papers about data mining techniques. 
Speights et al. (Speights et al., 1999) and Francis (Francis, 2001) introduced the neural 
network procedure for modeling complex insurance data. Hayward (Hayward, 2002) 
described the use of data mining techniques in safety promotion and better matching of 
premium rates to risk. The methods discussed by Hayward included exploratory data 
analysis using pivot tables and stepwise regression. 

In this paper, a new technique, MARS, which has been proposed as an alternative to 
neural networks (Steinberg, 2001), will be introduced. The name MARS, coined for this 
technique by its developer, Freidman, (Hastie, et al., 2001), is an acronym for 
Multivariate Adaptive Regression Splines. The technique is a regression based technique 
which allows the analyst to use automated procedures to fit models to large complex 
databues. Because the technique is regression based, its output is a linear function that is 
readily understood by analysts and can be used to explain the model to management. 
Thus, the technique does not suffer from the "black box" limitation of neural networks. 
However, the technique addresses many of the same data complexities addressed by 
neural networks. 

Neural networks are one of the more popular data mining approaches. These methods are 
among of the oldest data mining methods and are included in most data mining sot~are 
packages. Neural networks have been shown to be pmicularly effective in handling 
some complexities commonly found in data. Neural networks are well known for their 
ability to model nonlinear functions. The research has shown that a neural network with a 
sumcient number of parameters can model any continuous nonlinear function 
accurately. 1 Francis (Francis, 2001) also showed that neural networks are valuable in 
fitting models to data containing interactions. Neural networks are often the tools of 
choice when predictive accuracy is required. Berry and Linoff(Berry and Linoff, 1997) 
suggest that neural networks are popular because of their proven track record. 

Neural networks are not ideal for all data sets. Warner and Misra presented several 
examples where they compared neural networks to regression (Warner and Misra, 1996). 
Their research showed that regression outperformed neural networks when the functional 
relationship between independent and dependent variables was known. Francis (Francis, 

A more technical description of the property is that with a sufficient number of nodes in the neural 
network's hidden layer, the neural network can approximate any deterministic nonlinear continuous 
function. 
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2001) showed that when the relationship between independent and dependent variables 
was linear, classical techniques such as regression and factor analysis outperformed 
neural networks. 

Perhaps the greatest disadvantage of nenral networks is the inability of users to 
understand or explain them. Because the neural network is a very complex function, 
there is no way to summarize the relationships between independent and dependent 
variables with functions that can be interpreted by data analysts or management. Berry 
and Linoff(Berry and Linoff, 1997) state that "Neural networks are best approached as 
black boxes with mysterious inner workings, as mysterious as the origins of our own 
consciousness". More conventional techniques such as linear regression result in simple 
mathematical functions where the relationship between predictor and target variables is 
dearly described and can be understood by audiences with modest mathematical 
expertise. The "black box" aspect of neural networks is a serious impediment to more 
widespread use. 

Francis (Francis, 2001) listed several complexities found in actual insurance data and 
then showed how neural networks were effective in dealing with these complexities. This 
paper will introduce MARS and will compare and contrast how MARS and neural 
networks deal with several common data challenges. Three challenges that will be 
addressed in this paper are: 

1) Nonlinearity: Traditional actuarial and statistical techniques often assume that 
the functional relationship between the independent variables and the 
dependent variable is linear or some transformation of the data exists that can 
be treated as linear. 

2) Interactions: The exact form of the relationship between a dependent and 
independent variable may depend on the value of one or more other variables. 

3) Missing data: Frequently data has not been recorded on many records of many 
of the variables that are of interest to the researcher. 

The Data 
This paper features the application of two data mining techniques, neural networks and 
MARS, to the fraud problem. The data for the application was supplied by the 
Automobile Insurers Bureau of Massachusetts (A1B). The data consists of a random 
sample of 1400 closed claims that were collected from PIP (personal injury protection or 
no-fault coverage) claimants in Massachusetts in 1993. The database was assembled 
with the cooperation often large insurers. This data has been used by the AIB, the 
Insurance Fraud Bureau of Massachusetts (IFB) and other researchers to investigate 
fraudulent claims or probable fraudulent claims (Derrig et al., 1994, Weisberg and 
Derrig, 1995, Viaene et al., 2002). While the typical data mining application would use 
a much larger database, the AIB PIP data is well suited to illustrating the use of data 
mining techniques in insurance. Viaene et al. used the AIB data to compare the 
performance of a number of data mining and conventional classification techniques 
(Viaene et al., 2002). 
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Two key fraud related dependent variables were collected in the study: an overall 
assessment (ASSESS) of the likelihood the claim is fraudulent or abusive and a suspicion 
score (SUSPICION). Each record in the data was assigned a value by an expert. The 
value indicates the expert's subjective assessment as to whether the claim was legitimate 
or whether fraud or abuse was suspected. Experts were asked to classify suspected fraud 
or abuse claims into the following categories: exaggerated damages, opportunistic fraud 
or planned fraud. As shown in Table 1, the assessment variable can take on 5 possible 
values. In addition, each claim was assigned a score from 0 (none) to 10 (very high) 
indicating the expert's degree of suspicion that the claim was abusive or fraudulent. 
Wcisberg and Derrig (Weisberg and Derrig, 1993) found that more serious kinds of 
fraud, such as planned fraud were associated with higher suspicion scores than "softer" 
fraud such as exaggeration of damages. They suggest that the suspicion score was able to 
measure the range of"soft" versus "hard" fraud. 

The databasecontains detailed objective claim information on each claim in the study. 
This includes information about the policy inception date, the date the accident occurred, 
the date it was reported, the paid and incurred loss dollars, the injury type, payments to 
health care providers and the provider type. The database also contains "red flag" or 
fraud indicator variables. These variables are subjective assessments of characteristics of 
the claim that are believed to be related to the likelihood of fraud or abuse. More 
information on the variables in the model is supplied below in the discussion of specific 
models. 

Table 1 
Assessment Variable 

Value Assessment Percent of Data 
1 Probably legitimate 
2 Excessive treatment only 
3 Suspected opportunistic fraud, no injury 
4 Suspected opportunistic fraud, exaggerated injury 
5 Suspected planned fraud 

64% 
20% 

3% 
12% 

1% 

We may use the more inclusive term "abuse" when referring to the softer kinds of 
fraudulent activity, as only a very small percentage of claims meet the strict standard of 
criminal fraud (Derfig, 2002). However, misrepresentation and exaggeration of the 
nature and extent of the damages, including padding of the medical bills so that the value 
of the claim exceeds the tort threshold, occur relatively frequently. While these activities 
are often thought of as fraud, they do not meet a legal definition of fraud. Therefore, they 
will be referred to as abuse. Overall, about one third of the claims were coded as 
probable abuse or fraud claims. 

Nonlinear Functions 
The relationships encountered in insurance data are often nonlinear. Classical statistical 
modeling methods such as linear regression have had a tremendous impact on the 
analysis and modeling of data. However, traditional statistical procedures often assume 
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that the relationships between dependent and independent variables are linear. 
Traditional modeling also allows linear relationship that result from a transformation of  
dependent or independent variables, so some nonlinear relationships can be 
approximated. In addition, there are techniques specifically developed for fitting 
nonlinear functions such as nonlinear regression. However, these techniques require that 
theory or experience specify the "true" form of  the nonlinear relationships. Data mining 
techniques such as neural networks and MARS do not require that the relationships 
between predictor and dependent variables be linear (whether or not the variables are 
transformed). Both neural networks and MARS are also considered nonparametric 
because they require no assumptions about the form of  the relationship between 
dependent and independent variables. 

For this illustration, a dependent variable that is not categorical (i.e. values have a 
meaningful order) was selected. The selected dependent variable was SUSPICION. 
Unlike the ASSESS variable, the values on the SUSPICION variable have a meaningful 
range, with higher values associated with suspicion of  more serious fraud. 

To illustrate methods of  fitting models to nonlinear curves, a variable was selected which 
1) had a significant correlation with the dependent variable, and 2) displayed a highly 
nonlinear relationship. Illustrating the techniques is the objective of  this example. The 
data used may require significant time to collect and may therefore not be practical for an 
application where the objective is to predict abuse and fraud (which would require data 
that is available soon after the claim is reported) Later in the paper, models for 
prospectively predicting fraud will be presented. The variable selected was the first 
medical provider's bill 2. A medical provider may be a doctor, a clinic, a chiropractor or a 
physical therapist. Prior published research has indicated that abusive medical treatment 
patterns are often key drivers of  fraud (Derrig et  al., 1994, Weisberg and Derrig, 1995). 
Under no-fault laws, claimants will often deliberately run the medical bills up high 
enough to exceed tort thresholds. In this example the relationship between the first 
provider's medical bill and the value of  the suspicion score will be investigated. The AIB 
fraud database contains the medical bills submitted from the top two health care 
providers. I f  more costly medicine is delivered to suspicious claims than non-suspicious 
claims, the provider bills should be higher for the suspicious claims. 

Figure 1 presents a scatterplot of  the relationship between SUSPICION and the provider 
bill. No relationship is evident from the graph. However, certain nonlinear relationships 
can be difficult to detect visually. 

2 N0te that Massachusetts PIP covers only the first $8,000 of medical payments if the claimant has health 
insurance. Large bill amounts may represent data from claimants with no coverage. Bills may also exceed 
$8,000 even ffpayments are limited. However, the value of medical bills on some claims may be 
truncated because reimbursemenl is not expected. 
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Figure 1 
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Neural networks will first be used to fit a curve to the data. A detailed description of how 
neural networks analyze data is beyond the scope of  this paper. Several sources on this 
topic are Francis, Lawrence and Smith (Francis, 2001, Lawrence, 1994, Smith, 1996). 
Although based upon how neurons function in the brain, the neural network technique 
essentially fits a complex non-parametric nonlinear regression. A task at which neural 
networks are particularly effective is fitting nonlinear functions. The graph below 
displays the resulting function when the dependent variable SUSPICION is fit to the 
provider bill by a neural network. This graph displays a funetion that increases quickly at 
lower bill amounts and then levels off. Although the curve is flat over much of the range 
of medical bills, it should be noted that the majority of bills are below $2,000 (in 1993 
dollars). 

Figure 2 

Neural  Network  Fit o f  S U S P I C I O N  vs Provider Bill 
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One of the most common statistical procedures for curve fitting is linear regression. 
Linear regression assumes the relationship between the dependent and independent 
variables is linear. Figure 3 displays the graph of  a fitted regression line of  SUSPICION 
on provider bill. The regression forces a linear fit to SUSPICION versus the payment 
amount Thus, rather than a curve with a rapidly increasing trend line that levels off, a 
line with a constant slope is fitted. I f  the relationship is in fact nonlinear, this procedure 
is not as accurate as that of  the neural network. 

Figure 3 

Regression Fit of  SUSPICION vs Provider Sill 
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When the true relationship between a dependent and independent variable is nonlinear, 
various approaches are available when using traditional statistical procedures for fitting 
the curve. One approach is to apply a nonlinear transformation to the dependent or 
independent variable. A linear regression is then fit to the transformed variables. As an 
example, a log transform was applied to the provider bill variable in the AIB data. The 
regression fit was of  the form: 

Y = B o + B 1 I n ( X )  

That is, the dependent variable, the suspicion score, is assumed to be a linear function of  
the natural log of  the independent variable, provider bill. Figure 4 displays the curve fit 
using the logarithmic transformation. 
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Figure 4 

Log Transform Fit of SUSPIC ION vs  Provider Bill 
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Another procedure which is used in classical linear regression to approximate nonlinear 
curves is polynomial regression. The curve is approximated by the function: 

Y = B  o + B 1 X + B 2 X  2 + . . . + B . X  n 

Generally, low order polynomials are used in the approximation. A cubic polynomial 
(including terms up to provider bill raised to the third power) was used in the fit. Figure 
5 displays a graph of a fitted polynomial regression. 

Figure 5 

Polynomial Regression Fit of SUSPIC ION vs  P rov i de r  SIN 
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The use of polynomial regression to approximate functions is familiar to readers from its 
use in Taylor series expansions for this purpose. However, the Taylor series expansion 
is used to approximate a function near a point, rather than over a wide range. When 
evaluating a function over a range, the maximums and inflection points of the polynomial 
may not exactly match the curves of the function being approximated. 

The neural network model had an R 2 (coefficient of determination) of 0.37 versus 0.25 
for the linear model and 0.26 for the log transform. The R 2 of  the polynomial model was 
comparable to that of the neural network model. However, the fit was influenced 
strongly by a small number of claims with large values. Though not shown in the graph, 
at high values for the independent variable the curve declines below zero and then 
increases again. This unusual behavior suggests that the fitted curve may not 
approximate the "true" relationship between provider bill and suspicion score well at the 
extremes of the data and may perform poorly on new claims with values outside the 
range of the data used for fitting. 

Table 2 below shows the values of SUSPICION for ranges of the provider bill variable. 
The table indicates that SUSPICION increases rapidly at low bill amounts and then levels 
offat about $3,000. 

Table 2 
Suspicion Scores by Provider Bill 

Provider Bill Number of Claims Mean Suspicion Score 
$0 444 0.3 
1 - 1,000 376 1.1 
1,001 - 2,000 243 3.0 
2,001 - 3,000 227 4.2 
3,001 - 4,000 60 4.6 
4,001 - 5000 33 4.2 
5,001 - 6,000 5 5.8 
6,001 - 7,000 12 4.3 

The examples illustrate that traditional techniques which require specific parametric 
assumptions about the relationship between dependent and independent variables may 
lack the flexibility to model nonlinear relationships. It should be noted, however, that 
Francis (Francis, 2001) presented examples where traditional techniques performed as 
weU as neural networks in fitting nonlinear functions. Also, when the true relationship 
between the dependent and independent variables is linear, classical statistical methods 
are likely to outperform neural networks. 

MARS and Nonlinear Functions 
The MARS approach to fitting nonlinear functions has similarities to polynomial 
regression. In its simplest form MARS fits piecewise linear regressions to the data. That 
is, MARS breaks the data into ranges and allows the slope of the line to be different for 
the different ranges. MARS requires the function fit to be continuous, thus there are no 
jump points between contiguous ranges. 
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To continue the previous example, a function was fit by MARS. The graph below 
displays the MARS fitted function. It can be seen that the curve is broken into a steeply 
sloping line, which then levels off much the way the neural network fitted function did. 

Figure 6 

MARS Fit of SUSPICION vs Provider Bill 
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MARS uses an optimization procedure that fits the best piecewise regression. Simpler 
functions may adequately approximate the relationship between predictor and dependent 
variables and are favored over more complex functions. From the graph, it can he seen 
that the best MARS regression had two pieces: 

1) The curve has a steep slope between bitl amounts of $0 and $2,185 
2) The curve levels off at bill amounts above $2,185 

The fitted regression model can be written as follows: 

BF1 = max(0, 2185 - X ) 
Y = 4.29 - 0.002 * BF1 

where 

Y is the dependent variable (Suspicion score) 
X is the provider bill 

The points in the data range where the curves change slope are known as knots. The 
impact of knots on the model is captured by basis functions. For instance BF1 is a basis 
function. Basis fimctions can he viewed as similar to dummy variables in linear 
regression. Dummy variables are generally used in regression analysis when the 
predictor variables are categorical. For instance, the Provider bill variable can be 
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MARS can perform regressions on binary variables. When the dependent variable is 
binary, MARS is run in binary mode. In binary mode, the dependent variable is 
converted into a 0 (legitimate) or a 1 (suspected fraud or abuse). Ordinary least squares 
regression is then performed regressing the binary variable on the predictor variables. 
Logistic regression is a more common procedure when the dependent variable is binary. 
Suppose that the true target variable is the probability that a given claim is abusive, and 
this probability is deno tedp(x ) .  The model relatingpOc) to the a vector of independent 
variables x is: 

ln(l_~Pp ;x ) = B o + B i X  1 +. . .+  B n X  n 

where the quantity ln(p(x) / ( I -p(x)) )  is known as the logit function or log odds. Logistic 
regression can be used to produce scores that are between zero and one, consistent with 
viewing the score as a probability. Binary regressions can produce predicted values 
which can be less than zero and greater than one. One solution to this issue is to truncate 
the predicted values at zero and one. Another solution is to add the extra step of  fitting a 
logistic regression to the data using the MARS predicted value as the independent 
variable and the binary assessment variable as the dependent variable. The fired 
probabilities from the logistic regression can then be assigned as a score for the claim. 
The neural network model was also run in binary mode and also produced fired values 
which were less than zero or greater than one. In this analysis, logistic regression was 
applied to the results of both the MARS and neural network fits to convert the predicted 
values into probabilities. 

Variables in the Model 
There are two categories of predictor variables that were incorporated into the models 
described in this section. The first category is red flag variables. These are primarily 
subjective variables that are intended to capture features of the accident, injury or 
claimant that are believed to be predictive of fraud or abuse. Many red flag variables 
represent accumulated industry wisdom about which indicators are likely to be associated 
with fi'and or abuse. The information recorded in these variables represents an expert's 
subjective assessment of frand indications, such as "the insured felt set up, denied fault" 
These variables are binary, that is, they are either true or false. Such red flag variables 
are often used to target certain claims for further investigation. The data for these red flag 
variables is not part of the claim file; it was collected as part of the special effort 
undertaken in assembling the AIB database for fraud research. 

The red flag variables were supplemented with claim file variables deemed to be 
available early in the life of a claim and therefore of practical value in predicting fraud 
and abuse. 

The variables selected for use in the full model are the same as those used by Viaene et  
al. (Viaene et. al., 2002) in their comparison of statistical and data mining methods. 
While a much larger number of predictor variables is available in the AIB data for 
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modeling fraud, the red flag and objective claim variables selected for incorporation into 
their models by Viaene et al. were chosen because of early availability. Therefore they 
are likely to be useful in predicting fraud and abuse soon enough in the claim's lifespan 
for effective mitigation efforts to lower the cost of the claim. Tables 6 and 7 present the 
red flag and claim file variables. 

Table 6 
Red Flag Variables 

Indicator 
Subject Variable 
Accident ACC01 

ACC04 
ACCO9 
ACC10 
ACC11 
ACC 14 
ACC 15 
ACC16 
ACC19 

Claimant CLT02 
CLTO4 
CLT07 

injury IN J01 
IN J02 
IN J03 
IN J05 
IN J06 
INJI 1 

Insured INS01 
INS03 
INS06 
INS07 

LOst Wages LW0f 
LWO3 

Description 
No report by police officer at scene 
Single vehicle accident 
No plausible explanation for accident 
Claimant in old, low valued vehicle 
Rental vehicle involved in accident 
Property Damage was inconsistent with accident 
Very minor impact collision 
Claimant vehicle stopped short 
Insured felt set up, denied fault 
Had a history of previous claims 
Was an out of state accident 
Was one of three or more claimants in vehicle 
injury consisted of strain or sprain only 
No objective evidence of injury 
Police report showed no injury or pain 
No emergency treatment was given 
Non-emergency treatment was delayed 
Unusual injury for auto accident 
Had history of previous claims 
Readily accepted fault for accident 
Was difficult to contact/uncooperative 
Accident occunred soon after effective date 
Claimant worked for self or a family member 
Claimant recently started employment 

Table 7 

Variable 
AGE 
POLLAG 
RPTLAG 
TREATLAG 
AMBUL 
PARTDIS 
TOTDIS 

Claim Variables Available Eady in Life of  Claim 
Description 
Age of claimant 
Lag from policy inception to date of accident 8 
Lag from date of accident to date reported 
Lag from date of accident to eadiest treatment by sen/ice provider 
Ambulance charges 
The claimant partially disabled 
The claimant totally disabled 

LEGALREP The claimant represented byan attorney 

8 POLLAG, RPTLAG and TRTLAG are continuous variables. 
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One of the objectives of this research is to investigate which variables are likely to be of 
value in predicting fraud and abuse. To do this, procedures are needed for evaluating the 
importance of variables in predicting the target variable. Below, we present some 
methods that can be used to evaluate the importance of the variables. 

Evaluating Variable Importance 
A procedure that can be used to evaluate the quality of the fit when fitting complex 
models is generalized cross-validation (GCV). This procedure can be used to determine 
which variables to keep in the model, as they produce the best fit, and which to eliminate. 
Generalized cross-validation can be viewed as an approximation to cross-validation, a 
more computationaUy intensive goodness of fit test described later in this paper. 

o c z  = L  fY-' - f ( x , ) t  2 
N i - - (  1 - k / N  " 

where N is the number of observations 
y is the dependent variable 
x is the independent variable(s) 
k is the effective number of parameters or degrees of freedom in the model. 

The effective degrees of freedom is the means by which the GCV error functions puts a 
penalty on adding variables to the model. The effective degrees of freedom is chosen by 
the modeler. Since MARS tests many possible variables and possible basis functions, the 
effective degrees of freedom used in parameterizing the model is much higher than the 
actual number of basis function in the final model. Steinberg states that research 
indicates that k should be two to five times the number of basis functions in the model, 
although some research suggests it should be even higher (Steinberg, 2000). 

The GCV can be used to rank the variables in importance. To rank the variables in 
importance, the GCV is computed with and without each variable in the model. 

For neural networks, a statistic known as the sensitivity can be used to assess the relative 
importance of variables. The sensitivity is a measure of how much the predicted value's 
error increases when the variables are excluded from the model one at a time. Ports 
(Potts, 2000) and Francis (Francis, 2001) described a procedure for computing this 
statistic. Many of the major data mining packages used for fitting neural networks supply 
this statistic or a ranking of variables based on the statistic. Statistical procedures for 
testing the significance of variables are not well developed for neural networks. One 
approach is to drop the least important variables from the model, one at a time and 
evaluate whether the fit deteriorates on a sample of claims that have been held out for 
testing. On a large database this approach can be time consuming and inefficient, but it is 
feasible on small databases such as the AIB database. 
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Table 8 displays the ranking of variable importance from the MARS model. Table 9 
displays the ranking of importance from the neural network model. The final model 
fitted by MARS uses only the top 12 variables in importance. These were the variables 
that were determined to have made a significant contribution to the final model. Only 
variables included in the model, i.e., found to be significant are included in the tables. 

Table 8 
MARS Ranking of  Variables 

Rank Variable Description 
1 LEGALREP Legal Representation 
2 TRTMIS Treatment lag missing 
3 ACC04 Single vehicle accident 
4 IN J01 Injury consisted of strain or sprain only 
5 AGE Claimant age 
6 PARTDIS Claimant partially disabled 
7 ACC14 Property damage was inconsistent with accident 
8 CLT02 Had a history of previous claims 
9 POLLAG Policy lag 
10 RPTLAG Report lag 
11 AMBUL Ambulance charges 
12 ACC15 Very minor impact collision 

The ranking of variables as determined by applying the sensitivity test to the neural 
network model is shown below. 

Table 9 

Neural Network Ranking of Variables 
Rank Variable Description 
1 LEGALREP Legal Representation 
2 TRTMIS Treatment leg missing 
3 AMBUL Ambulance charges 
4 AGE Claimant age 
5 PARTDIS Claimant partially disabled 
6 RPTLAG Report lag 
7 ACC04 Single vehicle accident 
8 POLLAG Policy lag 
9 CLT02 Had a history of previous claims 
10 IN J01 Injury consisted of strain or sprain only 
11 ACC01 No report by police officer at scene 
12 ACC14 Property dama~le was inconsistent with accident 

Both the MARS and the neural network find the involvement of a lawyer to be the most 
important variable in predicting fraud and abuse. Both procedures also rank as second a 
missing value on treatment lag. The value on this variable is missing when the claimant 
has not been to an outpatient health care provider, although in over 95% of these cases, 
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the claimant has visi ted an emergency room. 9 Note that both medical paid and total paid 
for this group is less than one third o f  the medical paid and total paid for claimants who 
visited a provider. Thus the TRTMIS (treatment lag missing) variable appears to be a 
surrogate for not using an outpatient provider. The actual lag in obtaining treatment is not 
an important variable in either the MARS or neural network models. 

Explaining the Model 
Below are the formulas for the model fit by MARS. Again note that some basis functions 
created by MARS were found not to be significant and are not shown. To assist with 
interpretation, Table 10 displays a description o f  the values o f  some o f  the variables in 
the model. 

BFI = 

BF2 = 

BF3 = 

BF4 = 

BF5 = 

BF7 = 

BF9 = 

BFil = 

BFI5 = 

BFI6 = 

LEGALREP = i) 

= 2) 

TRTLAG = missing) 

TRTLAG # missing) 

INJ01 = I) * BF2 

ACC04 = i) * BF4 

ACCI4 = i) 

PARTDIS = i) * BF4 

max(0 AGE - 36) * BF4 

max(0 36 - AGE ) * BF4 

BFI8 = max(0, 55 - AMBUL ) * BFI5 

BF20 = max(0, i0 - RPTLAG ) * BF4 

BF21 = ( CLT02 = I) 

BF23 = POLLAG * BF21 

BF24 = ( ACCI5 = I) * BFI6 

Y = 0.580 - 0.174 * BFI - 0.414 * BF3 + 0.196 * BF5 - 0.234 * BF7 

+ 0.455 * BF9 + 0.131 * BFII - 0.011 * BFI5 - 0.006 * BFI6 + 

.135E-03 * BFI8 - 0.013 * BF20 + .286E-03 * BF23 + 0.010 * BF24 

9 Because of the strong relationship between a missing value on treatment lag and the dependent variable, 
and the high percentage of claims in this category which had emergency room visits, an indicator variable 
for emergency room visits was tested as a surrogate. It was found not to be significant. 
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Table  10 
Description of Categorical Variables 

Variable Value 
LEGALREP 1 

2 
IN J01 1 

2 
ACC04 1 

2 
ACC14 1 

2 
PARTDIS 1 

2 
CLT02 1 

2 
ACC15 1 

2 

Description 
No legal representation 

Has legal representation 
Injury consisted of strain or sprain only 

Injury did not consist of strain or sprain only 
Single vehicle accident 

Two or more vehiCle accident 
Property damage was inconsistent with accident 

Property damage was consistent with accident 
Partially disabled 

Not partially disabled 
Had a history of previous claims 

No history of previous claims 
Was very minor impact collision 

Was not very minor impact collision 

The basis functions and regression produced by MARS assist the analyst in 
understanding the impact of the predictor variables on the dependent variable. From the 
formulae above, it can be concluded that 

1) when a lawyer is not involved (LEGALREP = 1), the probability of fraud or 
abuse declines by about 0.17 

2) when the elairnant has legal representation and the injury is consistent with a 
sprain or strain only, the probability of fraud or abuse increases by 0.2 

3) when the claimant does not receive treatment from an outpatient health care 
provider (TRTLAG = missing),, the probability of abuse declines by 0.41 

4) a single vehicle accident where the claimant receives treatment from an 
outpatient health care provider (treatment lag not missing) decreases the 
probability of fraud by 0.23 

5) if property damage is inconsistent with the accident, the probability of fraud or 
abuse increases by 0.46 

6) if the claimant is partially disabled and receives treatment from an outpatient 
health care provider the probably of fraud or abuse is increased by 0.13 

Of the red flag variables, small contributions were made by the claimant having a 
previous history of a claim 1~ and the accident being a minor impact collision. Of the 
objective continuous variables obtained from the claim file, variables such as claimant 
age, report lag and policy lag have a small impact on predicting fraud or abuse. 

Figures 11 and 12 display how MARS modeled the impact of selected continuous 
variables on the probability of fraud and abuse.. For claims receiving outpatient health 

1 0  �9 . This variable only captures histoly of a prior claim if it was recorded by the insurance company. For 
some companies participating in the study, it was not recorded. 
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care, report lag has a positive impact on the probability of abuse, but its impact reaches 
its maximum value at about 10 days. Note the interaction between claimant age and 
ambulance costs displayed in Figure 12. For low ambulance costs, the probability of 
abuse rises steeply with claimant age and maintains a relatively high probability except 
for the very young and very old claimants. As ambulance costs increase, the probability 
of fraud or abuse decreases, and the decrease is more pronounced at lower and higher 
ages. Ambulance cost appears to be acting as a surrogate for injury severity. 

Figure 11 
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This section on explaining the model illustrates one of the very useful qualities of MARS 
a s ~ r ~  *.~ n~'.~'al networks: the output of the model is a formula which describes the 
relationships between predictor and dependent variables and which can be used to explain 
the model to management. To some extent, the sensitivity measure assists us in 
understanding the relationships fit by the neural network model, as it provides a way to 
assess the importance of each of the variables to the prediction. However, the actual 
functional relationships between independent and dependent variables are not typically 
available and the model can he difficult to explain to management, u 

Evaluating the Goodness of the Fit and Comparing the Accuracy 
One approach for testing the accuracy of models that is commonly used in data mining 
applications is to have separate training and testing samples. This approach was used in 
the previous example. Typically one half to one third of the data is held out for testing. 
However, when the database used for modeling is small the analyst may not want to lose 
a large portion of the data to testing. Moreover, as the testing is performed on a relatively 
small sample, the goodness of fit results may be sensitive to random variation in the 
subsets selected for training and testing. An alternative procedure that allows more oftbe 
data to be used for fitting and testing is cross-validation. Cross-validation involves 
iteratively holding out part of the sample, fitting the model to the remainder of the sample 
and testing the goodness of the fitted model on the held out portion. For instance, the 
sample may be divided into 4 groups. Three of the groups are used to fit the model and 
one is used for testing. The process is repeated four times, and the goodness of fit 
statistics for the four test samples are averaged. As the AIB database is relatively small 
for a data mining application, this is the procedure used. Testing was performed using 
four fold cross-validation. 

Both a MARS model and a neural network model were fit to four samples of the data. 
Each time the fitted model was used to predict the probability of fraud or abuse for one 
quarter of the data that was held out. The predictions from the four test samples were 
then combined to allow comparison of the MARS and neural network procedures. 

Table l 1 presents some results of the analysis. This table presents the R 2 of the regression 
of ASSESS on the predicted value from the model. The table shows that the neural 
network R 2 was higher than that of MARS. The table also displays the percentage of 
observations whose values were correctly predicted by the model. The predictions are 
based only on the samples of test claims. The neural network model correctly predicted 
79~ of the test claims, while MARS correctly predicted 77% oftbe test claims. 

Table I I 

Four Fold Cross-validation 
Percent 

Technique R z Correct 

MARS 0.35 0.77 
Neural Network 0.39 0.79 

II Plate (2000) and Francis (2001 ) present a method to visualize the relationships between independent and 
dependent variables, The technique is not usually available in data mining software. 
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Tables 12 and 13 display the accuracy of MARS and the neural network in classifying 
fraud and abuse claims. 12 A cutoff point of 50% was used for the classification. That is, 
if the model's predicted probability ofa  1 on ASSESS exceeded 50%, the claim was 
deemed an abuse claim. Thus, those claims in cell Actual =1 and Predicted=l are the 
claims assessed by experts as probably abusive which were predicted to be abusive. 
Those claims in cell Actual=l, Predicted =0, are the claims assessed as probable abuse 
claims which were predicted by the model to be legitimate. 

Table 12 
MARS Predicted * Actual 

Predicted Actual 
0 1 Total 

0 738 160 898 
1 157 344 501 
Total 895 505 

Table 13 
Neural Network Predicted * Actual 
Predicted Actual 

0 1 Total 
0 746 127 873 
1 149 377 526 

Total 895 505 

Table 14 presents the sensitivity and specificity of each of the models. The sensitivity is 
the percentage of events (in this case suspected abuse claims) that were predicted to be 
events. The specificity is the percentage of nonevents (in this case claims believed to be 
legitimate) that were predicted to be nonevents. Both of these statistics should be high 
for a good model. The table indicates that both the MARS and neural network models 
were more accurate in predicting nonevent or legitimate claims. The neural network 
model had a higher sensitivity than the MARS model, but both were approximately equal 
in their specifieities. The neural network's higher overall accuracy appears to be a result 
of its greater accuracy in predicting the suspected fraud and abuse claims. Note that the 
sensitivity and specificity measures are dependent on the choice of a cutoff value. Thus, 
if a cutoff lower than 50% were selected, more abuse claims would be accurately 
predicted and fewer legitimate claims would be accurately predicted. 

Table 14 
Model Sensitivity Specificity 

MARS 68.3 82.5 
Neural Network 74.8 83.4 

~2 These tables are often referred to as confusion matrices 
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A common procedure for visualizing the accuracy of models used for classification is the 
receiver operating characteristics (ROC) curve. This is a curve of sensitivity versus 
specificity (or more accurately 1.0 minus the specificity) over a range of cutoffpoints. 
When the eutoffpoint is very high (i.e. 1.0) all claims are classified as legitimate. The 
specificity is 100~ (1.0 minus the specificity is 0), but the sensitivity is 0 %  As the 
cutoff point is raised, the sensitivity increases, but so does 1.0 minus the specificity. 
Ultimately a point is reached where all claims are predicted to be events, and the 
specificity declines to zero. The baseline ROC curve (where no model is used) can be 
thought of as a straight line from the origin with a 45-degree angle: If the model's 
sensitivity increases faster than the specificity decreases, the curve "lifts" or rises above a 
45-degree line quickly. The higher the "lift", the more accurate the model. It can be seen 
from the graph of the ROC curve that both the MARS and neural network models have 
significant "lilt" but the neural network model has more "lift" than the MARS model. 

Figure  13 
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A statistic that summarizes the predictive accuracy of a model as measured by an ROC 
curve is the area under the ROC curve (AUROC). A curve that rises quickly has more 
area under the ROC curve. Table 15 displays the AUROC for both models, along with 
their standard deviations and 95% confidence intervals. As the lower bound of the 
confidence interval for the neural network is below the higher bound of the confidence 
interval for MARS, it can be concluded that differences between the MARS model and 
the neural network model are not statistically significant. 
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Table 15 

Statistics for Area Under the ROC Curve 
Test Result Variables Area Std Asymptotic Sig Lower Upper 

Error 95% 95% 
Bound Bound 

MARS Probability 0.85 0.01 0.000 0.834 0.873 
Neural Probability 0.88 0.01 0.000 0.857 0.893 

S u m m a r y  of  C ompar i son  
The ROC curve results suggest that in this analysis the neural network enjoyed a modest 
though not statistically significant advantage over MARS in predictive accuracy. It 
should be noted that the database used for this study was quite small for a data mining 
application and may produce results that do not generalize to larger applications. 
Steinberg (Steinberg, 2001) reports that on other applications MARS equaled or exceeded 
the performance o f  neural networks. It should also be noted that some of  the key 
comparative strengths o f  MARS such as its ability to handle missing data were not a 
significant factor in the analysis, as all but one o f  the variables were fully populated. 13 
In addition, M A R S ' s  capability o f  clustering levels o f  categorical variables together was 
not relevant to this analysis, as no categorical variable had more than two levels. 

A practical advantage that MARS enjoys over neural networks is the ease with which 
results can be explained to management. Thus, one potential use for MARS is to fit a 
model using neural networks and then apply MARS to the fitted values to understand the 
functional relationships fitted by the neural network model. The results o f  such an 
exercise are shown below: 

BF1 = (LEGALREP = 1) 
BF2 = (LEGALREP = 2) 
BF3 = ( TRTLAG :# missing) 
BF4 = ( TRTLAG = missing) 
BF5 = ( INJ01 = 1) 
BF7 = ( ACC04 = 1) * BF3 
BF8 = ( ACC04 = 2) * BF3 
BF9 = ( PARTDIS = 1) * BF8 
B F l l  = max(0, AMBUL - 182) * BF2 
BF12 = max(0, 182 - AMBUL ) * BF2 
BF13 = ( ACC14 = 1) * BF3 
BF15 = ( CLT02 = 1) * BF3 
BF17 = max(0, POLLAG - 21) * BF3 
BF19 = max(0, AGE - 41) * BF3 
BF20 = max(0, 41 - AGE) * BF3 

]3 One of the claims was missing data on the AGE variable, and this claim was eliminated from the neural 
network analysis and from comparisons of MARS the neural network model. Had more claims been 
missing the AGE variable, we would have modeled it in the neural network. 
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BF21 = ( INS06 = 1) 
BF23 = max(0, RPTLAG - 24) * BF8 
BF24 = max(0, 24 - RPTLAG ) * BF8 
BF25 = B F I  * BF4 
BF27 = ( ACC15 = 1) * BF8 
BF29 = ( INJ03 = 1) * BF2 

Y = 0.098 - 0.272 * BF1 + 0.334 * BF3 + 0.123 * BF5 - 0.205 * BF7 + 0.145 * 
BF9 - .623E-04 * B F l l  + .455E-03 * BF12 + 0.258 * BF13 + 0.100 * BF15 + 
.364E-03 * BF17- 0.004 * BF19 - 0.001 * BF20 + 0.152 * BF21 + .945E-03 * 
BF23 - 0.002 * BF24 + 0.135 * BF25 + 0.076 * BF27 - 0.073 * BF29 

This model had an R 2 o f  0.9. Thus, it was able to explain most o f  the variability in the 
neural network fitted model. Though the sensitivity test revealed that LEGALREP is the 
most significant variable in the neural network model, its functional relationship to the 
probability o f  fraud is unknown using standard neural network modeling techniques. As 
interpreted by MARS, the absence o f  legal representation reduces the probability o f  fraud 
by 0.272., even without interacting with other variables. LEGALREP also interacts with 
the ambulance cost variable, INJ03 (police report shows no injury) and no use o f  a health 
care provider (treatment lag missing). The sensitivity measure indicated that the presence 
or absence o f  a value for treatment lag was the second most important variable. As stated 
earlier, this variable can be viewed as a surrogate for use o f  an outpatient health care 
provider. The use of  an outpatient health care provider (TRTLAG :~ missing) adds 0.334 
to the probability o f  fraud or abuse, but this variable also interacts with the policy lag, 
report lag, claimant age, partial disability, ACC04, (single vehicle accident), ACC14 
(property damage inconsistent with accident) and CLT02 (history o f  prior claims). 

The MARS model helps the user understand not only the nonlinear relationships 
uncovered by the neural network model, but also describes the interactions which were fit 
by the neural network. 

A procedure frequently used by data mining practitioners when two or more approaches 
are considered appropriate for an application is to construct a hybrid model or average the 
results o f  the modeling procedures. This approach has been reported to reduce the 
variance o f  the prediction (Salford Systems, 1999). Table 16 displays the AUROC 
statistics resulting from averaging the results o f  the MARS and neural network models. 
The table indicates that the performance o f  the hybrid model is about equal to the 
performance o f  the neural network. (The graph including the ROC curve for the 
combined model is not shown, as the curve is identical to Figure 13 because the neural 
network and combined curves cannot be distinguished.) Salford Systems (Salford 
Systems, 1999) reports that the accuracy of  hybrid models otten exceeds that o f  its 
components, but usually at least equals that o f  the best model. Thus, hybrid models that 
combine the results o f  two techniques may be preferred to single technique models 
because uncertainty about the accuracy of  the predicted values on non-sample data is 
reduced. 

49  



Table 16 
Statistics for Area Under the ROC Curve 

Test Result Variables Area Std Asymptotic Lower Upper 
Error Sig 95% 95% 

Bound Bound 
MARS Probability 0.853 0.01 0.000 0.834 0.873 
Neural Probability 0.875 0.01 0.000 0.857 0.893 
Combined Probability 0.874 0.01 0.000 0.857 0.892 

Using Model Results 
The examples in this paper have been used to explain the MARS technique and compare 
it to neural networks. The final example in this paper has been a fraud and abuse 
application that used information about the PIP claim that would typically be available 
shortly after the claim is reported to predict the likelihood that the claim is abusive or 
fraudulent. The results suggest that a small number of variables, say about a dozen, are 
effective in predicting fraud and abuse. Among the key variables in importance for both 
the neural network model and MARS are use of legal representation, use of an outpatient 
health care provider (as proxied by TRTLAG missing) and involvement in a single 
vehicle accident. Due to the importance of legal representation, it would appear useful 
for insurance companies to record information about legal representation in computer 
systems, as not all companies have this data available. 

The results of both the MARS and neural network analysis suggest that both claim file 
variables (present in most claims databases) and red flag variables (common wisdom 
about which variables are associated with fraud) are useful predictors of fraud and abuse. 
However, this and other studies support the value of using analytical tools for identifying 
potentially abusive claims. As pointed out by Derrig (Derrig, 2002), fraud models can 
help insurers sort claims into categories related to the need for additional resources to 
settle the claim efficiently. For instance, claims assigned a low score by a fraud and 
abuse model, can be settled quickly with little investigative effort on the part of adjusters. 
Insurers may apply increasingly greater resources to claims with higher scores to acquire 
additional information about the claimant/policyholder/provider and mitigate the total 
cost of the claim. Thus, the use of a fraud model is not conceived as an all or nothing 
exercise that classifies a claim as fraudulent or legitimate, but a graduated effort of 
applying increasing resources to claims where there appears to be a higher likelihood of 
material financial benefit from the expenditures. 

Conclusion 
This paper has introduced the MARS technique and compared it to neural networks. 
Each technique has advantages and disadvantages and the needs of a particular 
application will determine which technique is most appropriate. 

One of the strengths of neural networks is their ability to model highly nonlinear data. 
MARS was shown to produce results similar to neural networks in modeling a nonlinear 
function. MARS was also shown to be effective at modeling interactions, another 
strength of neural networks. 
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In dealing with nominal level variables, MARS is able to cluster togcther the categories 
of the variables that have similar effects on the dependent variable. This is a capability 
not possessed by neural networks that is extremely useful when the data contain 
categorical variables with many levels such as ICD9 code. 

MARS has automated capabilities for handling missing data, a common feature of large 
databases. Though missing data can be modeled with neural networks using indicator 
variables, automated procedures for creating such variables are not available in most 
standard commercial software for fitting neural networks. Moreover, since MARS can 
create interaction variables from missing variable basis functions and other variables, it 
can create surrogates for the missing variables. Thus, on applications using data with 
missing values on many variables, or data where the categorical variables have many 
values, one may want to at least preprocess the data with MARS to create basis functions 
for the missing data and categorical variables which can be used in other procedures. 

A significant disadvantage of neural networks is that they are a "black box". The 
functions fit by neural networks are difficult for the analyst to understand and difficult to 
explain to management. One of  the very useful features of MARS is that it produces a 
regression like function that can be used to understand and explain the model; therefore it 
may be preferred to neural networks when ease of explanation rather than predictive 
accuracy is required. MARS can also be used to understand the relationships fit by other 
models. In one example in this paper MARS was applied to the values fit by a neural 
network to uncover the important functional relationships modeled by the neural network. 

Neural networks are often selected for applications because of their predictive accuracy. 
In a fraud modeling application examined in this paper the neural network outperformed 
MARS, though the results were not statistically significant. The results were obtained on 
a relatively small database and may not generalize to other databases. In addition, the 
work of other researchers suggests that MARS performs well compared to neural 
networks. However, neural networks are highly regarded for their predictive capabilities. 
When predictive accuracy is a key concern, the analyst may choose neural networks 
rather than MARS when neural networks significantly outperform MARS. An alternative 
approach that has been shown to improve predictive accuracy is to combine the results of 
two techniques, such as MARS and neural networks, into a hybrid model. 

This analysis and those of other researchers supports the use of intelligent techniques for 
modeling fraud and abuse. The use of an analytical approach can improve the 
performance of fraud detection procedures that utilize red flag variables or subjective 
claim department rules by l) determining which variables are really important in 
predicting fraud, 2) assigning an appropriate weight to the variables when using them to 
predict fraud or abuse, and 3) using the claim file and red flag variables in a consistent 
manner across adjusters and claims. 
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Rainy Day: 

Actuarial Software and Disaster Recovery 

Aleksey S. Popelyukhin, Ph.D. 

Abstract 

Tragic events with disastrous consequences that are happening all around the Globe made 
Disaster Recovery and Continuity Planning a much higher priority for every company. 
Scenarios, in which data centers, paper documents and even recovery specialists themselves may 
perish, became more probable. 

Both, actuarial workflow and actuarial software design should be affected by disaster recovery 
strategy. Actuaries may simplify recovery task and insure higher rate of success if they properly 
modify their applications' architecture and their approaches to documenting algorithms and 
storing structured data. 

The article attempts to direct actuaries to strategies that may increase chances of complete 
recovery: from separation of data and algorithms to effective storage of actuarial objects to 
automated version management and self-documenting techniques. 

The matter of continuity of actuarial operations is in the hand of actuaries themselves. 
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Rainy Day: 

Actuarial Software and Disaster Recovery 
Aleksey S. Popelyukhin, Ph.D. 

FaUed Assumptions 

Presumably, every insurance company has a backup system. Files, databases and documants are 
copied to tapes or CDs and stored offsite. It gives protection against hard disk failure, rogue 
viruses and provides an audit trail. 

Many of the existing backup solutions, however, are built on the assumpt/ons that after disaster 
strikes restoration will be performed by the same personnel to the same (compatible) 
hardware/sol, ware system. As the events of  September 11 s painfully demonstrated, these 
assumptions may not exactly hold true. 

The following unfortunate scenarios became much more plausible: 

�9 One may have tapes (or other media), but not know what to do with them 

�9 One may know what to do with the tape, but not have a compatible system to perform a 
restoration 

�9 One may restore the files, but not have the software to read them 

�9 One may getfiles restored and software working, but not have anyone around to explain 
how to use it. 

Consequently, disaster recovery and business continuity plans have to address them. 

Personnel can perish 

A company's tapes stored offsite may survive a disastrous event, but it does not mean they can be 
used effectively for the restoration. It may not be immediately clear how to perform a restoration: 
on what hardware with what backup software and in which order. It may also happen that the 
backup/restore software is so old it requires an older Operating System (OS) not available 
anymore. It may not be evident how to reinstall software without the manual and a license key. 
Moreover, there might not be anyone who remembers where to restore, what to restore and in 
which o~er. 

Thus, it is imperative to escrow not only tapes, but also: 

�9 installation software (OS, backup~restore and other environmentprograms), 

�9 manuals anddocumentation, 

�9 licenses andsupport info, 

�9 andrestoration instrnctions. 

57 



Sure, it is not up to actuaries to perform the restoration tasks, but it is in their best interests to 
make sure their software is part of  the restoration effort (including installation disks, manuals and 
licenses) and that they do everything possible to simplify that effort. 

Restoration Priorities 

Any BIA (Business impact Analysis) study will assign very low priority to the restoration of an 
Actuarial subsystem. Indeed, experience shows (see [1 ]) that the most important service for the 
business continuity is communications. 

j . ,  

F i g l  (see[2]) 

Experience shows that restoration priorities start with e-mail and end with the actuarial 
subsystem: 

�9 e-mail~communications 

�9 accounting 

�9 payroll 

�9 lrade/marketing 

�9 underwriting 

�9 claims 

�9 actuarialapplications 

There is nothing wrong with that picture: it just means that actuaries have to be ready to perform 
some or all restoration tasks by themselves and not wait for IT department help. It also implies 
that actuaries would be much better off if their applications were easy to restore or reproduce 
even if some knowledgeable personnel were not available. 
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Forced upgrading 

The implicit assumption behind the majority of  existing recovery plans is that restoration would 
be performed on the same version ofhardware/OS combo that was used for backup. Or (given the 
long upgrade cycles of the recent past) quite similar and compatible versions. Not anymore. 
Every major OS upgrade may render backup/restore software useless; every advance in drive 
technology may make backup tapes unreadable. Skip a couple upgrade cycles and you may fall to 
find the appropriate drive to read your tapes and have no software to recognize recording format. 
And if the company's computers are destroyed, the company may be forced to upgrade. 

Thus, downloading patches for backup software should be done as vigorously as downloading for 
anti-virus and security purposes. It is also crucial to monitor availability of the tape drives 
backward-compatible with existing tapes. 

The same forced upgrading trap may occur with actuarial software. During restoration, one may 
discover that new computers come only with the newer OS, Utilities and Spreadsheet versions, 
which are not necessarily compatible with existing files. Imagine if one had to read VisiCale or 
WordStar files today. Nobody guarantees that oracle 7 will run on Windows XP or that Excel 
will properly interpret that old trustworthy *.wk3 file. It is even more of  a problem for third-party 
proprietary software. It has to be maintained compatible with the latest OS, compiler, hardware 
key protection software and, possibly, a spreadsheet or a database: quite a formidable task. 

Third.party actuarial applications 

Sales data from the suppliers of actuarial software imply that actuaries heavily rely on "shrink- 
wrapped" applications from the third parties. Development, distribution and compatibility of 
theses applications are eontroUed by their vendors. Yet, disaster recovery cannot be completed 
without restoring full functionality of these programs. Actuaries cannot do much about these 
applications except to make sure that they can be restored. 

Adequate code protection 

Actuaries may require that their license agreement include a contractual obligations from the 
supplier for: 

�9 Adequate code baseprotection and 

�9 Technology Assurance 

Adequate code base protection should include measures taken by the vendor to protect the 
application coda with backups and offsite escrow. In addition, the vendor has to guarantee access 
to the code in case it goes out business or cannot longer support an application. 

Technology Assurance is a fancy name for the continuous compatibility upgrades and patches 
that would guarantee application compatibility with the ever-changing software environment. 
Vendors should make sufficient effort to maintain their applications capable of running under the 
latest OS and interoperating with the latest spreadsheet or the underlying database. 
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Hardwara keys 

Actuaries also have to clarify a procedure for restoring third-party applications that utilize 
hardware-key protection schemes. In a plausible disaster scenario, hardware keys may cease to 
exist rendering an application useless. In that case 

* Does the License Agreementprovidefor replacement keys? 

�9 Can the vendor deliver replacement keys from Australia (England, Connecticu 0 fast? 

* Does the vendorprovide a downloadable temporarily unprotected version? 

All these questions have to be answered before the disaster strikes: this way, actuaries can avoid a 
few unpleasant surprises during restoration. 

In.house development 

Programming cycle 

Aside from analysis, actuaries perform some activities that closely resemble software 
development. Indeed, no matter what computer language they are using (Lotus, PL/1, APL, 
Mathematica, VBA), they are programming. Thus, as programmers, they have to conform to 
development cycle routines established in a programming world. Documentation, versioning, 
testing, debugging - these activities are well studied, and even automated. 

Both actuarial workflow and software design should be affected by disaster the recovery strategy. 
Actuaries have to design their applications in such a way that somebody else other than the 
designers can understand the spreadsheet, the code and the logic. 

Separating Data and Algorithms 

A spreadsheet is a very popular actuarial tool. It is so versatile: it can be used as a datahase and as 
a calculation engine, as an exchange format and as report generator, as a programming 
environment and as a rich front-end to Internet. Actuaries use spreadsheets in all these aspects; 
the problem, though, arises when they use multiple features in one file. More precisely, when 
they use single spreadsheet file as the engine for calculations andas the storage for results of  
these calculations, creating multiple copies of  the engine. 

Actuaries do realize that input data like loss triangles, premiums vectors and induatxy factors 
come from outside and do not belong to their calculation template. What they rarely realize (or 
don't realize at all) is that output results such as predicted ultimates or fitted distribution 
parameters do not belongto the template either, and that they (results) have to be stored outside 
just like input data. 
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Fig 2 

Usually, it is not the case: actuaries routinely create 72 files with the same algorithm for 72 lines 
of business rather then keep one file and storing 72 answers separately. This strategy creates an 
obstacle for the effective: 

�9 debugging/versioning, 

�9 moa~fications/improvements, 

�9 integrity/securify, 

�9 reporting and 

�9 multi-user access. 

Indeed, conecting an error in one file takes 72 times less time than correcting the same error in 72 
copies of  that file. Extracting answers for reports from 72 files requires much more effort then 
summ~izing 72 records in the database. And it is much harder to guarantee that nobody modified 
the 57 ~ file incorrectly. 

From a recovery standpoint, restoring a single file with formulas and separate data records is 
definitely easier then restoring 72 files with commlnsled data and formulae, especially given that 
the probability of  a corrupted file is 72 times greater for 72 files. 

It would be wise for actuaries to modify their workflow and spreadsheet design in order to 
separate data and algorithms. Rethinking their methodology in this light, actuaries inevitably will 
arrive at the idea to store data along with some kind of  description, that is, to treat data as 
Actuarial Objects" (see [3]). 

�9 See [5] to learn how to program custom objects in Excel VBA. 
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Fig 3 (see [4]) 

The logical extension of  this idea would be to modify a calculation template in such a way that it 
understands these descriptions and acts upon them, serving like a traffic cop for the data objects. 
In other words, build an engine for objects processing (see [4]). 

This architecture would streamline actuarial workflow, encourage debugging and modifications, 
simplify reporting and improve enormously recovery success chances. 

Input and output to simpler formats 

If(in addition to all its functionality) Microsoft Excel incorporated simulations, there would be 
only one actuarial software program: Excel. And, thus, no worries about file formats, conversions 
and availability of  the file reader programs. Fortunately or unfortunately, this is not the case, and 
actuaries have to rely on applications with different file formats. The problem is that, as time 
passes, it will be harder and harder to find a reader program for some obscure and proprietary 
files. So, for the sake of disaster recovery actuaries should rely on the most ubiquitous file 
formats. 

In the foreseeable future one can count on the ability to read ASCII (including XML and HTML), 
*.xls and *.doe files. Perhaps, *.dbf and *.pdf readers will be easily available too. Consequently, 
it is always a good idea to store an extra copy of  the most crucial data in one of the 
aforementioned formats. 

For example, SQL Server and Oracle tables can be dumped into ASCII*. Microsoft Access can 
import/export tables in *.xls or *.dbf formats. Excel files can be seamlessly converted to XML 
(structured ASCII). And, unless there are trade-secret considerations, it is always a good idea to 
export VBA modules to *.bas text files. 

From a disaster recovery standpoint, it is important that th/rd-party sofhvare has the capability to 
read and write to one oftbe ubiquitous formats (a side benefit of  that capability would be 
possibility of data exchange and integration with other software programs). 

* In fact, the whole database can be restored from ASCII files by running SQL scripts (ASCII) that recreate 
database structure and loading tables' content from the dump file (ASCII). 
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Version management 

If a calculation algorithm is used (or is going to be used) more than once, it needs versioning. 
Indeed, if  a "separation of  data and algorithms" paradigm is embraced and implemented, it 
becomes quite practical and useful to maintain a version of  the algorithm (in case of Excel: a 
version of template used for calculations). 

The usefulness becomes obvious once one considers saving the version of the calculation engine 
along with results of calculation. Doing so helps immensely in audit Wailing, debugging and, of  
course ,  recovery .  

The practicality derives from the fact that (presumably) the number of calculation 
engines/templates is limited (usually the same algorithm can be reused for analysis of multiple 
contracts, LOBs and products). So maintaining version information for a few files is not an 
overburdening chore. 

Microsoft Office applications provide adequate facilities for versioning: Word automatically 
updates "Revision number" (File/Properties/Statistics) and Excel allows custom properties to be 
linked to cells inside the spreadsheet. 
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Fig 4 

If the user would dedicate a cell in a spreadsheet to store version info and add one line of  VBA 
code to the Workbook_BeforeSave event, he would get a "poor man" versioning mechanism for 
free. 
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Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean) 
Range("Version").Value = InputBox("Version number: ", "Propcr~es", Range("Versiou")) 

End Sub 
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Fig 5 

I f  there is a necessity to synchronize the version number through several files, the cell linked to 
the custom property can contain a formula referring to the information in the other (main) 
template. 

Using files properties for versioning (and, possibly, other information*) has some nice side 
benefits: one can use them for targeted file searches (File/Open/Tools/Search/Advanced). 
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Fig 6 

* It is always a good idea to dedicate an area (with named cells) in a spreadsheet to meta-information about 
it and link these cells to the Custom Properties like "Created by", "Last Modified by", "Verified by", etc... 
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More important, however, is the fact that Version info can be stored alongside with Results 
generated by the template, providing perfect means for the audit tracking. 

Documentation 

Knowledge about available documentation features and familiarity with restoration techniques 
may help actuaries to design their software in order to greatly simplify potential recovery efforts. 

Usually, big nice printed manuals and an interactive online help system* are reserved for very 
large projects only. It is unreasonable to expect an actuary to write a manuscript for every Excel 
spreadsheet he creates in a hurry. Nevertheless, several simple approaches can be employed to 
greatly simplify restoration tasks: 

�9 Self-documenting, 

�9 Excel Comments, 

�9 Code Remarks. 

Serf-documenting features 

Microsoft Office programs provide adequate assistance for self-documentation attempts. If an 
author follows a few unoba'usive styling conventions, then Microsoft Word can easily generate an 
outline or table of  content. Microsoft Access has an indispensable utility called Documenter 
(Tools/Analyze/Documenter): 
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Fig 7 

* Several packages on the market, most notably RoboHelp fi*om eHelp, can convert Microsoft Word file(s) 
into a full-featured interactive help system, either Windows or HTML based. 
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Documenter generates Notepad or Excel files with the information about any object in a database 
w i t h  as many  details as necessary. 

Microsoft Access also provides facility for fields' descriptions (along with tables, queries, forms 
and reports descriptions): it would be unwise not to use it. 
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Excel is, by its very nature, self-documenting: by clicking on a cell the user can see the value in a 
cell and a formula behind it in a Formula Bar. To view formulae in multiple cells one can open a 
second window of  the same spreadsheet (Window/new Window) and switch its mode to Formula 
View (Tools/Options/View/Formulas or just press CTRL - ~). 

~eh ~ ~ ~ D t  ~r,R,~ Ioah Oe~ apdow ~ 

D4 ~ =Last Diagonar'LDFt oULT 
~'.~Ndo . t O  . i 1 U l i  

I L ~ 1 ~ 9  ~ 1.1 =LastDiagonar'LDFtoULT - - I  

1203000 11.75 pLa st D,a ~]on ar'LDFt oULT J J 
i j_5 j2002 ~c,w,'n 3.S = Last Diagonal'L.DFt oULT ~ 1  

I . ~ - , ~ x ~ , /  ~ _ _ _  t ~_tr~ I 

Fig9 

In recognition that building models in Excel is, essentially, some kind of programming, Microsoft 
added a quintessential debugging tool to Excel: Watch Window (Tools/Formula Auditing/Show 
Watch Window or right click on cell~Add Watch). Watch Window allows the user to track values 
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and simultaneously see formulas of  multiple cells located anywhere in a spreadsheet. The tool's 
value is not only in debugging, but also in ad-hoc goal seeking and audit trailing. Accompanying 
it is the step-by-step Formula Evaluation tool (Tools/Formula Auditing/Evaluate Formula), which 
used to be Excel4 Macro debugging insma-nent. 

Sure, cells arc not the only place for formulae and settings: PivotTables, Solver add-in, Links, 
External Data ranges, Web Queries and even Conditional Fonnatling contain important 
information which could be crucial for understanding the functionality of  an algorithm. 

To display Calculated Fields and Items in a PivotTable or PivotChart, click anywhere on a 
PivotTable and then in a PivotTable toolbar select Formulas/List Formulas. 

To view the query behind the External Data range, right-click on it and select Edit Query item 
from the menu (or choose Data/Get External Dats/Edit Query). The same procedure works for 
Web Queries. What's important is that in both cases Excel provides an option to save a query as a 
text file (*.dqy in case of  Data Queries and *.iqy for lnternet Queries). It is highly recommended 
to do so. The benefit is threefold: a) queries get documented, b) it is easier to modify them in this 
text form and c) it is so easy to execute them - just double-clicking on a *.dqy or *.iqy file. 
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Fig 10 

Solver* is a very popular goal-seeking tool and, thankfully, Excel preserves Solver settings, but 
only one per worksheet. This means that if Solver is used multiple times on the same sheet, it is a 
good practice to save its settings (Tools/Solver/Options/Save Model) in a descriptively labeled 
a l ~ a .  

Important settings are stored in Conditionally Formatted as well as Data Validated cells. To see 
validation settings and format conditions, navigate to these cells using Edit/Go To/Special dialog 
box. 

* To access Solver select Tools/Solver from the Excel menu. If Solver is not listed in the menu, check 
whether it's installed (run Office install) end/or enabled (checlonark in Tools/Add-ins). 
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Most users use Names (Insert/Name/Define/Add) only for naming ranges. However, Excel allows 
giving a Name to any formula, even a User-Defined one. To display the list of Names with their 
definitions, press F3"/Paste List. Names in Excel are too important -- and too convenient tool for 
documenting a spreadsheet -- to be ignored. In the ideal world, there should be no unnamed 
references in Excel formulas: every variable, input region and output location has to be named. 
Good naming conventions along with the habit of naming ranges and cells may prove invaluable 
not only for disaster recovery, but for debugging, modifications and education of the new 
employees. 

Excel creators believe in named references so much they actually supply Names even if the user 
himself didn't define any. Since version 97, users can use column and row labels as if you created 
range names for rows and columns (since Office XP, the same syntax works for PivotTables'+). 
To enable this functionality, check the Tools/Options/Calculation/Accept Labels in Formulas 
option. 
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"Use F3 to paste a Name while typing formula text in a Formula Bar to avoid misprints. 
"" To get data from the PivotTable use GetPivotData function. 
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Structured Comments 

Excel commants, if used creatively, rcpresant an amazingly powerful tool. Available through the 
Reviewing toolhar, comments can be toggled (by moving mouse over commanted call) or 
displayed pcrmanantly (Show Comment). They can be printed "in place" or as footnotes 
(File/Page Setup/Sheet/Comments dropdown). Moreuaver, comments (as in any programming 
anvironment) are invaluable for documenting designer's intentions and understanding algorithra's 
logic. 

In addition to their special role in documentation of  a spreadsheet, and consequantly in any 
restoration effort, comments may play an even bigger role if used as Object's descriptors. Indeed, 
given that comments are 

* an ASCII text 

�9 associated with a range and 

�9 can be manipulated (created, used, modified and deleted) through VBA 

comments can be used for storing structured attributes of an object a la XML (see [4]): 
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Fig 13 (from [4]) 

One can think of a comment as a "price" tag attached to an Actuarial Object. A usor-dofined VBA 
function that accepts such ranges as input may read that tag and decide what to do with associated 
ranges (if it is a triangle of losses the function may divide it by the corresponding claim counts; if 
it is a vector of loss development factors a function may multiply it by the last diagonal and if it is 
column of loss ratios the function will prohibit any attempt to add inflation factors to it). 

69 



Auto backup copy 

To increase the chances of recovery of  the most important Excel files, it is wise to enable a built- 
in facility for the automatic creation of backup copies. By launching "Save Options" dialog 
(File/Save As/Tools/General Options) and choosing "Always create backup" option, user can be 
assured that every time he saves the file an extra copy with the extension XLK is generated. 

Still, for occurrences when files are corrupted or incompletely restored fi'om the tapes, Excel 
2002 has beefed up its file repair utility. Available through the (File/Open/Open dropdowrdOpen 
and Repair) menu item, the utility does a formidable job in recovering corrupted files. 
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Fig 14 

In a rare case, when an attempt to repair fails, as a last resort one can ~ to paste the content of  
the corrupted file into a new spreadsheet (see [6]). To do that, open two new files, select cell A1 
and copy it to clipboard, switch to the second file and after pasting the link (Edit/Paste 
Special/Paste Link), change the link to the corrupted file. In most cases, Excel allows the user to 
access this way as much content as it could recover. The rest of  the file (VBA modules, External 
Data queries and Pivot Table cubes) can be imported from the ASCII files. 

Documenting Workflow 

As crucial as preservation of files and documentation of algorithms is the process of diagramming 
actuarial workflow. The order of actions grouped by stages with the references to file locations 
and processes is an invaluable restoration asset. 

There arc many ways to document workflow. The most natural and powerful, though, is to use 
"smart diagramming" software like Microsoft Visio or Micrografx iGrafx by Corcl. In addition to 
their ability to document, analyze and simulate workflow, these packages (empowered by VBA) 
may execute some actions automatically. 

7 0  



Workllow 
D i a g r a m  , 0 . . ~ ,  

, 

i 

i ' 

Fig 15 

Workflow diagrams - as important as they are for disaster recovery - provide additional benefit as 
a way to look at the actuarial process as a whole, and possibly to stzeamline and simplify it. 

Telecommute 

Telecommuters present yet another challenge for fawless disaster recovery. A whole additional 
layer of  network subsystems (terminal services, VPN access, flrewall) has to be restored in order 
to enable their access to the company's applications. Home and mobile computers and devices 
represent an additional hazard for security and maintenance. 

However, provided that security, connectivity, maintenance and support issues are solved, home 
computers will become a decenu~lized independent distributed file storage system: an additional 
chance to restore a copy of this most important lost file. Also, if configured accordingly, remote 
computers may serve as a temporary replacement system until restoration of the main system is 
complete. Indeed, many applications can be scaled to work on a standalnne machine: major 
databases have compatible "personal" versions, while Office and many third-party actuarial 
applications are "personal" by nature. The synchronization with the "main" system can be 
possibly achieved via import/export to/from ubiquitous file formats. 
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Paperless Office 

If the backup is set up and working smoothly, flies are copied to tapes and stored offsite, then 
there is no excuse not  to scan every paper document greatly reducing risk of losing it. IndeX, 
with advances in scanning quality and OCR (optical character recognition) accuracy, it makes 
perfect sense to convert all paper documents into computer readable files. The ubiquitous PDF 
(portable document format) file preserves the look of the original, while at the same time enabling 
index, catalog and search services to scan through its content as if it were simple text file. Even 
Intemet Search Engines are now PDF-enabled, so Internet search queries are capable of looking 
for information inside PDF files. Thus, scanned paper documents can be organized into a useful 
searchable hierarchical "knowledge base" instead of lying in some storage boxes, being hard to 
fred and, probably, unused. 

Once again, an action geared toward bettor disaster protection may turn out to have a great side 
benefit, perhaps even greater than the initial purpose of  the action. 

Conclusion 

Any type of action - from a big radical change of  architecture in order to "separate data from 
algorithms" to a small conventional "enabling of auto-backups" in Excel - is better than no action. 

Besides, all aforementioned recommendations help not only in the case of  devastating disaster, 
but also in the event of a virus attack, malicious user actions, and staff rotation. In fact, benefits 
from such preparation measures as 

�9 clear documentation ofactuarialprocedures, 

�9 streamlinedalgorithms and 

�9 more effective workflow 

may far outweigh the potential payback ~ m  the original objective of  disaster preparedness. 
These measures are more than worthy by themselves. Surely, the cost o f  precautions should not 
exceed estimated damages. However, side benefits such as audit U~il capabilities, design 
discipline and improved understanding of calculations can easily justify disaster preparedness 
efforts. 

Dedication 

To Giya Aivazov and all friends and colleagues affected by The September 1 l. 

Stamford,  2001 
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Abstract 

We consider the issue of modeling the so~called hidden severity exposure occurring through 
either incomplete data or an unobserved underlying risk factor, We use the celebrated EM 
algorithm as a convenient tool in detecting latent (unobserved) risks in finite mixture models 
of claim s'everity and in problems where data imputation is needed, We provide examples of 
applicability of the methodology based on real-life auto injury claim data and compare, when 
possible, the accuracy of our methods with that of standard techniques, 

1 Introduction 
Actuarial analysis can be viewed as the process of studying profitability and solvency of an insurance 
firm under a realistic and integrated model of key input random variables such as loss frequency 
and severity, expenses, reinsurance, interest and inflation rates, and asset defaults. In a modern 
analysis of financial models of property-casualty companies, these input variables typically can 
be classified into financial market variables and underwriting variables (cf. e.g., D'Arcy et al. 
1{)97). The financial variables generally refer to asset-side generated cash flows of the business, 
and the underwriting variables relate to the cash flows of the liabilities side. The process of 
developing any actuarial model begins with the creation of probability distributions of these input 
variables, including the establishment of the proper range of values of input parameters. The use of 
parameters is generally determined by the use of the parametric families of distributions, although 
the non-parametric techniques have a role to play as well (see, e.g., Derrig, et al, 2001). In this 
article we consider an issue of hidden or "lurking" risk factors or parameters and point out the 
possible use of the celebrated EM algorithm to uncover those factors. We begin by addressing 
the most basic questions concerning hidden loss distributions. To keep things in focus we will 
be concerned here only with two applications to modeling the severity of loss, but the methods 
discussed may be easily applied to other problems like loss frequencies, asset returns, asset defaults, 
and combining those into models of Risk Based Capital, Value at Risk, and general Dynamic 
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Financial Analysis, including Cash Flow Testing and Asset Adequacy Analysis. Our applications 
will illustrate the use of the EM algorithm (i) to impute missing values in an asset portfolio and 
(ii) to screen medical bills for possible fraud or abusive practices. 

1.1 Hidden Exposures in Loss Severity Distributions 

In many instances one would be interested in modeling hidden risk exposures as additional dimen- 
sion(s) of  the loss severity distribution. This in turn in many cases leads to considering mixtures 
of probability distributions as the model of choice for losses affected by hidden exposures; some 
parameters of the mixtures will be considered missing (i.e., unobservable in practice). During the 
last 20 years or so there has been a considerable advancement in statistical methodologies dealing 
with partially hidden or incomplete data models. Empirical data imputation has become more so- 
phisticated and the availability of ever faster computing power have made it increasingly possible 
to solve these problems via iterative algorithms. 

In our paper we shall illustrate a possible approach to two types of problems arising often in 
practical situations of modeling the severity of losses: (i) imputation of partially missing multivariate 
observations and (ii) identification of latent risks via fitting finite mixtures models. 

The common feature of both of these issues is, generally speaking, the unavailability of com- 
plete information on the variables or parameters of interest. The statistical methodology which is 
especially well-suited for this type of circumstances is the so-called EM algorithm. 

1.2 The EM Algorithm 

In their seminal paper Dempster, Laird and Rubin (1977) have proposed the methodology which 
they have called the Expectation-Maximization (EM) algorithm as an iterative way of finding 
maximum likelihood estimates. 1 They demonstrated that the method was especially appropriate 
for finding the parameters of an underlying distribution from a given data set where the data 
was incomplete or had missing values. At present there are two basic applications of the EM 
methodology considered in the statistical literature. The first occurs when the data indeed has 
missing values, clue to problems with or limitations of the data collection process. The second 
occurs when the original likelihood estimation problem is altered by assuming the existence of 
the hidden parameters or factors. It turns out that both these circumstances can be, at least 
initially, described in the following statistical setting. Let us consider a density function (possibly 
multivariate) p( . le )  that is indexed by the set of parameters e .  As a simple example we may take 
p to be a univariate Gaussian density and e = {(/z,~)l - oo < # < oo, a > 0}. Additionally, we 
have an observed data set X of size n, drawn from the distribution p. More precisely, we assume 
that the points of 2(' = ( x l , . . .  ,x~)  are the realizations of some independent random variables 
distributed according to p(.IO). We shall call 2(' the incomplete data. In addition to X, we also 

IA full explanation of the role of the EM algorithm in missing data problems can be found in Little and Rubin, 
(1987) or in a somewhat more mathematically advanced monograph by McLachlan and Krishnan (1997). 
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consider a complete data set Z = ( X , y )  and specify the joint density 

p(~.lO) = p(x, yl O) = p(ylx, O) p(xlO ). (1) 

As we can see from the last equality, this joint density p(zle) arises from considering the marginal 
density p ( x l e  ) and the specific assumptions on the relation between hidden (or missing) variables 
Y = (y l , . . .Yn )  and the observed incomplete data X.  Associated with the joint density is the 
joint likelihood function 

n 

s = L(e Iz ,  2) = 12[ p(x~, yde) 
i=l 

which is often called the complete likelihood. ]:or the sake of computational simplicity it is often 
more convenient to consider the logarithm of the complete likelihood 

n 

Kelz) = log z:(elX, y) = ~ logp(x, yde). (2) 
i=l 

Note that the function above may be thought of as a random variable since it depends on the 
unknown or missing information 3) which by assumption is governed by an underlying probability 
distribution. Note also that in accordance with the likelihood principle, we now regard X as 
constant. 

The EM algorithm as described in Dempster, Laird and Rubin (lg77) consists of two steps 
repeated iteratively. In its expectation step or the E-step, the algorithm first finds the expected 
value of the complete log-likelihood function ]ogp(X, ~10) with respect to the unknown data 
given the observed data ~" and the current parameter estimates. That is, instead of the complete 
log-likelihood (2) we consider the following 

Q(O, O (i-l)) = E [logp(X, ylO)}X, O(;'-t)] . (3) 

Note the presence of the second argument in the function Q(O, 0(i-1)). Here e (~-1) stands for 
the current value of the parameter e at the iteration (i - 1), that is, the value which is used to 
evaluate the conditional expectation. 

After the completion of the E-step, the second step of the algorithm is to maximize the 
expectation computed in the first step. This is called the maximization or the M-step, at which 
time the value of e is updated by taking 

O (i) = argmax Q(O, O (~'-1)) (4) 
e 

The steps are repeated until convergence. It Can be shown (via the relation (1) and Jensen's 
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inequality) that if (~* maximizes Q(E), O (i-1)) with respect to E) for fixed O (i-1) then 

t(~)*lZ) - l(~)(~-l){z) > Q(~)*, ~)(~-1)) - Q(~)(~-~), o (~-1)) >_ 0 

and each iteration of the procedure indeed increases the value of complete log-likelihood (2). Let 
us note that from the above argument it follows that a full maximization in the M-step is not 
necessary: it suffices to find any value of O (~) such that Q(E)(0,E)(i-1)) > Q(E)(i-]),E)(i-1)). 
Such procedures are called GEM (generalized EIV 0 algorithms. For a complete set of references 
see, for instance, the monograph by McLachlan and Krishnan (1907) where also the issues of 
convergence rates for the EM and GEM algorithms are thoroughly discussed. For some additional 
references and examples see also Wu (1983) or the monographs by Little and Rubin (1987) and 
Hastie,Tibshirani, and Friedman (2001). 

2 Modeling Hidden Risks via the EM Algorithm 

As indicated in the previous section the primary application of the EM a{gorithm is in fitting the 
maximum likelihood models. Since this is accomplished by the M-step of the algorithm, the role 
of the E-step is, therefore, secondary - it is needed to facilitate the performance of the M-step 
in the presence of the missing or incomplete data. However, as in this paper we shall focus on 
the usefulness of the EM procedure in modeling hidden risks or variables, in our setup we shall 
be in fact more interested in the E-step of the algorithm, as it will provide us with the way to 
estimate or impute missing data and uncover hidden factors and variables. In our examples below 
we shall consider two types of hidden (latent) variables. The first one will arise when, due to 
some problems with the data collection, parts of the observations are missing from the observed 
dataset. We consider this problem via the EM method in the particular context of multivariate 
(loss) models. 

2.1 Multivariate Severity Distributions. Data Imputation with EM 

Although insurance has been traditionally build on the assumption of independence and the law of 
large numbers has governed the determination of premiums, the increasing complexity of insurance 
and reinsurance products has lead over past decade to increased actuarial interest in the modeling 
of dependent risks (see, e.g., Wang 1998 or Embrechts et al. 2000). Multivariate loss and risk 
models (and especially those based on elliptically contoured distributions) have been hence of 
interest in such areas as Capital Asset Pricing Model and the Arbitrage Pricing Theory (cf. e.g., 
Campbell, Lo, and MacKinlay 1996). 

In some circumstances, however, parts of the observed multivariate data may be missing. Claim 
reporting systems depend heavily on the front-line adjusters to provide data elements beyond the 
simple payment amounts. In the absence of, or even in the presence of, system edits, daily work load 
pressures and the lack of interest in the coded data provide a deadly combination of disincentives 
for accurate and complete coding. Actuaries are quite familiar with missing data fields, which when 
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Table 1:10 fictitious observed gains and losses from two risk portfolios in thousands. 

0.914 2.088 2.644 0.477 -1.940 -0.245 0.362 1.147 ? ? 
3.855 4.025 2.092 3.400 1.520 2.626 ? ? 5.473 6.235 

essential to the analysis most often results in throwing the record out, thereby creating unknown 
'hidden' biases. Likewise, financial time series data may be interrupted, unavailable, or simply lost 
for securities or portfolios that are not widely tracked. 

As an illustration of an application of the EM algorithm in this setting let us consider a 
hypothetical example of 10 losses/gains from a two-dimensional vector of risk portfolios, which 
we have generated using a bivariate normal distribution. The data is presented in Table 1 (in 
thousands of dollars). As we can see parts of the last four observations are missing from the table. 
In fact, for the purpose of our example, they have been removed from the generated data. We 
shall illustrate the usefulness of the EM algorithm in estimating these missing values. 

If we denote by Pg the observed (incomplete) data listed in Table 1 then following our notation 
from previous section we have the complete data vector Z given by 

z = ( z l . . . - . , )  = ( x l . . . ,  ~ ,  (~1,7, y2,7) r ,  (~ ,8 ,  y2,~) ~,  (~1,~, =~,9) r , (~1,~0, =2,~o) T) 

where x j  = (Xld, x2d) T for j = 1 . . .  , 6 is the set of pairwise complete observations. The missing 
data (corresponding to ? marks in Table 1) is, therefore, 

Y = (y~,r, y2,8, Yl,9, yl,z0). 

Let us note that under our assumption of normality, the equation (2) now becomes 

(5) 

1 I 
n 

t ( O l Z )  = - n  l og (2~ )  - ~ log  I~1 - 
5=1 

where n = 10, ~ = (#1,#2) T is a vector of means and 

~ = (o'11 o'12"~ 
\ff12 •22} 

is covariance matrix. The vector of unknown parameters, therefore, can be represented as 

O = (#I, #2, ~11, a12, ~22). (6) 
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In order to describe the EM algorithm in thir setting we need to find the particular form of 
Q(O, O (i-1)) defined by (3). Due to the independence of the zi's this is equivalent, in effect, to 
evaluating 

Eo(,-~) (YIX) and EO(,-1 ) (Y21X) 
where Y is the underlying random variable for )), assumed to be normal. From the general formulae 
for conditional moments of a bivariate normal variable X = (X1, X2) with the set of parameters 
O as above, we have that 

E(X21X1 -- Xl) - - / t 2  + O12/Crll(Xl -- ~1) 

Y ~ , ' ( X 2 l X ~  = ~ )  = , ,2za  = ,~22(1 - p2)  (7) 

where p stands for the correlation coefficient. Interchanging the subscripts 1 and 2 in (7) gives the 
formulae for the conditional mean and variance of the distribution X I l X 2  = x2. Using the relations 
(7) and the usual formulae for ML estimators of the normal mean vector/~ and the covariance 
matrix ~, we may now state the EM algorithm for imputing missing data in Table 1 as follows, 

Algorithm 1 (EM version of Buck's algorithm) 

1. Define the initial value O (0) of the set of parameters (5). Typically, it can be obtained on 
the basis of  the set of complete pairs of observations (i.e., x l . . .  ,x6 in Table I). 

2. The E-step: given the value of e (1) calculate via (7) the vector .~(1) of the imputations of  
the missing data ~ given by (6). 

(~) 
y(~) - (~) -- a12 [ 

2k -- /'t2 -i- " ~  ~Xlk -- ~tl) ) 
fill  

(0 
y ~ - -  (O--ai2 [ x #~0) 

- -  t"l  "I- a(i)22 ~ 2k - -  

and Y~k (i) = ~U2k] (~ (i)~ 2 t-- 0"22.1(i) for k = 7, 8 

and Yl2k (i) [" (d)~2 j- ~(i) ~tJlk] i ~ l 1 2  f o rk=9 ,10  

3. The M-step: given the current value of the imputed complete data vector Z(i) = (X,  y( i ) )  
set Mk )"~=1 z(i~/n and Mkt n (i) (i) _ e( i+ l )  = = ) '~ j= lZk jZ , j / n  fork, l - 1,2, andcalculate as 

( (i+1) (i+l)~ = ( M 1  M2) t*l ~ P2 ] 

ak(it +1) =Mkt -- Mk Mt for k,l = 1,2 

4. Repeat steps 2 and 3 until the relative difference of the subsequent values of l(e(i+l) l :z( i)  ) 
is sufficiently small. 
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The above algorithm in its non-iterative version was first introduced by Buck (1960) who used 
the method of imputation via linear regression with subsequent covariance correction to estimate 
means and covariance matrices of p dimensional random vectors in case when some parts of  the 
vector components were missing. For more details about Buck's imputation procedure, we refer 
to his original paper (Buck 1960) or to Chapter 3 of Little and Rubin ( lg87) or Chapter 2 of 
McLachlan and Krishnan (lgg7). 

The numerical illustration of the algorithm is presented in Table 2. As we can see from the 

Table 2: Selected iterations of the EM algorithm for data in Table 1. 

Iteration #1 /~2 o11 0"12 0"22 Y2,7 Y2,8 Yl,9 Y1,10 - 2 0  
1 
5 
10 
20 
30 
35 
40 
45 

0.6764 3.5068 1.8170 0.3868 2.0671 3.4399 3.6069 1.0443 1.1867 
0.8770 3.6433 1.8618 0.8671 2.2030 3.4030 3.7685 1.5982 1.8978 
0.9279 3.6327 1.9463 0.9837 2.1724 3.3466 3.7433 1.7614 2.1061 
0.9426 3.6293 1.9757 1.0181 2.1639 3.3301 3.7345 1.8102 2.1683 
0.9435 3.6291 1.9775 1.0202 2.1634 3.3291 3.7339 1.8132 2.1722 
0.9436 3.6291 1.9776 1.0203 2.1633 3.3290 3.7339 1.8134 2.1724 
0.9436 3.6291 1.9777 1.0204 2.1633 3.3290 3.7339 1.8134 2.1724 
0.CJ436 3.6291 1.9777 1.0204 2.1633 3.3290 3.7339 1.8134 2.1725 

65.7704 
64.7568 
64.5587 
64.5079 
64.5048 
64.5047 
64.5046 
64.5046 

table with the accuracy of up to three significant digits, the algorithm seems to converge after 
about 30 steps or so and the estimated or imputed values of (5) are given by 

~(~r,) = (3.329, 3.734,1.813, 2.173). 

Let us note, for the sake of comparison, that i f  we were to employ the standard, "naive" linear or 
polynomial regression model based on 6 complete observations in order to fit the missing values in 
Table 1 we would have obtained in this case 

y(reg) = (2.834, 3.063, 2.700, 3.269). 

Both y(em) and yffeg) can be now compared with the actual values removed from Table 1 which 
were 

y = (3.362, 3.657,1.484, 3.410). 

As we can see, in our example the EM method did reasonably well in recovering the missing values. 
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2.2 Massachusetts Auto Bodily Injury Liability Data. Fraud and Build-up Screen- 
ing via Mixture Models 

By now it is fairly well known that fraud and build-up, exaggerated injuries and/or excessive 
treatment, are key components of the auto injury loss distributions (Derrig et al. 1994, Cummins 
and Tennyson 1996, Abrahamse and Carroll 199(3). Indeed, inJury loss distributions are prime 
candidates for mixture modeling, for at least the differing of payment patterns by injury type. Even 
within an injury type as predominant as.strain and sprain, 2 there can be substantial differences in 
subpopulations arising from fraud and build-up. One common method of identifying these claims 
has been to gather additional features of the claim, the so-called fraud indicators, and to build 
models to identify those bogus claims (Brockett, et al. 1998). The acquisition of reliable indicators 
some of which may be highly subjective, is costly, and may not be efficient in uncovering abusive 
patterns in injury claims (Crocker and Tennyson 1999). The use of more flexible methods such as 
the fuzzy logic (see more below) may overcome the lack of this precision in subjective features in 
an economically efficient manner by running a background algorithm on adJusters' electronic files 
(see, for example, Derrig and Ostaszewski 1995, lggg). 

Another approach to uncovering fraud and build up, perhaps grounded more in practical con- 
siderations, is to construct a filter, or screening algorithm, for medical provider bills (Derrig 2002). 
Routinely, excessive medical bills can be reduced to "reasonable and customary" levels by com- 
puter algorithms that compare incom!ng bills to right censored billing distributions with "excessive" 
being operationally defined to be above the censoring point. Less routine is the implementation 
of systematic analysis of the patterns of a provider's billing practices (Major and Riedinger 1992). 
Our second application of the EM algorithm is to build a first level screening device to uncover 
potential abusive billing practices and the appropriate set of claims to review. We perform the 
pattern analysis by uncovering abusive-like distributions within mixture models parametrized by 
the estimates obtained via the EM algorithm. An illustration of the method follows. 

In the table provided in Appendix B we present a set of outpatient medical provider's total 
billings on the set of 348 auto bodily injury liability claims closed in' Massachusetts during 2001. 
For illustration purposes, 76 claims with one "outlier" provider ( "A ' )  were chosen based on a 
pattern typical of abusive practice; namely, an empirical kurtosis more than five times the overall 
average. The "outlier" was then combined with medical bills in claims from a random sample 
of providers. The losses are recorded in thousands and are presented in column two. Column 4 
identifies each medical billing amount as provider "A" or "other". We will use the EM algorithm 
applied to a normal (log) mixture model attempting to uncover provider A. 

The relatively large volume of provider A's claims is clearly visible in the left panel of Figure 1, 
where it is presented as a portion of the overall claims 

Whereas the volume of claims by itself never constitutes a basis for the suspicion of fraud or 
build-up, it certainly might warrant a closer look at the data at hand, especially via some type of 

2Currently, Massachusetts insured bodily injury claims are upwards of 80 percent strain and sprain claims as the 
most costly part of the medical treatment. Of course, that may have a dependency on the $2,000 dollar threshold 
to file a tort claim. 
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Figure 1: Overall distribution of the 348 BI medical bill amounts from Appendix B compared with 
that submitted by provider A. Left panel: frequency histograms (provider A's histogram in filled 
bars). Right panel:density estimators (provider A's density in dashed line). 

.'~ '0 ~ ; 
L~(oml) 

homogeneity analysis, since the second panel in Figure 1 clearly indicates the difference between 
the overall claims distribution and that of the provider A. Hence in this problem we shall be looking 
for a hidden exposure which could manifest itself as a non-homogenous component of  the data, 
albeit we shall not be assuming that this component is necessarily due to provider A. In fact, as the 
initial inspection of the overall data distribution does not immediately indicate non-homogeneity we 
shall not make any prior assumptions about the nature or source of the possible non-homogeneity. 

Since the standard analysis of the data by fitting a kernel density estimator (see the solid curve 
in the right panel of  Figure 1) appears to give no definite indication of multimodality, it seems, that 
some more sophisticated methods are needed in order to identify any foreign components of the 
claims. Whereas many different approaches to this difficult problem are possible, we have chosen 
one that shall illustrate the applicability of the EM methodology in our setting. Namely, we shall 
attempt to fit a log-mixture-normal distribution to the data, that is, we shall model the logarithm 
of the claim outpatient medical billing distribution as a mixture of several normal variables. The 
use of normal distributions here is mostly due to convenience of the EM implementation and in 
more complicated real life problems can be inappropriate. However, the principle that we shall 
attempt to describe here is, ih general, applicable to any mixture of distributions, even including 
non-parametric ones. 3 

3The notion of fitting non-parametric distributions via likelihood methods, which at first may seem contradiction 
in terms, has become very popular in statistics over the last decade. This is due to intensive research into the so 
called empirical likelihood methods (see for instance a recent monograph by Owen 2001 and references therein). In 
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In order to describe our method in the context of the EM algorithm we shall again relate the 
problem at hand to our EM methodology introduced in Section 1. In our current setting we shall 
consider the set of logarithms of the BI claim medical bills as the incomplete data X.  According to 
our model assumption we identify the underlying random variable X,  of which X is a realization, 
as a mixture of several (say, m > 2) normal distributions 4 

X i ~  N(#j,aj)  for j =  l . . . . .  m 
m 

z = ~ ,  ~. x j ,  (s) 
j = l  

where Yj e (0,1) with P(Yj = 1) = r j  such that ~ ~rj = 1 and the joint distribution of the 
vector (Y1,--. ,Ym) is multinomial with one trial, ( i .e. , )~Yj  = 1). The right hand side of (8) is 
sometimes known as generative representation of a mixture. Indeed, if we generate a multinomial 
variable (Y1,... ,Ym) with probabilities of Yj = 1 equal to ~rj, and depending on the index j for 
which outcome is a unity, deliver X j ,  then it Can be shown that the density of X is 

~ p(xlej) (91 
j=l 

where p(.IO~) is a normal density with the parameter 

Oj = (#j, aj) for j = 1 ,2  . . . .  , m  

Hence X is indeed a mixture of the Xj 's. The density given by (9) is less helpful in our approach 
as it doesn't explicitly involve the variables Yj's. Moreover, fitting the set of parameters 5 

e = (0~ . . . . .  O , . ,~n  . . . . .  ~r,._~). ( lO) 

by considering log-likelihood of (9) is known to be numerically difficult as it involves evaluation of 
the sums under the logarithm. In contrast, the representation (8) provides for a simpler approach, 
which also suits better our purpose of illustrating the use of the EM methodology. In the spirit 
of the search for hidden exposure, we consider the (unobserved) realizations of random vector 
(YI , . . .  ,Ym) in (8) as the missing data y .  Let us note that unlike in the example discussed in 
Section 2 here we have in some sense artificially created the set y .  In this setting the complete set 
of  da t a  is now Z = ( X , y )  or z j  = (xj, yjk) for j = 1 , . . .  , n ,  and k = 1 . . .  , m .  Here n = 348 is 
the number of obervations, m is the number of components in the mixture, unspecified for now, x j  
is (logarithm of) the observed medical bill value, and Yjk E {0, 1) is the auxiliary indicator variable 

principle, with some modifications, the mixture approach discussed in this section and the associated EM algorithm 
can be applied to the empirical likelihood as well. 

4Note that in our notation a denotes the variance, not standard deviation. 
SNote that we only need to estimate m -- 1 proportions since ~ r ~  = 1, 

85 



indicating whether or not x j  arrives from the distribution of Xk. 
log-likelihood function (2) takes the form 

n m 

t(OlZ) = ~ ~ yjk logp(xjlOk), 
j = l  k= l  

and the conditional expectation (3) is given by 

In this setting the complete 

(11) 

Q(o, •(i-1)) (~jk logp(xjlOk), (12) 
j=l k=l 

where 

6jk=E(Yjk]O(i-1),Z)=P(Y3k=IlO(i-1),X) for j = l . . . , n ;  k=l,...,m. (13) 

As we can see from the above formulae, in this particular case Q(O, O(i-1)) is obtained from the 
complete data likelihood by substituting for the unknown yjk's their conditional expectations 6ja's 
calculated under the current value of the estimates of 0.  6 The quantity 6jk is often referred to as 
the responsibility of the component Xk for the observation j .  This terminology reflects the fact 
that we may think about final 6jk as the conditional (posterior) probability of  the j - th  observation 
arriving from the distribution of Xk. 

Once we have replaced the yjk's in (11) by the 6jk's, the maximization step of the EM algorithm 
is straightforward and applied to (12) gives the usual weighted ML estimates of the normal means, 
variances, and the mixing proportions (see below for the formulae). However, in order to proceed 
with the EM procedure we still need to construct the initial guesses for the set of parameters (10). 
A good way to do so (for a discussion, see, for instance, Chapter 8 of Hastie et al. 2001 or Xu and 
Jordan 1996) is to simply choose at random m of the observed claim values as the initial estimates 
of the means, and set all the estimates of the variances to the overall sample variance. The 
mixing proportion can be set uniformly over all components. This way of initiating the parameters 
ensures the relative robustness of the final estimates obtained via EM against any particular initial 
conditions. In fact, in our BI data example we have randomly selected several initial sets of values 
for the means and in all case have obtained convergence to the same set of estimates. Below we 
present the detailed EM algorithm we have used to analyze the Massachusetts auto BI data. In 
order to identify the number m of the mixture components in the model we have used the EM 
method to obtain the estimates of the complete log-likelihood function (as the final values of (12)) 
for m = 2, 3, 4 (we have had determined earlier that for m > 4 the BI mixture model becomes too 
cumbersome). The results are presented in Table 3. As can be seen from the last row of the table, 
m = 3 is the number of components minimizing the negative of the estimated log-likelihood (12). 
Henceforth we shall, therefore, take m = 3 for the BI mixture model. 

6It may happen that some of the values Y3k are in fact available. In such cases, we would take 51k = yjk. 
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Table 3: Comparison of the mixture fit for the different values of m for the BI data 

Parameter m = 2 m = 3 m = 4 

#1 

#3 
#4 ~/2 

al/2 

G~/2 

~ /2  

7rl 
~2 
~3 
~r4 

0.071 0.107 -0.01 
1.110 0.874 0.218 

1.248 0.911 
1.258 

1.265 1.271 1.201 

0.252 0.178 1.349 

0.146 0.214 

0.144 
0.470 0.481 0.250 
0.530 0.205 0.224 

0.314 0.247 
0.279 

-2Q 819.909 811.381 811.655 

Table 4: Selected iterations of the EM algorithm for the BI data with m = 3. 

Iteration 
1 
5 
6 
10 
20 
30 
40 
50 
60 
64 
65 

0.22g 0.785 0.885 1.172 0.89 0.843 0.35 0.320 0.321 
-0.129 0.946 1.054 1.374 0.525 0.356 0.337 0.301 0.361 
-0.131 0.953 1.083 1.357 0.49g 0.300 0.349 0.281 0.370 
-0.041 0.917 1.137 1.324 0.456 0.223 0.396 0.217 0.387 
0.042 0.875 1.166 1.302 0.364 0.207 0.438 0.177 0.385 
0.064 0.876 1.184 1,2g 0.301 0.200 0.453 0.176 0.372 
0.074 0.871 1.204 1.285 0.259 0.188 0.460 0.186 0.354 
0.084 0.868 1.226 1.281 0.222 0.17 0.467 0.197 0.336 
0.099 0.871 1.243 1.275 0.1g0 0.153 0.476 0.204 0.320 
0.105 0,873 1.247 1.272 0.180 0.147 0.48 0.205 0.315 
0.107 0.874 1.248 1.271 0.178 0.146 0.481 0.205 0.314 

-2q 
g73.115 
854.456 
839.384 
820.903 
817.363 
816.143 
814.957 
813.367 
811.838 
811.454 
811.381 

Algorithm 2 (The EM algorithm for fining m-component normal mixture) 

1. Define the initial estimate e (~ of the set of parameters (10) (see discussion above). 

2. The E-step: given the current value of O (~) compute the responsibilities 6j as 
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~J~ = m (i) (1) j = 1,. . .  ,n and 

3. Tile M-step: compute the ML estimators of (12) as 

n 

(~+1) ~':d=l~Jk for k = l , . . . , m - - 1 ,  7r  k ~ -  
n 

and 

k =  1 , . . . , m .  

~d=l  jk 

,~ ~ ( --,uC~+z)~ 2 
a('+Z)= ~'J=l ik x=J~ k ] for k = l  . . . . .  m. 

~d=z jk 

4. Repeat steps 2 and 3 until the relative difference of the subsequent values of (12) is suffi- 
ciently small. 

Figure 2: EM Fit. Left panel: mixture of normal distributions fitted via the EM algorithm to BI 
data�9 Right panel: Three normal components of the mixture. The values of all the parameters are 
given in the last row of Table 4. 
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In Figures 2 and 3 we present graphically the results of the analysis of the BI data via the 
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mixture model with nz = 3 using the EM algorithm as described above. Some selected iterations 
of the EM algorithm for the three component normal mixture are presented in Table 4. In the 
left panel of Figure 2 we show the fit of the normal mixture fitted to the data using Algorithm 2 
(with parameters values given by the last row of Table 4) . As we can see the fit looks reasonable 
and the fitted mixture distribution looks similar to the standard density estimator (solid curve in 
the right panel of Figure 1). The mixture components identified by the EM method are presented 
in the right panel of Figure 2 and clearly indicate non-homogeneity of the data which seems to 
consist of two (in fact, three) different types of claims. This is, obviously, related to a high volume 
of claims in the interval around 1.8-4.5 thousands (corresponding to the values .6-1.5 on the log 
scale). This feature of the data is modeled by the two tall and thin (i.e., with small dispersion) 
components of the mixture (corresponding in our notation to X2 and X3, marked as solid and 
dashed curves, respectively). Let us also note the very pronounced difference (over seven-fold) in 
the spread between the first and the two last components. 

Figure 3: Latent risk in BI data modeled by the EM algorithm with nz = 3. Left panel: set of the 
responsibilities 5j3. Right panel: the third component of the normal mixture compared with the 
distribution of provider A's claims ("A" claims density estimator is a solid curve). 
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~j~m~ 

. ~_  .-C>,... y.j... , i 

Log~n~ 

In the left panel of Figure 3 we present the set of responsibilities (5j3) of the model (or 
component) X3 as calculated by the EM algorithm superimposed on the histogram of the BI data. 
The numerical values of the responsibilities for each data point are also listed in the last column of 
the table in Appendix B. The relationship between the set of responsibilities obtained via the EM 
procedure and the apparent lack of homogeneity of the data, demonstrated by Figure 2, is easy to 
see. The high responsibilities are clustered around the claim values within two standard deviations 
of the estimated mean (1.25) of the tallest distribution X3. Hence the plot of responsibilities 
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superimposed on the data distribution again uncovers the non-homogeneity or the risk factor 
which was initially hidden. As we can see from the right panel in Figure 3 the observed non- 
homogeneity may be attributed largely, as initially expected (and as the illustration intended), to 
the high kurtosis of "A" claims. Indeed, the superimposing of the distribution of "A" claims (solid 
curve) on the component X3 (dashed curve) in the right panel of  Figure 3 reveals a reasonably close 
match in the interval (.8, 1.7) or so. Outside this interval the normal approximation to the provider 
A's claims fails, mostly due to the fact that the normal mixture model employed is not sufficiently 
"fine tuned" in its tails to look for this particular type of distribution. The deficiency could be 
perhaps rectified in this particular case by incorporating some different (non-normal) components 
into the mixture model. However, our main task in this analysis was to merely uncover hidden 
factors (if any) and not necessarily to model them precisely, which should be done afterwards using 
some different, more sophisticated modeling approach depending on the type of problem at hand. 
See, for instance, Bilmes, (1998) who presents the extension of our Algorithm 2 to the so-called 
general hidden Markov model (HMM).  For a full review of some possible approaches to fitting the 
finite mixtures models and the use of the EM methodology in this context, readers are referred 
to the recent monograph by McLachlan and Peel (2000) which also contains some descriptions of 
the currently available software for fitting a variety of non-normal mixtures via the EM method. 

2.3 The EM Algorithm Output and Fuzzy Set Membership Function 

As we have seen above, each run of the EM algorithm estimating an n-mixture model will produce 
responsibilities for each claim and for each one of the ~T~ mixture distributions. As mentioned 
earlier, they can be interpreted as the (posterior) probability that the claim "arises" from each 
of the components of the mixing distributions. They also can be interpreted as the membership 
functions for the fuzzy sets of "arising from the ~-th mixture component". If for any claim the 
responsibility (membership) of a particular model component equals one, we say that the claim 
arises from that model component. When the responsibility is less than one, the claim arises 
partially from that component, and if the responsibility equals zero, we can say the claim does 
not arise from that component. In that context, every claim "belongs to" each of the mixing 
component with measurement value equal to the responsibility. Putting the EM algorithm within 
the fuzzy set context provides us with the well-known tools of fuzzy arithmetic to help interpret 
the EM output in a way that matches real-life actuarial choices (c.f., e.g., Derrig and Ostaszewski 
1999). 

Another advantage of portraying the responsibility probabilities as fuzzy sets relations is that the 
defuzzification operator known as the a-cut 7, can be used to illustrate the type I and II errors when 
the a-cut criterion is used to classify the claim as belonging to one of the mixture distributions. 
The a-cut classification table is presented in Table 5 below and shows the portions of "A" claims 
contained in each a-cut from 0.1 to 0.9 for each mixture component distribution. In particular, the 
a-cut analysis confirms our previous findings that "A" claims belong predominantly to the third 

7For c~ equal to a number between zero and one, the o~-cut of a fuzzy set consists of the (crisp) set of all elements 
that have a membership value greater than or equal to c~ (see, Derrig and Ostaszewski 1995). 
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mixing distribution (i.e., distribution of X3). Indeed, the a-cut at about 0.5 provides us with a good 
indication that "A" arises from the third mixing distribution (corresponding to the value 75% in the 
table) but not from the first one (corresponding to 8% value only). These findings are consistent 
with those illustrated by Figure 3. In contrast, the second mixing distribution (distribution of 
X2) does not allow us to classify correctly "A" and "other" in our three-mixture model. The 
low proportion of "A" claims assigned to the model X2 indicates that they are generally unlikely 
to arrive from X2 which may be an indication of some further non-homogeneity among claims, 
even after adjusting for the type "A". The X2 component could be, therefore, the manifestation 
of some additional hidden factors, which again confirms the findings summarized in the previous 
section, s 

Table 5: Fuzzy membership via responsibility probabilities 

a Resp. X1 Resp. X2 Resp. Xs 
A Other A Other A Other 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.05 0.42 
0.05 0.42 
0.07 0.45 
0.08 0.46 
0.08 0.48 
0.11 0.49 
0.16 0.54 
0.22 0.64 
O.g5 1.00 

0.00 0.00 
0.00 0,00 
0.09 0.11 
0.13 0.20 
0.13 0.24 
0.16 0.28 
0.21 0.30 
0,24 0.35 
0.33 0.41 

0.00 0.00 
0.54 0.13 
0.62 0.19 
0.70 0.22 
0.75 0.24 
0.78 0.26 
0.79 0.30 
0.79 0.34 
0.82 0.38 

2.4 Accuracy  Assessment  for the EM Output via Paramet r i c  Bootstrap 

In our analysis of  the BI data conducted in the previous sections we have used the numeric values 
of the estimated parameters (10) and the responsibilities (13). Since these values were estimated 
from the data via the EM algorithm, it is important to learn about their accuracy. In general, 
for the set of  parameters (10) the usual approach to assessing accuracy based on the asymptotic 
normality of the maximum likelihood estimators can be applied here, as soon as we calculate the 
information matrix for O. This is slightly more complicated for the set of  responsibilities (13) as 
they are the functions of O and hence require the appropriate transformation of the information 
matrix. However, a simpler method of obtaining, for instance, confidence intervals for the set 
of responsibilities and the model parameters can be also used, based on the so-called parametric 

SAn analysis of the mixture model applied only to 272 "other" claims shows that %2 has a more pronounced 
representation (high (~-cut proportions) of (i) chiropractic and physical therapy treatment, (ii) special investigations 
and independent medical examinations, and (iii) extended treatment delays. 
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bootstrap method outlined in Algorithm 3 below. The method can be shown to be asymptotically 
equivalent to the normal approximation approach and is known to be often more reliable for smaller 
sample sizes or for the heavily biased estimators (which will often be the case for the responsibilities 
(13)). The algorithm below describes how to obtain confidence intervals for the parameters given 
by (10) and (13) using bootstrap. For some more examples and further discussion see, for instance_, 
McLachlan and Peel (2000) or the forthcoming paper by Rempala and Szatzschneider (2002) where 
also the issue of the hypothesis testing for the number of mixture components via the parametric 
bootstrap method is discussed. 

AIsorithm 3 (Bootstrap confidence intervals) 

1 Using the values of the model parameters (10) obtained from the EM algorithm generate 
the set of pseudo-data 2#* (typically of the same length as the original data 2~). 

2 With 2#* at hand, use Algorithm 2 in order to obtain a set of pseudo-values e*.  

3 Using the set of the original data values �9 and @* from step 2 above, calculate the pseudo- 
responsibilities 6~k as in Algorithm 2 step 2. 

4 Repeat the steps I -3  a large number of times, say, B. 9 

5 Use the empirical quantiles of the distributions of pseudo-values O* and 6~k to obtain con- 
fidence bounds for e and 6jk. 

For illustration purpose we present the set of confidence intervals for the three-mixture-normal 
model parameters and the responsibilities (of X3) obtained via the above algorithm for the BI data 
in Tables 6 and 7 below. The term "bootstrap estimate" in the tables refers to the average value 
of the B bootstrap pseudo-values obtained in steps 2 or 3. 

3 Summary and Conclusion 

This paper has introduced the statistical methodology for inference in the presence of missing data, 
known as the EM algorithm, into the actuarial settings. We have shown that this methodology 
is particularly appropriate for those practical situations which require consideration of the missing 
or incomplete data, the "lurking" variables, or the hidden factors. We believe that due to its 
conceptual simplicity, the EM method could become a standard tool of actuarial analysis in the 
future. Herein we have given only some example of its usefulness in modeling loss severity. Specif- 
ically, in modeling claim severities, the EM algorithm was used to impute missing values in a more 
sophisticated and statistically less biased way than simple regression methods as well as to uncover 
(hidden) patterns in the claim severity data. Actual auto bodily injury liability claims closed in 
Massachusetts in 2001 were used to illustrate a first stage screen for abusive medical providers, and 

QIn our setting B needs to be fairly large, typically at least a thousand. For a discussion see, for instance, 
McLachlan and Peel (2001), 
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Table 6: Accuracy of the parameter estimates for the BI data with B=1000 

Parameter Value Bootstrap g5% CI 

~3 
o~/2 
o~/2 
o~/2 
Ir2 
7r3 

Estimate 
0.107 0.104 (-0.115, 0.298) 
0.874 0 . 8 7 1  (0.80g, 0.g24) 
1.248 1.249 (1.216, 1.284) 
1.271 1.269 (1.132, 1.389) 
0.178 0.175 (0.125, 0.222) 
0.146 0.144 (0.117, 0.174) 
0.205 0 . 2 0 7  (0.157, 0.253) 
0.314 0 . 3 1 7  (0.268, 0.375) 

Table 7: Accuracy of the selected responsibilities ~ij3 

No Log Claim ~j3 Bootstrap g5% CI 
( j )  Value Value Estimate 
100 0.380 0.000 0 . 0 0 0  (3.gOe-12, 2.04e-06) 
200 1.031 0.410 0.396 (0.243, 0.531) 
300 1.353 0.854 0.863 (0.802 0.912) 

their abusive claims, utilizing the EM algorithm. The usefulness of the EM output for classification 
purpose and its connections with fuzzy logic techniques were discussed. Namely, the EM algorithm 
output of posterior probabilities called responsibilities were reinterpreted as fuzzy set membership 
function in order to bring the machery of fuzzy logic to bear in the classification problem. The 
Monte-Carlo based method of assessing the accuracy of the model parameters fitted via the EM 
algorithm, known as the parametric bootstrap was also presented and the appropriate algorithm 
for its implementation was developed. The set of functions written in the statistical language 
R, implementing the EM algorithms discussed in the paper, have been included in Appendix A to 
allow readers to try different actuarial situations where missing data and hidden components might 
be found. A large variety of actuarial and financial applications of the presented methodology are 
possible, including its incorporation into models of Risk Based Capital, Value at Risk, and general 
Dynamic Financial Analysis. We hope that this paper shall promote enough interest in the EM 
methodology for further exploration of those opportunities. 
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Appendix A. R Functions 

We present here the implementation of Algorithms 1 and 2 in statistical software R which is a 
freeware version of the award winning statistical software S+ and is available from http://www.r- 
project.org. The functions below were used in the numerical examples discussed in the text. 

#Algorithm1: EMversion of Buck's imputation procedure#################### 
#auxiliary fnnction 
inv<-function(m .... ) solve (m, diag (rep(1, lengCh(m [, i] ) )) .... ); 
#defining matrix inverse (for compatibility with older versions of R) 
#input parameters 
# d -dataframe of two columns containing complete observations 
# dl-list of observations with missing second coordinate 
# d2-1ist of observations with missing first coordinate 
# B-maximal number of iterations (default value 500) 
# eps- convergence criterion (default value .0001) 
###################################################################### 

em.buck <-function(d,dl,d2,B=500,eps=.0001) { 
n<-length(d[,l]); 
nl<-length(dl); 
n2<-length(d2); 
m<-apply(d,2,mean); 
R<-cov(d); 
rho<-cor(d)[1,2]; nLL.old<-eps; nLL.new<-100; 
w<-rbind(d,cbind(dl,rep(m[2] ,nl)),cbind(rep(m[1] ,n2),d2)); 
i<-I; #mainloop# 
while (abs(nLL.new-nLL.old)/nLL.old>eps && i<=B){ 
Tl<-sum(w[,l]); T2<-sum(w[,2]); T12<-sum(w[,l]*w[,2]); 
Tll<-sum(w[(n+nl+l):(n+nl+n2),l]~2 
+B[l,l]*(l-rho ̂  2))+sum(w[-((n+nl+l):(n+nl+n2)),l] ^ 2); 
T22<-sum(w[(n+l):(n+nl),2]" 2+R[2,2]*(1-rho" 2))+sum(w[-((n+l):(n+nl)),2] ^ 2); 
R<-array(c(Tll-Tl" 2/(n+n1+n2),T12-Tl*T2/(n+nl+n2),T12-T1*T2/(n+nl+n2), 
T22-T2" 2/(n+nl+n2))/(n+nl+n2), c(2,2)); 
m<-c(Tl/(n+nl+n2),T2/(n+nl+n2)); 
rho<-R[l,2]/sqrt(~[l,1]~R[2,2]); 
w[(n+l):(n+nl),2]<-m[2]+R[l,2]~(w[(n+l):(n+nl),l]-m[l])/R[1,1]; 
W[(n+nl+l):(n+nl+n2),l]<-m[l]+R[1,2]~(w[(n+nl+l):(n+nl+n2),2]-m[2])/R[2,2]; 
nLL.old<-nLL.new; 
s<-0; for (k in l:(n+nl+n2)) s<-(w[k,]-m)~inv(R)~(w[k,]-m)+s; 
nLL.new<-2~(n+nl+n2)~log(2~pi)+s+(n+nl+n2)~log(abs(det(R))); 
i<-i+l; }; #end mainloop# 
print(paste("n=", n, nl, n2, "Theta estimates=", m[1],m[2], R[I,1], 
R[1,2], R[2,2], "itsr=" ,i-I, "-2LL=" ,nLL.new,"rho=" ,rho)) 
return(list(re=m, R=R,iter=i-l,LL=nLL.new,w--w)) ; } 
#output parameters: list of objects (m,R,iter,LL,w) 
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# m -vector of estimated means 
# R -estimated eovariance matrix 
# iter -number of iterations until convergence 
# w-concatenated datafrume of d,dl,d2 along with imputed missing values 

# Algorithm2: EMfornormaimix tures ############################## 
#auxiliary function 
isum<-function(a,p.new,m,s){ k<-length(m); ss<-O; 
for (i in l:k) ss<-ss+p.new[[i]]*dnorm(a,m[[i]],s[[i]]); 
return(ss)} 
# facilitates calculation of LL in the main procedure below 

# input parameters: 
# a -any list of numeric data 
# pi -initial estimate of mixing proportions (default value: uniform over three components) 
# eps -desired convergence accuracy (default value .0001) 
# B -maximal number of iterations allowed (default value 100) 
# m -initial values of means estimates (default value: random selection from a) 
################################################################# 
em.multnorm<-function(a, pi=c(i/3,1/3,1/3),eps=.OOOI,B=lOO,m=sort(sample(a,3))) 
{n<-length(a); k<-length(m); s<-rep(sd(a),k); 
i<-1; p.new<-pi; 
mO<-m; 
logl.old<-l; 
logl.new<-sum(log(isum(a,p.new,m,s))); 
#mainloop# 
while (abs((logl.new-logl.old)/logl.old)>eps && i<=B) 
{g<-NULL; 
for (t in 1:k) g<-rbind(g, p.new[[t]]*dnorm(a,m[[t]],s[[t]])/isum(a,p.new,m,s)); 
m<-gX*Xa/gX*Xrep(1,n); 
s<-sqrt(g~*Xa'2/g%*~rep(l,n)-m~2); 
p.old<-p.new; p.new<-gX*Xrep(1,n)/n; i<-i*1; 
logl.old<-logl.new; 
logl.new<-sum(log(lsum(a,p.new,m,s))); 
}; 
#end mainloep# 
print(paste("Theta estimates",m,s,"pi=",p.new,"iter=",i-1,"-2LL=",-2~logl.new)); 
return(list(m--m,s=s~pi=p.new~iter=i-1,start--m~,~gl=-2*l~g~.new,res~=t(g),data=a)) } 

# output parameters: list of objects (m,s,pi,iter,logl,resp) 
# m - vector of estimated values of means 
# s - vector of estimated values of standard deviations 
# pi -vector of estimated value of mixing proportions 
# iter- number of iterations until convergence 
# legl- final value of -2Q 
# resp- matrix of responsibilities (columns correspond to mixture components) 
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Appendix B. Massachusetts Auto Insurance Bodily Injury Liability Data 

Below we present the set of  Auto Insurance Data discussed in the paper. Medical bill claim amounts 

are given in thousands. Responsibilities 6j3 are calculated according to Algorithm 2. 

No Claimed Log(Amt) Provider Resp, I No Claimed Log(Amt) Provider Resp, 
Amt 6j3 ] Amt 6j3 

1 0.045 -3.101 Other 0,00 
3 0.07 -2.659 Other 0.00 
5 0.077 -2.564 Other 0,00 
7 0.117 -2.146 Other 0.00 
9 0.14 -1.966 Other 0.00 
11 0 . 1 4 9  -1.904 Other 0.00 
13 0 . 1 6 7  -1,790 Other 0.00 
15 0.18 -1.715 Other 0.00 
17 0.199 -1.614 Other 0.00 
19 0,212 -1.551 Other 0.00 
21 0.23 -1.470 Other 0.00 
23 0 , 2 6 4  -1.332 Other 0,00 
25 0 . 2 8 5  -1.255 Other 0.00 
27 0 . 3 6 3  -1.013 Other 0,00 
29 0,4 -0.916 Other 0.00 
31 0 . 4 1 3  -0.884 Other 0.00 
33 0 . 4 1 6  -0.877 Other 0.00 
35 0 . 4 2 5  -0.856 Other 0.00 
37 0.43 -0.844 A 0.00 
39 0.45 -0.799 Other 0.00 
41 0 . 4 8 6  -0.722 Other 0.00 
43 0.5 -0.693 Other 0.00 
45 0 . 5 3 1  -0.633 Other 0.00 
47 0 . 5 5 6  -0.587 Other 0,00 
49 0,6 -0.511 Other 0.00 
51 0 . 6 0 5  -0.503 Other 0.00 
53 0,66 -0.416 Other 0.00 
55 0 . 6 8 5  -0.378 Other 0.00 
57 0 . 6 9 8  -0.360 Other 0.00 
59 0 . 7 0 5  -0.350 Other 0.00 
61 0.74 -0.301 Other 0.00 
63 0.78 -0.248 Other 0.00 
65 0 . 7 8 5  -0.242 Other 0.00 
67 0 . 8 2 5  -0,192 Other 0.00 
69 0.83 -0.186 Other 0.00 
71 0.87 -0.139 Other 0.00 
73 0 . 9 3 4  -0068 Other 0.00 
75 0 . 9 5 4  -0.047 Other 0.00 
77 0 . 9 6 2  -0.039 Other 0.00 
79 0 . 9 7 5  -0.025 Other 0.00 

2 0,047 -3.058 Other 0.00 
4 0.075 -2.590 Other 0.00 
6 0.092 -2.386 Other 0.00 
8 0.117 -2.146 Other 0.00 
10 0 . 1 4 5  -1.931 Other 0.00 
12 0 . 1 6 5  -1.802 Other 0.00 
14 0 . 1 6 9  -1.778 Other 0.00 
16 0.18 -1.715 Other 0,00 
18 0 . 2 0 2  -i,599 Other 0.00 
20 0.225 -1.492 Other 0.00 
22 0 . 2 4 2  -1,419 Other 0.00 
24 0 . 2 7 5  -1.291 Other 0.00 
26 0.29 -1.238 Other 0.00 
28 0 , 3 8 4  -0.957 Other 0.00 
30 0.4 -0.916 Other 0.00 
32 0 . 4 1 4  -0.882 Other 0.00 
34 0 , 4 2 5  -0.856 Other 0.00 
36 0.43 -0.844 Other 0.00 
38 0 , 4 3 1  -0.842 Other 0.00 
40 0.46 -0.777 Other 0.00 
42 0.5 -0,693 Other 0.00 
44 0 , 5 1 4  -0.666 A 0.00 
46 0.54 -0.616 Other 0.00 
48 0 . 5 6 4  -0.573 Other 0.00 
50 0 . 6 0 5  -0.503 Other 0.00 
52 0.65 -0.431 Other 000 
54 0.66 -0.416 Other 0.00 
56 0.69 -0.371 Other 0.00 
58 0.7 -0.357 Other 0.00 
60 0 , 7 2 5  -0.322 Other 0.00 
62 0.75 -0.288 Other 0,00 
64 0 . 7 8 5  -0.242 Other 0.00 
66 0 . 8 0 6  -0.216 Other 0.00 
68 0 . 8 2 5  -0.192 Other 0.00 
70 0 . 8 3 6  -0.179 A 0.00 
72 0.9 -0.105 Other 0.00 
74 0.95 -0.051 Other 0.00 
76 0 . 9 5 6  -0.045 Other 0.00 
78 0.97 -0.030 Other 0.00 
80 0 , 9 8 8  -0.012 Other 0.00 
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No Claimed Log(Amt) Provider Resp. I No Claimed Log(Amt) Provider Resp. 
Amt 6j3 1 Amt 6j3 

81 1.015 0.015 Other 0.00 
83 1.058 0.056 Other 0.00 
85 1.161 0.149 Other 0.00 
87 1.195 0.178 Other 0.00 
89 1.242 0.217 Other 0.00 
91 1,295 0.259 Other 0.00 
93 1.319 0.277 Other 0.00 
95 1.34 0.293 Other 0.00 
97 1.39 0.329 Other 0,00 
99 1.455 0.375 Other 0.00 
101 1.49 0,399 Other 0.00 
103 1.542 0.433 Other 0.00 
105 1.618 0.480 Other 0.00 
107 1.64 0.495 Other 0.00 
109 1.65 0.501 Other 0.00 
111 1.68 0.519 Other 0.00 
113 1.7 0,531 A 0.00 
115 1,750 0,565 Other 0.00 
117 1.898 0.640 Other 0.00 
110 1.923 0.654 Other 0,00 
121 1.98 0.673 Other 0.00 
123 1.99 0.688 Other 0.00 
125 2.018 0.702 Other 0,00 
127 2.02 0.703 Other 0.00 
12g 2.042 0.714 A 0.00 
131 2.063 0.724 Other 0.00 
133 2.087 0.738 Other 0.00 
135 2.1 0.742 Other 0.00 
137 2.12 0.751 Other 0.01 
139 2.159 0.770 Other 0.01 
141 2.184 0.781 A 0.01 
143 2.191 0.784 Other 0,01 
145 2.224 0,799 Other 0,02 
147 2.251 0.811 A 0.02 
149 2.288 0.828 Other 0.03 
151 2.318 0.841 Other 0.03 
153 2.325 0.844 A 0.03 
155 2,341 0.851 Other 004 
157 2.374 0.865 Other 0.05 
159 2.406 0.878 Other 0.06 
181 2,45 0.896 Other 0.08 
183 2.488 0.903 Other 0.09 
165 2.48 0.908 Other 0.10 
167 2.49 0.912 A 0.10 
169 2.5 0.916 Other 0.11 
171 2.5 0.916 A 0.11 
173 2.532 0.920 Other 0,13 

82 1,053 0.052 Other 0,00 
84 1,08 0.077 Other 0.00 
86 1.187 0.154 Other 0.00 
88 1.215 0,195 Other 0,00 
90 1.28 0,231 Other 0.00 
92 1.31 0.270 Other 0.00 
94 1,33 0,285 Other 0.00 
96 1,355 0304 Other 0.00 
98 1.444 0,367 Other 0.00 
100 1.463 0,380 Other 0.00 
102 1.5 0.405 Other 0.00 
104 1.598 0.469 Other 0.00 
106 1.623 0.484 Other 0,00 
108 1.645 0,498 A 0,00 
110 1.66 0.507 Other 0.00 
112 1.695 0.528 Other 0.00 
114 1.758 0.564 Other 0.00 
116 1.76 0.585 Other 0.00 
118 1.92 0.652 Other 0.00 
120 1.941 0.863 A 0.00 
122 1.972 0.679 Other 0.00 
124 2.005 0.696 Other 0,00 
126 2.02 0.703 Other 0.00 
128 2.03 0,708 Other 0,00 
130 2.062 0.724 Other 0,00 
132 2.08 0.732 Other 0.00 
134 2,089 0,737 Other 0.00 
136 2,115 0.749 Other 0.01 
138 2.155 0,788 Other 0.01 
140 2.161 0,771 Other 0,01 
142 2.188 0.783 Other 0.01 
144 2.196 0.787 Other 0.01 
148 2.237 0.805 Other 0,02 
148 2.253 0,812 Other 0,02 
150 2,295 0.831 Other 0.03 
152 2,325 0.844 Other 0.03 
154 2.335 0.848 Other 0.04 
156 2.35 0,854 Other 0.04 
158 2.39 0.871 Other 0.05 
160 2.434 0.890 Other 0.07 
162 2.453 0.897 A 0.08 
164 2.468 0.903 A 0.09 
168 2,48 0.908 A 0.10 
168 2.498 0.915 Other 0.11 
170 2.5 0.916 Other 0.11 
172 2.51 0.920 Other 0.11 
174 2.54 0.932 Other 0.14 
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No Claimed Log(Amt) Provider Resp. I No Claimed Log(Amt) Provider Resp. 
Amt 6j3 I Amt <~j3 

175 2.543 0,933 Other 0.14 
177 2,572 0,945 Other 0.16 
179 2,601 0.956 Other 0.19 
181 2.619 0.963 Other 0,20 
183 2,635 0.969 Other 0.22 
185 2,653 0,976 Other 0,24 
187 2.675 0.984 Other 0.26 
189 2.697 0,992 Other 0.28 
191 2,73 1.004 Other 0.32 
193 2,755 1,013 Other 0,35 
195 2.773 1,020 Other 0,37 
197 2,78 1,022 Other 0,38 
199 2.795 1.028 Other 0.40 
201 2,805 1.031 Other 0.41 
203 2.88 1.058 Other 0.49 
205 2,881 1,058 A 0.50 
207 2,93 1.075 Other 0.55 
209 2.94 1.078 Other 0,56 
211 2.975 1.090 Other 0.59 
213 3 1.099 A 0.62 
215 3,058 1,118 Other 0.67 
217 3,085 1.127 Other 0,69 
219 3.1 1.131 Other 0,70 
221 3.106 1.133 Other 0.70 
223 3.17 1.154 Other 0.74 
225 3,192 1,161 A 0.75 
227 3.2 1.163 Other 0.76 
229 3.23 1.172 Other 0,77 
231 3.23 1.172 A 0,77 
233 3.235 1,174 Other 0.78 
235 3.248 1.178 A 0.78 
237 3.26 1.182 Other 0.79 
239 3.272 1.185 A 0.79 
241 3,295 1.192 Other 0.80 
243 3,332 1,204 A 0.81 
245 3.338 1.205 Other 0.81 
247 3,341 1,206 A 0,82 
249 3.349 1.209 A 0.82 
251 3,353 1.210 A 0.82 
253 3,378 1.217 A 0.83 
255 3.387 1,220 A 0.83 
257 3.429 1.232 A 0.84 
259 3.444 1.237 A 0.84 
261 3,473 1,245 A 0.85 
263 3.475 1,246 A 0.85 
265 3.505 1,254 Other 0.85 
267 3.518 1.258 Other 0.85 

176 2.559 0.g40 Other 0.15 
178 2.593 0.953 Other 0.18 
180 2.616 0.962 Other 0,20 
182 2.63 0,967 Other 0.21 
184 2,635 0,969 Other 0.22 
186 2.655 0.976 Other 0.24 
188 2,679 0.985 Other 0.26 
190 2.718 1,000 Other 0.31 
192 2,734 1,006 Other 0.32 
194 2.758 1.015 Other 0.35 
196 2.775 1.021 Other 0.37 
198 2,785 1,024 A 0.38 
200 2.805 1.031 Other 0.41 
202 2.808 1,032 A 0,41 
204 2.881 1.058 Other 0.50 
206 2.924 1.073 A 0.54 
208 2.934 1.076 A 0,55 
210 2,972 1.089 Other 0,59 
212 3 1.0gg Other 0.62 
214 3,025 1.107 Other 0,64 
216 3.082 1,126 A 0,68 
218 3.095 1.130 Other 0.6g 
220 3,102 1,132 A 0.70 
222 3.135 1.143 Other 0,72 
224 3,187 1,15g Other 0.75 
226 3.193 1.161 Other 0.75 
228 3,21 1,166 Other 0.76 
230 3,23 1.172 Other 0.77 
232 3,232 1.173 Other 0.77 
234 3.243 1.176 A 0,78 
236 3.249 1,178 Other 0,78 
238 3.261 1,182 Other 0,79 
240 3.29 1.191 Other 0.80 
242 3,304 1.195 Other 0.80 
244 3.333 1.204 Other 0.81 
246 3,34 1.206 Other 0,82 
248 3,349 1.209 A 0.82 
250 3,349 1.209 A 0,82 
252 3.36 1,212 Other 0,82 
254 3,385 1,219 A 0.83 
258 3.416 1.228 Other 0.84 
258 3.438 1.235 A 0.84 
260 3,469 1.244 A 0.85 
262 3,473 1.245 A 0.85 
264 3.477 1,246 A 0.85 
266 3.517 1,258 A 0,85 
268 3.527 1.260 A 0,85 
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No Claimed Log(Amt) Provider Resp. I No Claimed Log(Amt) Provider Resp. 
Amt 6j3 I Amt ~j~ 

269 3.535 1.263 A 
271 3.55 1.267 Other 
273 3.567 1.272 A 
275 3.575 1,274 Other 
277 3.583 1.276 A 
279 3.603 1.282 A 
281 3,623 1.287 A 
283 3.655 1.296 Other 
285 3.658 1.297 Other 
287 3.675 1.302 Other 
289 3,72 1.314 Other 
291 3.742 1.320 Other 
293 3.765 1.326 Other 
205 3,809 1.337 Other 
297 3.857 1350 A 
209 3.867 1.352 A 
301 3.883 1.357 Other 
303 3.905 1.362 A 
305 4 1.386 Other 
307 4,039 1,396 A 
309 4.095 1.410 Other 
311 4,147 1.422 Other 
313 4,17 1,428 Other 
315 4.2 1.435 Other 
317 4,257 1.449 A 
31cj 4.480 1.502 A 
321 4.595 1.525 Other 
323 4.653 1,538 Other 
325 4.731 1.554 Other 
327 4.75 1.558 Other 
329 4.81 1.571 Other 
331 5.161 1.641 Other 
333 5.64 1.730 Other 
335 6.166 1.819 Other 
337 6.725 1.906 Other 
339 8 2.079 Other 
341 10.295 2.332 Other 
343 12.688 2.541 Other 
345 18.847 2.936 Other 
347 20.827 3.036 Other 

0.86 270 3.547 1.266 
0.86 272 3.552 1.268 
0.86 274 3.57 1.273 
0,86 276 3.58 1,275 
0,86 278 3,59 1.278 
0,86 280 3,615 1.285 
0,86 282 3,647 1.294 
0.86 284 3.655 1.296 
0,87 286 3,675 1.302 
0.87 288 3.687 1,305 
0,87 290 3.72 1.314 
0,87 292 3.757 1,324 
0,87 294 3,8 1.335 
0.86 296 3.848 1.348 
0,86 208 3.867 1.352 
0.86 300 3.87 1.353 
0.86 302 3.89 1.358 
0,86 304 3.907 1,363 
0.85 306 4,011 1.389 
0,84 308 4.065 1.402 
0,83 310 4.134 1.419 
0.82 312 4.155 1.424 
0,81 314 4.179 1.430 
0,81 316 4.215 1,430 
0,79 318 4,3 1,459 
0,70 320 4,593 1,525 
0.64 322 4.63 1.533 
0.60 324 4.7 1.548 
0.55 326 4.741 1.556 
0.54 328 4,761 1.560 
0.50 330 5,072 1.624 
0,25 332 5,24 1,656 
0,06 334 5,779 1.754 
0,01 336 6.406 1.857 
0.00 338 7.717 2.043 
0,00 340 9,5 2,251 
0.00 342 12,533 2.528 
0.00 344 16.043 2.775 
0.00 346 10.5 2.970 
0.00 348 50 3.912 

A 0.86 
Other 0.86 
Other 0.86 
Other 0.86 
A 0.86 
A 0.86 
A 0.86 
A 0.86 
Other 0.87 
A 0.87 
Other 0.87 
A 0.87 
A 0.87 
A 0.86 
Other 0.86 
Other 0.86 
Other 0.86 
A 0.86 
Other 0.86 
A 0.84 
Other 0.82 
A 0.82 
A 0.81 
Other 0.80 
Other 0.78 
A 0.64 
A 0,62 
A 0,57 
A 0.55 
Other 0.53 
Other 0.31 
Other 0.20 
Other 0.03 
Other 0.00 
A 0.00 
Other" 0.00 
Other 0.00 
Other 0.00 
Other 0.00 
Other 0.00 
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Where is My Market? 
How-to Use Data to Find and Validate New Commercial Line-q 

Market Niches 

By Lisa Sayegh, MBA, ARM 

Entering a new insurance market is not a decision to be taken lightly. Market segment 
analysis is a lengthy process, and finding the right data is just the beginning. Being able to 
make meaningful comparisons of data from various sources and across insurance lines is 
the key to identifying profitable markets. Fortunately, there are data sources and tools 
available that can help with the analysis, as well as provide quantifiable assessments of 
your niche-market recommendations. Here are some critical elements to keep in mind as 
you go through the process. 

An approach to help insurance marketers identify profitable segments in an industry where 
costs can be unknown for a multiple year period: 

1. Identify Your Company Strengths 
2. Define Market Segments That Utilize Your Strengths 
3. Validate Your Selections 

~, Validate Using Insurance Data 
Additional Considerations When Identifying Markets 
What Data Is Available? 
Using Multiple Data Sources 

4. Provide High Quality Prospects 

Why se.qment? 
The segmentation process guides the marketer through defining market characteristics to 
enable comparison across slices of the market or segments and from which, attractive 
markets can be decided on. Consider two examples. A major insurer successfully used 
segmentation to identify optimum markets with established distribution channels by 
overlaying selected segments to agent territories. Another company learned that an 
adjacent state was not nearly as attractive for growth as expected, for reasons other than 
the regulatory environment of the state. Their initial expectation of the adjacent state was 
based solely on lower distribution costs. It turned out that by segmentation analysis, they 
found tremendous promise in a third region. This new segment was so attractive that it 
justified increased distribution costs to access the market. 

Identifying target market segments is an iterative analytical process. The market 
researcher begins the analysis by identifying segments on a high level basis, then 
continues with further segmentation criteria to validate findings and to hone in on optimum 
market segments. Insurance market data can be used at all levels of the analysis to 
improve validations of the selected market segments. Use of data in the initial phase of the 
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analysis should help your business canvas the markets and identify the most profitable 
segments. Once these initial segments are proposed, together with your business 
expedence and knowledge of your business, data can be collected and monitored to help 
justify your selections. The data provides management with quantifiable assessments of 
markets and eases their decision process. It also should be emphasized that it is 
necessary to review current market penetrations on an ongoing basis to identify changing 
business environments. 

All companies intuitively segment to a certain degree, but conducting the delineated 
segmentation analysis in this article can result in higher profitability. As per the example 
above, a company identified a profitable niche and decided to extend their program to the 
adjacent state. Via this analysis, the insurer found that expanding into a third region - not 
their first choice - provided a better opportunity. Particulady in these changing times, a 
company can easily miss profitable opportunities without segmentation analysis. 

Identify Your Company Strengths- 
The marketer would evaluate their business and company strengths by first identifying 
areas with performance success and then identifying the characteristics that make these 
areas successful. The marketer can look at functions within the company, such as 
underwriting, loss control and claims management - or industries, et al. Benchmarking can 
show that a company's book of funeral homes has fewer slips and falls than the funeral 
homes industry standard or that a closed-claim that is 3 days shorter than a comparable 
business. 

If a company is unknown to a market, it appears that costly efforts would make it 
unreasonable to succeed in a new line of business where it's unknown. This analytical 
process can help the company to identify strengths that would be portable to what 
seemingly is a non-related business. 

Company strengths can also be expertise in a pertinent industry segment. A company 
known as an auto coverage provider that decides to introduce coverage for high-price 
dwellings would need to assess costs associated with introducing their services to a 
marketplace that is unfamiliar with them. These costs can include advertising, new 
distribution channels, etc. Companies can have specialists on hand with skills that transfer 
to other industry segments. For example, inspectors for boiler and machinery can help to 
underwrite some types of manufacturing risks. Companies' sales distribution channels are 
also an asset not to be undervalued. Do your distributors have excellent people skills and 
show profPLable returns on offering homeowner coverages? Can that be expanded to 
provide home-based business coverage, or businessowners coverages? 

There are many sources of industry standard data that marketers can use to benchmark 
against, much of it not insurance-specific. Some brokers will provide comparative 
performance data of your company against their entire book. Many insurance associations 
may have pertinent information. One that comes to mind is the National Restaurant 
Association that conducts its own survey of insurance costs. (Note that only participants in 
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the survey can access the information). The Risk and Insurance Management Society 
(RIMS) conducts a survey of the self-insured market that provides some industry slices. 

Define market segments that utilize your strengths 
Once you identify your strengths, you need parameters to define the market segments that 
utilize your strengths. This is a challenge for most of us but ultimately worthwhile. Effort 
expended to identify your own company strengths pays off when you can identify 
segments that correlate to those strengths. 

Industry can be a critical segment definition as it enables you to compare results across 
line of insurance. Industry premium and loss information is typically categorized according 
to risk classification code that is specific to line of insurance. This risk classification-code- 
based data does not lend itself to easy market analysis. Comparison across individual 
lines of insurance with their different classifications is difficult and so, it is difficult to identify 
trends that can be applied to their industries. A prime example is the commercial auto line, 
which is categorized by weight of vehicle and distance of travel. If you identify a particular 
truck as very profitable, how can you apply that to other industries when you are not sure 
which industries use that type of truck? 

Other parameters include: 
Demographics like geography play a major role in insurance costs as we are a 
regulated community and results can differ drastically in different geographies. 
Statistics such as sales or payroll can be helpful to identify risk potential. 
Business parameters such as size of risk can be critical to your analysis highlighting 
cases where the industry average differs greatly from a particular business-size result. 

Validate Segment Selections with Premium Potential and Profitability- 

The validation of the selected segments generally starts with non-insurance data as it is 
more abundant and cheaper. As things get refined, it moves to insurer data which is more 
scarce and more expensive. 

Now that the segments have been identified, the marketer needs to support his/her 
findings. At this stage, it is important to use insurance specific information for the 
validation. Few industries have to calculate expenses that are paid over a period of years 
when determining profitability. Business demographics are valuable up to a point. A 
proposed market segment may show a large number of potential customers, but this may 
or may not be correlative to premium potential in the market. The number of 
establishments shows the number of potential customers. Compare the premium to 
number of establishments to ascertain the average premium and decide if that is a market 
segment that fits your business approach. Let us say your distribution channel supports 
companies with higher premium policies. Then you wouldn't be interested in a segment 
with a large number of establishments resulting in low average premiums. Make sure to 
check that the average premium per establishment is reflective of the market segment 
activity. A few outliers such as a few jumbo companies can skew the data and distort an 
average for a segment that may still be an option for your company. 
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It has always been a challenge for insurance marketers to obtain profitability data for 
analyzing markets. Pricing for policies is based on aggregated insurance information using 
classification codes. 

Classification codes reflect insurance risk and since dsk characteristics vary by line of 
insurance, classification codes vary by line. As an example, ISO's classification scheme for 
General Liability has different class codes for restaurants with or without cooking, and/or 
with alcohol. The Commercial Fire and Allied line has a single code applying to all 
restaurants - including bars as well. For analyzing markets, class codes may not provide 
optimum information to enable comparison across niches. Even after identifying a 
classification code that provides good results, it would be difficult to apply these results to 
a particular industry and then apply to other industries. Therefore, it is helpful to be able to 
study the data by industry segment. To compensate for the lack of actual insurance 
statistics by industry, models were developed to "translate" insurance data collected by 
classification code to reflect an industry group. 

One product that offers data for industry specific loss ratios by line of business for the 
three major lines is ISO's Market Profiler derived from modeling. This data can be used for 
profitability segment analysis. 

An example of an analysis that can provide useful information quickly is to compare 
segment activity based on premium to loss ratio. The below graph compares activity for 
three 4-digit Standard Industrial Codes or SICs from the 5900 Miscellaneous Retail market 
segment - book stores (SIC 5942), hobby, toy and game stores (SIC 5945) and gift shops 
(SIC 5947). These selections are from the central region of the United States - Illinois, 
Wisconsin, Minnesota and Ohio. 

The graph analyzes one year of activity. Other factors play a role in selecting optimum 
segments for your business, but at a glance, the segments for SIC 5947 in tllinois and 
again in illinois for SIC 5845 show large premium opportunity with a comparatively 
reasonable loss ratio. Also attractive is SIC 5942 in Minnesota showing high profitability 
but with lower premium potential. The go/no go decision may depend on the ease of 
access to the Minnesota market. 
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Other analyses that can be conducted include evaluating trends - both historical and 
forecasted. Does the segment show reasonable sustained growth over a period of time or 
less reliable spiked growth? Forecasted data tells you if a trend is expected to continue. 
Some forecasters concentrate on industry, some on geography. Especially of interest to 
insurers when selecting markets would be expected premium growth or contraction. 

Trending analysis can be conducted by SIC, by geographic selection, by line of business, 
etc. The below example shows the trend of the same data selection as above by 3 lines of 
insurance. (The forecasted years' premiums are based on history, economic and 
geographic forecast statistics, not price changes). The results are sums representing 
premiums of the 4 selected states. The example shows healthy growth in the general 
liability area, with commercial property also showing consistent growth. Annual growth in 
workers compensation seems to be questionable and bears further investigation. 

Line Of Business 
Workers' Compensation 

Annual % increase 
General Liability 
Annual % increase 

Commercial Property 
Annual % increase 

Trend By Line 
Conventional Premium- ($000's3 

1997 199._..88 199_...99 2000 2001 200....~2 200....~3 
SpRE M :~p][ tEM SPREM SPREM SpREM $PREM $PREM 
5,742.$$ 6,196.22 6,689.67 6,527.55 6,580.21 6,727.10 6,822.86 

7.45% 7.890/0 7.96% -2.42% 0.81% 2.23% 1.42% 
6,606.47 6,759.85 7,328.01 7,827.93 8,204.38 8,652.13 9,106.23 
11.24% 2.32% 8.40~ 6.82% 4.81% 5.46% 5.25% 

13,350.30 14,014.55 14,880.96 15,725.05 16,161.39 16,743.64 17,326.78 
1.96% 4.98% 6.18% 5.67% 2.77% 3.60% 3.48% 

�9 Market Profiler., 2001 

An additional factor playing a role in segment validation is concentration. Do the number of 
players in the field leave room for additional penetration? Or do you have sufficient added 
value that you are confident to gain market share even against a major market holder?. 

These analyses raise "red flags" that warrant further investigation - the marketers should 
draw conclusions based on multiple data results and business sawy. 

Additional considerations when identifying markets 
Once the market segment is validated with supporting insurance information, there are 
additional checklist items. 

The cost to sell to the selected segment. Have you identified Georgia as an expansion 
state when your distribution is in California? As mentioned above, an insurer identified 
with personal auto would need to educate the marketplace when entering a new 
market. Costs to do so should be taken into any profitability measurements. 

~" As with any insurance decision, regulations should be examined to determine 
applicability of new program entry. 

~, New trends should be evaluated to determine the effect on your choices. The data 
source types listed below for marketing analysis include general news. If you were 
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conducting the analysis 10 years ago, would Internet companies have even showed up 
on the radar.? 
An easy "sell" to management is cross selling. Can your identified segments or 
programs utilize the current customer base? The familiar is the most comfortable. 

What Data is Available? 
The below is a sample list of data sources. More importantly, it shows the types of data 
available for your analysis. 

Business information - provides demographic information such as location, sales, 
number of employees. Examples of sources are Dun & Bradstreet and Claritas / 
ABI. These sources are usually geared to specific company information and can be 
pricey options for initial market research when looking at industry slices at a high 
level. 

~" Insurance Statistics 
AM Best- excellent source of data representing the aggregate of insurer- 
reported data on the Annual Statement - Page 15. However, AM Best provides 
only state totals, not industry specific information. This makes it difficult to use in 
market analysis. 
Property & Casualty Statistical Agents - some of the statistical agents that 
collect information from insurers in accordance with regulatory requirements are 
the AAIS, ISO, NAIl and NCCI 1. NCCI aggregates workers compensation for 
about 80% of the states. ISO collects an estimated 70% of the commercial lines 
markets data (without workers compensation) for 11 lines of property & casualty 
lines. Other statistical agents may have strengths in one or more specific lines of 
insurance. The data is typically geared for pricing and actuarial analysis, is 
collected according to risk classification codes and may be difficult to apply to 
industry segment analysis. 

~, State Insurance Departments- They may provide information on an individual 
company's rates which would be helpful when assessing new market 
penetration. The challenge is that each state has different rules on how to 
access the information. Using anecdotal sources, we're told that some states 
only enable access using a pen, not copying. Some states do not allow any 
access. Access differs, is not consistent and may be time consuming. 

~, Other insurance information includes access to Public Protection Classification used 
in fire rating, Fireline (brush fire data), and other geographic based information for 
fire rating and liability. Crime statistics can be valuable in assessing burglary and 
theft. Auto types according to industry are available as well as other information that 
is useful when assessing risk. 

;~ Government information - The government offers a wide range of commercial 
information: the County Business Pattern from the Census; OSHA for lost workdays 

t AAIS-American Association Insurance Services, Wheaton, Illinois 
ISO- Insurance Services Office, Inc. Jersey City, New Jersey 

NAII- National Association of Independent Insurers, Des Plaines, Illinois 
NCCI- National Council of Compensation Insurance, Boca Raton, Florida 
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and other valuable workers compensation information; and the Bureau of Labor 
Statistics for a wide variety of other information. 

~, Association information - As mentioned above, RIMS is a source for self-insured 
information for those marketers targeting very large accounts. The National 
Restaurant Association is an example of an industry group that collects insurance 
information. 
Forecasting - Economic forecasting information can be used when assessing future 
trends. Even if not insurance specific, it can help identify areas of growth. For 
premium forecasting, ISO's Marketwatch tracks the change in renewal pricing which 
can be used for a trend analysis. 
News 
Your own data - Your own company data has tremendous value. If the information 
you need is not available in your current system, check to see if the information is 
on applications being received by the company but not coded. 

Using multiple data sources 
Items to question when comparing statistics across multiple data sources include: 

What constitutes a counted business? If a home-based business earns $1,000 a year, 
is it considered a business? 
How are leased employees handled? 

~, Is the information comparable i.e. can it be headquarter vs. branch location specific? 
Does it reflect the entire insurance market including the primary and self-insured 
portion? 

When ready to integrate data across data sources, identify a denominator that applies to 
both sources. The easiest seems to be industry identification. Currently we use the 
government defined Standard Industrial Code known as SIC. There are over 900 4-digit 
SICs or industry slices available. SICs are being replaced by North American Industry 
Classification System (NAICs). The design of NAICs codes is expected to be easier to 
apply to insurance applications as it is more process oriented as well as more relevant to 
our current economy. 

Integration across multiple data sources can be on an aggregate level and still provide 
very useful information. Other denominators for integration can be business size and 
geography. The Census Bureau - County Business Pattern defined over 10 sizes that are 
commonly accepted in the industry. 

Analyzing with your own company data 
Your own company data can become a benchmark tool if you can easily compare 
segments, however defined. To look at performance by industry, append SIC or NAICS to 
commercial account records. If you are not capturing this information at policy inception, 
you can submit your companies with their addresses to a business information provider 
that matches company by address. This will enable you to obtain SIC or NAICs. Address 
matching methodology typically identifies over 50% of your book. Business data providers 
can also offer a wide range of additional data sources. For future analysis, develop a way 
of appending additional business variables to your account records. Valuable data 
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available include postal data which offers zip code-to-county mapping. And as mentioned 
above, you may be capturing valuable data already such as length in business, etc. 

Provide High Quality prospects 
Now that the analysis is done and findings have been validated, you would want to access 
the potential customers in the identified segments. To ensure that only leads that conform 
to your segment analysis are selected, focus on those customer characteristics that were 
identified. Some of the data available through lead generators that enable you to further 
hone in on your target market include: 

Business contact information 
Premium estimates by line 

;~ Geographic areas (metropolitan statistical area, zip code, county options) 
>~ Business size (# of employees, sales) 
;~ Type of corporation 

Additional data sources for specialty programs 
Computer and telecommunications infrastructure 
Expiration dates 

;~ Credit information 

Conclusion 
As lead time for successful retums from a new program or market decreases and more 
stress is placed on pre-qualifying new market choices, the benefit of accessing accurate 
data and insurance industry data about market segments is increasingly important. A 
marketer can utilize the data most effectively by following a plan that includes defining and 
analyzing the needs and strengths of the company, and then identifying additional market 
segments that would most benefit from those strengths. 
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Does Credit Score Really Explain Insurance Losses? 
Multivariate Analysis from a Data Mining Point of View 

by 

Cheng-Sheng Peter Wu and James Guszcza 

Abstract  

One of the most significant developments in insurance ratemaking and underwriting in 
the past decades has been the use of credit history in personal lines of business. Since its 
introduction in late 80's and early 90's, the predictive power of credit score and its 
relevance to insurance pricing and underwriting have been the subject of debate [1-3]. 
The fact that personal credit is widely used by insurers strongly suggests its power to 
explain insurance losses and profitability. However, critics have questioned whether the 
apparently strong relationship between personal credit and insurance losses and 
profitability really exists. Surprisingly, even though this is a hot topic in the insurance 
industry and in regulatory circles, actuaries have not been actively participating in the 
debate. To date, there have been few actuarial studies published on the relationship of 
personal credit to insurance losses and profitability. We are aware of only two such 
studies: one published by Tillinghast, which was associated with the NAIC credit study 
[4], and the other by Monaghan [5]. A possible reason for the lack of published data is 
that many insurers view credit scores as a confidential and cutting-edge approach to help 
them win in the market place. Therefore, they might be reluctant to share their results 
with the public. In this paper, we will first review the two published studies and 
comment on their results. We will then share our own experience on this topic. We have 
conducted a number of comprehensive, large-scale data mining projects in the past that 
included credit information as well as an extensive set of traditional and non-traditional 
predictive variables. Because our projects have been true multivariate studies, conducted 
using rigorous statistical methodology on large quantities of data, our experience should 
add value to the debate. Our experience does suggest that such a relationship exists even 
after many other variables have been taken into account. 
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Introduction 

One of the more important recent developments in the U.S. insurance industry has been 
the rapidly growing use of credit scores to price and underwrite personal auto and 
homeowners insurance. But this development has not come without controversy. 
Perhaps the most important criticism raised is that there exists no convincing causal 
picture connecting poor credit history with high insurance loss potential [1-5]. Partly for 
this reason, many insurance regulators and consumer advocates have expressed doubts 
that the observed correlations between credit scores and insurance loss history truly 
reflect an underlying reality. Some critics have suggested that these correlations might be 
spurious relationships that would not survive more sophisticated (multivariate) statistical 
analyses. 

Given the business significance and statistical nature of this topic, it is curious that 
actuaries have not participated more actively in the debate. We are aware of only two 
actuarial studies that have been published so far: one published by Tillinghast, which 
was associated with the NAIC credit study [4], and the other by Monaghan [5]. 

The aim of this paper is to review these studies and complement them with a qualitative 
description of our own experiences in this area. For reasons of confidentiality, we are not 
able to share detailed quantitative results in this forum. Our focus will be on the use of 
credit in the line of personal auto, but many of our comments will hold true for other lines 
of insurance. We will begin with several historical comments on the development of 
auto classification ratemaking in the United States, and with comments on the actuarial 
issues relating to the use of credit in auto ratemaking. 

The Development of Auto Classification Ratemaking in the United States 

Personal auto ratemaking came a long way in the 20 th century [6]. Prior to World War II, 
auto ratemaking involved only three classes: adult, youthful operator, and business use. 
The three decades after the war saw a proliferation of new class categories such as 
vehicle characteristics (symbol, model year) and refined driver classifications. 

Today, a typical personal auto rating plan contains hundreds, if not thousands of classes 
involving the following variables: 

�9 Territorial Characteristics: insurers define intra-state rating territories that reflect 
such relevant aspects of the physical environment as population density and 
traffic conditions. 

�9 Vehicle Use: examples include business use, pleasure use, and driving more or 
less than a certain number of miles per year. 

�9 Dr iver  characteristics: examples are age, gender, marital status, and good student 
status 

�9 Driv ing  Record: this is reflected by a point system based on accidents and 
violations. 
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Fehicle Characteristics: this typically includes a vehicle symbol system as well 
as a model year rating structure. 
Miscellaneous surcharges~discounts: this is where rating plans vary the most 
from company to company. Special surcharges or discounts are used to reflect 
policy characteristics or advances in motor vehicle technology. Commonly seen 
discounts include multi-car discounts, homeowner discounts, safe driver 
discounts, anti-lock brake discounts, anti-theft discounts, affinity group factors, 
and so on. 

In addition to the above class variables, a typical rating plan is not complete without a 
tier rating structure. A tier structure is designed to address rating inadequacies that an 
insurer believes exists in a class plan. For example, an insurer might create three 
companies for its preferred, standard, and high-risk books, and the rate differential for 
such companies can range from -20% to 20%. Such differentials are typically applied at 
the policy level, across all coverages. Tier rating factors can include characteristics that 
are not used in the class plan, such as how long an insured has been with the insurer. 
They can also include certain interactions of class factors, such as youthful drivers with 
poor driving records. 

As class plan structures have become more complex, the problem of estimating rates for 
each combination of class variables has become more difficult. This is because many of 
the variables used to define rating factors are not statistically independent. For this 
reason, factors based on univariate analyses of the variables are not necessarily 
appropriate for a multi-dimensional rating structure. Some form of multivariate analysis 
is called for. 

To take a concrete example, suppose that an existing rating plan charges youthful drivers 
3 times that of mature drivers. Furthermore, we analyzed loss (pure premium) relativities 
by driver age group, and noticed that the youthful driver group has losses per exposure 4 
times that of the mature driver group. But it does not follow that the youthful driver 
rating factor should be raised to 4. This is because other variables used in the class plan 
might be correlated with age group variable. For example, youthful drivers have more 
accidents and violations; they are more likely to drive sports cars; they are more likely to 
be unmarried, and so on. They are therefore likely to be surcharged along these other 
dimensions of the rating plan. To give them a driver age rating factor of 4 would 
possibly be to over-rate them. 

This issue -- that non-orthogonal rating variables call for multivariate statistical analyses 
-- lies at the heart of the debate over credit. In addition, this issue is perhaps the key 
theme in the methodological development of classification ratemaking since the 1960's. 

McClenahan's ratemaking chapter [7] in The Foundations of Casualty Actuarial Science 
outlines the univariate approach to ratemaking, an approach still employed by many 
insurance companies. Appealing to examples, like the one just given, Bailey and Simon 
[8,9] pointed out that the univariate approach could lead to biased rates if the individual 
rating factors are non-orthogonal. Their proposed solution to this problem, the minimum 
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bias procedure, involves assuming a mathematical relationship between the rating factors 
and pure premium. 

The mathematics of minimum bias is pure algebra: Bailey and Simon derived their 
models without positing statistical models. In his 1988 paper, Robert Brown [10] showed 
that commonly used minimum bias formulas could be derived from statistical models via 
maximum likelihood. Stephen Mildenhall's 1999 paper [11] is the most rigorous 
examination to date of the statistical underpinnings of the minimum bias method. Thanks 
to Brown, Mildenhall, and others [12, 13], it is now abundantly clear that Bailey-type 
actuarial analyses are in fact special cases of Generalized Linear Models. Multi- 
dimensional classification ratemaking projects should therefore be viewed as exercises in 
multivariate statistical modeling. 

The lesson is obvious: a multivariate statistical analysis is necessary to establish the 
importance of credit for personal auto ratemaking. 

How Credit is Currently Used in Personal Auto Ratemaking 

During 1970's and 1980's, when classification ratemaking was undergoing its 
methodological development, no major rating variables were introduced. This changed 
in the late 1980's and 1990's when credit scores were introduced to personal lines 
insurance [ 1 ]. 

Raw credit information is supplied by several major credit bureaus, including Choice 
Point, TransUnion, and Experian. These companies collect individuals' credit data and in 
turn sell this data in the form of credit reports. Credit reports contain a wealth of 
information that can be grouped into four classifications: 

�9 General information 
�9 Trade line information 
�9 Inquiries 
�9 Public Records and Collections 

The raw fields on these reports can be combined in many ways to create a plethora of 
random variables. Examples include number of trades, months since oldest trade, amount 
past due, trade line balance-to-limit ratio, number of inquiries, number of collections, and 
number of lawsuits. Using various statistical techniques (such as multiple regression, 
principal components analysis, clustering, Classification and Regression Trees) these 
random variables can in turn be combined to create credit scores. 

Using credit scores to segment risks is hardly a new idea. For many years the lending 
industry has used such scores to underwrite loan applications. The Fair, Isaac Company 
is a leading vendor of one such score, called the FICO score. 

118 



Linking credit scores to personal auto and homeowners profitability, however, was a new 
idea, when they were introduced to the insurance industry approximatelyl 5 years ago. A 
typical credit score used in personal lines insurance might be calculated based on 10 to 30 
variables. Conning's latest report [1] indicates that today more than 90% of insurance 
companies use credit scores or credit information in one way or another. 

As noted above, the growing use of credit scores in insurance underwriting and 
ratemaking has garnered controversy along many fronts. We will set aside the political 
and social aspects of the debate and focus on the more purely actuarial issue: do credit 
scores really help explain insuraneeprofitability? As we will discuss further, answering 
this question in the affirmative involves more than simply demonstrating a correlation 
between credit and loss ratio. 

In the remainder of this paper, we will review the answers given to this question by the 
Tillinghast [4] and Monaghan [5] studies, and then add our own perspective. But first, it 
would be good to briefly discuss some general actuarial and statistical issues. 

Background Actuarial and Statistical Considerations 

Loss (Pure Premium) Relativity vs. Loss Ratio (Profitability) Relativity: The distinction 
between these concepts might not be clear to a non-actuarial audience, but it is absolutely 
critical. Because premium reflects all of the components of a rating plan, a correlation 
between a new variable (say, credit score) and loss ratio indicates the degree to which this 
variable can explain losses not already explained by the existing rating plan. For 
example, a critic might question the power of credit scores by claiming that credit is 
correlated with driver age. Since driver age is already in the class plan, there is no need 
to include credit as well. This argument would have some validity if it were in response 
to a pure premium relativity analysis. However, it would have much less validity if the 
relativity were based on loss ratios. Returning to the above example, the premium for 
youthful drivers is already 3 times that of mature drivers. Therefore a correlation 
between credit and loss ratio indicates the extent to which credit explains losses not 
already explained by the youthful driver surcharge. 

Non-Independent Rating Variables: We believe that this is the key issue of the debate 
over the explanatory power of credit score. Intuitively, independence means that 
knowing the probability distribution of one variable tells you absolutely nothing about the 
other variable. Non-independence is common in insurance data. For example, youthful 
drivers have more accidents and violations than do mature drivers; mature drivers have 
more cars on their policies t, han do youthful drivers; number of drivers are correlated with 
number of vehicles. We can therefore expect that credit score will exhibit dependences 
with other insurance variables, such as driver age, gender, rating territory, auto symbol, 
and so on. 

119 



Univariate v. Multivariate Analyses: In the case of independent random variables, 
univariate analyses of each variable are entirely sufficient -- a multivariate analysis 
would add nothing in this case. Failure of independence, on the other hand, demands 
multivariate analysis. Furthermore, the results of multivariate analyses can be surprising. 
Below, we will give a hypothetical example in which an apparently strong relationship 
between credit and loss disappears entirely in a multivariate context. 

Credibility vs. Homogeneity: paying attention to the credibility and homogeneity of 
one's data is important when we review any actuarial study and is essential in this debate 
for the usefulness of credit scores. Sparse data present the danger that one's model will 
fit noise rather than signal, leading to non-credible results. Non-homogenous data 
present the danger that extrapolating from one sub-population to another will lead to 
inaccurate predictions. 

With these general remarks in hand, let us turn to the Tillinghast [4] and Monaghan [5] 
studies. 

Tillinghast's Study 

Tillinghast's credit study was undertaken on behalf of the Fair, Isaac Company for use in 
its discussions with the National Association of Insurance Commissioners (NAIC). The 
purpose of the study was to establish a relationship between Insurance Bureau credit 
scores with personal auto and homeowners insurance. Tillinghast received the following 
information for each of nine personal lines insurance companies: 

�9 Credit score interval 
�9 Interval midpoint 
�9 Earned premium 
�9 Loss ratio relativity 

For the most part, the credit score intervals were constructed to contain roughly equal 
amounts of premium. The results for these 9 companies are given in Exhibit 1. 

Clearly, the information provided to Tillinghast only allowed for a univariate study, and 
this is all Tillinghast set out to perform. Tillinghast's report displays tables containing 
each interval's loss ratio relativity alongside the interval's midpoint. These numbers are 
also displayed graphically. The report comments, "From simply viewing the graphs.., it 
seems clear that higher loss ratio relativities are associated with lower Insurance Bureau 
Scores." 

No detailed information is provided on the data used, or about the 9 companies that 
provided the data. Therefore we cannot comment on how credible the results are. The 
loss ratio relativity curves are somewhat bumpy for certain of the 9 companies; and the 
loss ratio spreads varies somewhat from company to company. But the patterns are clear 
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enough to strongly suggests that the relativity spreads are robust, and not merely 
company-specific fluctuations in the data. 

Furthermore, the relativities produced by credit are fairly large. The 10% of the 
companies' books with the best credit have anywhere from -20% to -40% loss ratio 
relativities. The worst 10% have relativities ranging from +30% to +75%. These loss 
ratio spreads compare favorably with those resulting from traditional rating variables. 
For example, based on our experience, about 20% to 30% of a standard auto book will 
have point surcharges for accidents or violations. The average surcharge might range 
from 15% to 40%. Therefore, the loss ratio spread indicated in the study is no less than 
the accident and violation point surcharge. In addition, the credit loss ratio spread can 
largely support the commonly seen rate differentiation for the tier rating. Examples such 
as this make it clear why insurers are embracing the use of credit scores. 

In additional to displaying tabular/graphical evidence, Tillinghast computed regression 
slope parameters and their associated p-values. The p-values were all below 0.1, and 
often well below 0.05. (The p-value is defined as the probability of observing the actual 
slope parameter -- or a greater slope parameter -- given that the "true" slope parameter 
is zero.) The Tillinghast report concluded: "from the data and P-Values, we conclude 
that the indication of a relationship between Insurance Bureau Scores and loss ratio 
relativities is highly statistically significant." 

Simpson's Paradox and the Perils of Univariate Analyses 

This is reasonable as far as it goes. Unfortunately, univariate statistical studies such as 
Tillinghast's do not always tell the whole story. A statistical phenomenon knows as 
Simpson's Paradox [14,15] illustrates what can go wrong. A famous example of 
Simpson's Paradox is the 1973 study of possible gender bias in graduate school 
admissions at the University of California at Berkeley [16]. We will stylize the numbers 
for ease of presentation, but the point will remain the same. 

Suppose it was reported 1100 men and 1100 women applied for admission to Berkeley in 
1973. Of these people, 210 men were accepted for admission, while only 120 women 
were accepted. Based on this data, 19% of the men were accepted, while only 11% of the 
women were accepted. This is a univariate analysis (somewhat) analogous to 
Tillinghast's, and it seems to prove decisively that there was serious gender bias in 
Berkeley's 1973 graduate admissions. 

But in fact this univariate analysis does not tell the whole story. When the admissions 
were broken down by division (suppose for simplicity that there were only two divisions: 
Arts & Sciences and Engineering) the data looked more like this: 

Applicants # Accepted % Accepted 
Arts Eng. Total Arts Eng. Total Arts Eng. Total 

Women 1000 100 1100 100 20 120 10% 20% 11% 
Men 100 1000 1100 10 200 210 10% 20% 19% 
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Now our analysis is multivariate, by virtue of  the fact that we are including division 
applied to, in addition to gender. The multivariate analysis quite clearly shows that the 
acceptance rate for men and women within each division was identical. But because a 
greater proportion of  women applied to the division with the lower admission rate (Arts 
& Sciences), fewer women overall were accepted. 

This is a very simple example of  what can go wrong when one 's  data does not contain all 
relevant variables: an apparent correlation between two variables can disappear when a 
third variable is introduced. 

In order to make the link to regression analysis, let us analyze this data at the un-grouped 
level. The reader can reproduce the .following results with a simple spreadsheet exercise. 
Create 2200 data points with a {0,l }-valued target variable (ACCEPTED) and two {0,1 }- 
valued predictive variables (MALE, ENGINEERING). 1000 of the points are males who 
applied to engineering {MALE=l,  ENGINEERING=l}.  For 200 of  these points 
ACCEPTED=l ,  for the remaining 800 ACCEPTED=0, and so on. 

If  we regress ACCEPTED on MALE, we get the following results: 

Beta t-statistic 
Intercept .1091 10.1953 
MALE .0818 5.0689 

As expected, this univariate regression analysis indicates that gender is highly predictive 
of  acceptance into graduate school, and indeed it is: a greater proportion of males were 
accepted! However this analysis is potentially misleading because it does not help 
explain why males are accepted at a higher rate. 

When we regress ACCEPTED on MALE and ENGINEERING, we get quite different 
results: 

Beta t-statistic 
Intercept .1 9.1485 
MALE 0 0 
ENGINEERING .1 3.8112 

When the truly relevant variable is introduced, the spurious association between gender 
and acceptance goes away (the beta and t-statistics for MALE are both 0). This multiple 
regression approach on un-grouped data is illustrative of  our data mining work involving 
credit and other predictive variables. 

(Of course logistic regression is usually a more appropriate way to model a binary target 
variable such as application acceptance or auto claim incidence. But such an analysis 
could not easily be replicated in a spreadsheet. Because ordinary multiple regression 
gives the same results in this simple case, it is sufficient for our illustrative purpose. 
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Readers are encouraged to try logistic regression, from which precisely the same 
conclusion will be reached.) 

Returning to the Tillinghast study, consider the following scenario: suppose our credit 
variable has two levels (good/bad). Rather than academic division, suppose that the 
"true" confounding variable is urban/rural (territory). Thus good/bad correspond to 
male/female in the Berkeley example, and urban/rural corresponds to arts/engineering. 
Rather than acceptance into school, the target variable is now having a personal auto 
claim. Now our data is: 

# Claim 
Exposures Claims Freq 

Rural Urban Total Rural Urban Total Rural Urban Total 
Good credit 1000 100 1100 100 20 120 10% 20% 11% 
Poor credit 100 1000 1100 10 200 210 10% 20% 19% 

If we similarly re-label the terms of our regressions, we will again see that (in this purely 
hypothetical example) the GOOD_CREDIT indicator loses its apparent significance once 
the URBAN indicator is introduced. 

These considerations make it clear that a multivariate analysis is needed to assess 
whether credit history bears a true relation with insurance loss experience. A univariate 
analysis might produce a statistical illusion, not true insight. 

Of course, given our discussion of the difference between a pure premium study and a 
loss ratio study, it is not entirely fair to call the Tillinghast study "univariate". Recall 
that Tillinghast's target variable was loss ratio relativity, not claim frequency. In the 
above example, suppose all claims have a uniform size of $1000, and further suppose that 
the territorial rates are $2000 for urban territories, and $1000 for rural territories. Now 
the loss ratio relativity in each cell will be exactly 1.0. In this (again, purely 
hypothetical) case, Tillinghast's methodology would (correctly) show no relationship 
between credit and loss ratio relativity. 

In other words, to the extent that all possible confounding variables are perfectly 
accounted for in premium, Tillinghast's "univariate" analysis is implicitly a multivariate 
analysis, and is therefore convincing. But realistically, this may not be the case. For 
example, in our work we regularly regress loss ratio on such zip code-based variables a~ 
population density and median population age. If territory were entirely accounted for in 
premium, such variables would never appear statistically significant. But in fact they 
sometimes do. Therefore a true multivariate study is desirable even if loss ratio is used as 
the target variable. 

123 



Monaghan's Study 

James Monaghan's paper on "The Impact of Personal Credit History on Loss 
Performance in Personal Lines" is an advance over the Tillinghast study partly because 
he addresses the multivariate issue. Monaghan asks: if  the correlation between credit 
and loss ratio exists, "is it merely a proxy, i.e., is the correlation actually due to other 
characteristics (which may already be underwritten for or against, or rated for)?" And, 
"are there dependencies between the impact of credit history on loss performance and 
other policyholder characteristics or rating variables?" 

Monaghan's study for auto is based on three calendar years of data (1993-95). Each 
record in his database contains premiums and losses accumulated over this entire three- 
year period. So each record may have different length for the tenn. Losses are evaluated 
at 6/30/1995. For this reason, losses on different records might be evaluated at varying 
states of maturity. Losses include reserves, salvage and subrogation recoveries, and 
allocated loss adjustment expenses. The credit information used in this study was a 
"snapshot view" taken at the policy inception date. Approximately 170,000 records were 
used in the analysis. The total premium and loss in these records were $393 million and 
$300 million, respectively. 

The amount of data in Monaghan's study is very large. While we don't know all the 
details about the data, the large amount of premium indicates that it is probably based on 
a countrywide population. Our experience on auto data indicates that on average there 
will be 150 to 400 claims per $1 million in premium, depending on the geographic 
concentration, program type, and policy type (liability only vs. full coverage) represented 
in the data. This suggests that there will be on the order of a hundred thousand claims in 
Monaghan's study. According to actuarial credibility theory [17], Monaghan's data 
should provide very credible results. 

Monaghan discusses credit variables from a number of angles. First, he performs a 
number of univariate studies comparing individual credit variables (such as Amounts Past 
Due, Derogatory Public Records, Collection Records, Age of Oldest Trade, Number of 
Inquiries, Account Limits, and Balance-to-Limit Ratios) with fitted loss ratio relativity. 
In each case, there exists a positive correlation. This part of Monaghan's study is much 
like Tillinghast's study. The difference is that Monaghan analyses individual credit 
variables, whereas Tillinghast analyses a composite credit score. 

While not conclusive for the reasons given above, this part of Monaghan's study is 
helpful in that it unpacks credit score into its component variables. The relationship 
between credit score is not entirely the result of some mysterious or proprietary 
interaction of the components credit variables. Rather, each of these component variables 
is individually somewhat predictive of insurance losses. For the record, the results 
Monaghan reports in this section are consistent with our experience working with credit 
data. 
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Note that these univariate results -- as well as Monaghan's multivariates to be described 
below -- are in terms of loss ratio relativity. Therefore, Monaghan's work (like the 
Tillinghast study) indicates the degree to which credit is able to capture loss variation not 
captured by the existing rating plan. 

Next, Monaghan studies credit in conjunction with several traditional underwriting 
characteristics. Monaghan uses the above credit variables to profile policies into four 
groups, A, B, C, and D. For example, group A (the profile with the worst loss ratio) is 
characterized by one or more derogatory public records, high amounts past due, and so 
on. Group D (the profile with the lowest loss ratios) is characterized by long credit 
histories, low balance-to-limit ratios, and so on. Consistent with Monaghan's earlier 
results and Tillinghast's study, Monaghan shows that group A has a loss ratio relativity of 
1.33; and group D has a relativity of 0.75. 

Monaghan displays several two-way tables showing loss ratio relativity by credit group 
and an underwriting variable. The auto underwriting variables he displays in conjunction 
with credit include past driving record, driver age, territory, and classical underwriting 
profile. The last variable is a composite variable combining marital status, multicar, 
homeowner, and clean driving record. (Monaghan supplies similar tables for 
homeowners rating variables. We will not review the specifics of these tables here.) 

In no case did Monaghan's inclusion of the rating factor cause the relationship of credit 
with loss ratio to disappear (as in the Simpson illustration above). Indeed, Monaghan's 
tables contain some very telling relationships. For example, the loss ratio relativity of 
drivers with clean driving histories and poor credit was 1.36. In contrast the relativity for 
drivers with good credit and poor driving records was only 0.70! 

It is possible to reinforce Monaghan's conclusions by performing multivariate 
calculations on his data. Rather than use Bailey's iterative minimum bias equations, we 
performed equivalent Generalized Linear Model calculations using the PROC GENMOD 
facility in SAS. Recall [11,12] that the multiplicative Bailey model is equivalent to a 
GLM with the Poisson distribution and log link function; the additive Bailey model is 
equivalent to a GLM with the normal distribution and the identity link function. Note 
also that this latter model is simply a classical multiple regression model. Exhibits 2-4 
contain GLM analyses of credit group by Driver Record, Driver Age, and Classical 
Underwriting Profile. 

The results of the GLM analyses are striking, and they buttress Monaghan's claims. For 
example, the multiplicative Bailey factors arising from the credit/driving record analysis 
are 1.709, 1.339, 1.192, and 1.0 for credit groups A-D. These are quite close to the 
univariate loss ratios relativities that can be calculated from Monaghan's data (1.757, 
1.362, 1.204, 1.0). This is excellent confirmation that credit is largely uncorrelated with 
driving record: the multiplicative Bailey factors are almost the same as the factors that 
would arise from a univariate analysis! 
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Furthermore, the GLM parameter estimates are quite large relative to their standard 
errors. Also, the Chi-squared statistics for the four credit groups are high, and the 
associatedp-values are very low. These observations add statistical rigor to the claim 
that the loss ratio "lift" resulting from credit score is "real". These observations hold 
equally well for the other two variables as well. Finally, performing an additive Bailey 
analysis (normal/identity GLM - not shown) produces qualitatively similar results. 

Monaghan reports that he produced such two-way tables for a large number of other 
traditional underwriting characteristics. He says, "there were no variables that produced 
even roughly uniform results across the credit characteristics." 

Applying Data Mining Methodology to Credit Data 

For several years, we have applied data mining methodology and a range of predictive 
modeling techniques to build insurance profitability and underwriting models for writers 
of both commercial and personal lines insurance. Credit variables and credit scores are 
typically included along with a comprehensive set of other traditional and non-traditional 
insurance variables. Because of the truly multivariate context in which we employ credit 
information, our findings lend further support to the conclusions reached in the 
Tillinghast and Monaghan studies. For reasons of confidentiality, we are not at liberty to 
share quantitative results in this paper. However, we shall describe our methodology and 
modeling results in a qualitative way. 

We follow a standardized, disciplined methodology when embarking upon a data mining 
project. The first several steps involve studying internal and external data sources and 
generating predictive variables. Typical internal data sources include statistical records 
for premiums and losses, "snapshot" data for policyholder characteristics from legacy 
systems or a data warehouse, driver data, vehicle data, billing data, claims data, an agent 
database, and so on. Typically, several years of the company's relevant data sources will 
be utilized in the study. Commonly used external data sources include credit reports of 
the kind used by Monaghan, MVR (Moving Violation Records) data and CLUE (Claims 
Loss Underwriting Exchange) data. But other external data is available. For example, 
useful predictive variables at the zip-code level can be generated from data available 
from the US Census Department and the US Weather Bureau. 

By the end of this process, literally hundreds of predictive variables will have been 
created from the internal and external data sources. The goal is to create upfront as many 
variables as possible that might be related to insurance loss and profitability. These 
variables represent a wide range of characteristics about each policyholder. 

Typically we design our analysis files in such a way that each data record is at a policy- 
term level. For example, personal auto policies usually have a six-month term. Ira 
policy has two years of experience in our study, we will generate four 6-month term data 
points in the study. This design, which is different from that of Monaghan's study, will 
give each record equal weight for the term in the analysis process. All of the predictive 
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variables, including the credit variables, are evaluated as of the beginning of the term- 
effective date. 

Target variables, including loss ratio, frequency, and severity, are created in parallel with 
the predictive variables. Losses are usually evaluated a fixed number of months from the 
term effective date. The reason for this is to minimize any chance of bias appearing in 
the target variables due to varying loss maturities. In addition, we will incorporate 
various actuarial techniques that we deem necessary to adjust the target information. 
Such adjustments include loss trending, premium on-leveling, re-rating, loss capping, cat 
loss exclusion, and so on. 

Once the generation of target and predictive variables has been accomplished, we will 
merge all the information together to produce a policy-term level database. This database 
contains all of the predictive variables, as well as such target information as claim 
frequency, claim severity, loss ratio, capped loss ratio, and so forth. The database is then 
used to produce univariate reports showing the relationship of each predictive variable 
with the target information. This is essentially a collection of reports containing one 
Tillinghast-type study for each of the hundreds of predictive variables. This database is a 
useful exploratory data analysis (EDA) prelude to the multivariate modeling phase of our 
projects. 

This database of univariate results also provides invaluable information for multivariate 
modeling regarding (1) whether to discard the variable right away because it has no/little 
distribution or because there is any business or other reason to do so; (2) how to cap the 
variable either above or below; (3) what to do with missing values; and (4) whether to 
treat the variable as a continuous or categorical random variable. Other needed 
transformations might be suggested by this univariate study. 

Once the Exploratory Data Analysis stage is completed, we are ready to begin the 
modeling process. The first sub-phase of this process is to search for an optimal multiple 
regression model. Criteria used to judge "optimality" include (but are not limited to) 
strong t-statistics, parameter estimates that agree with business intuition, and not 
overfitting data used to estimate the parameters. This model serves as a useful 
benchmark for comparison purposes. In addition, the parameter estimates, and the t- and 
F-statistics generated by regression models are useful for such interpretive issues as the 
topic of this paper. 

Once the optimal regression model has been selected, we tum to more advanced model 
building techniques such as Neural Networks [ 18-20], Generalized Linear Models [8-13], 
Classification and Regression Trees (CART) [21] and Multivariate Adaptive Regression 
Splines (MARS) [22]. These more advanced techniques can potentially provide more 
accurate predictions than a multiple regression model, but this additional predictive 
power often comes at a cost: more complex models can be harder to interpret and explain 
to underwriters, upper management, and insurance regulators. 
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We use a train/test methodology to build and evaluate models. This means that the 
modeling dataset is randomly divided into two samples, called the training and test 
samples. A number of models are fit on the training sample, and these models are used to 
"score" the test sample. The test sample therefore contains both the actual loss ratio (or 
any other target variable) as well as the predicted loss ratio, despite the fact that it was 
not used to fit the model. The policies in the test sample are then sorted by the score, and 
then broken into (for example) ten equal-sized pieces, called deciles. Loss ratio, 
frequency, and capped loss ratio are computed for each decile. These numbers constitute 
lift curves. A model with a low loss ratio for the "best" decile and a very high loss ratio 
for the "worst" decile is said to have "large lift". We believe that the lift curves are as 
meaningful for measuring the business value of models as such traditional statistical 
measures as mean absolute deviation or R 2. The purpose of setting aside a test set for 
model evaluation is to avoid "overfit". (Of course a lift curve can also be computed on 
the training dataset. Naturally, this lift will be unrealistically large.) A third sample, 
called a validation sample, sometimes will also be set aside to produce an unbiased 
estimate of the future performance of the final selected model. 

We have performed several large data mining projects that included credit variables and 
credit scores. Similar to the Tillinghast study and Monaghan's study, we have studied 
data from various sources, different distribution channels, and different geographic 
concentrations. Our studies are very large in size, similar to Monaghan's study, usually 
with several hundred thousand data points that contain a total of hundreds of millions of 
dollars of premium. Our approach is tailored to the use of large datasets, the use of 
train/test methodology, the use of lift curves to evaluate models, and the exploratory use 
of a variety of modeling techniques. These are all hallmarks of the data mining approach 
to statistical problems. We believe that our analyses are true multivariate analyses that 
yield very robust and credible results. It is precisely this kind analysis that makes it 
possible to decisively answer the question: does credit really help explain insurance 
losses and profitability? 

Our Findings: the Importance of Credit Variables in a Data Mining Context 

First, through our univariate databases we note that composite credit score and many of 
its associated credit variables invariably show strong univariate relationships with 
frequency, severity, and loss ratio. Our univariate experience is entirely consistent with 
that of Tillinghast and Monaghan. 

Turning to our multivariate modeling work, the estimates and statistics coming from our 
multiple regression models are useful for evaluating the importance of credit relative to 
the other variables considered in our model building process. Several points are worth 
making. First, credit variables consistently show up as among the most important 
variables at each step of the modeling process. As noted by Tillinghast and Monaghan, 
they dependably show strong univariate relationships with loss ratio. Furthermore, they 
are typically among the first variables to come out of a stepwise regression analysis. 
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Second, the parameter estimates for credit variables are consistently among the strongest 
of the parameters in our regression models. As illustrated in the Simpson's paradox 
example, credit score would have a small beta estimate and t-statistic were it a mere 
proxy for another variables or some combination of other variables. But this is not the 
case. Rather, we have repeatedly seen that credit adds predictive power even in the 
presence of  a comprehensive universe of  traditional and non-traditional predictive 
variables, all used in conjunction with one another, on a large dataset. 

We are basing our conclusion in part on the t-statistics of the credit variables in our 
underwriting/pricing regression models. To this one might object: "but one of the 
assumptions of regression analysis is a normally distributed target variable. It is obvious 
that loss ratio is not normally distributed, therefore your t-statistics are meaningless." In 
response, it is true that loss ratios are not normally distributed. Nevertheless, the models 
we build using regression analysis reliably produce strong lift curves on test and 
validation data. Therefore, our models do "work" (in the sense of making useful 
predictions) in spite of the lack of normality. 

It is also true that because of the lack of normality, we cannot use our models' t-statistics 
to set up traditional hypothesis tests. But neither our analyses nor our conclusions are 
based on hypothesis tests. We interpret t-statistics as measures of the relative importance 
of the variables in a model. Consider ranking the variables in a regression model by the 
absolute value of their t-statistics. The resulting order of the variables is the same as the 
order that would result from ranking the variables by their marginal contribution to the 
model's R 2 (in other words the additional R 2 that is produced by adding the variable after 
all of the other variables have been included in the model). This interpretation oft-  
statistics does not depend on the normality assumption. 

To summarize, our reasoning is as follows: 

Our models effectively predict insurance losses. The evidence for this is repeated, 
unambiguous empirical observations: these models dependably distinguish 
profitable from unprofitable policies on out-of-sample data. In other words, they 
produce strong lift curves on test and validation datasets. 

Furthermore, credit variables are among the more important variables in these 
models. This is evidenced by the following observations: (i) the univariate 
relationship between credit and loss ratio is as strong or stronger than that of the 
other variables in the model. (ii) Credit variables reliably appear in a stepwise 
regression performed using all of the available variables. (iii) Credit variables 
typically have among the largest t-statistics of any of the variables in the model. 

�9 Supporting the above observations, removing the credit variable(s) from a model 
generally results in a somewhat dampened lift curve. 
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The implication of  the above two bullets is that credit variables add measurable 
and non-redundant predictive power to the other variables in the model. 
Therefore, we believe that the observed correlation between credit and loss ratio 
cannot be explained away as a multivariate effect that would go away with the 
addition of  other available variables. 

Furthermore, this is true not just of  the final selected regression model, but of  most or all 
of  the models produced along the way. In addition, we have noticed this result applies in 
all different lines of  insurance, in both personal lines and commercial lines. For this 
reason, we feel comfortable saying that credit bears an unambiguous relationship to 
insurance loss, and is not a mere proxy for other available kinds of  information. 

But Why is Credit Related to Insurance Losses? 

It is important to emphasize the word available because poor credit is obviously not in 
itself a cause of poor loss experience. In this sense, it is analogous to territory. 
Presumably credit is predictive because it reflects varying levels of  "stress", planning and 
organization, and/or degrees of  risk-taking that cannot be directly measured by insurers. 
These specific conjectures have been offered many times and they are intuitively 
plausible. However it is less conjectural to say that whatever credit might be a proxy for, 
it is not a proxy for any other variable (or combination of  variables) practically available 
to insurers. In our data mining projects we explicitly set out to generate the most 
comprehensive universe of  predictive variables possible. In this sense, we therefore use 
credit in the "ultimate" kind of  multivariate analysis. Even in this truly multivariate 
setting, credit is indicated to have significant predictive power in our models. 

It is beyond the scope of  this paper to comment on the societal fairness of  using credit for 
insurance pricing and underwriting. From a statistical and actuarial point of  view, it 
seems to us that the matter is settled: credit does bear a real relationship to insurance 
losses. 

Conversely: Can We Predict Insurance Losses without Credit? Can We Go beyond 
Credit? 

Our experience does indicate that credit score is a powerful variable when it is used alone 
for a standard rating plan. In addition, our large-scale data mining results suggest that 
just about any model developed to predict insurance profitability will be somewhat 
stronger with credit than without credit. Typically credit score, when added to an 
existing set of  non-credit predictive variables, will be associated with a relatively large 
beta estimate and t-statistic. Consistent with this, the resulting model will have higher 
"lift" than its counterpart without credit. 

The results we have described might create an impression that credit variables are an 
essential part of  any insurance predictive modeling project. But this would be an 
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exaggeration. Our experience also shows that pricing and underwriting models created 
without credit variables can still be extremely good. The key to building a non-credit 
predictive model is to fully utilize as many available internal data sources as possible, 
incorporate other types of external information, use large amount of data, and apply 
multivariate modeling methodologies. Given all the regulatory and public policy issues 
surrounding insurers' use of credit, such non-credit models provide the insurance industry 
with a valuable alternative to using credit scores for pricing and underwriting. 

Conclusion: Predicting the Future 

Our data mining projects are multivariate predictive modeling projects that involve 
hundreds of variables being used to analyze many thousands of records. Many of these 
variables are credit variables, which play an important role even in this broad context. 
Our experience using credit scores and credit variables in a truly multivariate statistical 
setting has allowed us to add a new perspective to the debate over credit. 

The use of credit in insurance underwriting and ratemaking might seem like a rather 
specialized topic. But we believe the issue reflects two important trends in the 
development of actuarial science. First, credit scores come from a non-traditional data 
source. The advent of the Internet makes it likely that other new data sources will 
become relevant to actuarial practice. Credit information is probably just the beginning. 

The second issue is the increasingly multivariate nature of actuarial work. Credit scores 
themselves are inherently "multivariate" creatures in that they are composites built from 
several underlying credit variables. In addition, recall that we have reviewed and 
discussed three ways of studying the relationship between credit scores and insurance 
losses and profitability. Each study has been progressively more multivariate than its 
predecessor. This reflects the methodological development of classification ratemaking 
from univariate to multivariate statistical analyses (Generalized Linear Modeling). 

In our opinion, the adoption of modern data mining and predictive modeling 
methodologies in actuarial practice is the next logical step in this development. Bailey's 
minimum bias method might seem like actuarial science's in-house answer to 
multivariate statistics. On the contrary, Mildenhall's paper makes it clear that 
conceptually, nothing separates minimum bias from work done by mainstream 
statisticians in any number of other contexts. But why stop at Generalized Linear 
Modeling? 

We live in an information age. The availability of new data sources and cheap computing 
power, together with the recent innovations in predictive modeling techniques allow 
actuaries to analyze data in ways that were unimaginable a generation ago. To 
paraphrase a famous logician, actuaries inhabit "a paradise of data". This, together with 
our insurance savvy and inherently multivariate perspective, puts us in an excellent 
position to benefit from the data mining revolution. 
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Given the success of credit scores and predictive modeling, we expect actuaries to be 
enlisted to push this type of work even further. Here are examples of future questions we 
anticipate being asked of actuaries: 

Are we currently getting the most predictive power out of the intemal and 
external information/data sources that we are currently using? Are we really 
analyzing data in a rigorous multivariate fashion? 

�9 What other powerful variables and data sources are "out there" that we are not 
aware of?. How do we go beyond credit? 

Are there other ways insurance companies (and indeed other kinds of companies) 
can leverage predictive modeling? For example, predictive modeling has a 
proven record of success in such applications as target marketing, customer 
retention/defection analysis, predicting cross-sales, customer profiling, and 
customer lifetime value. These are all important projects at which actuaries can 
excel. Furthermore, they are not insurance-specific. An actuary with expertise in 
these areas could transfer his or her skills to other industries. 

To conclude, our multivariate predictive modeling work supports the widely held belief 
that credit scores help explain insurance losses, and that they go beyond other sources of 
information available to insurers. However it is unclear to what extent insurers will be 
permitted to used credit for future pricing and underwriting. For this reason insurers 
might want to consider non-credit scoring models as an alternative to traditional credit 
scores. For actuaries, the use of credit scores and predictive modeling is the beginning of 
a new era in insurance pricing and underwriting. 
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Company 1 
Scores & Loss Ratio Relativity Summary 

Score Midpoint Earned Loss Ratio 
Interval Premium Rdativity 

813 or more 850,0 I 0,2% 0.657 
768-812 790.0 9.9% 0.584 
732-767 74$1.5 11,0% 0.692 
701-731 716.0 10.0"/o 0.683 
675-700 687.5 10.4% 1.184 
651-674 662.5 9.8% 0.793 
626-650 638.0 9.94/4 1.332 
601-625 613.0 10.0% 1.280 
560-600 580.0 9.4% 1.214 
559 or less 525.0 8.6% 1,752 

Company 4 
Scores & Loss Ratio Rela6vity Sunmmry 

Score Midpoint Earned Loss Ratio 
Interval Premium Relativity 

832 or more 859.0 I 0,0% 0.672 
803-832 817.5 10.0% 1.027 
767-803 785.0 10.0"/, 0.823 
739-767 753.0 10.0"/0 1.036 
720-739 729.5 10.0"/0 0.775 
691-720 705.5 10.0*/e 1,000 
668-691 679,5 10.0% 1.041 
637-668 652.5 10.0"/o 1.023 
602-637 619.5 I 0.0./0 1.251 
602 or less 571.0 10.0% 0.135 

Exhibit 1 
Tilllnghast -NAIC Study of Credit Score 14] 

Company 2 
Scores & Loss Ratio Relativity Slmmmry 

Score Midpoint Earned Loss Ratio 
Interval Premium Relativity 

840 or more 854.0 I 0.0./0 0.607 
823-839 831.0 ] el.O% 0.813 
806-822 814,0 10.0./0 0.626 
789-805 79%0 I 0.0./0 1.342 
771-788 779.5 10.0% 1,059 
748-770 759.0 10.0"/0 1.019 
721-747 734.0 10.0./0 1.322 
686-720 703.0 I 0.0% 0.810 
635-685 660.0 10.0./* 0.986 
635 or less 592.0 9.9% 1.417 

Company 5 
Scores & Loss Ratio Relativity Summary 

Score Midpoint Earned Loss Ratio 
Interval Premium Rela6vlty 

845 or more 857.0 10.0*A 0.800 
830-845 837.5 10.0% 0.919 
814-830 822.0 10.0./0 0.740 
798-814 806.0 I 0.0*A 0.733 
779-798 788.5 10.0% 0.855 
757-779 768.0 I 0.0% 0.889 
730-757 743.5 I 0.0./* 0.993 
695-730 712.5 I0.0% 1.143 
643-695 669.0 10.0./0 1.300 
643 or less 600.0 10.0"/0 1.628 

Company 3 
Scores & Loss Ratio Relativity Summary 

Score Midpoint Earned Loss Ratio 
Interval Premium Relativity 

826 or more 845.0 10.O'A 0.723 
803-826 814,5 10.0% 0.903 
782-803 792.5 10.0% 0.895 
759-782 770.5 10.0% 0.795 
737-759 748.0 I 0.0./~ 1.073 
710-737 723.5 I 0.0*A 0.941 
680-710 695.0 10.0% 0.912 
640-680 660.0 10.0*/0 I. I 15 
583-640 611.5 l 0.0*A 1.221 
583 or less 535.0 10.0% 1.421 

Company 6 
Scones & Loss Ratio Relativity Summary 

Score Midpoint Earned Loss Ratio 
Interval Premium Relativity 

810 and up 837.5 19.7% 0.656 
765-809 777.0 20.1% 0.795 
715-764 739.5 20.8*/4 0.911 
645-714 679.5 20.2% 1.066 
Below 645 6~.0  19.2% 1.593 

Company 7 
Scores & Loss Ratio Relativity Suraraary 

Score Midpoint Earned Loss Ratio 
Interval Premium Relativity 

750 and up 795.0 21.3% 0.783 
685-749 717.0 25.8% 0.900 
63O-684 657.0 19.6% I .O83 
560-629 594.5 19.3% 1.150 
Below 560 520.0 13.9% 1.200 

Company 8 
Scores & Loss Ratio Relativity Summary 

Score Midpoint Earaed Loss Ratio 
Interval Premium Relativity 

755 or more 775.0 8.9% 0.767 
732-754 743.0 9.3% 0.798 
714-731 722.5 9.6% 0.859 
698-713 705.5 9.9% 0.969 
682-697 689.5 10.3% 0.922 
666-681 673.5 9,7% 0.978 
647-665 656.0 10.5% 1.070 
625-646 635.5 10.2% 1.107 
592-624 608.0 10.7% 1.122 
591 or tess 562.0 10.8"/* 1.324 

Company 9 
Scores & Loss Ratio Relativity Summary 

Score Midpoint Earned Loss Ratio 
Interval Premium Relativity 

780 and up 815.0 16.8% 0.637 
745-779 762.0 13.7% 0.715 
710-744 727.0 13.9% 0.734 
670-709 689.5 15.0% 0.807 
635-669 652.0 12.1% 0.909 
590-634 612.0 11.2% 1.241 
530-589 559.5 9.8% 1.357 
Below 530 495.0 7.5% 2.533 



Prior Driving Record 

Credit Group A 
Prem 

Exhibit 2 
Bailey Analysis of Monaghan's Two-Way Study 

Credit Score vs. Driving Record 

Credit Group B Credit Group C Credit Group D 
LR Prem LR Prem LR Prem LR 

Overall Bailey 
Prem LR LR Rel Factor 

ta~ 
Gh 

No incidents 
1 minor 
1 at-fauR accident 
1 non-fanlt accident 
2 m/noeS 
2 incidents (any) 
All other (> 2 incid.) 

Overall 
LR Rel 
Bailey Factor 

28.4 93% 
8.0 94% 
3.7 101% 
6.6 109% 
2.5 86% 
6.5 108% 

18.6 114% 

74.3 101% 
1.757 
1.709 

66.0 71% 30.70 64% 45.80 53% 
17.3 68% %50 68% 8.40 50% 
7.7 74% 4.10 68% 5.90 65% 

14.8 81% 7.30 70% 9.90 70% 
6.0 59% 1.90 41% 2.40 43% 

13.5 96% 6.60 82% 7.90 64% 
33.7 95% 10.80 83% 11.50 66% 

159 79% 68,9 69% 91.8 58% 
1.362 1.204 1.000 
1.339 1.192 1.000 

Generalized Linear Model Details 

exp* Bailey 
estimate estimate factor 

Chi 
s,e. Squared p -value 

Credit Group 0.1631 1.177 1.709 0.026 40.60 0.000 
-0.0807 0.922 1,339 0.023 12.13 0.001 
-0.1970 0.821 1,192 0.031 40.37 0.000 
-0.3727 0.689 1,000 0.031 148.23 0.000 

Prior Driving Record No incidents -0.2540 0.776 1,000 0.026 96.80 0.000 
l minor -0.2667 0.766 0.987 0.038 50.12 0.000 
1 at-thult accident -0.1624 0.850 t.096 0.047 11.93 0.001 
l non-fault accident -0.0922 0.912 1,176 0.037 6.34 0.012 
2 minors -0.4438 0.642 0.827 0.065 46.44 0.000 
2 incidents (any) -0.0169 0.983 1.268 0.037 0.21 0.647 
All other (> 2 incid.) 0 1.000 1.289 0 -- 

* Because the log link function was used, the GLM parameter estimate must be exponentinted 

170.90 68.6% 1.000 1.000 
41.20 69.4% 1.012 0.987 
21.40 75.0% 1.094 1.096 
38.60 80.9% 1.180 1.176 
12.80 58.6% 0.855 0.827 
34.50 88.3% 1.287 1.268 
74.60 93.5% 1,364 1.289 



Al~e of Driver 
Credit Group A 

Prem LR 

Exhibit 3 
Bailey Analysis of Monaghan's Two-Way Study 

Credit Score vs. Driver Age 

Credit Group B Credit Group C Credit Group D 
Prem LR Prem LR Prem LR Prem 

Overall 
LR LR Rel 

Bailey 
Factor 

<25 3.8 121% 23.6 75% 1.40 51% 1.90 53% 
25-34 21 A 103% 55.8 790/0 22.60 66% 8.90 63% 
35-39 13.0 100% 21.8 81% 12.90 65% 13.00 54% 
40-44 12.4 109% 18.5 82% 10.40 76~ 15.60 52% 
45-49 9.8 93% 14.6 83% 8.20 76*/, 14.80 58% 
50-59 9.2 97% 14.4 78% 7.90 ' 68% 16.50 53% 
60+ 3.8 110% 8.3 75% 4.90 81% 20.00 67% 

Overall 73.1 103% 157 79% 68.3 70% 90.7 58% 
LR Rel 1.775 1.367 1.202 1.000 
Bailey Facto r 1.805 1.394 1.220 1.000 

Generalized Linear Model Details 

exp* Barley Chi 
estimate estimate factor s.e. Squared p -value 

A 0.1214 1.129 1.805 0.052 5.44 0.020 
B -0.1372 0.872 1.394 0.050 7.66 0.006 
C -0.2707 0.763 1.220 0.055 24.11 0.000 
D -0.4692 0.626 1.000 0.048 94.19 0.000 

Credit Group 

Age <25 -0.1214 0.886 1.000 0.067 3.30 0.069 
25-34 -0.0985 0.906 1.023 0.053 3.52 0.061 
35-39 -0.1146 0.892 1.007 0.057 4.10 0.043 
40-44 -0.0674 0.935 1.055 0.057 1.42 0.234 
45-49 -0.0865 0.917 1.036 0.059 2.15 O142 
50-59 -0.1366 0.872 0.985 0.059 5.28 0.022 
60+ 0 1.000 1.129 0 - 

* Because the log link function was used, the GLM parameter estimate must be exponentiated 

30.70 
108.40 
60.70 
56.90 
47.40 
48.00 
37.00 

78.2% 
79.6% 
75.9% 
78.6% 
76.1% 
71.4% 
75.1% 

1.000 
1.018 
0.970 
1.004 
0.972 
0.913 
0.959 

1.000 
1.023 
1.007 
1.055 
1.036 
0.985 
1.129 



Exhibit 4 
Bailey Analysis of Monaghan's Two-Way Study 
Credit Score vs. Classical Underwriting Profile 

Credit Group  A Credit Group  B Credit Group  C 
Prior Driving Record Prem LR Prem LR Prem LR 

Credit Group D 
Prem LR Prem 

Overall  

LR LR Rel 
Bailey 
Factor 

MMH, Clean** 10.2 97% 22.3 77% 14.50 76% 20.20 
MMH,  Other 10.6 102% 20.2 85% 13.50 76% 16.00 
not MMH,  Clean 27.8 92% 62.9 69% 24.40 58% 34.40 
not MMH,  Other 25.6 113% 53.4 88% 16.70 74% 21.20 

Overall 74.2 101% 158.8 79% 69.1 69% 
LR Rel 1.761 1.365 1.202 
Bailey Factor 1.739 1.354 1.196 

91.8 

57% 
58% 
50% 
70% 

58% 
1.000 
1.000 

67.20 73.8% 1.000 1.000 
60.30 78.8% 1 0 6 8  1.051 

149.50 67.1% 0.909 0.877 
116.90 88.2% 1.195 1.125 

to,) 
OO 

Generalized Linear Model Details 

exp* Bailey 
estimate estimate factor 

Credit Group A 0.1268 1.135 1.739 
B 4).1237 0.884 1.354 
C -0.2479 0.780 1.196 
D -0.4265 0.653 1.000 

Prior Driving Record M M H ,  Clean 4). 1175 0.889 1.000 

M M H ,  Other 4).0679 0.934 1.051 
not MMH ,  Clean -0.2485 0.780 0.877 
not MMH ,  Other 0 1.000 1.125 

* Because the log link function was used, the G L M  parameter estimate must be exponentiated 

**MMH = Married Multicar Homeowner  
Clean Cle,'m driving record 

Chi 
s.e. Squared 

0.028 20.56 
0.024 26.83 
0.035 51.46 
0.034 162.37 

p -value 
0.000 
0.001 
0.000 
0.000 

0.035 11.02 0,000 
0.036 3.59 0.000 
0.029 75.81 0.001 
0.000 0.00 0.012 
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C r e d i t  & S u r e t y  P r i c i n g  and the E f f e c t s  o f  F i n a n c i a l  M a r k e t  Convergence 

By: Athula Alwis, ACAS, American Re and Chris Steinbach, FCAS, Swiss Re 

Abstract: 

This paper describes how the convergence of the insurance and financial markets is affecting 
Credit & Surety insurance. It explains why prior experience has become an unreliable 
measure of exposure and how this paradigm shift affects the pricing of Credit & Surety 
products. It proposes a new exposure based method for analyzing Credit & Surety that 
combines the best practices of insurance and financial market pricing theory. Discussions 
about its implementation as well as sample calculations for, both primary and reinsurance 
pricing are included. This paper also discusses the new breed of Commercial Surety bonds 
that have been recently developed to compete with traditional financial products. Finally, the 
paper addresses the need for better and more sophisticated risk management techniques for 
the industry. 
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1 Introduction 

There is a revolution occurring in Credit & Surety. The convergence of the insurance and 
financial markets is resulting in dramatic changes to these insurance products. There has 
been an explosion of new forms and some new coverages as insurers attempt to compete 
with financial institutions. There is new creativity to coverage structures as insurers rethink 
traditional practices and their applicability in today's environment. Increased competition by 
financial institutions for business that was traditionally considered insurance is the end result. 
All of these changes present new opportunities and new risks for the industry. The final 
outcome must be a revolution in our practices, which affects the actuarial profession in two 
ways. 

First, as our products become increasingly sophisticated, our risk management practices must 
keep pace. We cannot rely on na'fve diversification as much as we have in the past. This 
became apparent in the past year as unprecedented credit events educated us as to the true 
nature of our exposures and the weaknesses of our current risk management systems. Most 
Credit & Surety insurers have since made a concerted effort to improve their credit risk 
management systems to suit the new environment. 

Second, convergence has resulted in competition between the insurance and financial 
industries, creating arbitrage opportunities between insurance and financial markets pricing 
theories. Insurance and financial markets pricing theories are very different and can produce 
completely different results for the same risk. Recent experience has shown that insurers, 
more often than not, are the losers when arbitrage occurs. Many insurers have witnessed 
entire segments of their portfolio perform poorly, particularly with regards to their new 
products. This has caused some Credit & Surety insurers to reconsider what they write and 
how, and for others to reconsider whether they want to be in this business at all. 

The challenges that actuaries currently face in both risk evaluation and risk management are 
problems that the financial markets have already conquered. So, financial markets theory is 
the natural place for actuaries to turn for solutions. Over the past few years, financial markets 
theory has been finding its way into Credit & Surety insurers and reinsurers alike. This paper 
describes the financial market theories that can be applied to Credit and Surety, the benefits 
they bring, and how they could be implemented. 

2 History & Current Events 

Surety is unique in the insurance industry in that it is the only three-party insurance 
instrument. It is a performance obligation, meaning it is a joint undertaking between the 
principal and the surety to fulfill the performance of a contractual obligation. The principal is 
primarily responsible for the obligation and the surety guarantees fulfillment. If the principal 
fails to fulfil the obligation, then the surety steps into the shoes of the principal to complete the 
obligation. Surety obligations are divided into two general categories. Contract Surety 
guarantees the completion of a construction project, such as a road or building. Contract 
Surety is the largest segment of the Surety market because all government construction must 
be bonded. All other Surety products are called Commercial or Miscellaneous Surety. This 
covers a wide assortment of obligations, such as Bail bonds, the delivery of natural gas paid 
for in advance, the environmental reclamation of a strip mine, or the proper administration of a 
self-insured Worker's Compensation program. This is a smaller, but rapidly growing, segment 
of the Surety market. 

Credit Insurance is a demand obligation, meaning it indemnifies the insured for un-collectable 
receivables if there is default. It is commonly used in retail, since many stores do not pay for 
the merchandise on their shelves until they themselves sell it to consumers. Another common 
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use is in shipping, since merchandise is typically not paid for until it is delivered and inspected. 
Note that the majority of the Credit Insurance market is outside the United States. However, 
the US credit insurance market is growing rapidly. Inside the United States, companies 
typically use banking products such as loans and letters of credit instead of credit insurance. 

Financial Guarantee Insurance is a demand obligation that consists of two distinct categories. 
The first involves policies that insure against defaults of financial obligations, such as 
insurance guaranteeing payment of the principal and interest of a municipal bond. The 
second involves insurance against certain fluctuations of the financial markets, such as 
insurance ensuring a minimum performance for an investment. Note that in many states, this 
second category is not permissible because it lacks a valid insurable interest. Financial 
Guarantee insurance was regulated in the 1980s because of New York State's concerns that 
the line's rising popularity and enormous policy limits could result in insurer defaults that would 
swamp the state's insolvency fund. So, New York regulated the line, requiring that Financial 
Guarantee writers be weU-capitalized mono-line insurers that are not eligible for insolvency 
fund protection. Today, New York's strict regulations effectively control how Financial 
Guarantees are written. However, the other states end the rating agencies also work to exert 
their influence over the line, significantly complicating the regulatory landscape. 

Closely related to Financial Guarantees is a collection of minor lines that often are treated 
separately. These include Residual Value, Mortgage Guarantee, Credit Unemployment, 
Student Loan Guarantees and many life insurance schemes. These are often considered 
separate from Financial Guarantee simply because they were already regulated when the 
Financial Guarantee regulations were written. However, it pays to do research when working 
in these lines because Financial Guarantee regulations are still evolving and different states 
have different opinions. 

Credit Derivatives are financial instruments that pay when default occurs, whether or not the 
default results in a loss. Credit Derivatives are financial products, and as such do not require 
that a valid insurable interest exist. The most common Credit Derivative pays out on default 
the notional amount of a bond in exchange for receipt of the actual bond, so the loss is the 
difference between the notional of the bond and the market value of the underlying security. 
Credit Derivatives can be quite complex. They do not require underlying securities, so they 
are ideal hedging instruments for credit insurance risk. They also can be constructed to have 
additional triggers, such as a rise in the price of gas or a fluctuation in currency rates. 

Traditionally, Surety Bonds, Credit Insurance, Financial Guarantees and Credit Derivatives 
have been distinct products. In the past few years, the boundaries between these products 
have blurred considerably. They are now part of a continuous spectrum of products that 
insure financially related obligations. They start with Surety, where the insurer is entitled to be 
very active in managing the insured risk, and end with Credit Derivatives, where the insurer is 
entirely passive. This blurring has enabled products from different financial sectors to 
compete with each other. It also permits insurers to tailor make products of varying insurer 
supervision, fiduciary duty, and regulatory control. 

The biggest development in the past few years has been the explosion of the Commercial 
Surety market. Commercial Surety products traditionally have been relatively simple bonds 
with modest limits, such as Bail bonds and License & Permit bonds. But, recently they have 
evolved into sophisticated financial products with complex triggers and limits of hundreds of 
millions of dollars. One area that has generated increasing activity in recent years has been 
the use of Commercial Surety to mimic other types of financial instruments. In many cases, 
the Commercial Surety obligations tread very close to Financial Guarantees as defined by the 
New York State Department of Insurance. For this reason, the insurance industry has begun 
to call them "Synthetic Financial Guarantees." 
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The simplest financial market application of Commercial Surety involves using bonds to 
secretly credit enhance financial products. For example, banks frequently are involved in the 
short-term leasing industry. Banks typically securitize their lease portfolios, paying hefty rates 
if the portfolio contains many poor or mediocre credits. But, in this scenario, the bank requires 
the lessors to purchase Surety bonds that guarantee that all lease payments will be made. 
This enhances the credit quality of the portfolio, dramatically reducing the risk of loss. The 
bank now pays significantly lower rates for the securitization. This ultimately is cheaper for the 
lessees because insurers charge less than the capital markets to assume this risk, allegedly 
because insurers are able to wield influence over the risk. The insurance products would 
appear to be standard Lease Bonds, except for the fact that the ulterior motive is to credit 
enhance a financial instrument. 

The applications can get significantly more complicated. But, part of the additional 
complication is due to the fact that knowledge of the intricacies of insurance law is very 
important. Whether the policy is enforceable in the manner for which it is intended depends 
on much more than just the wording of the policy. For example, suppose Eastern Power 
Company sells one year of electricity to Western Power Company for $100mm, to be paid in 
advance on January 1, 2003. Simultaneously, Western Power sells the same one year of 
electricity to Eastern Power for $105mm, to be paid in arrears on January 1, 2004. The two 
contracts cancel each other out, resulting in no effect other than the difference in payment 
terms. Western Power also purchases a Surety bond that guarantees that Eastern Power will 
pay the $105mm they owe. What this deal effectively reduces to is that Western Power has 
loaned Eastern Power $100mm at 5% and convinced an insurer to take the default risk. Here, 
a lack of full disclosure to the insurer would be very material in the advent of a loss. Surety is 
a performance obligation and the Surety could argue that the performance of the underlying 
obligation was never intended, so they owe nothing. 

Commercial Surety has dramatically grown in popularity. Commercial Surety is now being 
used to secure letters of credit, to secure bank lines, and to enhance credit. Favorable historic 
loss ratios and limited abilities to grow other parts of the book has created the incentive for 
most major Surety writers to grow their Commercial Surety books. Furthermore, clients have 
flocked to Commercial Surety because they offer straightforward financial protection in a 
favorable regulatory environment. The ability of the market to arbitrage, the various rating 
methodologies has also been a key factor. 

The ability to use Commercial Surety for arbitrage purposes has revealed striking differences 
in how the various markets price their products. For example, it is not unusual for insurers to 
see Commercial Surety bonds that sell for a quarter of what Credit Derivatives sell for, with 
nearly identical terms. The problem that causes this discrepancy is that insurers generally do 
not differentiate risks as well as the financial markets do. Insurance pricing focuses primarily 
on making sure that the overall rate is adequate while financial market pricing focuses more 
on risk differentiation. This difference can be best demonstrated via the data each industry 
uses for establishing rate relativities. Insurance rate relativities are generally based on the 
company's own limited experience while financial market rate relativities are based on long 
periods of rating agency (industry) data. The larger data set enables the financial industry to 
calculate relativities that have a greater resolution than what the insurance industry calculates, 
creating the arbitrage opportunity. The result is the fact that insurers typically overprice short 
term / good credits and underprice long term / poor credits, compared to the financial markets. 

Recent events, particularly those involving the use of Commercial Surety bonds to mimic 
Financial Guarantees, have gone a long way toward dulling the popularity of these new 
products for both insurer and insured alike. Several insurance companies are currently 
addressing severe anti-selection problems in their portfolio. Several others are in court 
dealing with the fact that insurers and financial institutions have different customs and 
practices for their products - a fact that has significantly confused their customers. Insurers 
have reacted to these problems by either pulling out of the Credit & Surety market entirely or 
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by significantly curtailing their Commercial Surety writings. But, these problems have not 
killed the demand for Commercial Surety bonds, and the reduced supply probably will not last 
long. 

3 Credit Risk Management 

Credit risk management practices of the financial markets have always been more advanced 
than that of the insurance industry, Until recently, insurance credit risk management has been 
largely limited to purchasing reinsurance and managing the book to a targeted loss ratio. In 
contrast, credit risk management in the financial markets is a wide collection of tools. The 
similarity of Credit & Surety insurance to financial markets products permits the insurance 
industry to borrow financial market's risk management techniques. Several techniques 
transfer particularly well. 

The first requirement is to make sure that the portfolio is not excessively exposed to any single 
credit event. The most cost-effective way to do this is by implementing concentration limits by 
counter party, industry sector and country. These concentration limits must take into 
consideration the quality of the credit risks, Since poorer credits have higher frequencies and 
severities during economic downturns, it is important to have the concentration limits be lower 
for poorer quality risks. In this way it is possible to keep the expected loss for an event 
relatively constant throughout the portfolio. It is also important to take correlation into 
consideration when establishing concentration limits. Setting all of the concentration limits 
lower than an independence analysis would suggest, or establishing a tiered system of 
concentration limits can achieve this. 

Since the portfolio and the economy are both always changing, it is also important to have 
mechanisms for repositioning the portfolio over time. Three methods are commonly used. 
First, it is important to manage bond durations by counter party, industry sector and country. 
An insurer who manages their durations well can progressively reduce their exposure to a 
deteriorating segment of the business by not writing new bonds. This is known as an "orderly 
exit." Second, covenants can be placed in the contracts that require the insureds to post 
collateral if certain thresholds are breached. These thresholds can be established to generally 
coincide with the deterioration of that part of the portfolio, keeping the total exposure under the 
concentration limits and withdrawing the exposure while the risks are still solvent. However, 
covenants are losing their effectiveness because they are becoming too popular of a solution, 
contributing to the trend of marginally solvent companies crashing dramatically into 
bankruptcy. Third, the partial derivatives of the expected loss relative to changes in various 
economic indices measure the sensitivity of the portfolio to macroeconomic events. In 
financial market risk management theory, the partial derivatives are known as the "Greeks" 
because a particular Greek letter typically represents each distinct partial derivative. Analysis 
of the Greeks assists insurers in managing their risk to macroeconomic events, such as a rise 
in interest rates. 

Insurers are also getting better at actively managing their credit risk profile with reinsurance, 
retrocessions, credit default swaps, and other financial instruments. This is a powerful 
technique for managing the portfolio because it is able to change the risk profile after the fact. 
But, it is more difficult to implement in practice than it appears. Reinsurance is becoming 
increasingly expensive and credit markets are not that liquid. Thus, the required credit 
protection is often not affordable or available. This is because the names that have exhausted 
the credit capacity of the insurance company have also generally exhausted the credit 
capacity of the other credit markets as well. Furthermore, the insurer always runs the risk of 
having the reinsurance/swap cost more than the premium the insurer collected. For this 
reason it is important that the pricing of the insurance product specifically incorporate the cost 
of any risk transfer or hedging activity. Also, those using hedges must note that they are often 
inefficient. The trigger for the insurance policy and the trigger for the hedge are usually 
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slightly different. This inefficiency must be factored into the hedge and the premium charged 
for the insurance product if hedges are being used. Finally, reinsurance and hedge 
transactions are usually conducted with reinsurance & financial institutions. This is a problem 
because most reinsurance & financial institutions are themselves peak credit risks in the 
insurance portfolio. The insurance company must also manage what would happen if the 
counter party goes bankrupt, causing the reinsurance or hedge to fail. 

While substantial similarities between insurance companies and financial institutions enable 
the insurance industry to borrow liberally from financial risk management theory, there is also 
an important difference to note. For financial institutions, credit risk is highly correlated and 
dominates the portfolio. Credit risk management practices focus on fencing in this risk. For 
insurance companies, credit risk diversifies with the other risks that the insurer writes, such as 
CAT (Catastrophe) covers. Insurance credit risk management can take advantage of this 
diversification. 

Credit risk management in financial institutions focuses on fencing in the potential damage 
from highly correlated losses. Periodically, defaults occur in a highly correlated way and this 
is known as the credit cycle. The cycle begins when bad economic news causes a large 
amount of money to flee the credit markets, resulting in the cost of credit to suddenly and 
dramatically increase. This causes many companies that were only barely surviving to fail 
simultaneously. Their failure in turn adds additional financial stress to their creditors, 
customers and suppliers, causing more failures. The failures ripple through the market, taking 
out many of the financially weak and some of the financially strong. Credit cycles often center 
about the specific countries and industry sectors that generated the initial bad economic news. 
Financial risk management is heavily focused on quantifying the amount of loss the institution 
is potentially exposed to when credit becomes scarce, causing counter-parties to go bankrupt. 
It is managed in a manner very similar to the way insurers manage earthquakes. 

When insurers manage the credit cycle, they have the added luxury that the credit cycle and 
the underwriting cycle are natural hedges; that is, they anti-correlate. Both are driven by the 
availability of capital. When capital is scarce and credit dries up, counter parties go bankrupt 
and financial markets suffer catastrophic losses. However, when capital is scarce and 
capacity dries up, insurance premiums rise and insurance markets are at their most profitable. 
The opposite relationship holds when capital is plentiful. As a result, it is possible for insurers 
to implement a risk management strategy that integrates credit-related products, other 
insurance products and the investment portfolio results. This strategy aims to immunize the 
portfolio by balancing the effect of the credit and underwriting cycles. Currently this idea is 
more theory than practice, although several companies are implementing risk aggregation 
models that would permit them to implement such a risk management strategy. These models 
are effectively detailed DFA (Dynamic Financial Analysis) models of the corporation and all of 
its parts. 

It is often thought that the only goal of risk management is in making sure that the company 
survives to see tomorrow. But, an equally important goal is to be able to determine which 
products add value. Traditionally, "value" has been measured via profit & loss reports. But 
this approach is really only able to identify which products are unprofitable or under- 
performing relative to historic norms. It is not able to reliably identify the products that create a 
drag on the stock price. In order to identify these products, a system that measures a 
product's contribution to the ROE (Return on Equity) is required. Several companies are 
experimenting with such a measurement system. 

The reason most insurance companies today are not able to identify the products that 
decrease their ROE is because most companies do not have the risk measurement systems 
capable of quantifying the amount of capital each risk requires. The question becomes 
particularly complicated for Credit & Surety products since these have many risk 
characteristics that the other lines can often downplay, such as correlation and hedging 
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activities. The most immediate obstacle is the fact that some companies do not yet capture 
the information required for such an analysis. The new risk management techniques are 
extremely data intensive, and sophisticated inventory systems are required to implement 
them. 

The risk profile for Credit & Surety is extremely complicated. It is easy for the insurer to 
accidentally take on an unacceptable amount of risk, requiring the utilization of an 
unacceptable amount of capital. It is also easy to make simple mistakes, such as paying more 
for reinsurance than the amount you collected, quickly dooming the insurer to certain loss. 
Measuring profitability requires understanding how much capital the risk requires relative to 
the profit that the risk generates and including the effects of all of the reinsurance and hedging 
purchased. This comparison can only be done within the framework of an advanced risk 
management system. 

4. Pricing 

4.1 Traditional Approach to Pricing 

Credit & Surety has always been viewed as a form of property insurance because it shares 
the defining characteristics of property business. Most important is the fact that the severity 
distribution is relative to the limit of insurance. But, it also shares numerous other 
characteristics: there is a very wide variation in the limits commonly purchased (several orders 
of magnitude), Credit & Surety is subject to large shock losses, as well as catastrophes 
(known as the "loss cycle"). 

However, Credit & Surety does have distinguishing characteristics of its own. First is the fact 
that the loss cycle (the catastrophe) is not random, but appears at eight to twelve year 
intervals. This means that the way the loss cycle is incorporated into the pricing is different 
than regular property catastrophe pricing. Second is the fact that Credit & Surety underwriting 
requires more judgment than other types of property underwriting because insurers 
understand the causes of fire much better than the causes of insolvency. As a result, there 
can be enormous variations in experience from one insurer to another as underwriting 
practices differ. Third is the fact that Credit & Surety is "underwritten to a zero loss ratio." 
This does not mean that insurers have years without losses. What it implies is that the goal of 
Credit & Surety is to actively monitor the risks and to proactively respond to problems in order 
to prevent losses from happening. As a result, Credit & Surety underwriting focuses primarily 
on reducing loss frequency (i.e. default risk). Therefore, when the loss experience of two 
primary companies differs, most of the difference is in their frequencies. 

Because of the similarities between Credit & Surety and property, most actuaries approach 
Credit & Surety pricing in the same manner as the other property lines. Both experience 
rating and exposure rating methods are commonly used. The benefit of having two different 
methodologies is that when the assumptions underlying one methodology fail, then the other 
methodology can generally be relied upon. But for Credit & Surety, the assumptions 
underlying both methodologies are equally questionable. Thus, Credit & Surety pricing has 
always been somewhat of an art form. The fact that Credit & Surety pricing requires this 
judgment is a particular weakness during a soft market, because it is not unusual for market 
pressures to compromise actuarial judgement. 

Experience rating is theoretically appealing because it calculates the correct rate for a portfolio 
based on its own experience. This means that we do not need to make many assumptions 
about the applicability of the data when we price. But experience rating does have 
weaknesses. Primarily, it is a demanding methodology with regards to data quantity and 
quality. It requires reasonably extensive data, restricting its applicability to larger volumes of 
business and longer time intervals. It also requires reasonably good quality data. Shock 
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losses need to be massaged to match long-term expectations and the loss cycle needs to be 
carefully built in. But shock losses and loss cycles are rare, so actuaries must chose between 
long time periods full of ancient data or short time periods that lack credible experience. The 
adjustments required to get around these problems are judgmental and threaten the credibility 
of the analysis. It is unfortunate that experience rating's major weakness is Credit & Surety's 
major characteristic. 

Exposure rating is theoretically appealing because it permits the use of industry experience. 
This permits the experience of shorter time periods to be more credible. Furthermore, the way 
Credit & Surety is underwritten means that industry severity data should not need to be 
manipulated when applied in an exposure rating. Only the frequency estimates should require 
judgement. However, both are difficult to calculate in practice. First, sharing of data is not 
common in the Credit & Surety industry. There is not a lot of experience available, and those 
who do have books large enough to have credible experience want to use this as a 
competitive advantage over those who do not. Furthermore, when experience is shared (for 
ex. Surety Association of America (SAA) or reinsurers), it usually is without the corresponding 
exposure values. So, it is difficult to compile industry data. The industry also does not have a 
uniform standard for recording data. There are a wide variety of definitions for "loss" and an 
even wider variety of definitions for "exposure." So, if and when one is able to compile a 
collection of industry experience, it does not have quite as much meaning as we would like. 
This reduces the selection of exposure rating parameters to an act of judgement. 

Historically, experience rating has been the approach used by insurers when reviewing the 
rate adequacy of their book and by reinsurers when pricing reinsurance. This is because the 
lack of credible exposure rating parameters is generally a greater problem than the judgement 
required for experience rating. Primary companies have always used some form of exposure 
rating for pricing individual insureds, but they seldom even look at this data when reviewing 
the profitability of their entire portfolio. This is partly due to the fact that exposure rating 
systems typically require so many soft factors that the results are unsuitable for the purpose of 
portfolio analysis. Portfolio reviews are almost exclusively performed via experience rating. 
This is in stark contrast to the financial markets that rely heavily on the exposure rating when 
performing portfolio analyses. 

4.2 Introducing Financial Market Theory 

Combining traditional exposure rating with modern financial markets pricing theory results in a 
Credit & Surety pricing methodology that is considerably more flexible than traditional 
insurance pricing methodologies. This development is made possible by the fact that insurers 
and reinsurers are now adopting financial markets risk management methodologies, making 
new data available for pricing. The mixed approach combines the best practices of both 
theories. 

The characteristic that most distinguishes financial markets pricing theory from insurance 
pricing theory is the way exposure is measured. Credit & Surety insurance currently follows 
the property tradition by using the policy limit or a PML (probable maximum loss) as the 
exposure base. The financial markets use an exposure base that is significantly more 
sophisticated. As with insurance, it starts with the policy limit modified to reflect the value 
realistically exposed. This effectively gives us a PML. The financial markets then further 
modify the quantity to reflect the credit rating of the counter party. Better credit ratings have 
lower losses with respect to the amount exposed. Finally, correlation is introduced to get the 
correct measure of aggregate risk. 

The goal of the financial markets approach to exposure measurement is to precisely quantify 
the expected loss of a risk with as little subjective judgement as possible. This would appear 
to be impossible when you consider all of the qualitative risk assessments that must go into 
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the analysis. For this reason, the financial markets have established the use of public credit 
ratings as a way of validating the judgement of the analysts. The credit ratings contain all of 
the judgmental factors so that the other components can be entirely objective. Making the 
credit ratings public knowledge permits analysts to be able to compare their assessments with 
those of other analysts and ensure that their assessments are not wildly different from the rest 
of the market. The consistency in approach and public application compensates for the 
necessary subjectivity of financial markets pricing. Credit & Surety pricing could benefit from 
this approach towards pricing. The change would also enable insurers to incorporate their 
Credit & Surety exposures into their credit risk management framework, giving them a more 
complete picture of the risk their company has to stress from the financial markets. 

However, there are differences between the two markets that hinder the combining of their 
theories. Two important differences are the fact that insurance often has triggers that differ 
materially from simple financial default and insurers have significantly more control over the 
risk. For example, if a construction company defaults, then the Surety will look for ways to 
keep projects going forward either by loaning money to the contractor or by finding a 
replacement contractor. The loss will emerge over time according to decisions the Surety 
makes about how to handle it. It is even possible for default to ultimately result in no loss at 
all. On the other hand, in the financial markets, default results in payment according to the 
obligation. Therefore, while the risk profiles of insurers are strongly correlated with the risk 
profile of the financial market, they are also markedly different. 

Another important difference between insurance and financial markets theory that must be 
reflected is the fact that insurance companies regularly review their base rate while the 
financial markets do not. Financial markets price each risk separately, but they do not review 
the portfolio in total and calculate base rate changes. Financial markets pricing theory 
focuses more on differentiating risks than on making sure that the aggregate return is 
adequate. In financial markets theory, the company does not attempt to set the average 
return but rather lets market forces dictate what that return should be. It is assumed that the 
rate is adequate because market forces will push all unprofitable business into the lower credit 
ratings. The goal then is to provide the risk differentiation information required to make the 
market operate efficiently. In order for this theory to be useful to insurers, the financial 
market's ability to differentiate risks must be married with the insurance market's ability to 
measure whether the correct aggregate premium is collected. 

The differences between insurance and the financial market can be incorporated into the 
pricing by using the financial markets pricing as a benchmark and adding a deviation factor for 
the insurance differences. In its most general form, the expected loss as an insurance product 
can be represented as follows: 

Insurance Pol icy E[L] = f(Financial Instrument E[L], (z) 

Here, er represents a factor measuring the differences in the loss triggers and other 
advantages of writing insurance. The value for cr should vary with the type of product being 
modeled. The function used to apply r could model expected loss in total, frequency and 
severity separately, or som_e variation thereof. Refer to the Appendix 1, Page 2 for a simple 
example. 

Establishing a value for e~ that is appropriate for the insurance product is critical to this 
exercise. Two main approaches are possible. The first is to use the historical data of that 
product and to back into the cr that reconcile the experience and benchmark. In other words, 
estimate the expected loss as a financial product (using historical exposures and ratings at a 
given point in time) and compare that number to historical surety losses developed to ultimate 
for the same time period. The second is to establish cr judgmentally by comparing that 

148 



product to others for which ct is known. For example, if f(E[L],ct ) = ctE[L], then a general rule 
of thumb is: For high risk Commercial Surety (bonds that act as financial instruments), ct is 
one. For very low risk Commercial Surety, ct is close to zero. For Contract Surety and Credit 
Insurance, ct is somewhere in the middle. 

Credit Default Swaps are the preferred benchmark because Credit Default Swaps are 
standardized and actively traded on the open market. This permits the insurance company to 
see what the market's consensus opinion of that credit's risk is without having to adjust the 
data for specialized terms and conditions. This is called the =price discovery process." The 
riskiness implied by the market price can then be compared to the riskiness as measured by 
the commercial credit ratings and the riskiness as measured by the insurer's own credit 
models. Another benefit is that the market reacts to information faster than any other credit 
rating process. This makes the pricing more responsive to current events and the ability to 
keep up with the market prevents arbitrage opportunities. Finally, Credit Default Swaps are 
becoming an increasingly popular tool for hedging credit risk exposures. Using Credit Default 
Swaps as the basis for the pricing and risk management process makes the hedging 
calculations easier. 

The calculations can be accomplished with varying sophistication. This paper presents a 
simplistic approach that can be applied to any Credit & Surety product. The calculations in 
this paper will be based on the following definitions: 

Notional Amount = Exposure 

This is the sum of all of the bond limits for that principal. (Contract Surety sometimes uses 
Work on Hand.) This amount goes by many names, including: Aggregate Bonded Liability, 
Aggregate Penal Sum, and Un-exonerated Bond Amount. 

Default Rate = Probability of Default as a Financial Instrument 

Default means that the company was not able to continue servicing its debt. The default rates 
for securities are based on their credit ratings from credit rating agencies such as Moodys and 
Standard & Poor. Companies that are un-rated by the rating agencies can be rated using 
computer programs such as KMV rating and Moody's Risc Calc. Moody's idealized Defaults 
Rate table is presented in Appendix 1, Page 3 of this paper. 

Please note that we used a somewhat narrower definition of default rates in this paper. 
Moodys and S&P, at times, use a broader definition of default rates depending on the purpose 
of the exercise. 

o, = Probability of Loss as a Surety Product I Probability of Default as a Financial 
Instrument 

The loss triggers for surety are stricter than those assumed in the definition of default for a 
pure financial instrument. For example, a missed interest payment or a restructuring of debt 
would trigger a financial default. On the other hand, the contractor or the commercial surety 
principal has to be bankrupt for a surety default to take place. Therefore, a relativity factor 
needs to be applied to get the correct frequency for the product being priced. 

1 - Recovery Rate = Severity 

One minus the recovery rate equals the expected severity. It is stated as a percentage of the 
exposure. The recovery rate should be based on the type of bond (Contract, Low Risk 
Commercial, Workers Compensation, etc). Note that recovery rates are correlated with 
default rates - poor quality credits have both higher frequencies and higher severities. 
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Expected Loss = Notional Amount x Default Rate x c~ x (1- Recovery Rate) 

This is the expected loss for the principal. Including c~ permits us to reflect the bond's unique 
characteristics in the pricing. Omitting (~ gives us the expected loss for a comparable credit 
default swap. 

When applying these formulae for risk management purposes, it is important to take into 
account the correlation within and between industry sectors. Correlation also exists between 
regions/countries and between Credit & Surety insurance and the company investment 
portfolio. It is important to include all sources of credit risk in this calculation, including all 
corporate bonds that your investment department has purchased. There are several 
methodologies to perform this calculation. Two are frequently used: 

a. Downgrade the credit ratings of securities in sectors that have exceeded specific 
concentration thresholds. For ex: 10% concentration ,,) one-notch down grade, 15% 
concentration -.), two-notch down grade, et cetera. This gives correlation a cost (the cost of 
the required hedge) enabling underwriters to manage correlation within the pricing formulae 
and creating a disincentive for adding more of this risk. 

b. Create a simulation model that accurately reflects the characteristics of the original 
portfolio, including correlation. Note that many different options exist for the design of the 
correlation engine. 

Finally, it is important to note that pricing is not independent of risk management. The outputs 
of the pricing exercise are the inputs for the risk management system. For this reason, it is 
important to design any pricing system so that both needs are met. In general, the output 
from the pricing exercise should contain the following: 

�9 Average portfolio default rate and rating 
�9 A distribution of default rates (or ratings) 
�9 Average notional amount 
�9 Expected loss 
�9 A distribution of losses 
�9 Expected excess loss 
�9 A distribution of excess losses 

4.3 Primary Insurance Application 

Most primary companies use industry based rating tables for small risks, such as the Surety 
Association of America's Surety Loss Cost tables, and their own proprietary rating systems for 
large risks. Increasingly, these proprietary systems refer to the credit rating of the risk being 
insured. 

One can use a modified credit default swap pricing methodology as the approach for pricing 
bonds. Consider the example of an insured that wants to insure a $25mm receivable from a 
power company, payable in 5 years. (Appendix 1, Page 1) It is a high-risk bond that behaves 
very much like a financial guarantee. Suppose the power company has a Moody's credit 
rating of Baa3. Referring to Moody's Default Rate table, the five-year default rate for Baa3 
credits is 3.05%. Since the insurance policy behaves similarly to a financial guarantee, (~ is 
chosen to be one. The expected loss is thus $686K. Reflecting five years of investment 
income gives us a discounted expected loss of $538K. 
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4.4 Proportional Reinsurance Application 

Both quota share and surplus share reinsurance are common in Credit & Surety. Quota share 
reinsurance is the easiest to price since cedants are able to provide all of the pricing 
information listed in section 4.2. The most difficult part of the quota share pricing exercise is in 
modeling the commission terms, since they generally are a function of the treaty results. 
When computing the appropriate aggregate loss distribution, it is critical to accurately reflect 
the correlation within the portfolio. Surplus share reinsurance is more difficult to price because 
the ceded amount varies with the bond limit. A standard way to approach this is to restate the 
exposure profile to reflect the surplus share terms and to then price the treaty as if it were a 
100% quota share. 

It is increasingly common for reinsurers to request a complete listing of all of the credits in the 
portfolios so that the reinsurer can incorporate the information in their credit risk management 
system. This detail of data also enables the reinsurer to independently assess the adequacy 
of the primary company risk evaluation and management process. Lead reinsurers typically 
review the historical accuracy of the cedant's pricing relative to the results that insurer 
experienced. The reinsurer calculates a cedant specific (z in addition to the cr s it uses for 
the products to adjust for the primary's underwriting quality. The pricing then proceeds as 
described above. 

4.5 Excess Reinsurance Application 

The credit default swap approach can also be an effective way to approach the pricing of 
excess reinsurance. Consider the example of a portfolio presented in Appendix 1, Page 2. 
Excess reinsurance covers losses occurring this year, so the term is always one no matter 
what the length of the underlying obligations are. (Beware of the optional tail coverage!) We 
look up this product in the pricing tables to get the default values for ~ and the recovery rate. 
This information is then enough to compute the expected loss for the excess reinsurance 
layers. 

A major benefit of this methodology is that the relationship between pricing and risk 
management is considerably clearer. It is now obvious to the cedant how different risk 
management rules will affect their reinsurance costs. For example, two observations are 
immediately apparent in the sample exhibit on Appendix 1, Page 2. 

First, credit A could potentially cause a loss that greatly exceeds the amount of excess 
reinsurance purchased. The insurer did not purchase enough excess reinsurance to 
adequately protect itself. But, high layer reinsurance is expensive, especially if it is not well 
used. Just like lines of credit issued by banks, reinsurers typically charge capacity fees for 
excess layers that have low activity because they might be used. A more cost effective way to 
manage the portfolio is to not let any one risk get that large in the first place. 

Second, credits A, B and C all have inadequate credit quality for their size. Notice how the 
expected loss for the 5x5 layer is almost entirely due to these three risks. It is unlikely that 
these three risks are able to support all of a reinsurer's capital and frictional costs by 
themselves. So, the 5x5 layer is probably uneconomical for the cedant. A more cost effective 
way to manage the portfolio is to place lower maximum limits on poor credits and to establish 
an orderly exit process to address deteriorating credits. 

Incorporating additional information into the exhibit enables us to perform even more 
analyses. For example, comparing the direct premiums collected for the bonds with the 
ground up expected loss calculation gives us a diagnostic for reviewing c~. Other information 
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that is potentially useful includes bond type, industry group, collateral, hedges, retrocessions, 
and the Greeks. 

4.6 Agg-Stop Application 

Aggregate stop loss reinsurance (Agg-stops) is the insurance version of a collateralized debt 
obligation (CDO). Both involve collecting a large portfolio of risks and then the slicing the 
portfolio into horizontal tranches. Since correlated risk exacerbates aggregate loss, most of 
the correlated risk ends up residing in the upper tranches while most of the uncorrelated risk 
ends up residing in the lower tranches. Therefore, the function of Agg-stops for Credit & 
Surety portfolios is to strip the correlation from the portfolio. And since the correlated risk is 
the largest consumer of credit capacity, Agg-stops release significant amounts of credit 
capacity for the primary insurer, but at the cost of consuming significant amounts of credit 
capacity from the reinsurer. 

Since the risk in an Agg-stop treaty is almost entirely correlated risk, it is critical that the model 
used for pricing Agg-stops has a sophisticated treatment of correlation. Typically a simulation 
model is used such that industry group could accurately model each necessary term, such as 
sub limits. Simulations also permit the reinsurer to analyze the effect of including the treaty in 
their portfolio. This permits the reinsurer to more accurately assess their cost of capital loads 
for the treaty. 

A simulation model involves stochastically generating frequency, exposures and severities. 
For homogenous portfolios, the simulation model can be relatively simple. If we assume that 
all of the correlation is the result of frequency, then the key to the model is the frequency 
simulation. A commonly used approach in this situation is the Binomial Model. It is best 
described by example: We simulate the frequency of loss for 100 correlated risks as 50 
uncorralated risks, adjusting the expected severities so that the expected total loss is correct. 
We established number 50 by applying the Method of Moments to an estimated aggregate 
variance. After the frequency is simulated, then for each simulated event, the sizes of the 
exposures are modeled, usually from a Lognormal distribution fitted to the exposure profile 
and scaled as required by the Binomial Model. Finally, the loss severities are modeled as a 
percentage of the exposure, usually from a Gamma or a Parato. 

5 Specific Issues 

5.1 Frequency 

The ability to get improved frequency estimates is a key reason why many insurers have 
begun to adopt the credit scoring algorithms of the rating agencies. One major advantage 
rating agency algorithms have over other pricing methodologies is that the rating agencies 
have the most complete and longest running histories publicly available. A second major 
advantage is that the rating agencies are relatively quick to reflect any changes in probabilities 
of default in their credit ratings. This allows financial companies to continually revise their 
assessment of the quality of their portfolio without having to continually re-rate all of the credits 
themselves. Alternatively~ an even more responsive indicator of change is the credit spreads 
in the market. A credit spread is the difference between the rate for treasury notes and the 
rate for a similar bond issued by the company. Since credit spreads rise monotonically as 
credit ratings fall, the market's spreads can be used to establish the market's consensus credit 
rating. The credit derivative market is a common place for financial institutions to get 
consistent information about credit spreads. It is estimated that up to 90% of the activity on 
the credit derivative market is solely for "price discovery" purposes. 
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While the credit scoring approach has its benefits, it also has its limitations. For example, it is 
important to remember that credit ratings are designed for assessing the pricing of debt 
instruments, not insurance. Also, rating agencies have also been known to approach the 
same calculations in different ways for different publications, depending on what the 
information is intended for. Rating agency information must be used with caution. 

If pulling default statistics from a publication, it is important to note precisely what the statistics 
measure. This is not always clear. Sometimes the statistics are pure frequency statistics and 
sometimes they measure expected ~oss costs. Furthermore, since frequency and severity 
strongly correlate, the different default statistics are not always easily distinguished. A 
detailed knowledge of how the statistics were calculated and the assumptions underlying them 
is necessary before attempting to use them in pricing. 

Credit ratings have a fair amount of subjectivity to them. Rating agencies judgmentally 
segregate the credits into rating categories and then calculate statistics on the categories. 
The subjectivity of the data means that there are trends that must be identified and 
compensated for. For example, from 1984 to 1991, the annual default rate for Moodys B1 
rated securities always stayed within the range of 4.36% to 8.54%. From 1992 to 2000, the 
annual default rate for Moodys rated B1 securities always stayed within the range of 0.00% to 
4.57%. Was this the result of a changing economic environment or a change in the definition 
of a B1 security? A review of the aggregate default rate for all corporate bond issuers 
demonstrates that the two periods were not significantly different. Therefore, we can conclude 
that the change in experience is due, at least in part, to a change in the definition of a B1 
security. 

While cradit-scoring models can be used to improve credit default rate predictions, they 
cannot always produce accurate frequency predictions for the insurance products we are 
pricing. This is because the insurance industry's definitions of credit default can differ 
markedly. To a rating agency, default means the failure to service debt. To an insurer it can 
mean many things, such as the failure to pay a bill or the failure to fulfil a bonded obligation. 
Insurance default rates can be greater or less than commercial debt default rates, depending 
on the nature of the insured obligation. For this reason, it is best to use credit-scoring models 
with great care in order to be useful in surety pricing. 

5.2 Severity 

Severity (recovery rates) can be analyzed using data and models similar to those used for 
frequency. Recovery rates vary with both credit rating and debt seniority, thus they are 
specific to the insured and the instrument being priced. Severity distributions are harder to fit 
than frequency distributions because they are more complex. For frequency, we only need to 
be concerned about the average probability of default. While for severity, we need the full 
distribution. However, the increased complexity of fitting severity curves is partly mitigated by 
the fact that Credit & Surety underwriting places an overwhelming focus on frequency. 
When pricing for retentions or excess layers, it is important to put a distribution around the 
average recovery rate. Then, the expected loss cost for each exposure in the portfolio is 
calculated using the Limited Expected Values of the recovery rate distribution. Typically, a 
Beta distribution is used if it is impossible for the loss to exceed the notional amount. If it is 
possible for the loss to exceed the notional amount (i.e.: Contract Surety), then property 
distributions typically are used. If the list of exposures is not known, then a LogNormal 
distribution is typically used for representing the distribution of potential exposure sizes. 

For primary insurers, an accurate representation of the recovery rate distribution is essential if 
the insured has a significant retention or posts significant collateral. The recovery rate curves 
will determine how much credit to give to the collateral and retention. Inaccurate curves 
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increase the risk of over/under pricing the business. A review of the insurer's hit ratios by 
retention would indicate whether inaccuracies exist. 

Establishing accurate recovery rate distributions for new products pose a particularly difficult 
challenge. This is generally accomplished by borrowing distributions from other related 
products. Insurers can improve the variety of their severity distributions in the following 
manner: First, fit a recovery rate distribution for each category that has sufficient experience. 
Use the same form of distribution for each fit so that the equations are identical and only the 
parameters change. Plot the parameters onto a grid, labeling each point with the product that 
generated it. Then, recovery rate curves for new products can be selected judgmentally from 
the grid by placing a point onto the grid that makes sense relative to the existing portfolio of 
products. 

For reinsurers, the exact shape of the recovery rate distribution is often not that important. For 
most reinsurance applications, only the mean and variance of the recovery rate distributions 
are significant. This is because we are applying the same curve to a large number of 
exposures and the Law of Large Numbers smoothes out the inaccuracies of the distribution. It 
is important that the first two moments are correct, but the higher moments are often 
smoothed out. However, note that the Law of Large Numbers breaks down in the high excess 
layers. If pricing these layers, it is important that the tail of the recovery distribution be 
adequately represented otherwise the layers will be under-priced. 

Reinsurers must also pay attention to whether the distribution of exposures is changing or can 
change. A trend in average exposure size will materially effect the excess severity 
distribution. Furthermore, the existence of excess reinsurance often provides the incentive for 
cedants to put the coverage to greater use. An excess layer that does not currently have 
many exposures in it may have significantly more by the end of the term. Therefore, it is 
common for reinsurers to charge a capacity fee (similar to the fee banks charge for keeping 
lines of credit open) for excess layers that are lightly exposed. This pays for the potential for 
the cedant to write more bonds that expose the layer. Note that such a fee is not required if 
the layer is written on a cessions basis. 

5.3 Loss Cycle 

The loss cycle is when Credit & Surety loss activity dramatically increases. During a loss 
cycle, loss ratios typically are double or treble their historic levels. Loss cycles generally are 
caused by credit cycles but may also be caused by other contagious events, such as a rapid 
contraction in the amount of government spending on capital projects. Loss cycles typically 
focus around a particular industry and region, meaning that there are multiple overlapping 
cycles that could potentially affect an insurer's results. Preparing the insurance company for 
future loss cycles is one of the most difficult tasks a Credit & Surety actuary must perform. 

Surety & Credit has two main loss cycles. First, large contractors and most non-construction 
companies finance their operations through credit. A contraction of the credit market causes 
the less stable corporations to fail. However, small contractors tend to finance their operations 
by kiting funds from one job to the next. A reduction in the amount of new construction has 
the same effect on this market as a contraction of credit has on the market as a whole. 
Typically, the availability of credit drives the loss cycle for the large Contract Surety, 
Commercial Surety and Credit insurance markets while the amount of new construction drives 
the loss cycle for the small Contract Surety market. 

Financial Guarantees and Credit Derivatives also have loss cycles that are largely driven by 
the credit cycle, and thus are strongly correlated with large contractors and Commercial 
Surety. However, a large part of the Financial Guarantee market is municipals and these 
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behave very differently. The risk for municipals is that the politicians do not want subject the 
public to the pain required for them to maintain their financial obligations. 

The existence of the loss cycle complicates the pricing of these products. The actuary must 
keep both the long term and short-term horizons in mind when pricing. For example, if the 
loss ratio averages 30% in normal years and 80% during a loss cycle, and if the loss cycle 
comes once every decade and lasts for two years, then the long-term loss ratio is 40% (= 0.8 
x 30% + 0.2 x 80%). Therefore, in order to make money over the long term, an insurance 
company must charge between 10% and 33% more for its products than it would if it was 
taking purely a myopic view towards pricing (depending on whether expenses are loaded as 
fixed or variable). The market does not easily support such pricing. Thus, strict discipline by 
actuaries and underwriters is required. 

In reinsurance, managing the horizons also consists of paying attention to the "banks" that 
insurers have developed with the reinsurer. The bank is the amount of excess funds that the 
reinsurer has collected over the good years in order to pay for the bad. Without the building 
up of banks, reinsurers cannot be profitable over the long term. Reinsurance rates should 
reflect the size of the bank that the insurer has. Returning to the above example, if the insurer 
has a fully funded bank, then the reinsurer can charge a rate contemplating a 30% loss ratio. 
But, if the insurer has no bank at all, then the reinsurer should charge a rate contemplating a 
40% loss ratio (or higher). 

Even if the insurer/reinsurer intends to withdraw from the market when the loss cycle begins, 
they generally do not get a chance to withdraw until their contracts end. That means that the 
insurers & reinsurers must first witness the beginning of the loss cycle before knowing it is 
time to withdraw, and by then it is generally too late to avoid the bulk of it. The loss cycle is 
relatively short - it is over before much action can be taken. 

Loss cycles also have another insidious side that make identifying them particularly difficult. 
Loss cycles have the tendency to be devastating to insureds that already have open credit- 
related claims, meaning that these claims are severely exacerbated and the resulting 
extraordinary loss is recorded with the date of the original claim. Therefore, the loss cycle is 
actually much shorter than the actuarial loss experience suggests. For example, in the most 
recent loss cycle, losses grew in 2000, peaked in 2001 and may have begun to decline in 
2002. But, the loss cycle was not apparent to the market until late 2001. Most of the losses in 
2001 and all of the losses in 2000 are due to the aggravation of losses that already were in 
claim. In the context of the actuarial loss history, the loss cycle was not identifiable until it was 
already half over. 

The loss cycle has often been compared to hurricanes and other natural catastrophes and 
they both are managed in similar ways. But, they are very different to a pricing actuary. 
Unlike most other catastrophes, the loss cycle is not a Poisson process. If we have a loss 
cycle this year, then it will be a few years before we have another one. Loss cycles require 
weak companies and excessive competition. It takes time for these economic conditions to 
redevelop once a loss cycle occurs. However, the fact that there are many different types of 
loss cycles makes the time between loss cycles very difficult to predict. For example, the time 
between the last two Contract Surety cycles was about 13 years (1987 to 2000). But, if we 
include Commercial Surety, the period drastically shortens. The last Commercial Surety loss 
cycle (credit cycle) was in 1992. The fact that we have multiple different types of loss cycles 
does add some Poissoo-style risk to the pricing, but does not make it a full Poisson process. 

Understanding the loss cycle is a vital part of the pricing process. It ultimately determines 
whether the insurer makes money or not. It is a particularly difficult component to price 
because the long time periods which separate loss cycles limits the usefulness of loss 
histories. Predictions are as much art as science and crystal balls invariably find their way into 
the process. Some actuaries have expressed their confidence in the new economy and that 
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the durations between loss cycles are increasing. Others point to the increasing reliance 
businesses have on the credit markets as a fundamental destabilizing force, which should 
shorten the durations between loss cycles and increase their severities. Today, there is no 
consensus. The only general conclusion that can be drawn is the fact that insurers tend to be 
too optimistic. Historically, too many have found themselves with inadequate banks when the 
loss cycle begins. 

6 Conclusion 

There are many new products at the intersection of the insurance and financial markets, and 
some of the traditional insurance products now have financial flavors. The traditional 
insurance methods for evaluating and managing these risks have become out-dated. The 
goal of this paper is not to give a definitive proposal, but to invite actuaries, underwriters and 
senior managers to look at these products from a new perspective. The biggest danger to 
insurance is in not changing. This was made very evident by the enormous exposures 
insurers had to Enron and by the fact that many of the resulting claims by Enron's obligees 
were entirely unanticipated. In conclusion, we strongly believe that following the lead of 
financial markets could help the insurance industry quantify and manage Credit & Surety risks 
more effectively and more efficiently. This will ensure the long-term availability of sufficient 
capital, and thus capacity, for this line of business. 
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Credi t  & Sure ty  Pr ic ing and the Ef fects  o f  F inancia l  Market  Conve rgence  

The Calculation of  Expected Loss 

(1) Principal XYZ Inc. 

(2) Credit Rating Baa3 

(3) Industry Power 

(4) Exposure 25,000,000 

(5) Duration 5 
[A single payment of $25mm is due in 5 years.] 

(6) Moody's Default Rate 3.05% 

(7) Average Recovery Rate 10% 
[Default value for high dsk bonds] 

(8) Cr 100% 
[Bond is a no-recourse demand obligaton.] 

(9) Expected Loss 686,250 
= (4) x (6) x [1 - (7)] x (8) 

(10) Discount (@ 5%) 0.764 

(11 ) PV(Expected Loss) 537,695 
= (9) x (10) 

Appendix 1 
Page 1 
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Cred i t  & Sure ty  Pr i c ing  and the  Ef fec ts  o f  F inanc ia l  Marke t  C o n v e r g e n c e  

The Calculation of Expected Loss for XOL Reinsurance 

Appendix 
Page 2 

OO 

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11 ) (12) (13) 
Reinsurance Loss 

Name of Notional S&P Moody Selected Recovery Ground Up 
Index Credit Amount Term Rating Rating Rating Default Rate ct Rate Expected Loss 1M X 1M 3M X 2M 5M X 5M 

I A 20,000,000 1.000 B+ B2 B2 7.160% 70% 10% 902,160 
2 B 12,000,000 1.000 B+ BI BI 4.680% 70% 10% 353,808 
3 C 9,000,000 1.000 B B3 B3 I 1.620% 70% 10% 658,854 
4 D 8,000,000 1.000 BB+ Bal Bal 0.870*/, 70*/0 10% 43,848 
5 F 7,500,000 1.000 BBB Boa2 Boa2 0.170% 70% 10% 8,033 
6 G 7,000,000 1.000 BB+ Bal Bal 0.870% 70% 10% 38,367 
7 H 7,000,000 1.000 A A2 A2 0.01 I% 70% 10% 479 
8 I 6,800,000 1.000 BB+ Bal Bal 0.870% 70% 10% 37,271 
9 J 6,500,000 1.000 BB+ Bal Bal 0.870% 70% 10% 35,627 
10 K 6,000,000 1.000 A A2 A2 O.011% 70% 10% 411 
I I L 5,000,000 1.000 BB Bal Bal 0.870% 70% 10% 27,405 
12 M 5,000,000 1.000 BBB Baa2 Boa2 0.170./0 70% 10% 5,355 
13 N 5,000,000 1.000 BBB- Boa3 Boa3 0.420% 70~ 10% 13,230 
14 O 4,000,000 1.000 BB- Bal Bal 0.870% 70*/, 10./0 21,924 
15 P 3,500,000 1.000 B+ B1 BI 4.680% 70% 10% 103,194 
16 Q 2,000,000 1.000 AA Aa2 Aa2 0.001% 70% 10% 17 
17 R 2,000,000 1.000 BB+ Bal Bal 0.870% 70% 10% 10,962 
18 S 1,500,000 1.000 BB Ba2 Ba2 1.560% 70% 10% 14,742 
19 T 1,500,000 1.000 B B2 B2 7.160% 70% 10% 67,662 
20 U 1,500,000 1.000 BBB- Boa3 Boa3 0.420% 70% 10% 3,969 

50,120 150,360 
32,760 98,280 
81,340 244,020 
6,090 18,270 
1,190 3,570 
6,090 18,270 

76 228 
6,090 18,270 
6,090 18,270 

76 228 
6,090 15,225 
1,190 2,975 
2,940 7,350 
6,090 9,744 

32,760 37,674 
8 

4,872 
3,822 

17,542 
1,029 

250,600 
163,800 
252,154 

13,398 
2,083 
7,917 

99 
6,82 I 
5,177 

30 

Notes: (10) = (2) x (7) x (8) x [1-(9)) 
(11 ) = (7) x (8) x Min[Max[(2)x[1-(9)]-1M,0],IM] 
(11 ) = (7) x (8) x Min[Max[(2)x[1-(9)]-2i,0],3i} 
(12) = (7) x (8) x Min[Max[(2)x[1-(9)]-5a,0],5i] 

Expected Loss in Layer: 266,265 642,735 702,078 
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0 " 1 2 3 4 5 6 7 8 9 10 

~D 

NoDef 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 
Aaa 0.000% 0.000% 0.000% 0.001% 0.002% 0.003% 0.004% 0.005% 0.007% - 0.008% 0.010~ 
Aal 0.000% 0.001% 0.003% 0.010% 0.021% 0.031% 0.042% 0.054% 0.067% 0.082% 0.100% 
Aa2 0.000% 0.001% 0.008% 0.026% 0.047% 0.068% 0.089% 0.111% 0.135% 0.164% 0.200% 
Aa3 0.000% 0.003% 0.019% 0.059% 0.101% 0.142% 0.183% 0.227% 0.272% 0.327% 0.400% 
A! 0.000% �9 0.006~ 0.037% 0.117% 0.189% 0.261% 0 . 3 3 0 % 0  0.406% 0.480% 0.573% 0.700% 
A2 0.000% 0.011% 0.070% 0.222% 0.345% 0.467% 0.583% 0.710% 0.829% 0.982% 1.200~ ̀ 
A3 0.000% 0.039% 0.150% 0.360% 0.540% 0.730% 0.910% 1.110% 1.300% 1.520% 1.800~ 

Baal 0.000% 0.090% 0.280% 0.560% 0.830% 1.100% 1.370% 1.670% 1.970% 2.270% 2.600~' 
Baa2 0.000% 0.170% 0.470% 0.830% 1.200% 1.580% 1.970% 2.410% 2.850% 3.240% 3.600% 
Baa3 0.000% 0.420% 1.050% 1.710% 2.380% 3.050% 3.700% 4.330% 4.970% 5.570% 6.100% 
Bal 0.000% 0.870% 2.020% 3.130% 4.200% 5.280% 6.250% 7.060% 7.890% 8.690% 9.400~ 
Ba2 0.000% 1.560% 3.470% 5.180% 6.800% 8.410% 9.770% 1 .0 .700% 11.660% 12.650% 13.500% 
Ba3 0.000% 2.810% 5.510% 7.870% 9.790% 11.860% 13.490% 14.620% 15.710% 16.710% 17.660~ 
B! 0.000% 4.680% 8.380% 11.580% 13.850% 16.120% 17.890% 19.130% 20.230% 21.240% 22.200~ 
B2 0.000% 7.160% 11.670% 15.550% 18.130% 20.710% 22.650% 24.010% 25.150% 26.220%. "27.200% 
B3 0.000% 11.620% 16.610% 21.030% 24.040% 27.050% 29.200% 31.000% 32.580% 33.780% 34.900% 
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Abstract 

This paper presents a methodology that represents a significant enhancement to current pricing 
practices. The goal of this methodology is to estimate the impact that a rate change will have on 
a company's policyholder retention and the resulting profitability of this transformed book of 
business. The paper will present the basics of this methodology as well as where future work 
will need to be done to bring this methodology into mainstream pricing. The work that the 
authors have done in this area has focused on Private Passenger Auto Insurance but these 
techniques could be applied to other lines of business. 

Introduction 

There is a wealth of actuarial literature regarding appropriate methodologies for using exposure 
and claims data in order to calculate indicated rates. Techniques have been developed to address 
difficult issues such as small volumes of data, years that are particularly immature and high 
excess layers of coverage. All of these techniques ultimately produce a set of actuarially 
indicated rates and rating factors. When it comes to deciding on the rates and rating factors that 
will actually be used in the marketplace, however, a new dynamic begins to enter the picture. 

A revised set of rates will impact the profitability of the companies' book of business in a number 
of different ways. There is the obvious impact that the revised rates will have on the premiums 
that policyholders are paying. There is also the more intangible impact of the policyholder 
reaction to the rate change. A rate change exceeding a certain threshold will likely send a 
customer shopping for an alternate insurer. Depending on the alternative premiums that are 
available in the market, that customer may decide to insure with another company. If a rate 
change produces a large number of such non-renewals within the company's book of business, 
the revised rates could impair the intended benefits of the rate change. Alternatively, if the non- 
renewals that occur are in classes of business that are particularly unprofitable for the company, 
its profitability could actually be enhanced by the non-renewal activity. 

Companies often have a number of ad hoc "rules of thumb" for determining the amount of a rate 
change that the market will bear, but very few rigorous models exist that attempt to estimate the 
likely customer reaction to a rate change. An approach to pricing that considers not only the 
impact of the new rates on the average premium charged, but also on the renewal behavior of 
policyholders can thus be a significant step forward for determining appropriate prices and likely 
future profitability. The question that must be asked is "Are there a family of models that can 
model the renewal behavior of policyholders?" 

Actuarially Sound Rates 

This paper will present methodologies that will allow the consideration of the impact of 
policyholder retention in the pricing process. As such, the rates that are being considered in such 
an approach may not be the same as the actuarially indicated rate. However, since no actuarial 
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method produces an indicated rate that is precisely correct in all situations, there will always be a 
reasonable range of actuarially sound rates. The methodologies presented in this paper 
demonstrate how the decision regarding which rate to implement can be made with more rigor 
than is possible with the current approaches used in the industry. 

I. Agent Based Modeling 

A. What is It? 

A family of techniques that has been successfully applied to model similar behavior in the past is 
called Agent Based Modeling. Simply put, in using these techniques, models are built which 
contain factors, agents and rules. Factors are the quantitative measures of the system that is 
being modeled. In the example of modeling customer reaction to rate changes, the factors would 
encompass the rates and rating factors for a company and its competitors. It would also include 
the loss potential of various classes of business that would be used to determine profitability of 
those business classes. The agents in the model are the units between which interactions take 
place. In the modeling of rate change reactions, agents would consist of customers, competitors, 
insurance agents, etc. The rules describe how the different agents in the model will interact. 

One of the problems encountered in applying agent based modeling to insurance is with 
nomenclature. We have agents in the model and agents who are selling policies. To complicate 
matters even further, the insurance agents are one of the agents in the model. Throughout this 
paper, in order to assure that the terminology is succinct, an agent in the model will be referred to 
as an economic agent while an agent selling insurance will be referred to as an insurance agent. 

Economic agent behavior is assigned rules, based on a combination of historical data, surveys, 
focus groups, and analysis. The models are run under various scenarios and the results can be 
used to help determine a strategic direction with insights that cannot be discerned with the 
current "rules of thumb" type approach. 

An example of a successful application of economic agent based modeling is the modeling of 
changes in retirement behavior, measured by retirement ages, in response to law changes. In an 
article in Behavioral Dimensions of  Retirement Economics by Robert Axtell and Joshua Epstein l, 
the changes in retirement behavior since 1961 were successfully modeled. In 1961, the minimum 
age at which a worker could receive Social Security benefits was reduced from 65 to 62. It was 
expected that the average retirement age would reduce somewhat quickly to the lower age as a 
result of this change in benefits. 

The actual experience however, was somewhat different. Peoples' average retirement ages did 
move towards younger ages but the transformation took nearly three decades, which was much 
longer than expected. What was missing from the original estimations that caused the actual 
experience to differ so greatly? 

Robert L. Axtell and Joshua M. Epstein, 1999, "Coordination in Transient Social Networks: An Agent-Based 
Computational Model of the Timing of Retirement." Behavioral Dimensions of Retirement Economics: 161-186 
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The original models were predicated on the assumption that the primary factor that influenced 
retirement age was the laws surrounding Social Security benefits. Reality, however, is more 
complicated than that. After researching the factors that influenced retirement ages, it was 
determined that a major factor in the decision to retire is the retirement decisions of other people 
in an individual's social network. By constructing models that consider these social interactions, 
a set of economic agents and rules were developed that accurately predicted the retirement age 
decisions of a population of individuals. This seemingly complex decision making of individuals 
could thus be accurately modeled, in the aggregate, with the proper alignment of economic 
agents and straightforward decision rules. 

B. Constructing a Model of Insurance Retention 

If models can be constructed that accurately predict the retirement decisions of a population, it is 
not difficult to imagine the construction of models that accurately predict the decisions of a group 
of policyholders to remain with their current insurer or to switch from their current insurer to 
another. In order to construct such a model, the first step is to describe the process that an 
insured will utilize in deciding to renew his policy or switch to another insurer. 

1. The insured receives his renewal notice approximately 45 days prior to policy expiration. 
2. If the premium decreases or increases modestly, the insured will likely renew the policy with 

his current insurer. 
3. If the premium increases significantly, the insured will likely begin shopping around. 
4. The insured will do some market research by calling other insurance agents or getting quotes 

over the phone or internet. 
5. Depending upon the savings that can be realized, the insured will either stay or move. 

This is a rather simple model as it relies solely on price as the factor upon which the decision is 
made. In reality, the process is more complex as other factors, such as quality of service, brand 
name recognition and financial stability enter into the decision as to where to buy insurance. 
However, many recent studies have shown that price is the most significant factor. Thus, once 
models can be constructed that accurately model behavior based on price, more complex models 
can subsequently be constructed that would consider elements other than price. Methods used to 
modify the basic model in consideration of these other elements will be discussed further in 
section II.F. 

Throughout this paper, private passenger auto insurance will be used as an example line of 
business. These techniques could apply to other lines as well. 

164 



C. Economic Agent Based Approach versus Current Approach 

The current "rules of thumb" approach may have been good enough at one time. It may also be 
true that this approach will be acceptable today in a situation where the rate change is simple. An 
example would be a rate change that applies only to the base rates. However, one of the trends 
for virtually all lines of business is that rate structures have become more refined over time. 
Using automobile insurance as an example, the number of different possible combinations of rate 
classes is so great that it is not possible to assess all of the changes that individual policyholders 
will experience in a rate change where base rates, territorial factors, driver classification factors 
and accident surcharges all change at the same time. 

The economic agent based approach requires a model that analyzes the impact of a rate change at 
the individual insured level, taking into account class, territory, etc. The rate impact on detailed 
classifications can be assessed and thus the likely behavior of members of each of the 
classifications can also be assessed. By combining this retention information with information 
regarding the profitability of each of these individual classes, a powerful tool is built. This tool 
can be used to test a number of different rate scenarios in order to determine an optimal 
combination of profitability and retention. 

For the application we created, the ABM modeling approach has advantages over traditional 
economic approaches to estimating buyer elasticity of demand. Traditional approaches would 
require empirical studies of policyholder reaction to rate changes and then the construction of 
elasticity curves from this analysis. While traditional approaches are useful during both a stable 
economic and competitive environment these conditions rarely exist for an extended period of 
time. The ABM approach allows for the ability to separate the impacts of the economy on a 
policyholder's propensity to shop and the level of price competition on the policyholder's ability 
to find an alternate policy at a lower price. 

Another advantage of the ABM approach is that it allows for the modeling of emergent behavior. 
These are behavioral impacts, which may seem irrational at an individual level but are exhibited 
when the behavior of a group is analyzed as a whole. An example of this phenomenon is the 
observed behavior of groups of insured to leave when they are presented with a rate decrease. 
This seems irrational at an individual level but this phenomenon is accepted as regularly 
occurring 

An additional key issue to note is that, while the model operates at the individual insured level, 
the goal of the model is to project the aggregate behavior of an entire book of policyholders. 
Thus, precise modeling of the behavior of each individual insured is not required in order to 
accurately model the overall behavior of a book of policyholders. 
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II. An Actual Model in Operation 

A. The Economic agents in the Model 

In constructing such a model, the first decision that must be made is "what are the appropriate 
economic agents to include in the model?" In the case of the retention/profitability model, there 
are four economic agents in the model. These economic agents are 

1. The policyholders 
2. The company that is considering changing its rates 
3. The other companies that form the competition in the state 
4. The insurance agents who are selling policies 

B. The Factors in the Model 

As previously mentioned, factors are the quantitative measures of the system that is being 
modeled. For a retention model, factors would comprise the companies new and old rate sets as 
well as the rates of market competitors. In addition, the claims frequencies and severities by 
major risk class will also need to be entered into the model. The methodology used to process 
this information will be described more fully in section 1I D. 

C. The Rules for Interaction 

Once the economic agents in the model are determined, the rules for interaction must then be 
determined. Using the structure of the model described above, the rules required for the model 
can be developed. 

1. Policyholder/Company Interaction 
When the policyholder receives his renewal notice, a number of factors will determine his 
likelihood of shopping for an alternate insurer. These include the amount of a rate increase 
that he sees, his satisfaction with the handling of a claim (if this occurred during the most 
recent policy period), his satisfaction with policyholder service that he may have received 
throughout the policy period (e.g. for a change in vehicle), past rate changes that the 
policyholder experienced and position in the underwriting cycle. The focus of this paper is the 
amount of rate increase that the policyholder experiences and the impact that the change has 
on the policyholders propensity to shop and switch his policy. 

The likelihood to shop is related to the concept of the price elasticity of demand. Since auto 
insurance is a mandatory product in most states, a significant increase in price does not 
normally cause a driver to forego purchasing insurance, but instead causes him to shop. At 
what amount of rate change does the decision to shop occur? The decision of whether to seek 
an alternate insurer can be expressed as a probability function describing the relationship 
between the dollar (or percentage) change in an individual insured's premium and the 
likelihood of that insured researching the premiums of alternate insurers. We will refer to this 

166 



function as the shopping function. The shopping function could be expressed either as a 
discrete function or a continuous function. The following would be a simple example of such 
a function 

Premium Increase Likelihood of Shopping 
$0 and below 2% 
$1 to $50 5% 
$51 to $100 25% 
$101 to $200 70% 
$201 to $300 85% 
$301 and above 100% 

2. Policyholder/Competitor Interaction 
If the rate increase is significant enough, and the policyholder decides to shop for coverage 
from another insurer, the rates of those insurers will come into play. If the policyholder finds 
that the price he has with his current insurer is less expensive than the prices charged by other 
companies, then the policyholder is unlikely to move coverage to another company. If, 
however, the price charged by the other companies is significantly less than that charged by 
the current insurer, the likelihood of the policyholder moving coverage to one of the other 
companies would be significant. Similar to the shopping function, the likelihood of a 
policyholder moving from one company to another can be described by a probability function. 
This function would describe the likelihood that a policyholder would move to another 
company given the amount of savings that could be realized. We will refer to this function as 
the switching function. 

Similar to the shopping function, the switching function could be expressed either as a discrete 
function or a continuous function. The following would be a simple example of such a 
function 

Premium Savings Likelihood of Switching 
$0 and below 2% 
$1 to $50 15% 
$51 to $100 40% 
$101 to $200 95% 
$201 to $300 98% 
$301 and above 100% 

The shopping and switching functions shown above are for illustration purposes only and are not 
based on independent research performed by the authors. The functions also show the 
probability based on the dollar amount of change. Work done by the authors has shown that both 
the dollar amount and percentage change are important predictors of shopping and switching 
behavior. The process required to develop shopping and switching functions is described later in 
this paper 
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3. Policyholder/Agency interaction 
Whether the policyholder uses an insurance agent or buys coverage directly from the company 
is likely to have an impact on the likelihood of switching from one company to another. For 
policyholders using an independent insurance agent, alternative quotes can be obtained from 
the policyholders' own insurance agent. Thus, the likelihood of switching is probably greater 
with an independent insurance agent than with a direct insurance agent since it is easier for the 
customer to obtain alternative quotes from the independent agent. This would be addressed in 
the model by having one shopping function used for shopping for alternative quotes via the 
policyholders own insurance agent and a separate shopping function, with higher threshold 
amounts, that would be used for determining whether the policyholder will seek alternative 
quotes from other insurance agents or through other direct writers. 

Insurance agents may also influence the behavior of their customers. For example, an 
insurance agent who considers a particular insurer to be a good business partner due to strong 
policyholder and claim service or a favorable commission structure may try to keep policies 
with that particular company, regardless of rates being offered by competitors. 

The direct sale of insurance could have a significant impact on these functions. One of the 
reasons that direct sale of insurance is becoming more prevalent is that policyholders have 
better access to competitive information and indeed have the ability to purchase a policy via 
the Interact. As purchasing coverage directly from a company becomes more popular, the 
likelihood of switching from one company to another should increase as the effort required to 
comparison shop a policy will be reduced. The direct sale of insurance increasing the amount 
of price shopping that occurs, increases the need to perform the type of modeling that is 
described in this paper. 

In order to keep the presentation in the paper more straightforward, the illustrations in this 
paper do not consider policyholder/insurance agent interaction. 

D. Model in Operation 

In order to develop and utilize such a model, the following information must be input to the 
model. 

1. Current rates and rating factors of the company used to determine premiums 
2. Proposed rates and rating factors of the company 
3. Rates and rating factors of key competitors - These should be the largest companies in the 

state as these are the companies from which policyholders are most likely to get quotes. In 
addition, as policyholders of companies using independent insurance agents are likely to get 
an initial quote from the insurance agent, the most common competitors in insurance agents 
offices should also be used in the model. 

4. The profitability of the different classes of business for the company 
5. The current in force distribution of policyholders in the various rate classes 
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With this information put into the model, it can be run tO test alternative proposed rating 
structures. This is done by creating a virtual marketplace and applying a Monte-Carlo simulation 
to the individual policyholders in the marketplace. The model will first generate a group of 
policyholders consistent with the companies' policyholder distribution across key classes (age, 
gender, marital status, etc.). The current and proposed rates of the company will then be used to 
determine the amount of rate change that the individual policyholders will experience. The 
premium change, in combination with the shopping function, will determine the probability of 
each individual policyholder shopping. The simulation is then run which results in certain 
individual policyholders deciding to shop. The policyholders that decide to shop will go into the 
market to seek alternative quotes and will thus determine the possible savings by switching to 
another company. The savings, in combination with the switching function will determine the 
probability that an individual policyholder will switch. A second simulation is then run which 
results in certain individual policyholders deciding to switch to another company. In addition, 
certain policyholders of the competitors will shop their policies as well. While there are a 
number of factors driving this behavior, our model assumes that all policyholders of the 
competitors are likely to shop with equal probability. The model will be run for multiple 
iterations until the results converge to an equilibrium level of retention and profitability. 

Essentially the model tracks the distribution of policyholders across various rate classes before 
and after the rate change. The model then combines this information with the profitability by 
class in order to produce an estimate of the total profitability that will be realized under each rate 
scenario as well as the volume of business that will be written under each scenario. 

E. Example of Determining Customer Retention 

An example will help to clarify the operation of the model. This example describes how the 
model will work for an individual policyholder. Consider an example driver with the following 
characteristics 

Age 35-44 
Gender Female 
Marital Status Married 
Single Car/Multi-Car Multi-Car 
Driving Record Clean 
Number of Years Loss Free 5 
Vehicle usage Drive to Work < 10 miles 
Rating Territory 12 
Liability Limit 100/300/50 
Comprehensive Deductible 100 
Collision Deductible 250 
Vehicle Model Year 1996 
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In addition, the following premiums apply for this policyholder. 

Current Premium $500 
New Premium $555 
Premiums of Competitors 

Competitor # 1 $619 
Competitor #2 $452 
Competitor #3 $544 
Competitor #4 $592 

Since the policyholder experiences a $55 increase in premium, the shopping function would 
predict that 25% of these policyholders will shop. When they shop, they learn that a savings of 
$103 is possible and 95% of the policyholders will switch for this amount of savings. Via the 
simulation, the rate increase will cause 24%(=25%x95%) of policyholders to leave the company. 
If there were 250 policyholders with the above characteristics, the simulation would be expected 
to result in the company losing 60 of these policyholders due to the rate change. If these 
policyholders were expected to earn an annual profit of 15% (i.e. this assumes that total losses 
and expenses are $472 per policy) at the higher rate level, the following table describes the 
expected premium and profit at the higher rate level 

Current Premium 
Premium after rate change 
Profit after rate change 

$125,000 (=$500x250) 
$105,450(=$555x190) 
$15,818(=$555x190x15%) 

These results can be compared to the results of no rate change and a 9% rate increase to a 
premium of $545. Note that with a 0% change, the profit would be 5.6% of premium and with a 
9% increase, the profit would be 13.4 % of premium (again assuming that total losses and 
expenses are $472 per policy). In addition, the 9% increase would result in losing only 2% of 
policyholders as 5% would shop for alternatives and 40% of those would switch companies for 
the $93 savings that could be achieved. 

Premium with 0% change 
Profit with 0% change 

$125,000 (=$500x250) 
$7,000 (=$500x250x5.6%) 

Premium after rate change 
Profit after rate change 

$132,300 (=$540x245) 
$17,728 (=$540x245x13.4%) 

Obviously, the 9% rate increase is preferable as it produces a larger total profit. These results for 
each individual class will be accumulated in order to determine the total projected premium and 
profit for a specific rate scenario. The volume/profit tradeoff under each scenario can thus be 
reviewed in order to determine the rate structure that is considered best for the company. 
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F. Aggregation of Results 

The example in the previous section was simplistic from a number of different perspectives. 
First, it dealt with a single combination of risk classes while a company's book of business is 
comprised of numerous different risk classes. Obviously, each such combination will have its 
own premium. Second, the shopping and switching functions in the example are also simplistic. 
The example functions shown describe the behavior of one combination of risk classes, however, 
the shopping and switching functions need to be more specific to the behavior of different risk 
classes in order for the model to accurately estimate the behavior of an entire book of business. 

Constructing a more comprehensive model requires that the rate change, competitive position 
and shopping and switching propensities of different risk classes are known. The complexities of 
current rate structures requires that a thorough modeling framework be developed in order to 
model results at the individual class level and then aggregate the results across all of the possible 
combinations of driver class, territory, driving record, number of times renewed, etc. However, 
at its basis, the process involves aggregating results at the individual class level as described in 
section E. 

By constructing models for different rate change scenarios, the retention and profitability of these 
different scenarios can be examined. The following three examples show how different rate 
scenarios can be analyzed in order to provide greater insight into their impact on retention and 
profitability. 

Different scenarios with same overall rate change 
A company is targeting a 5% overall rate increase, but there are three specific sets of changes 
that are being considered for implementation. 

Scenario 1 
Only changing territorial base rates. 
This option would have rate changes vary by territory but not across other rating 
variables. 

Scenario 2 
Changing territorial base rates so that the territorial relativities are the same as Scenario 1. 
Changing a policy renewal discount to give a greater discount to policyholders that have 
been insured by the company for six or more years since the loss data of the company 
indicates that a greater discount is justified. Currently, all policyholders receive a 5% 
discount after three years. The proposed rate structure adds a 10% discount after six 
years. In this scenario, the territorial base rates would be offset in order to make up for 
the increase in the renewal discount and thus maintain the targeted 5% increase. 

Scenario 3 
Changing territorial base rates so that the territorial relativities are the same as Scenario 1. 
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Changing a policy renewal discount to give a greater discount to policyholders that have 
been insured by the company for six or more years since the loss data of the company 
indicates that a greater discount is justified. 
Changing the Multi Car discount to give a greater discount to multi car policies since the 
loss data of the company indicates that a greater discount is justified. Again, the 
territorial base rates would be offset in order to maintain the overall 5% increase 

As you move from scenario 1 to scenario 3, policyholders will experience more extreme rate 
changes. For instance, consider a territory in scenario #1 in which all coverage base rates are 
increased by 5%. All policyholders will experience a 5% increase unless there is a change in 
policy characteristics such as a change in vehicle or driving record. However in scenario #2, 
base rates need to increase by 7% in order to make up for the greater discount for 
policyholders insured for six or more years. Policyholders insured for five or fewer years will 
experience a 7% increase while policyholders insured for six or more years will experience a 
2% increase (7% base rate increase combined wit a 5% greater discount). This demonstrates 
the more extreme rate changes experienced in scenario 2 versus scenario 1. 

Thus, policyholders will experience the most extreme rate changes in scenario #3 and thus 
more policyholders will tend to shop their policies in this scenario. What impact will this 
have on the book of business in terms of retention and profitability? By applying the 
techniques mentioned previously, the following table can be produced to compare the 
modeled results of these different scenarios. 

Scenario Premium Retention Loss Ratio Operating Result 
1 149,134 88.5% 66.5% $3,672 
2 151,263 88.6% 65.5 % $5,318 
3 154,412 88.7 % 64.4 % $7,031 

As this table demonstrates, Scenario 3 yields the best profit since the company is retaining 
more of the more profitable multi-car, renewal policies. 

2. Different overall rate changes 
A company is considering different base rate changes. The three options being considered 
are for a 3% overall rate increase, a 5% overall rate increase and a 7% overall rate increase. 
Which scenario will produce the best profit? Will the highest rate change produce 
unacceptably low retention values? A similar table to the previous table can be presented that 
compares these different scenarios. 

Scenario Premium Retention Loss Ratio Operating Result 
+3% 151,885 88.5% 65.92% $4,678 
+5% 153,606 87.5% 64.46% $6,980 
+7% 155,336 86.9% 63.02% $9,283 
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The above table shows that the operating result projected under the +7% scenario produces 
the greatest profit. This is because the reduction in the retention is more than offset by the 
increase in premium and so the total premium is greatest under the +7% scenario. The 
question then remains as to whether the 86.9% retention is acceptable to the company. This 
decision will need to be based on the growth goals of the company. The decision process 
will vary from company to company. 

3. Effect of rating plan changes 

Most companies offer a discount for renewing a policy with one company. Is a company 
better off taking a deeper discount on the older more profitable policies in order to retain 
them for a longer period of time at a less profitable level? Or is the company better off by 
offering less of a discount in order to maintain a higher profitability but suffer somewhat in 
policyholder retention? Retention modeling allows for these types of questions to be 
answered. For example, consider a situation in which a company is concerned that its current 
rate structure is too heavily discounted for policies with longer renewal persistency. It is 
considering two rate changes of +5% overall. In one scenario, it is making no changes to its 
renewal discount. In another scenario, it is reducing the discount for policies at the sixth and 
greater renewals. 

Scenario I 
# Times 
Renewed 

0-2 
3-5 +5% 
6-8 +5% 
9+ +5% 

Total +5% 

Rate Change 
+5% 

Premium 
(000's) Re~ntion 

57,064 84.8% 
34,050f 90.4% 
25,153 90.5% 
36,437 91.8% 

152,704 

Loss Operating 
Ratio Result 

67.5% 856 
67.0% 681 
63.2% 1,459 
55.3% 4,992 

7,988 

Loss Oper~ing 
Ratio Result 

68.6% 230 
67.3% 591 
61.7% 1,880 
53.8% 5,598 

8,299 

Scenario 2 
# Times 
Renewed 

0-2 
3-5 

Rate Change 
+3% 
+3% 

Premium 
(000's) 

56,383 
34,791 

6-8 +7% 25,902 
9+ +7% 36,830 

+5% Total 153,906 

Retention 
85.2% 
90.6% 
90.3% 
91.2% 

The above examples show that the improvement in profitability more than outweighed the 
loss of premium due to lower retention on policies at six and subsequent renewals and thus 
the company would be in a better financial position with the lower discount. These 
calculations could be run over a number of years in order to determine what the lifetime value 
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of this group of insureds will be. The discussion of lifetime customer value is outside the 
scope of  this paper but readers are referred to the paper by Feldblum 2 on the subject. 

These three examples demonstrate the power of these modeling techniques. The decision 
making process that companies have historically utilized require that judgments be made 
regarding the impact of the rate change on retention, however, these judgments were largely 
based on anecdotal information regarding customer reaction to a rate change. In addition, these 
decisions are often based on review of a limited number of risks reviewed as part of a 
competitive analysis. The modeling techniques described in this paper combine a quantitative 
specification of how customers do react to a rate change with a review of thousands of different 
risks (potentially, a company's entire book of business) in order to model customer retention and 
the resulting impact on profitability. These techniques also allow for modeling over multiple 
time periods. Modeling over multiple time periods has the advantage of projecting results over 
more than a one-year time horizon in order to see if there will be any negative consequences of 
taking less than the indicated rate change in the current year. However, it also requires estimates 
of future competitive position and this adds more uncertainty to the model. 

G. Parameterization of the Switching and Shopping Functions 

The switching and shopping functions are the most difficult elements of the model to 
parameterize. Possible sources for this information are the following: 

1. Industry studies - Industry studies of the relationship between customer loyalty and price have 
been done and these could be used to determine appropriate probabilities for these functions. 

2. Surveys o f  policyholders - A company could survey its own policyholders to determine the 
likelihood of shopping and switching policies at various price levels. Work done by the 
authors has shown the following to be significant predictors of retention 

�9 Amount of Rate Change 
�9 Competitive position 
�9 Driver Age 
�9 Multi Car/Single Car 
�9 Existence of other policies (e.g. existence of a homeowners policy) 
�9 Number of Times Renewed 
�9 Channel (Agency company versus a direct writing company) 

3. Actual company experience - by matching rate change histories with renewal data, a company 
could determine the likelihood of a policyholder switching based on actual company data. 

2 Sholom Feldblum, 1996, "Personal Automobile Premiums: An Asset Share Pricing Approach for Property/Casualty 
Insurance", Proceedings of the Casualty Actuarial Society: 190-296. 
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The industry data could be used as a starting point for determining these functions, but this 
approach has two main disadvantages. First, the industry studies will, by definition, describe 
average policyholder behavior for the entire industry. As mentioned earlier, the likelihood of a 
policyholder moving is different for a company selling policies directly as compared to one that 
is selling via insurance agents. Other dynamics will also cause differences in the shopping 
behavior of the policyholders of different companies. Thus, once a model is developed using 
industry data, it should be enhanced with company specific switching and shopping functions. 
This could be accomplished via the surveys and company experience discussed above to 
determine the appropriate functions. The second disadvantage of using industry studies as a 
starting point is that these studies were not designed for the specific purpose of developing 
shopping and switching functions and thus will not have all of the required data. 

Once the basic shopping and switching functions have been developed, they need to be tested. 
This can be accomplished by running a historical rate change through the model and comparing 
the modeled results to the actual results to test model performance. The testing may be done at a 
fairly detailed level or at a more aggregate level depending on the intended use of the model. It is 
the experience of the authors that survey data will predict actual retention behavior of a group of 
policyholders quite well for certain dimensions of a company's rate structure but will under 
performs in other dimensions. Thus the process of back-testing the model in order to tune the 
shopping and switching functions to a company's actual experience is critical to the accurate 
performance of the model 

H. Future Enhancements 

As is the case with any modeling exercise, it generally starts with a simple example and then 
more complexity is added in order to improve the accuracy of the basic model as the technique 
matures. The basic model presented here could be enhanced in the following ways. 

1. Refinement of shopping and switching functions 

The sample shopping and switching functions presented in this paper are very simplistic and 
are merely designed to demonstrate the concept of how such models could work. In reality, 
modeling of behavior is much more complicated than the functions presented in this paper. 
Proper design of these functions is critical to model development. 

In order to assess the shopping function, policyholder surveys will probably be required. 
Analysis of a company's retention data will not give information about all of the policyholders 
that decide to "test the waters" for another insurer. Such a survey should be directed at a 
proper cross section of the policyholder base in order to assess the effect of age, gender, 
current premium level, etc on the propensities to shop and switch. This survey could arm the 
company with a detailed shopping function that would be fully indicative of its policyholder 
base. 

175 



The switching function could be determined through a combination of data analysis and 
surveys. The advent of insurance market websites provides a single source of information 
regarding the premium of the prior company and the premium of the new company to which 
the policyholder switched. Data from such market websites probably holds the most promise 
for determining the switching function. A survey could also be conducted on policyholders of 
a company that cancel voluntarily to determine the premium savings that were required in 
order for them to switch to a different insurer. 

Alternatively, one overall survey could be conducted that would attempt to determine both the 
shopping and the switching functions. Similar surveys have shown that a policyholder 
generally underestimates the amount of premium that he actually pays, unless he has a copy of 
his last renewal notice in front of him,. Thus, while such surveys would provide the quickest 
method of determining the shopping and switching functions, they should be verified with 
actual data analysis for a company. 

The specificity of the shopping and switching functions is also an area that is of key concern. 
Different policyholders will have different shopping and switching propensities. For instance, 
the more often a policyholder renews with his current insurer, the less likely he is to shop his 
policy, regardless of price changes. In addition, if a policyholder has more than one type of 
policy with a given company, he is less likely to shop his policy. Regional differences in 
shopping behavior also affect the propensity to shop. The work done by the authors has 
shown these to be some of the more critical factors in predicting the shopping and switching 
behavior. Increasing the specificity of these functions will improve the performance of the 
model especially when the rate change is less uniformly distributed by rate class. 

2. Build brand name into the model 
Individual companies' policyholder retention rates can differ quite dramatically. The reasons 
for these differences are varied and have an impact on an individual company's shopping and 
switching functions. The different levels of policyholder service offered by insurers also have 
an impact on retention. Companies operating within a particular market niche will have 
different shopping and switching functions than companies operating across the entire market. 
For instance, a company whose marketing strategy is to emphasize lower prices is probably 
attracting a more price-sensitive customer than a company that is emphasizing policyholder 
service. These types of different marketing strategies should be reflected in the model via 
shopping and switching functions that are geared towards a company's own marketing 
strategy. Thus, the shopping and switching functions should be company-specific. The 
techniques mentioned previously in this paper should be applied to develop company-specific 
shopping and switching functions. 

3. Changing data structures to support retention modeling 
Data structures in company databases could be modified in order to better track the impact of 
rate changes on a policyholder and thus better assess the shopping and switching functions. 
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One example of additional data that should be captured is premium data on policyholders that 
did not renew policies. Usually, these policyholders are eliminated from most "actuarial" 
databases and thus information allowing the assessment of the likelihood of policyholder non- 
renewal is lost. 

A second example of an additional data element is an indicator to tell whether there was a 
change in policy characteristics that caused a change in premium. For instance, the 
policyholder may have replaced a car or had an accident in the previous year causing an 
increase in the premium. It is likely that the policyholder will be less likely to shop their 
policy if a premium increase is due to one of these reasons, however, the authors are not aware 
of any published studies examining this phenomenon. Perhaps a $50 increase in premium due 
to a rate increase is just as likely to cause someone to shop as is a $50 increase due to the 
policyholder receiving a moving violation. By assessing the different causes of premium 
increases and the associated changes in retention rates, this issue can be better understood. 

4. Factors other than price producing shopping behavior 
As previously mentioned, the shopping and switching functions predict customer movement 
based solely on rate activity. There are other factors that could cause the policyholders to shop 
for an alternative insurer. These include the policyholder not being satisfied with claim 
service or policy service throughout the year. This could be included in the retention model by 
estimating the number of policyholders that will require claim service or policy service 
throughout the year and estimating the percentage of these policyholders that will be 
unsatisfied with this service and thus shop for alternatives. The number of policyholders that 
will require claim service and policy service can be based on the company's internal data. The 
percentage of policyholders dissatisfied with service can be estimated through survey data. 

An alternative would be to predict some amount of random shopping based on the same type 
of company data as mentioned in the previous paragraph. This random shopping could likely 
form an accurate estimate of the impact of non-price factors on retention. 

5. Impact of Intemet/Direct Advertising 
The intemet has created a new era of consumerism. The level of insurance price comparison- 
shopping that can be accomplished via the internet was previously unheard of. Consumers can 
now receive several comparable quotes through a single internet quoting service. Online 
comparisons are also available through individual company websites such as Progressive. 
Also contributing to the increase in comparison-shopping is the dramatic increase in TV and 
direct mail advertising urging policyholders to shop their policies. These advertising 
campaigns could lead to a rise in spontaneous shopping by policyholders 

Retention modeling is still in a nascent stage of development. The five areas mentioned here are 
areas where some of the more significant work is required in order to bring retention modeling 
into the mainstream of pricing practice. However, as work in these areas progresses, retention 
modeling techniques will become more accepted and accurate. 
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l lI .  Conclusion 

An old adage is that "You can't stop progress". One of the ways that rate structures have 
progressed is that they have become more and more refined over time. The advances in 
computing power have allowed analysis of new data elements and provide the ability to discern 
patterns in the data that simply could not be recognized using single dimensional cross cuts of 
data that, at one time, were the norm. 

While improved technology has produced tremendous advances in determining proper premiums 
for individual policyholders, it has made the assessment of the impact of rate activity a very 
difficult matter. It is now time to use the progress in computing power to address this problem as 
well. By using information on the elasticity of demand to estimate policyholder retention, rate 
structures can be determined that will produce the optimal combination of policyholder growth 
and profitability. 

This paper has presented the framework for a modeling methodology that can be used to find this 
optimal combination. However, much more work in this area needs to be done. Future papers to 
be presented by the authors will focus on more specific shopping and switching functions and a 
case study of modeled results versus actual results from an actual rate change. 
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A b s t r a c t  

We recently conducted a research project for a large North American automobile in- 
surer. This study was the most exhaustive ever undertaken by this particular insurer and 
lasted over an entire year. We analyzed the discriminating power of each variable used for 
ratemaking. We analyzed the performance of several models within five broad categories: 
linear regressions, generalized linear models, decision trees, neural networks and support 
vector machines. In this paper, we present the main results of this study. We qualitatively 
compare models and show how neural networks can represent high-order nonlinear depen- 
dencies with a small number of parameters, each of which is estimated on a large proportion 
of the data, thus yielding low variance. We thoroughly explain the purpose of the nonlinear 
sigmoidal transforms which are at the very heart of neural networks' performances. The 
main numerical result is a statistically significant reduction in the out-of-sample mean- 
squared error using the neural network model and our ability to substantially reduce the 
median premium by charging more to the highest risks. This in turn can translate into 
substantial savings and financial benefits for an insurer. We hope this paper goes a long 
way towards convincing actuaries to include neural networks within their set of modeling 
tools for ratemaking. 

1.  I n t r o d u c t i o n  

Ra t emak ing  is one of the main  ma themat i ca l  problems faced by actuaries.  They  must  first 
es t imate  how much each insurance contract  is expected to cost. This  conditionM expected 
c la im amount  is called the pure premium and it  is the basis of the gross premium charged to  
the  insured. Th is  expected value is condit ioned on information available about  the insured 
and about  the  contract ,  which we call the input profile. 

Automobi le  insurance r a t emak ing  is a complex task  for many  reasons. Fi rs t  of all, many  
factors are relevant.  Taking account  of each of them individually, i.e., making  independence 
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assumptions, can be hurtful (Bailey and Simon (1960)). Taking account of all interactions 
is intractable and is sometimes referred to as the curse of dimensionality (Bellman (1957)). 
In practice, actuarial judgment is used to discover the most relevant of these interactions 
and feed them explicitly to the model. Neural networks, on the other hand, are well- 
known for their ability to represent high-order nonlinear interactions with a small number 
of parameters, i.e., they can automatically detect those most relevant interactions between 
variables (Rumelhart et al. (1986)). We explain how and why in section 4. 

A second difficulty comes from the distribution of claims: asymmetric with fat tails 
with a large majority of zeros and a few unreliable and very large values, i.e., an asym- 
metric heavy tail extending out toward high positive values. Modeling data with such a 
distribution is essentially difficult because outliers, which are sampled from the tail of the 
distribution, have a strong influence on parameter estimation. When the distribution is 
symmetric around the mean, the problems caused by outliers can be reduced using robust 
estimation techniques (Huber (1982), Hampel et al. (1986), Rousseeuw and Leroy (1987)) 
which basically intend to ignore or down-weight outliers. Note that these techniques do not 
work for an asymmetric distribution: most outliers are on the same side of the mean, so 
down-weighting them introduces a strong bias on its estimation: the conditional expectation 
would be systematically underestimated. Recent developments for dealing with asymmetric 
heavy-tail distributions have been made (Takeuchi et al. (2002)). 

The third difficulty is due to the non-stationary nature of the relationship between 
explanatory variables and the expected claim amount. This has an important effect on the 
methodology to use, in particular with respect to the task of model selection. We describe 
our methodology in section 3. 

Fourth, from year to year, the general level of claims may fluctuate heavily, in particular 
in states and provinces where winter plays an important role in the frequency and severity 
of accidents. The growth of the economy and the price of gas can also affect these f~ures. 

Fifth, one needs sufficient computational power to develop models: we had access to a 
large database of ~ 8 x l0 s records, and the training effort and numerical stability of some 
algorithms can be burdensome for such a large number of training examples. In particular, 
neural networks are computationally very demanding. 

Sixth, the data may be of poor quality. In particular, there may be missing fields for 
many records. An actuary could systematically discard incomplete records but this leads 
to loss of information. Also, this strategy could induce a bias if the absence of a data is 
not random but rather correlated to some particular feature which affects the level of risk. 
Alternatively one could choose among known techniques for dealing with missing values 
(Dempster et ai. (1977), Ghahramani and Jordan (1994), Bengio and Gingras (1996)). 

Seventh, once the pure premiums have been established the actuary must properly 
allocate expenses and a reserve for profit among the different contracts in order to obtain 
the gross premium level that will be charged to the insureds. Finally, an actuary must 
account for competitive concerns: his company's strategic goals, other insurers' rate changes, 
projected renewal rates and market elasticity. 

In this paper, we address the task of setting an appropriate pure premium level for 
each contract, i.e., difficulties one through four as described above. Our goal is to compare 
different models with respect to their performance in that regard, i.e., how well they are 
able to forecast the claim level associated to each contract. We chose several models within 
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five broad categories: linear regressions, generalized linear models (McCullagh and Nelder 
(1989)), decision trees (Kass (1980)), neural networks and support vector machines (Vapnik 
(1998a)). 

The rest of the paper is organized as follows: we start by describing the mathematical 
criteria underlying insurance premium estimation (section 2). Our methodology is described 
in section 3, followed by a review of the statistical learning algorithms that we consider in this 
study, including our best-performing mixture of positive-output neural networks (section 4). 
We then highlight our most important experimental results (section 5), and in view of them 
conclude with an examination of the prospects for applying statistical learning algorithms 
to insurance modeling (section 7). 

2. M a t h e m a t i c a l  O b j e c t i v e s  

The first goM of insurance premium modeling is to estimate the expected claim amount for 
a given insurance contract for a future period (usually one year). Here we consider that 
the amount is 0 when no claim is filed. Let X E R n denote the customer and contract 
input profile, a vector representing all the information known about the customer and the 
proposed insurance policy before the beginning of the contract. Let A E t t  + denote the 
amount that the customer claims during the contract period; we shall assume that A is 
non-negative. Our objective is to estimate this claim amount, which is the pure premium 
Ppure of  a given contract x: 1 

pp~Te(x) = E[AI z = x]. (1) 

where E[.] denotes expectation, i.e. the average over an infinite population, and E[A[X = 
x] is a conditional expectation, i.e. the average over a subset of an infinite population, 
comprising only the cases satisfying the condition X = x. 

2.1 The  Precis ion  Cr i te r ion  

In practice, of course, we have no direct access to the quantity (1), which we must estimate. 
One possible criterion is to seek the most precise predictor, which minimizes the expected 
squared error (ESE) over the unknown distribution: 

E[(p(X) - A)2], (2) 

where p(X)  is a pure premium predictor and the expectation is taken over the random 
variables X (input profile) and A (total claim amount). Since the true joint distribution of 
A and X is unknown, we can unbiasedly  estimate the ESE performance of an estimator 
p(X)  on a data set Dtest = {(xi, ai)}N=l, as long as this data set is not used to choose p, 
using the mean - squa red  e r ro r  on that data set: 

1 ~ (p(x,;0) - a,) 2, (3) 
(xl,ai)EDtest 

1. The pure premium is distinguished from the premium actually charged to the customer, which must 
account for the underwriting costs (marketing, commissions, premium tax), administrative overhead, 
risk and profit loadings and other costs. 
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where 0 is the vector of parameters of the model used to compute the premiums. The vector 
x~ represents the i th input profile of dataset Dtest and a~ is the claim amount associated 
to that input profile. Thus, Dt~st is a set of N insurance policies. For each policy, Dust 
holds the input profile and associated incurred amount. We will call the data set Dust a 
tes t  set. It is used only to independently assess the performance of a predictor p. To 
choose p from a (usually infinite) set of possible predictors, one uses an estimator L, which 
obtains a predictor p from a given t ra in ing  set D. Such an estimator is really a s ta t is t ical  
learn ing  a lgo r i thm (Hastie et al. (2001)), yielding a predictor p = LD for a given data 
set D. What we call the squa red  bias of such an estimator is (E[AIX ] - E[LI)(X)]) 2, 
where E[LD(X)] is the average predictor obtained by considering all possible training sets 
D (sampled from P(A, X)).  It represents how far the average estimated predictor deviates 
from the ideal pure premium, E[A[X]. What we call the var iance of such an estimator is 
E[(LD(X) - E[LD(X)])2]. It represents how the particular predictor obtained with some 
data set D deviates from the average of predictors over all data sets, i.e. it represents 
the sensitivity of the estimator to the variations in the training data and is related to the 
classical measure of credibility. 

Is the mean-squared error (MSE) on a test set an appropriate criterion to evaluate the 
predictive power of a predictor p? First one should note that if Pl and P2 are two predictors 
of E[AIX], then the MSE criterion is a good indication of how close they are to E[AIX], 
since by, the law of iterated expectations, 

E[(pl(Z)  - A) 2] - E[(p~(X) - A) 2] = E[(pl(X) - E[AIX]) 2] 

-E[(p2(X) - E[AIX])2], 

and of course the expected MSE is minimized when p(X) = E[AIX ]. 
For the more mathematically-minded readers, we show that minimizing the expected 

squared error optimizes simultaneously both the precision (low bias) and the variance of 
the estimator. We denote ED the expectation over the training set D. The expected squared 
error of an estimator LD decomposes as follows: 

E[(A - LD(X))  2] = E[((A - E[A[X]) + (E[AIX ] - LD(X))) 2] 

= E[(A - E[A]X])2! + E[(E[A]X] - LD(X))  2] 

noise 

+2E[(A - E[A[X])(E[A]X] - LD(X)) 1 
zero 

= noise + E[((E[AtX ] - ED[LD(X)]) + (ED[LD(X)] - LD(X))) 2] 

= noise + E[(E[AIX ] - ED[LD(X)]) 2] + E[(ED[LD(X)] - LD(X)) 2] 

+2E[(E[A[X] - ED[LD(X)])(ED[LD(X)] - LD(X))  1 

zero 

= noise + E[(E[AIX ] - ED[LD(X)])21 + E[(ED[LD(X)] - LD(X))2!. 

bias 2 variance 

Thus, algorithms that try to minimize the expected squared error simultaneously reduce 
both the bias and the variance of the estimators, striking a tradeoff that minimizes the 
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sum of both (since the remainder is the noise, which cannot be reduced by the choice of 
predictor). On the other hand, with a rule such as minimum-bias used with table-based 
methods, cells are merged up to a point where each cell has sufficient credibility, i.e., where 
the variance is sufficiently low. Then, once the credibility (and variance) level is set fixed, 
the bias is minimized. On the contrary, by targeting minimization of the expected squared 
error one avoids this arbitrary setting of a credibility level. 

In comparison to parametric approaches, this approach avoids distributional assump- 
tions. Furthermore, it looks for an optimal trade-off between bias and variance, whereas 
parametric approaches typically focus on the unbiased estimators (within a class that  is 
associated with a certain variance). Because of the above trade-off possibility, it is always 
possible (with a finite data  set) to improve an unbiased estimator by trading a bit of bias 
increase for a lot of variance reduction (Hastie et al. (2001)). 

2.2 T h e  F a i rne s s  C r i t e r i o n  

In insurance policy pricing, the precision criterion is not the sole part of the picture; just as 
important is that  the estimated premiums do not systematically discriminate against specific 
segments of the population. We call this objective the fairness criterion, sometimes referred 
to as actuarial fairness. We define the bias of the premium b(P) to be the difference between 
the average pure premium and the average incurred amount, in a given sub-population P 
of dataset D: 

1 
b(P) = "~1 ~ p(x , ) -a , ,  (4) 

(:c~,al)EP 

where IPI denotes the cardinality of the sub-population P,  and p(.) is some premium esti- 
mation function. The vector xi represents the i th input profile of sub-population P and ai 
is the claim amount associated to that  input profile. A possible fairness criterion would be 
based on minimizing the sum, over a certain set of critical sub-populations (Pk} of dataset 
D, of the square of the biases: 

b2(Pk) (51 
k,PkED 

In the particular case where one considers all sub-populations, then both the fairness 
and precision criterions lead to the same optimal solution, i.e., they are minimized when 
p(x~) = E[Ailxi], Vi, i.e., for every insurance policy, the premium is equal to the conditional 
expectation of the claim amount.  The proof is given in appendix A. 

In order to measure the fairness criterion, we used the following methodology: after 
training a model to minimize the MSE criterion (3), we define a finite number of disjoint 
subsets (sub-populations) of test set D: Pk C D, Pk A Pj#k = 0, and verify that  the absolute 
bias is not significantly different from zero. The subsets Pk can be chosen at convenience; in 
our experiments, we considered 10 subsets of equal size delimited by the deciles of the test 
set premium distribution. In this way, we verify that,  for example, for the group of contracts 
with a premium between the 5th and the 6th decile, the average premium matches, within 
statistical significance, the average claim amount. 
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2.3 Penal ized Training Criterion and Bias-Variance 'IYadeoff 

Although our objective is to minimize the expected out-of-sample squared error (ESE), it 
does not mean that  we should minimize the in-sample (training set) mean-squared error 
(MSE): 

1 

(xt,at)EDtrain 

in order to achieve that  goal. The reason for that  apparent discrepancy has to do with the 
bias-variance trade-off in generalization error (Geman et al. (1992)), and the fundamental 
principles of statistical learning theory (Vapnik (1998b)). To illustrate these ideas, let 
us consider the simple case of linear regression, which becomes ridge regression when the 
training criterion is penalized. Consider a class of linear predictive functions of the input x, 

n 

i = 1  

Instead of minimizing the training set mean-squared error (MSE), consider the following 
penalized criterion: 

1 ~ (p(~,;o)-~,) ~ + ~ ?  
(xt,at)EDt~aln i 

with A > 0 and a minimum achieved at ~x. Thus/}0 is the Ordinary Least Squares estimator. 
This minimum is always achieved with s h r i n k e d  solutions, i.e. I1~11 < I1~011 for ~ > 0. 
Note that  this solution is generally b iased ,  unlike ~0, in the sense that  if the data  is 
generated from a multivariate normal distribution, the expected value o f / ~  is smaller than  
the true value/3 from the underlying distribution. Note that  the set of functions effectively 
allowed for a solution is smaller when A is larger. 

In the case where linear regression is the proper model (normally distributed data, with 
output  variance a2), and the amount of data I is finite, it is easy to prove that  the optimal 
fixed value of A (in expectation over different training sets) is 

(72 

z I1~112" 

Note therefore that  t h e  o p t i m a l  m o d e l  is b i a sed  (optimal in the sense of minimizing 
out-of-sample error). 

This example illustrates the more general principle of bias-variance trade-off in general- 
ization error, well discussed by Geman et al. (1992). Increasing A corresponds to "smoothing 
more" in non-parametric statistics (choosing a simpler function) or to the choice of a smaller 
capacity ("smaller" class of functions) in Vapnik's VC-theory (Vapnik (1998b)). A too large 
value of A corresponds to u n d e r f i t t i n g  (too simple model, too much bias), whereas a too 
small value corresponds to over f l t t ing)  (too complex model, too much variance). Which 
value of ), should be chosen? It should be the one that  strikes the optimal balance between 
bias and variance. This is the question that  m o d e l  se lec t ion  algorithms address. For- 
tunately, the expected out-of-sample error has a unique minimum as a function of A (or 
more generally of the capacity, or complexity of the class of functions). Concerning the 
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above formula, note that unfortunately the data is generally not normal, and o -2 and j3 are 
both unknown, so the above formula can't be used directly to choose A. However, using a 
separate held-out data set (also called a validation set, here), and taking advantage of that 
unique minimum property (which is true for any data distribution), we can quickly select 
a good value of A (essentially by searching), which approximately minimizes the estimated 
out-of-sample error on that validation set. 

Note that we arrive at the conclusion that a biased model is preferable because we set 
as our goal to minimize out-of-sample error. If our goal was to discover the underlying 
"truth", and if we could make very strong assumptions about the true nature of the data 
distribution, then the more classical statistical approach based on minimum variance unbi- 
ased estimators would be more appropriate. However, in the context of practical insurance 
premium estimation, we don't really know the form of the true data distribution, and we 
really care about how the model is going to perform in the future (at least for ratemaking). 

3. M e t h o d o l o g y  

A delicate problem to guard against when applying statistical learning algorithms is that of 
overfitting. It has precisely to do with striking the right trade-off between bias and variance 
(as introduced in the previous section), and is known in technical terms as capacity control. 
Figure 1 illustrates the problem: the two plots show empirical data points (black dots) that 
we are trying to approximate with a function (solid red curve). All points are sampled from 
the same underlying function (dashed blue curve), but are corrupted with noise; the dashed 
curve may be seen as the "true" function we are seeking to estimate. 

The left plot shows the result of fitting a very flexible function, i.e. a high-order poly- 
nomial in this case, to the available data points. We see that the function fits the data 
points perfectly: there is zero error (distance) between the red curve and each of the black 
dots. However, the function oscillates wildly between those points; it has not captured any 
of the fundamental features of the underlying function. What is happening here is that the 
function has mostly captured the noise in the data: it overfits. 

The right plot, on the other hand, shows the fitting of a less flexible function, i.e. a 2nd- 
order polynomial, which exhibits a small error with respect to each data point. However, 
by not fitting the noise (because it does not have the necessary degrees of freedom), the 
fitted function far better conveys the structural essence of the matter. 

Capacity control lies at the heart of a sound methodology for data mining and statistical 
learning algorithms. The goal is simple: to choose a function class flexible enough (with 
enough capacity) to express a desired solution, but constrained enough that it does not fit 
the noise in the data points. In other words, we want to avoid overfitting and  underfitting. 

Figure 2 illustrates the basic steps that are commonly taken to resolve this issue: these 
are not the only means to prevent overfitting, but are the simplest to understand and use. 

1. The full data set is randomly split into three disjoint subsets, respectively called the 
training, validation, and test sets. 

2. The training set is used to fit a model with a chosen initial capacity. 

3. The validation set is used to evaluate the performance of that fitted function, on 
different da t a  po in ts  than used for the fitting. The key here is that a function 
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overfitting the training set will exhibit a low performance on the validation set, if it 
does not capture the underlying structure of the problem. 

4. Depending on the validation set performance, the capacity of the model is adjusted 
(increased or reduced), and a new training phase (step 2) is attempted. This training- 
validation cycle is repeated multiple times and the capacity that  provides the best 
validation performance is chosen. 

5. Finally, the performance of the "ultimate" function (that coming out of the validation 
phase) is evaluated on data  points never used previously--those in the test se t - - to  
give a completely unbiased measure of the performance that  can be expected when 
the system is deployed in the field. This is called gene ra l i za t i on  p e r f o r m a n c e .  

4. M o d e l s  

In this section, we describe various models that  have been implemented and used for the 
purpose of ratemaking. We begin with the simplest model: charging a flat premium to 
every insured. Then, we gradually move on towards more complex models. 

4.1 C o n s t a n t  M o d e l  

For benchmark evaluation purposes, we implemented the constant model. This consists of 
simply charging every single insurance policy a fiat premium, regardless of the associated 
variable values. The premium is the mean of all incurred amounts as it is the constant value 
that  minimizes the mean-squared error. 

p(x) = ~0, (6) 

where ~0 is the mean and the premium p(x) is independent of the input profile x. In figure 
3, the constant model is viewed as a flat line when the premium value is plotted against one 
of the input variables. 

4.2 Linear M o d e l  

We implemented a linear model which consists of a set of coefficients, one for each variable 
plus an intercept value, that  minimize the mean-squared error, 

n 

p(x) = ~0 + ~ ~x,.  (7) 
i = 1  

Figure 4 illustrates a linear model where the resulting premiums form a line, given one 
input variable Value. With a two dimensional input variable space, a plane would be drawn. 
In higher dimension, the corresponding geometrical form is referred to as a hyper-plane. 

There are two main ways to control the capacity of linear models when in presence of 
noisy data: 

�9 using a subset of input variables; this directly reduces the number of coefficients 
(but choosing the best subset introduces another level of choice which is sometimes 
detrimental). 
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�9 penalizing the norm of the parameters (in general, intercept parameter/3o is excluded 
from the penalty term); this is called ridge regression in statistics, and weight decay in 
the neural networks community. This was the main method used to control capacity 
of the linear model in our experiments (see above subsection 2.3). 

It should be noted that  the premium computed with the linear model can be negative 
(and negative values are indeed sometimes obtained with the trained linear models). This 
may happen even if there are no negative amounts in the data, simply because the model has 
no built-in positivity constraint (unlike the GLM and the softplus neural network described 
below). 

4.3 T a b l e - b a s e d  m e t h o d s  

These more traditional ratemaking methods rely mainly on a classification system, base 
rates and relativities. The target function is approximated by constants over regular (fi- 
nite) intervals. As shown on the figure, this gives rise to a typical staircase-like function, 
where each level of the staircase is given by the value in the corresponding cell in the table. 
A common refinement in one dimension is to perform a linear interpolation between neigh- 
boring cells, to smooth the resulting function somewhat. The table is not limited to two 
variables; however, when adding a new variable (dimension), the number of cells increases 
by a factor equal to the number of discretization steps in the new variable. 

In order to use table-based methods to estimate a pure premium, find a certain number 
of variables deemed useful for the prediction, and discretize those variables if they are 
continuous. To fill out the table, compute over a number of years (using historical data) 
the total incurred claim amount for all customers whose profiles fall within a given cell of 
the table, and average the total within that  cell. This gives the pure premium associated 
with each cell of the table. 

Assuming that  the i th variable of profile x belongs to the j t h  category, we obtain, 

p(~) = ~0 r [  ~ j  + &~, (s) 
i=l i=m+l 

where/~i,j is the relativity for the j t h  category of the i th variable and ~30 is the standard 
premium. We consider the case where the first m factors are multiplicative and the last 
n - m factors are additive. 

The formula above assumes that  all variables have been analyzed individually and in- 
dependently. A great deal of effort is often put in trying to capture dependencies (or 
interactions) between some variables and to encode them into the premium model. 

An extension of the above is to multiplicatively combine multiple tables associated to 
different subsets of variables. This is in effect a particular form of generalized linear model 
(see below), where each table represents the interdependence effects between some variables. 

4.4 G r e e d y  M u l t i p l i c a t i v e  M o d e l  

Greedy learning algorithms "grow" a model by gradually adding one "piece" at a time to the 
model, but  keeping the already chosen pieces fixed. At each step, the "piece" that is most 
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helpful to minimize the training criterion is "added" to the model. This is how decision 
trees are typically built. Using the validation set performance we can decide when to stop 
adding pieces (when the estimated out-of-sample performance starts degrading). 

The GLM described in the next section is a multiplicative model because the final 
premium function can be seen as a product of coefficients associated with each input variable. 
The basic idea of the Greedy Multiplicative Model is to add one of these multiplicative 
coefficients at a time. At each step, we have to choose one among the input variables. We 
choose the variable which would reduce most the training MSE. The coefficient for that 
component is easily obtained analytically by minimizing the MSE when all the previously 
obtained coefficients are kept fixed. 

In the tables we use the short-hand name "CondMean" for this model because it estimates 
and combines many conditional means. Note that like the GLM, this model provides positive 
premiums. 

4.5 G e n e r a l i z e d  Linear M o d e l  

Bailey and Simon (1960) introduced generalized linear models (GLM) to the actuarial com- 
munity four decades ago. More recently, Brown (1988), Holler et al. (1999), Murphy et al. 
(2000) conducted experiments using such models. GLMs, at their roots, are simple lin- 
ear models that are composed with a fixed nonlinearity (the so-called link function); a 
commonly-used link function is simply the exponential function e x. GLMs (with the ex- 
ponential link) are sometimes used in actuarial modeling since they naturally represent 
multiplicative effects, for example risk factors whose effects should combine multiplicatively 
rather than additively. They are attractive since they incorporate problem-specific knowl- 
edge directly into the model. These models can be used to obtain a pure premium, yielding 
such a formula, 

p ( ~ )  = e x p  + x~ , (9)  
i = 1  / 

where, the exponentiation ensures that the resulting premiums are all positive. In figure 5, 
we can see that the model generates an exponential function in terms of the input variable. 

In their favor, GLMs are quite easy to estimate 2, have interpretable parameters, can 
be associated to parametric noise models, and are not so affected when the number of 
explanatory variables increases, as long as the number of observations used in the estimation 
remains sufficient. Unfortunately, they are fairly restricted in the shape of the functions 
they can estimate. 

The capacity of a GLM model can be controlled using the same techniques as those 
mentionned above (4.2) in the context of linear models. Again, note that the GLM always 
provides a positive premium. 

4.6 C H A I D  decision t rees  

Decision trees split the variable space in smaller subspaces. Any input profile x fits into one 
and only one of those subspaces called leaves. To each leaf is associated a different premium 

2. We have estimated the parameters to minimize the mean-squared error, but other training criteria have 
also been proposed in the GLM literature and this could be the subject of further studies. 
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level, 

nl 

p(x) = ~ I ~ , ~ , ,  (10) 
i=1  

where I{zet~) is an indicator function equal to 1 if and only if x belongs to the i th leaf. In 
that case, I{~et~} = 1 and p(x)  = ~ .  Otherwise, I{~ez~} is equal to zero, meaning x belongs 
to another leaf. The number of leaves is nt. The premium level ~i is set equal to the average 
incurred amount of the policies for which the profile x belongs to the ith leaf. In figure 
6, the decision tree is viewed as generating a piecewise constant function. The task of the 
decision tree is to choose the "best" possible partition of the input variable space. 

The basic way in which capacity is controlled is through several hyper-parameters: min- 
imum population in each leaf, minimum population to consider splitting a node, maximum 
height of the decision tree and, in the case of CHAID decision trees (Kass (1980)), Chi- 
square statistic threshold value. 

4.7 C o m b i n a t i o n  o f  C H A I D  and Linear  M o d e l  

This model is similar to the previous one except that, in each leaf, we have replaced the 
associated constant premium value with a linear regression. Each leaf has its own set of 
regression coefficients. There are thus nz different linear regressions of n + 1 coefficients 
each. 

p(x)  = ~-~I{xet, t fli,0+ fli,jxj . (11) 
i=1  

Each linear regression was fit to minimize the mean-squared error on the training cases 
that belong to its leaf. For reasons that are clear in the light of learning theory, a tree 
used in such a combination should have less leaves than an ordinary CHAID tree. In our 
experiments we have chosen the size of the tree based on the validation set MSE. 

In these models, capacity is controlled with the same hyper-parameters as CHAID, and 
there is also the question of finding the right weight decay for the linear regression. Again, 
the validation set is used for this purpose. 

4.8 O r d i n a r y  N e u r a l  N e t w o r k  

Ordinary neural networks consist of the clever combination and simultaneous training of a 
group of units or neurons that are individually quite simple. Figure 8 illustrates a typical 
multi-layer feedforward architecture such as the ones that were used for the current project. 

We describe here the steps that lead to the computation of the final output of the neural 
network. First, we compute a series of linear combinations of the input variables: 

n 

vi = c~i,o + ~ c~i,jxj, (12) 
j = l  
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where xj is the j t h  out of n variables, ai,0 and ~i,j are the slope intercept and the weights 

of the i th linear combination. The result of the linear combination, vi, is often referred to 
as the level of activation in analogy to the neurons in the brain. 

Then, a non-linear transform (called a transfer function) is applied to each of the linear 
combinations in order to obtain what are called the hidden units. We used the hyperbolic 
tangent function: 

hi = tanh(vi) 

eVi _ e - V l  
- -  ( 1 3 )  

eVi -~- e - V l  , 

where h~ is the i th hidden unit. The use of such a transfer function with infinite expansion in 
its terms has an important role in helping the neural network capture nonlinear interactions 
and this is the subject of subsection 4.9. 

Finally, the hidden units are linearly combined in order to compute the final output  of 
the neural network: 

n h  

p(x) = ~0 + ~ Z, hi, (14) 
i = 1  

where p(x) is the premium computed by the neural network, nh is the number of hidden 
units and ~0 and ~i are the slope intercept and the weights of the final linear combination. 

Put  all together in a single equation, we obtain: 

p(x) = f l o + E / ~ i  tanh cli,o+ ~i,jxj �9 (15) 
i = 1  

Figure 9 depicts a smooth non-linear function which could be generated by a neural 
network. 

The number of hidden units (nh above) plays a crucial role in our desire to control the 
capacity of the neural network. If we choose a too large value for nh, then the number of 
parameters of the model increases and it becomes possible, during the parameter optimiza- 
tion phase, for the neural network to model noise or spurious relationships present in the 
data used for optimzation but that  do not necessarily exist in other datasets. Conversely, 
if nh is set to a low value, the number of parameters could be too small and the neural 
network would not capture all of the relevant interactions in order to properly compute the 
premiums. Choosing the optimal number of hidden units is an important part of modelling 
with neural networks. Another technique for controlling the  capacity of a neural network is 
to use weight decay, i.e., a penalized training criterion as described in subsection 2.3 that  
limits the size of the parameters of the neural network. 

Choosing the optimal values for the parameters is a complex task and out of the scope 
of this paper. Many different optimization algorithms and refinements have been suggested 
(Bishop (1995), Orr and Mfiller (1998)) but  in practice, the simple stochastic gradient 
descent algorithm is still very popular and usually gives good performance. 

Note that  like the linear regression, this model can potentially yield negative premiums 
in some cases. We have observed much fewer such cases than with the linear regression. 
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4.9 How can Neural  Networks  Represent  Nonlinear Interactions? 

For the more mathematically-minded readers, we present a simple explanation of why neural 
networks are able to represent nonlinear interactions between the input variables. 
To simplify, suppose that we have only two input variables, Xl and x2. In classical linear 
regression, a common trick is to include fixed nonlinear combinations among the regressors, 
such as x 2, x~, XlX2, x ~ x 2 , . . .  However, it is obvious that this approach adds exponentially 
many terms to the regression, as one seeks higher powers of the input variables. 

In contrast, consider a single hidden unit of a neural network, connected to two inputs. 
The adjustable network parameters are named, for simplicity, so, ~1 and c~2. A typical 
function computed by this unit is given by 

tanh(c~o + ~axa + a2x2). 

Here comes the central part of the argument: performing a Taylor series expansion of 
tanh(y + so) in powers of y, and letting c~lx I + ot2x 2 stand for y, we obtain (where/3 - 
tanh so), 

tanh(~o + c~lXl + ~2x2) = 
+ (1 -/32)(alxl + ~x2)  + (-/3 + Za)(~lXl + ~2x2)2+ 

- + + + O/ xx, + ~2X2) 5. 

In fact the number of terms is infinite: the nonlinear function computed by this single 
hidden unit includes all powers  of the input variables, but they cannot all be inde- 
pendently controlled. The terms that will ultimately stand out depend on the coefficients 
s0, al ,  and ~2. Adding more hidden units increases the flexibility of the overall function 
computed by the network: each unit is connected to the input variables with its own set 
of coefficients, thereby allowing the network to capture as many (nonlinear) relationships 
between the variables as the number of units allows. 

The coeffients linking the input variables to the hidden units can also be interpreted in 
terms of pro jec t ions  of the input variables. Each set of coefficients for one unit represents 
a direction of interest in input space. The values of the coefficients are found during the 
network training phase using iterative nonlinear optimization algorithms. 

4.10 Softplus  Neural Network 

This new type of model was introduced precisely to make sure that positive premiums are 
obtained. The softplus function was recently introduced in Dugas et al. (2001) as a means 
to model a convex relationship between an output and one of its inputs. We modified 
the neural network architecture and included a softplus unit as a final transfer function. 
Figure 10 illustrates this new architecture we have introduced for the purpose of computing 
insurance premiums. The corresponding formula is as such: 

p(x)  = F + i tanh ~i.0+ o~i,jxj , (16) 
\ ~=~ / 
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where F(-) is the softplus function which is actually simply the primitive (integral) function 
of the "sigmoid" function. Thus 

F(y) = log ( l+eU) .  (17) 

The softplus function is convex and monotone increasing w.r.t, to its input and always 
strictly positive. Thus, as can be seen in Figure 11, this proposed architecture leads to 
strictly positive premiums. 

In preliminary experiments we have also tried to use the exponential function (rather 
than the softplus function) as the final transfer function, However we obtained poor results 
due to difficulties in the optimization (probably due to the very large gradients obtained 
when the argument of the exponential is large). 

The capacity of the softplus neural network is tuned just like that of an ordinary neural 
network. Note that this kind of neural network architecture is not available in commercial 
neural network packages. 

4.11 Regress ion  S u p p o r t  Vec tor  Mach ine  

Support Vector Machines (SVM) have recently been introduced as a very powerful set 
of non-parametric statistical learning algorithms (see Vapnik (1998a) and SchSlkopf et al. 
(1998)). They have been very successful in classification tasks, but the framework has also 
been extended to perform regression. Like other kernel methods the class of functions has 
the following form: 

p(x) = ~-~ oqK(x,x,)  (18) 
i 

where xi is the input profile associated with one of the training records, and ai is a scalar 
coefficient that is learned by the algorithm and K is a kernel function that satisfies the 
Mercer condition (Cristianini and Shawe-Taylor (2000)): 

fcK(x,u)g(~)9(u)d~dy >_ 0 (19) 

for any square integrable function g(x) and compact subset C of R n. This Mercer condition 
ensures that the kernel function can be represented as a simple dot product: 

K(x , y )  = r162  (20) 

where r  is a function that projects the input profile vector into a (usually very) high- 
dimensional "feature" space, usually in a nonlinear fashion. This leads us, to a simple 
expression for the premium function: 

p(~) = ~ r 1 6 2  
i 

= ~ .  r ( 2 1 )  
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Thus, in order to compute the premium, one needs to project input profile x in its feature 
space and compute a dot product with vector w. This vector w depends only on a certain 
number of input profiles from the training dataset and their associated coefficients. These 
input profiles are referred to as the support vectors and have been selected, along with their 
associated coefficients by the optimization algorithm. 

SVMs have several very attractive theoretical properties, including the fact that an exact 
solution to the optimization problem of minimizing the training criterion can be found, and 
the capacity of the model is automatically determined from the training data. In many 
applications, we also find that most of the c~i coefficients are zero. 

However, in the case of insurance data, an important characteristic of regression SVMs 
is that they are NOT trained to minimize the training MSE. Instead they minimize the 
following criterion: 

J = �89 2 + ~ Y~ la, - p(xdl, (22) 
i 

where lelr = m a x ( 0 ,  lel - e ) ,  A and e trade-off accuracy with complexity, as is the observed 
incurred claim amount for record i, xi is the input profile for record i, and the vector w is 
defined in terms of the ai coefficients above. It can therefore be seen that this algorithm 
minimizes something close to the absolute value of the error rather than the squared error. 
As a consequence, the SVM tends to find a solution that is close to the conditional median 
rather than the conditional expectation, the latter being what we want to evaluate in order 
to set the proper value for a premium. Furthermore, note that the insurance data display 
a highly asymmetric distribution, so the median and the mean are very different. In fact, 
the conditional median is often exactly zero. Capacity is controlled through the e and ,X 
coefficients. 

4.12 M i x t u r e  M o d e l s  

The mixture of experts has been proposed Jacobs et al. (1991) in the statistical learning 
litterature in order to decompose the learning problem, and it can be applied to regression 
as well as classification. The conditional expectation is expressed as a linear combination of 
the predictions of expe r t  models,  with weights determined by a ga te r  model.  The experts 
are specialized predictors that each estimate the pure premium for insureds that belong to 
a certain class. The gater attempts to predict to which class each insured belongs, with an 
estimator of the conditional probability of the class given the insured's input profile. For a 
mixture model, the premium can be expressed as 

p(x) = ~ p ( c l x ) p c ( x  ) (23) 
c 

where p(c[x) is the probability that an insured with input profile x belongs to class c. This 
value is determined by the gater model. Also, pc(x) is the premium, as computed by the 
expert model of class c, associated to input profile x. 

A trivial case occurs when the class c is deterministically found for any particular input 
profile x. In that case, we simply split the training database and train each expert model on 
a subset of the data. The gater then simply assigns a value of pc(x) = 1 if c is the appropriate 
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Model Train MSE Valid MSE Test MSE 
Constant 56.1108 56.5744 67.1192 
Linear 56.0780 56.5463 67.0909 
GLM 56.0762 56.5498 67.0926 
NN 56.0706 56.5468 67.0903 
Softplns NN 56.0704 56.5480 67.0918 
CHAID 56.0917 56.5657 67.1078 
CondMean 56.0827 56.5508 67.0964 
Mixture 56.0743 56.541{} 67.0851 

Table I: Comparison between the main models, with MSE on the training set, validation 
set, and test sets. The MSE is with respect to claim amounts and premiums 
expressed in thousand of dollars. 

class for input profile x and zero otherwise. This is in fact fundamentally equivalent to other 
techniques such as decision trees or table-based methods. A more general and powerful 
approach is to have the learning algorithm discover a relevant decomposition of the data 
into different regions of the input space which then become the classes and are encoded in 
the gater model. In that case, both the gater and the experts are trained together. 

In this study both the experts and the gater are softplus neural networks, but any other 
model can be used. In Figure 12, we schematically illustrate a mixture model as the one 
that was used in the framework of this project. 

5. E x p e r i m e n t a l  R e s u l t s  

5.1 Mean-Squared Error Comparisons 

Table 1 summarizes the main results concerning the comparison between different types of 
statistical machine learning algorithms. All the models have been trained using the same 
input profile variables. For each insurance policy, a total of 33 input variables were used 
and the total claims for an accident came from five main coverages: bodily injury, accident 
benefit, property damage, collision and comprehensive. Two other minor coverages were 
also included: death benefit and loss of use. In the table, N N  stands for neural network, 
GLM for generalized linear model, and CondMean for the Greedy Multiplicative Model. 
The MSE on the training set, validation set and test set are shown for all models. The 
MSE is with respect to claim amounts and premiums expressed in t h o u s a n d  of  dollars. 
The model with the lowest MSE is the "Mixture model", and it is the model that has 
been selected for the comparisons with the insurer's current rules for determining insurance 
premiums to which we shall refer as the Rule-Based Model. 

One may wonder from the previous table why the MSE values are so similar across 
various models for each dataset and much different across the datasets. In particular, all 
models perform much worse on the testset (in terms of their MSE). There is a very simple 
explanation. The maximum incurred amount on the test set and on the validation set is 
around 3 million dollars. If there was one more such large claim in the test set than in 
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Model #1  Model # 2  Mean Standard Error Z p-value 
Constant Mixture 3.40709e-02 3.32724e-03 10.240000 0 
Linear Mixture 5.82350e-03 1.32211e-03 4.404700 5.29653e-06 
GLM Mixture 7.54013e-03 1.15020e-03 6.555500 2 . 7 7 2 7 8 e - l l  
NN Mixture 5.23885e-03 1.41112e-03 3.712540 1.02596e-04 
Softplus NN Mixture 6.71066e-03 1.09351e-03 6.136810 4.20977e-10 
CHAID Mixture 2.35891e-02 2.57762e-03 9.151520 0 

Table 2: Statistical Comparison Between Different Learning Models and the Mixture Model. 
The p-value is for the null hypothesis of no difference between Model #1  and the 
best mixture model. Note that  ALL differences are statistically significant. 

the validation set, one would expect the test MSE (calculated for premiums and amounts 
in thousand of dollars) to be larger by about 7 (these are in units of squared thousand 
dollars). Thus a difference of 11 can easily be explained by a couple of large claims. This 
is a reflection of the very thick right-hand tail of the incurred amount distribution (whose 
standard deviation is only of about 8 thousand dollars). Conversely, this also explains why 
all MSE are very similar across models for one particular dataset. The MSE values are 
all mainly driven by very large claims which no model could reliably forecast (no model 
could lead the insurer to charge one million dollars to a particular insured!) Consequently, 
truly significant differences between model performances are shadowed by the effect of very 
large claims on the MSE values. Although the differences between model performance are 
relatively small, we shall see next that  careful statistical analysis allows us to discover that  
some of them are significant. 

Figure 13 illustrates graphically the results of the table, with the models ordered accord- 
ing to the validation set MSE. One should note that  within each class of models the capacity 
is tuned according to the performance on the validation set. On the test and validation sets, 
the Mixture model dominates all the others. Then come the ordinary neural network, linear 
model, and softplus neural network. Only slightly worse are the GLM and CondMean (the 
Greedy Multiplicative model). CHAID fared poorly on this dataset. Note that  the CHAID 
+ linear model described in section 4.7 performed worse than ordinary CHAID. Finally, the 
constant model is shown as a baseline (since it corresponds to assigning the same premium 
to every 1-year policy). It is also interesting to note from the figure that  the model with 
the lowest training MSE is not necessarily the best out-of-sample (on the validation or test 
sets). The SVM performance was appalling and is not shown here; it did much worse than 
the constant model, because it is aiming for the conditional median rather the conditional 
expectation, which are very different for this kind of data. 

Table 2 shows a statistical analysis to determine whether the differences in MSE between 
the Mixture model and each of the other models are significant. The Mean column shows 
the difference in MSE with the  Mixture model. The next column shows the Standard Error 
of that  mean. Dividing the mean by the standard error gives Z in the next column. The 
last column gives the p-value of the null hypothesis according to which the true expected 
squared errors for both models are the same. Conventionally, a value below 5% or 1% 
is interpreted as indicating a significant difference between the two models. The p-values 
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Model #1  Model # 2  Mean Standard Error Z p-value 
Constant CHAID 1.04818e-02 2.62416e-03 3.994350 3.24368e-05 
CHAID GLM 1.60490e-02 2.15109e-03 7.460850 4.29823e-14 
GLM Softplus NN 8.29468e-04 8.94764e-04 0.927025 1.76957e-01 
Softplus NN Linear 8.87159e-04 1.08802e-03 0.815392 2.07424e-01 
Linear NN 5.84651e-04 1.33283e-03 0.438653 3.30457e-01 
NN Mixture 5.23885e-03 1.41112e-03 3.712540 1.02590e-04 

Table 3: Statistical Comparison Between Pairs of Learning Models. Models are ordered 
from worst to best. The test is for comparing the sum of MSEs. The p-value is 
for the null hypothesis of no difference between Model #1  and Model #2.  

and Z corresponding to significant differences are highlighted. Therefore the differences in 
performance between the mixture and the other models are all statistically significant. As 
mentionned above, the MSE values are very much affected by large claims. Does such a 
sensitivity to very large claims make statistical comparisons between models incorrect? No. 
Fortunately all the comparisons are performed on pa i r ed  d a t a  (the squared error for each 
individual policy), which cancel out the effect of these very large claims (since, for these 
special cases, the squared error will be huge for all models and of very close magnitude) 

Table 3 has similar columns, but it provides a comparison of pairs of models, where 
the paim are consecutive models in the order of validation set MSE. What  can be seen is 
that  the ordinary neural network (NN) is significantly better than  the linear model, but  the 
latter, the softplus neural network and CLM are not statistically distinguishable. Finally 
GLM is significantly better than CHAID, which is significantly better than the constant 
model. Note that  although the softplus neural network alone is not doing very well here, it 
is doing very well within the Mixture model (it is the most successful one as a component 
of the mixture). The reason may be that  within the mixture, the parameter estimation 
for model of the low incurred amounts is not polluted by the very large incurred amounts 
(which are learned in a separate model). 

5.2 E v a l u a t i n g  M o d e l  F a i rne s s  

Although measuring the predictive accuracy--as done with the MSE in the previous section-- 
is a useful first step in comparing models, it tells only part of the story. A given model 
could appear significantly better than its competitors when averaging over all customers, 
and yet perform miserably when restricting attention to a subset of customers. 

We consider a model to be fair if different cross-sections of the population are not 
significantly biased against, compared with the overall population. Model fairness implies 
that  the average premiums within each sub-group should be statistically close to the average 
incurred amount within that  sub-group. 

Obviously, it is nearly impossible to correct for any imaginable bias since there are 
many different criteria to choose from in order to  divide the population into subgroups; for 
instance, we could split according to any single variable (e.g. premium charged, gender, rate 
group, territory) but  also combinations of variables (e.g. all combinations of gender and 
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Model Rule-Based Model 
High Low High 

Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 
Subgroup 

Mixture 
Low 

1 50.81 
2 166.24 
3 214.10 
4 259.74 
5 306.27 
6 357.18 
7 415.93 
8 490.35 
9 597.14 
10 783.90 

166.24 139.27 245.0145 
214.10 245.01 297.0435 
259.74 297.04 336.7524 
306.26 336.75 378.4123 
357.18 378.41 417.5794 
415.93 417.58 460.2658 
490.34 460.26 507.0753 
597.14 507.07 554.2909 
783.90 554.29 617.1175 

4296.78 617.14 3095.7861 

Table 4: Subgroups used for evaluating model fairness, for the Mixture and Rule-Based 
Models. The lowest and highest premiums in the subgroups are given. Each 
subgroup contains the same number of observations, ~ 28,000. 

territory, "etc.). Ultimately, by combining enough variables, we end up identifying individual 
customers, and give up any hope of statistical reliability. 

As a first step towards validating models and ensuring fairness, we choose the subgroups 
corresponding to the location of the deciles of the premium distribution. The i-th decile 
of a distribution is the point immediately above 10i% of the individuals of the population. 
For example, the 9-th decile is the point such that  90% of the population come below it. In 
other words, the first subgroup contains the 10% of the customers who are given the lowest 
premiums by the model, the second subgroup contains the range 10%-20%, and so on. 

The subgroups corresponding to the Mixture Model (the proposed model) differ slightly 
from those in the Rule-Based Model (the insurer's current rules for determining insurance 
premiums). Since the premium distribution for both models is not the same. The subgroups 
used for evaluating each model are given in Table 4. Since they correspond to the deciles 
of a distribution, all the subgroups contain approximately the same number of observations 
(~  28,000 on the 1998 test set). 

The bias within each subgroup appears in Figure 14. It shows the average difference 
between the premiums and the incurred amounts, within each subgroup (recall that  the 
subgroups are divided according to the premiums charged by each model, as per Table 4). 
A positive difference implies that  the average premium within a subgroup is higher than 
the average incurred amount  within the same subgroup. 95% confidence intervals on the 
mean difference are also given, to assess the statistical significance of the results. 

Since subgroups for the two models do not exactly represent the same customers, we 
shall refrain from directly comparing the two models on a given subgroup. We note the 
following points: 

* For most subgroups, the two models are being fair: the bias is usually not statistically 
significantly different from zero. 
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�9 More rarely, the bias is significantly positive (the models overcharge), but  never sig- 
nificantly negative (models undercharge). 

�9 The only subgroup for which both models undercharge is that  of the highest-paying 
customers, the 10-th subgroup. This can be understood, as these customers represent 
the highest risk; a high degree of uncertainty is associated with them. This uncertainty 
is reflected in the huge confidence intervals on the mean difference, wide enough not 
to make the bias significantly different from zero in both cases. (The bias for the 
Rule-Based Model is nearly significant.) 

From these results, we conclude that  both models are usually fair to customers in all 
premium subgroups. A different type of analysis could also be pursued, asking a different 
question: "In which cases do the Mixture and the Rule-Based Models differ the most?" We 
address this issue in next section. 

5.3 Comparison with Current Premiums 

For this comparison, we used the best (on the validation set) Mixture model and compare 
it on the test data  of 1998 against the insurer's Rule-Based Model. Note that  for legislative 
reasons, the Rule-Based Model did not use the same variables as the proposed Mixture 
Model. 

Histograms comparing the distribution of the premiums between the Rule-Based and 
the Mixture models appear in Figure 15. We observe that  the premiums from the Mixture 
model is smoother and exhibits fatter tails (more probability mass in the right-hand side of 
the distribution, far from the mean). The Mixture model is better able to recognize risky 
customers and impose an appropriately-priced premium. 

This observation is confirmed by looking at the distribution of the premium difference 
between the Rule-Based and Mixture models, as shown in Figure 16. 

We note that  this distribution is extremely skewed to the left. This means that  for some 
customers, the Rule-Based model considerably under-charges with respect to the Mixture 
model. Yet, the median of the distribution is above zero, meaning that  the typical customer 
pays more under the Rule-Based model than under the Mixture model. At the same time, the 
Mixture model achieves better prediction accuracy, as measured by the Mean-Squared Error 
(MSE) of the respective models, all the while remaining fair to customers in all categories. 

Our overriding conclusion can be stated plainly: the Mixture model correctly charges 
less for typical customers, and correctly charges more for the "risky" ones. This may be due 
in part to the use of more variables, and in part to the use of a statistical learning algorithm 
which is better suited to capturing the dependencies between many variables. 

6. T a k i n g  A d v a n t a g e  o f  I n c r e a s e d  D i s c r i m i n a n t  P o w e r  

Neural networks have been known to perform well in tasks where discrimination is an impor- 
tant  aspect of the task at hand and this has lead to many commercially successful application 
of these modelling tools (Keller (1997)). We have shown that,  when applied properly while 
taking into account the particulars of insurance data, that  ability to discriminate is also re- 
vealed with insurance data. When applied to automobile insurance ratemaking, they allow 
us to identify more precisely the true risk associated to each insured. 

199  



6.1 Application to Underwrit ing 

Completely changing the rate structure of an insurer can be a costly enterprise, in particular 
when it involves significant changes in the computer systems handling transactions, or the 
relations with brokers. There are other applications of systems which improve the estimation 
of pure premium. In the States of Massachusetts, New Hampshire, North Carolina and the 
provinces of Quebec and Ontario, improved discrimination can be used for the purpose of 
choosing the risks to be ceeded to the risk-sharing pools (actual terminology varies from 
one jurisdiction to another). According to these pool plans, an insurer can choose to ceed 
a portion of its book of business (5%-10%) to the pool by paying a portion of the gross 
premium that was charged to the insured. Then, in case an accident occurs, the pool 
assumes all claim payments. The losses in the pool are then shared between the insurers. 
Thus, for an insurer, the goal is to identify the risks that have been underpriced the most 
(i.e. those for which the difference between the true risk and the current premium is largest). 
There are a few reasons why such inadequately rated risks can be identified: 

�9 legislation related to ratemaking could be more restrictive than the one that pertains 
to the risk-sharing pool, 

�9 strategic marketing concerns may have forced the insurer to underprice a certain part 
of its book of business and, 

�9 other concerns may not allow the insurer to use highly discriminative models for the 
purpose of ratemaking. 

Better discrimination of risks can be used to identify, with higher confidence, the worst 
risks in a population and therefore improve the performance of an insurance company's 
underwriting team. 

6.2 Application to Ratemaking and Marketing 

The greatest benefit from an improved estimation of pure premium derives by considering 
its application to ratemaking. The main reason for these benefits is that a more discriminant 
predictor will identify a group of insureds that are significantly undercharged and a (much 
larger) group that is significantly overcharged. Identifying the undercharged will yield in- 
creased profits: increasing their premiums will either directly increase revenues (if they 
stay) or reduce underwriting losses (if they switch to another insurer). The advantage of 
identifying the insured profiles which correspond to overcharged premiums can be coupled 
with a marketing strategy in order attract new customers and increase marke t  share,  
a very powerful engine for increased profitability of the insurer (because of the fixed costs 
being shared by a larger number of insureds). 

To decide on the appropriate change in premium, one also needs to consider market 
effects. An elasticity model can be independently developped in order to characterize the 
relation between premium change and the probability of losing current customers or acquir- 
ing new customers. A pure premium model such as the one described in this paper can then 
be combined with the elasticity model, as well as pricing constraints (e.g. to prevent too 
much rate dislocation in premiums, or to satisfy some jurisdiction's regulations), in order to 
obtain a function that "optimally" chooses for each insured profile an appropriate change in 
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gross premium, in order to maximize a financial criterion. We have successfully tested such 
an idea and the detailed analysis of these results wiU be the  subject of a further paper. 

7. C o n c l u s i o n  

In this paper, we have argued in favor of the use of statistical learning algorithms such as 
neural networks for automobile insurance ratemaking. We have described various candidate 
models and compared them qualitatively and numerically. We have found that  the selected 
model has significantly outperformed all other models, including the current premium struc- 
ture. We believe that  their superior performance is mainly due to their ability to capture 
high-order dependencies between variables and to cope with the fat tall distribution of the 
claims. Other industries have adopted statistical learning algorithms in the last decade and 
we have shown them to be suited for the automobile insurance industry as well. 

A p p e n d i x  A .  P r o o f  o f  t h e  e q u i v a l e n c e  o f  t h e  f a i r n e s s  a n d  p r e c i s i o n  
cr i ter ions  

In this section, we show that,  when all subpopulations are considered to evaluate fairness, 
the precision criterion and the fairness criterion, as they were defined in section 2, both lead 
to the same premium function. 

T h e o r e m  1 The premium .function which maximizes precision (in the sense of equation 2) 
also maximizes fairness (in the sense of equation 5, when all subpopulations are considered), 
and it is the only one that does maximize it. 

Proof: 
Let P be a subset of the domain of input profiles. Let q be a premium predictor function. 

The bias in P is defined by 

1 
bq(P) = - ~  E (q(xi) - a~). 

Let Fq = -E[~_, e bq(P) 2] be the expected "fairness" criterion using premium function q, to 
be maximized (by choosing q appropriately). 

Let p(x) = E[a[x] be the optimal solution to the precision criterion, i.e. the minimizer 
of 

Ei(p(X) - A)2]. 
Consider a particular population P.  Let q(P) denote the average premium for that  

population using the premium function q(x), 

1 
q(P) = "("~]. E q(x,) 

(xl,al)eP 

and similarly, define a(P) the average claim amount for that  population, 

1 
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Then the expected squared bias for that  population, using the premium function q, is 

E[bq(P) 2] = E[(q(P) - a(P))  2] 

which is minimized for any q such that  q(P) = E[a(P)]. 
Note in particular that  the optimal ESE solution, p, is such a minimizer of Fq, since 

,a~)e 1 ,~0 e (~ ai]=E[a(P)] 
1 E[ailxi] = E[-~[ P(P) = T~(~,  p , , ,  p 

We know therefore that  q = p is a minimizer of Fq, i.e. Vq, Fp < Fq. 
Are there other minimizers? Consider a function q r p, that  is a minimizer for a 

particular population/:'1. Since q # p, 3x s.t. q(x) # p(x). Consider the particular singleton 
population Px = {x}. On singleton populations, the expected squared bias is the same as 
the expected squared error. In fact, there is a component of F which contains only the 
squared biases for the singleton populuations, and it is equal to the expected squared error. 
Therefore on that  population (and any other singleton population for which q ~ p) there is 
only one minimizer of the expected squared bias, and it is the conditional expectation p(x). 
So E[(q(x)-A)2IX = x] > E[(p(x)-A)2[X = x] and therefore E[bq(Pz)] > E[bp(P.~)]. Since 
p is a maximiser of fairness for all populations, it is enough to prove that  q is sub-optimal 
on orie population to prove that  the overall fairness of q is less than that of p, which is the 
main statement of our theorem: 

V q # p ,  Fq>Fp.  
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Figure 1: Illustration of overf i t t ing.  The solid left curve fits the noise in the data points 
(black dots) and has not learned the underlying structure (dashed). The right 
curve, with less flexibility, does not overfit. 

Overfitting Good Fit 

Figure 2: Methodology to prevent overfitting. Model capacity is controlled via a validation 
set, disjoint from the training set. The generalization performance estimator is 
obtained by final testing on the test set, disjoint from the first two. 

205 



Figure 3: The constant model fits the best horizontal line through the training data. 
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Figure 5: The generalized linear model fits an exponential of a linear transformation of the 
variables. 
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Figure 6: The CHAID model fits constants to partitions of the variables. The dashed lines 
in the figure delimit the partitions, and are found automatically by the CHAID 
algorithm. 
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Figure 7: The CHAID+Linear model fits astraight line within each of the CHAID partitions 
of the variable space. 
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Figure 8: Topology of a one-hidden-layer neural network. In each unit of the hidden layer, 
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the variables are linearly combined. The network then applies a non-linear trans- 
formation on those linear combinations. Finally, the resulting values of the hidden 
units are linearly combined in the output layer. 

Figure 9: The neural network model learns a smooth non-linear function of the variables. 
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Figure 10: Topology of a one-hidden-layer softplus neural network. The hidden layer applies 
a non-hnear transformation of the variables, whose results are linearly combined 
by the output  layer. The softplus output  function forces the function to be 
positive. To avoid cluttering, some weights linking the variables to the hidden 
layer are omitted on the figure. 

Figure 11: The softplus neural network model learns a smooth non-linear pos i t ive  function 
of the variables. This positivity is desirable for estimating insurance premiums. 
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Figure 12: Schematic representation of the mixture model. The first-stage models each 
make an independent decision, which are linearly combined by a second-stage 
gater .  
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Figure 13: MSE results (from table I) for eight models . Models have been sorted in as- 
cending order of test results. The training, validation and test curves have been 
shifted closer together for visualization purposes. The out-of-sample test per- 
formance of the mixture model is significantly better than any of the other. 
Validation based model selection is confirmed on test results. 
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Figure 14: Average difference between premiums and incurred amounts (on the sum over 
all coverage groups), for the Mixture and Rule-Based models, for each deeile of 
the models' respective premium distribution. We observe that both models are 
being fair to most customers, except those in the last deeile, the highest-risk 
customers, where they appear to under-charge. The error bars represent 95% 
confidence intervals. (Each decile contains ~ 28,000 observations.) 
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Figure 15: Comparison of the premium distribution for the current Rule-Based model and 
the Mixture model. The distributions are normalized to the same mean. T h e  
Mixture model distribution has fatter tails and is much smoother. 

Figure 16: Distribution of the premium difference between the Rule-Based and Mixture 
models, for the sum of the first three coverage groups. The distribution is nega- 
tively skewed: the Rule-Based model severely under-charges for some customem. 
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Credibility Modeling via Spline Nonparametric Regression 
Abstract 

Credibility modeling is a rate making process which allows actuaries to adjust fu- 

ture premiums according to the past experience of a risk or group of risks. Current 

methods in credibility theory often rely on parametric models. Blihlmann (1967) 

developed an approach based on the best linear approximation, which leads to an 

estimator that is a linear combination of current observations and past records. Dur- 

ing the last decade, the existence of high speed computers and statistical software 

packages allowed the introduction of more sophisticated methodologies. Some of 

these techniques are based on Markov Chain Monte Carlo (MCMC) approach to 

Bayesian inference, which requires extensive computations. However, very few of 

these methods made use of the additional covariate information related to the risk, 

or group of risks; and at the same time account for the correlated structure in the 

data. In this paper, we consider a Bayesian nonparametric approach to the problem 

of risk modeling. The model incorporates past and present observations related to 

the risk, as well as relevant covariate information. The Bayesian modeling is carried 

out by sampling from a multivariate Gaussian prior, where the covariance structure 

is based on a thin-plate spline (Wahba, 1990). The model uses MCMC technique 

to compute the predictive distribution of the future claims based on the available 

data. Extensive data analysis is conducted to study the properties of the proposed 

estimator, and compare against the existing techniques. 

Keywords: Credibility Modeling, Thin-plate Spline, MCMC, RKHS. 
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1 I n t r o d u c t i o n  

The dictionary definition of a spline is "a thin strip of wood used in building con- 

struction." This in fact gives insight into the mathematical definition of splines. 

Historically, engineering draftsmen used long thin strips of wood called splines to 

draw a smooth curve between specified points. A mathematical spline is the solution 

to a constrained optimization problem. 

In the credibility context, suppose we wish to determine how the current claim 

loss, Yij, depends on the past losses, say Yi,j-1 and Yi,j-2. Our approach is to consider 

the nonparametric regression model 

y,j = g(y , ,~- l ,  y,,j-2) + , , ,  ~ = 1, ..., n ,  (1) 

where g is a smooth function of its arguments. Our objective is to model the de- 

pendency between the current observations Yi~ for all policyholders i = 1, ..., n, and 

those past losses Y~,j-1 and Y~,3-2 through a nonparametric regression at occasion j .  

The concept is similar to multiple linear regressions. Here, the dependent variable 

happens to be Y~j while the past losses Y~,3-1 and Y~,j-2 are treated as covariates. 

For notational convenience, we let Y~ stands for the dependent variable (current ob- 

servation) and use si or ti for covariates (past losses). The key problem is to find a 

good approximation ~ of g. This is a tractable problem, and there are many different 

solutions to this problem. The purpose of this paper is to develop a methodology to 

estimate the function g given the data. We use a nonparametric Bayesian approach 

to estimate the multivariate regression model with Gaussian errors. In this approach, 

very little is assumed regarding the underlying model (signal); and we allow the data 

to "speak for itself". 

Reproducing kernel Hilbert space (RKHS) models have been in use for at least 
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ninety-five years. The systematic development of reproducing kernel Hilbert space 

theory is given by Aronszajn (1950). For further background the reader may refer 

to Weinert (1982) and Wahba (1990). A recent paper given by Evgeni0u (2000) 

contains an introduction to RKHS, which we found to be useful for readers interested 

in further reading. 

A reproducing kernel Hilbert space is a Hilbert function space characterized by 

the fact tha t  it contains a kernel tha t  reproduces (through a inner product) every 

function in the space, or, equivalently, by the fact tha t  every point evaluation func- 

tional is bounded. RKHS models are useful in estimation problems because every 

covariance function is also a reproducing kernel for some RKHS. As a consequence, 

there is a close connection between a random process and the RKHS determined by 

its covariance function. These estimation problems can then be solved by evaluating 

a certain RKHS inner product. Thus it is necessary to be able to determine the form 

of inner product corresponding to a given reproducing kernel. 

In optimal curve and surface fitting problems, in which one is reconstructing an 

unknown function based on the sample data, it is inevitable tha t  the point evaluation 

functionals be bounded. Therefore, one is forced to express the problem in a RKHS 

whose inner product is determined by the quadratic cost functional that  needs to 

be minimized. To solve these problems, one must find a basis for the range of a 

certain projection operator. One way to do this is to determine the reproducing 

kernel corresponding to the given inner product. 

Consider an univariate model 

y, = :(ti) + e,, i = 1, 2, ...n (2) 

where E = (cl, ..., sn)' " N(0, a2I) and f is only known to be smooth. If f has m - 1 
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continuous derivatives and is m th derivative is square integrable, an estimate of f 

can be found by minimizing 

1 _ _  ~ ( y ,  _ S(t~)) 2 + A r/b(S(m ) ( t))  2dt, (3) 
d a  

i = 1  

for some s > 0. The smoothing parameter A controls the trade-off between smooth- 

ness and accuracy. A discrete version of problems such as (3) was considered in 

the actuarial literature by Whittaker (1923), who considered smoothing Yl, ...,Yn 

discretely by finding f = (fl, ..., fn) to minimize 

n n - - 3  

l ~ ( y  i _ f~)2 + A~-'](S~+3 - 3f~+2 + 3Si+l - S~) 2. (4) 
i = 1  i = 1  

If m = 2, (3) becomes the penalized residual sum of squares 

'~ .X f b  
!V'n~(y , - S(t,))2 + (S"(t))2~x (5) 

i = 1  

where A is a fixed constant, and a ~< tl <~ . . .  ~< tn ~< b. If we consider all func- 

tions f ( t )  with two continuous derivatives, it can be shown that  (5) has an unique 

minimizer which is a nature cubic spline with knots at the unique values of t~. As 

~ oo, it forces f"  (t) = 0 everywhere, and the solution is the least-squares line. 

As A ----* 0, the solution tends to an interpolating twice-differentiable function. The 

cubic spline can be generalized to two or higher dimensions. The thin-plate spline is 

one example. It derives from generalizing the second derivative penalty for smooth- 

hess to a two dimensional Laplacian penalty (Wendelberger, 1982). 

This paper is organized as follows. Section 2 introduces the credibility problem. 

Section 3 reviews the thin-plate spline and the Bayesian model behind the smoothing 

spline. Section 4 introduces the basic idea of bivariate regression with Ganssian 
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errors. Section 5 generalizes the results in section 4 to the trivariate case. Section 6 

introduces the applications of the results developed in section 4 and section 5. All 

computations are carried out using Gibbs sampler. All functions, functionals, random 

variables, and function spaces in this paper will be real valued unless specifically 

noted otherwise. 

2 The Credibility Problem 

The classical data type in this area involves realizations from present and past experi- 

ence of individual policyholders. Suppose we have n different risks (or policyholders) 

with a claims record over a certain number of years, say T; 

Y,~l, Y,,2, ..., Y,~T. 

The data can be the amount of losses, the number of claims, or the loss ratio from 

insurance portfolios. Our goal is to estimate the amount or number of claims to be 

paid on a particular insurance policy in a future coverage period. The problem of 

interest is to model the relationship of YT+I to time and the past observed values of 

Y1, Y2, ..., YT, i.e., to establish the relationship: 

y~j = f ( t ,y~l ,y~2, . . . ,y~j_l)  +e~j for i = l , 2  ..... n; j = l , 2 , . . . , T  (6) 

where f is an unknown function and ei~ is a random error term. 

We can also have a more general form of data configuration. Let {Yij : j = 
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1, 2 , . . . ,  Ti; i = 112 , . . . ,  n} be a t ime series of length Ti over which the  measurements  

of the  i th risk (or group of risks) were observed at  t ime points  {ti3 : j = 1, 2, . . ,  Ti}. 

In addition, let X~j be the  observed covariates, such as gender of a policyholder, or 

industry  type  of insureds etc., for the  i th risk (or group of risks) at  t ime tij. In each 

risk (or group of risks), the  da ta  has the  form 

(y~j,X~j,t~j),  j = 1,2, ...,T~; i = 1,2 ..... n,  (7) 

where Xij  = (Xijl ,  X~j2, ..., X~ja) are the  d covariate variables measured at  t ime t~3. 

In this  case, of interest  is to  s tudy the  association between the  current  response Yij 

and the  past  responses Y~5-1 = (Y~,j-1, Y~,j-2, ..., Yit) as well as the  covariates and to 

examine how the  association varies with  time. Table 1 provides the  da ta  lay-out 

assuming j = 1,2, ... ,T. 

Occasion 
Subject  1 . . .  T 

1 Y l l , X l l , I , X l l , 2 , . . . l X l l , d l ~ l l  " �9 " Y l T l X l T , 1 1 X l T , 2 , . . . l X l T , d ~ t l T  

: : . . .  ! 

i Y i l  1 X i l , 1  ~ X i l , 2 ,  "" ", X i l ,d~  ~ i l  " " " Y iT~ X i l , T ,  X i l , T ,  . . .~ X i T , d l  t i T  

: : : 

n Y n l , ~ n l , l , 2 ~ n l , 2 ,  . . . I X n l , d ~ n l  ' '  " Y n T l E n T , 1 , T n T , 2 ~  . . . ~ T n T , d l ~ n T  

Table 1: Da ta  Configuration. 

Therefore, we propose the  following modified model, which is more general t han  (7), 

Yij = f ( t~j ,  Xi3,y~,j_l) + e i j  for i = 1, 2 ..... n; j = 1, 2, ..., T~. (8) 

In this paper,  a new Bayesian approach is presented for nonparametr ic  multivari- 

ate regression wi th  Gaussian errors. A smoothness prior based on thin-plate  splines 

is assumed for each component  of the  model. We use the  reproducing kernel for a 
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thin-plate spline for an unknown multivariate function as in Wahba (1990). All the 

computations are carried out using the Gibbs sampling schemes (Wood et. al., 2000). 

With a burn-in period, it is assumed that iterations have converged to draws from 

posterior distributions. A random sample from the convergence period axe used to 

estimate characteristics of the posterior distribution. This model is used for estima- 

tion of function f and to predict for the future values. We analyze a real data from 

one Taiwan based insurance company. A comparison is being carried out between 

the proposed approach against other existing techniques. 

3 The Thin-Plate Spline 

RKHS methods have been successftflly applied to a wide varieties of problems in the 

field of optimal approximation, which include interpolation and smoothing via spline 

function in one or more dimensions. The one dimensional case is generalized to the 

multidimensional case by Duchon (1977). Duchon's surface spline is called "thin 

plate" spline, because they approximate the equilibrium position of a thin plate 

deflected at scatter points. For an application of thin-plate splines to meteorological 

problems see Wahba and Wendelberger (1980). 

3 .1  T h e  T h i n - P l a t e  S p l i n e  o n  E d 

The theoretical foundations for the thin-plate spline were from Duchon (1975, 1976, 

1977) and Meinguet (1979), and some further results and applications to meteoro- 

logical problems were given in Wahba and Wendelberger (1980) and Wood et. al. 

(2000). 

Let us define the penalty functional 
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f0 1(f Jr . ( f )  = (~)(~))2d~.  

It is assumed tha t  da ta  y = (yl , '  �9 " , y.)~ follows the model  

y,=f(x,)+~,,  i= l , 2 , . . . , n ,  

where Xa E f/  and f l  is a general index set. The  function f is assumed to be a 

smooth function in a reproducing kernel Hilbert space H of a real-valued functions 

on f~. The {ei} are independent  zero mean errors with common unknown variance. 

It is desired to find an est imate of f given y = ( Y l , ' "  ,Yn) t. The  est imate fa of f 

will be  taken as the  minimizer in H of 

t n 

~ - ~ ( y ,  - f (X , ) )  2 + AJm(f), (9) 
i = 1  

where J,n(f) is a seminorm on H with M-dimensional  null space spanned by r  , CM, 

M < n. The seminaorm on the vector space H is a mapping p : H ~ R satisfying 

Ila]l > 0, Ilaall = la]llall, and Ila+bll <= Ilall + Ilbll. Here a and b are arbitrary vectors 

in H and a is any scalar. 

In the  thin-plate  spline Case, we will assume f E X, a space of functions whose 

partial derivatives of total  order m are in L2(Ea). The da ta  model is given by 

y, = f (x l ( i ) , ""  ,xa(i)) +ei ,  i = 1 , 2 , . . .  ,n ,  (10) 

where f E X and e = ( e l , . . .  , e , ) '  ~ N(0, a2I). And J( f )  = jd ( f )  is given by 

J ~ ( f ) =  ~_. a l l . . . ae  ! x .. .  (Oxl. . .Oxe) dxl . . .dxe.  (11) 
o q H _ . . . . . ~ a d ~ : , n  �9 
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We want X endowed with the seminorm j d ( f )  to be an RKHS (that  is, for the 

evaluation functionals in X to be bounded with respect to jd ( f ) ) .  Then, a thin- 

plate smoothing spline is the solution to the following variational problem. Find 

f E X to minimize 

I 
I I  

~ ~-~(Yl -- f ( x l ( i ) , ' "  , Xd(i))) 2 + ~kJd(f). (12) 
i = l  

Let us use the notation t = (Xl, . . .  ,Xd)' and ti = (x l ( i ) , . . .  ,xd(i))'. The null 

space of the penalty functional j d ( f )  is the M-dimensional space spanned by the 

polynomials in d variables of total degree ~< m - 1, where 

In the space H = {f  : J~(f)  < oo} with J~(f)  as a square semi norm, it is 

necessary tha t  2m - d > 0 for the evaluation functional Lt f  = f(t)  to be continuous; 

see Duchon (1977), Meinguet (1979), and Wahba and Wendelberger (1980). For 

m = 2 ,  d = 2 ,  

with M -- 3, and the null space is spanned by r r162 given by 

(14) 

r  x2) = 1, r ~ )  = ~1, r  ~2) = ~.  

Before we go further, we need additional notations. Let s,t  E E d, s = (sl , . . .  ,Sdy 

and t = ( t l , . . .  , Q)', then 
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We can define 

d 

I ~ - t I = ( ~ ( ~ ,  - ti)2) '12. 
i = l  

where 

E(r)  = O~r 2m-d log r if d even 

~d 2 m - d  = omr if d odd, 

(15) 

(-1)d/2+1 
if d even (16) od = 22m-'Trd/2(m -- 1)!(m -- d/2)! 

= ( - 1 ) m r ( d / 2  - m) if d odd. 
22mTcd/2(m - 1)! 

We can also define 

Em(s, t)  = E(I s - t  [). (17) 

Duchon (1977) showed that ,  if t l , . . .  , tn are such tha t  least squares regression on 

r  , CM is unique, then  (12) has an unique minimizer fx with representation 

M n 

I~(t) = ~ d . r  + E c i E m ( t ,  t,). (18) 
~=I i=I 

Note that 0~ can be absorbed into c/ in (18). Let ul,... ,UM be any fixed points 

in E d such that least squares regression on the M-dimensional space of polynomials 

of total degree less than m at the points ul,... ,UM is unique. Let Pl,"" ,PM 
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be the polynomials of total  degree less than m satisfying pi(u#) = 1,i = j and 

pi(uj) = 0 , i  C j .  And let 

M 

KI(s ,  t) = E.~(s, t) - ~p , ( t )E .~(u i ,  s) 
i=1  

M 

-~pj(s)Em(t,~) 
j = l  

M M 

+ ~___~pi(t)pj(s)Em(u,, uS). 
i=l j ~ l  

(19) 

It can be shown tha t  K I is positive semidefinite and is a reproducing kernel for HK 

and fx has a representation (Wahba, 1990) 

where 

M n 

S~ = Z d ~ o .  + Z~g,~,(t),  (20) 
,-'=1 i = l  

K~(.) = Kl( t ,  .). 

The result from (20) can be shown to be the same as (18). 

3.2 Bayes Model Behind The Thin-Plate Spline 

Let us now take a look at the Bayes estimates behind the thin-plate spline. It is 

known that  certain Bayes estimates are solutions to variational problems, and vice 

versa. Consider the random effect model 
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M 

F ( t )  = ZO.r  + b l /2X( t ) ,  t E [0, 11, 
v=l  

Y~ = F( t i )  + e~, i = 1 , . . .  , n.  

(21) 

Let {Ca," �9 ' , CM} span H0, the space of polynomials of total degree less than m, and 

H1 be a RKHS with the reproducing kernel defined by 

E X ( s ) X ( t )  = K a (s, t), 

where Kl(s , t )  given by (19). Then, the model in (21) will result in the thin-plate 

spline. To understand this result, let 

M 

v~; = u, - Z o ~ r  
u=l  

and set f ( t i )  = b l /2X( t i ) .  Then (21) becomes 

= f( t~)  + e~, i = 1 , . . .  , n ,  

withe = ( e l , . ' . ,  e,)' ,,~ N(0, a2I)  and 

E y ( s ) y ( t )  = E [b l / 2X( s )b l / 2X( t ) ]  

= b E [ X ( s ) X ( t ) ]  

= b K  1 (s, t). 

Then, from Wahba (2000), 
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E( 

f(t~) 
f(t~) 
f(t~) 

0 .2 
l Y) = KI( K1 + -~-I)-lY 

0.2 
A(A)y, with A = y .  

(22) 

A(A) is known as the influence matrix and we will use the result later. 

Now, consider the variational problem in H1, we want to find fx to minimize 

i=1 

where IIf  I1~1 is the squared norm in H1. It can be shown that 

[ :(t~) 
E( f(t~) 

:(t.) 

I Y) = KI(  K'  + AI)-lY 

--- A(A)~. 

In summary, given the prior f ~ N(0, bK1), a zero-mean Ganssian stochastic 

process with e -~ (e l , ""  ,on)' "~ N(0,a2I), the posterior mean for f given y is the 

solution to a variational problem in an RKHS. 
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4 B i v a r i a t e  R e g r e s s i o n  

Let us now return to credibility problems. Recall that ,  in the Btihlmann-Stranb 

model, we wish to use the conditional distribution frr+llo(YT+l I O) or the hypothetical 

mean E(YT+II@ = 8) -- ,UT+i(O) for estimation of next year's claims. Since we have 

observed y, one suggestion is to approximate #T+i (0) by a linear function of the past 

data. It turns out tha t  the resulting credibility premium formula Z~" + (1 - Z)# is 

of this form. The idea is to restrict estimators of the form ao + ~T= i atYt, where 

aO, a l , . . . , aT  need to be chosen. We will choose the a's to minimize square error 

loss, tha t  is, 

{ " } 0 = E I , ~ + 1 ( 0 )  - ~ o  - , _ _ ~ , r , ]  ~ �9 

We denote the result by ~o, ~i, ..., ~T for the values of ao, a l ,  ..., aT which minimize 

Q. Then the credibility premium can be written as: 

T 

&o + ~ ~tYt. 
t = t  

Meanwhile, the resulting ao, a l ,  ..., a r  also minimize 

Q1 = E [E(YT+, I Y = y) - a0 - atYt] 2 
t = l  

and 

q~ = E Yr+l - ao - a~B]2 . 
t = l  ) 

Hence, the credibility premium ~0 + ~-~T=l ~tYt is the best linear estimator of each 

of the hypothetical mean E(YT+iIO = 0), the Bayesian premium E(YT+I I Y = Y), 
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and YT+I in the sense of square error loss. 

Now, we want to extend the standard credibility techniques into nonparametric 

regression models. In the credibility context, suppose we wish to determine how the 

current claim loss, Y~j, depends on the past losses, say Y~,j-1 and Y~,j-2. Our approach 

is to establish a model as the nonparametric regression y~j = g(Yi,j-l ,Yi, j-2) + e~, 

i = 1, ...,n, where g is a smooth function of its arguments. Wha t  we want to ac- 

complish is to model the dependency between the current observations y~j for all 

policyholders i = 1, ...,n, and those past losses yi,j-1 and yi,3-2 through a non- 

parametric regression at occasion j .  Once the model is established, we can perform 

one-step ahead prediction on Y~d+l by using y/~ and Yid-1 as covariates. For nota- 

tional convenience, we let yi stands for the dependent variable (current observation) 

and use s~ or ti for covariates (past losses). We develop a methodology to estimate 

the function g, given the data, from a nonparametric regression perspective. We will 

be using a Bayesian approach to fit the proposed model using a Gaussian prior on 

the unknown function g, which uses the reproducing kernel of a thin-plate spline as 

the covariance of the prior distribution (Wahba, 1990, p.30). 

4.1 M o d e l  and Prior  

Without loss of generality, we assume variables si, ti lie in the interval [0,1]. Consider 

the model from the bivariate regression model 

y~ = g ( s i , t ~ ) + e l ,  i =  1 , . . .  ,n,  (23) 

where g is a smooth regression of the variables s and t, and the errors e, are inde- 

pendent N(0, a2). It is convenient to write (23) as 
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y i = a o q - a l S i q - ~ 2 t i q - f ( s i , t i )  q-ei, i =  1, . . .  ,n, 

with f having the zero initial conditions: 

(24) 

which means that 

f(0, 0) = o, 

~ ( 0 ,  0) = o, 

~(0,o)  =o, 

(2s) 

s0 = g(o, o), 

~1 = ~s  (0, 0), 

~2 = ~-(0, 0). 

Model (24) has the same form as (21) with 

r t,) = 1, r t,) = ~,, 03(~,, t,) = t,. 

Now we can specify the prior on (24). 

The prior for f ( s ,  t) is the reproducing kernel for the thin-plate spline in (19). This 

means that f ( s ,  t) is of zero-mean Gaussian random variables with the covariance 

function between f ( s,, ti ) and f ( s ~, t j ) given by 
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c~v(f(si ,  ti), f ( s  t , t j ))  = r~K{(sl,  tl), (Sj, tt) }. 

Using results from (19), the kernel K is given by 

(26) 

where 

K{(si, t,), (st, tj)} = E{(s,, t,), (st, tt) } 
3 

- ~__.2k(s~, t j )E{uk,  (si, t,)} 
k = l  

3 

- ~ p k  (s,, t , )E{(sl ,  tt), uk} 
k = l  

3 3 

+ E ~ v k  (s,, t,)p,(st, t t )E{uk,  u,}, 
k = l  1=1 

(2T) 

E { ( s , ,  t ,) ,  (sj,  t~)} = r 2 log(r) ,  r = ~ / ( s ,  - ~j)2 + (t, - tt)  2. (28) 

This is because that, with d = 2 and m = 2, we have j 2 ( f )  given by (14). Obviously, 

d/2 + 1 is even in (16), so E(r) is proportional to r21og(r). Note that 0~ can be 

absorbed into ci in (18). Furthermore, let 

Pl (s~, ti) = - 1  + 2si + 2t~, p2(si, ti) ----- 1 - 2si, p 3 ( 8 i ,  t i )  = 1 - 2t~. 

By choosing 

1 1 1 ( ~ , 0 ) ,  
~ ,  = ( 5 , 5 ) , ~ 2  = (0, ~ 1 , ~  = 

(29) 

we have Px,P2,P3 be the polynomials of total degree less than 2 satisfying pi(uj) = 
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1,i = j and pi(uj) = 0, i  ~ j .  Then  we are now ready to apply the  random effect 

model in (21). 

To complete the  prior specification for model (24), we take uninformative priors 

for all unknown parameters  (Wood et. al., 2000). We take uniform independent  

prior on [0,10 l~ for the  smoothing parameter  T 2. The  prior for c~ = (a0, a l ,  a2)'  is 

~ N ( 0 , c I ) ,  

with c ---* oc. The  prior for a 2 is 

p(a 2) ~x (a2)  -1-1~  exp( -10 -1~  

The  result ing Bayes es t imate  will be the  solution to the  variat ional  problem in (12) 

with d = 2 and m = 2. 

4 . 2  M o d e l  I m p l e m e n t a t i o n  

In this subsection, we will discuss the  implementat ion of the  model in (24). To make 

this model computat ional ly  feasible, we will consider a t ransformed model. As in 

Wood et. al. (2000), the  sampling scheme requires factoring the  covariance matr ix  

K as Q D Q  1, where Q is an  or thonormal  matr ix  and  D is the  diagonal matr ix  with 

diagonal elements, di, t h a t  are the  eigenvalues of K. 

To ease the  notat ion,  we rewrite model in (24) as 

y~=c~o+c~ls~+c~t~+f~+e~, i = 1 , . . .  ,n ,  (30) 

where f~ = f(si,ti), and f = (fl ,"' , f~)l is Gaussian with zero-mean and the 

covariance T2K. Let 
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= ( , ~ o , , ~ a ,  ,~=)', 

Y = ( Y l , ' " , Y . ) ' ,  

f = ( e l , ' "  " , en) t, 

(31) 

and 

1 sl t l  

1 s2 t2 
Z =  

: 

1 Sn tn 

then we can write (30) in the  matrix form 

(32) 

that  is, 

Yl 

Y2 

Y. 

1 81 t 1 

1 s2 t2 

! . . .  i 

1 s .  t .  

~ 0  

GI + 

G2 

f l  

A + 

A 

E1 

E2 

en 

(33) 

with the  priors, 

y = Z a + f + e ,  (34) 
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~~N(0,~I), 

f~N(0,  r2K), 

~ N ( 0 ,  a2I), 

"c 2 ~ u n i  f [ O ,  101~ 

a 2 ~ IG(10 -s, 10-1~ 

(35) 

where 72 is uniformly distributed in the interval [0, 10 l~ and a 2 has a inverse Gamma 

distribution with parameters 10 -s and 10 -l~ Let us return to the covariance matrix 

K. Since K is positive definite, we can factor K as Q D Q  ~ such that 

Q Q ' = I .  (36) 

We can pre-multiply Q'  to (34), so we have y* = Q~y. And the model becomes 

y*= Z*c~ + if+e*, (37) 

where 

Z* = Q'Z, 

f* = Q'f, 

E* : Qte. 

(38) 

The priors for ~, 72, a 2 will remain the same as in (35). Meanwhile, e* has the same 

distribution as c ,-, N(0, aZI) because of (36) in N(0, a2Q'IQ). However, the prior 
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for f* becomes 

because of 

f* ,,, N(0, T2D), (39) 

Var(Q'f)  = Q'Var(f)Q. 

= Q,r2KQ 

= r 2 Q ' Q D Q ' Q  

= 7-2D, 

where r ~ and D as defined before. 

4 . 3  B i v a r i a t e  R e g r e s s i o n  f o r  t h e  B i i h l m a n n - S t r a u b  Model  

Consider data in Btlhlmaim-Straub Model, it allows different number of exposure 

units or different distribution of claim size across past policy years. This can be 

handled in model (30) by assuming 

G 2 
e i ~  g (o , -~ ) ,  i =  l , . . .  ,n, (40) 

where w~ is the corresponding weight for data value yi. We can also have the same 

matrix form as (34), 

y = Za  + f + e, (41) 

but with the priors 
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~,,,N(0,cI), 

f,~N(O, T2K), 

e~N(O, 0 " 2 w - l ) ,  

r 2 ~ u n i f [ O ,  101~ 

a 2 ~ IG(10 -8,10-1~ 

(42) 

Here W is the diagonal matrix with diagonal elements, w~, the corresponding weight 

for data value Yi. 

This model can be easily transformed to a similar model as in (34) and (35). 

Then we can implement the modified model analogously as in Section 4.2. Now let 

An interim model is given by 

with the priors 

y' = v/-Wy 

Z' = v"WZ, 

f' = v'-Wf, 

E ~ = v / W e .  

y~= ZI(~ + fl+e ~, 

(43) 

(44) 
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~~N(0,cI), 

f 'NN(0, T 2 ~ K ~ ) ,  

c'~N(0,a2I), 

T 2 ~ unif[O, 101~ 

a 2 ,,, IG(10 -s, 10-1~ 

(45) 

We can then set K '  = ~ K ~ .  This means that f ' (s ,  t) is of zero-mean Gaussian 

random variables with the covariance function between f '(si ,  ti) and f ' (s j ,  tj) given 

by 

cov{ f ' ( s , ,  t~), f ' ( s j ,  tj)} = K'{(si, t~), (sj, tj)}. 

This is just a different choice of the prior for the full bivariate surface f ' ( s , t ) .  We 

can then use results from (30) to (39) based on (44) to (45). 

We use the Gibbs sampling scheme where the bivariate regression surface is mod- 

eled by the thin-plate spline prior as described earlier in the paper. A good intro- 

duction to the Gibbs sampler is given by Gelfand and Smith (1990). One of the 

advantages of Gibbs sampling is that it can take advantage of any additive structure 

in the model as explained in Wong and Kohn (1996). The sampling scheme is similar 

to the one used by Wood et. al. (2000) in a model selection context. In our case, 

the estimates of c~, f', ~-2, and ~2 are obtained by generating the iterations c~lJl, f'{31, 

T 2[j] , and r from the sampling scheme described in (45). The constant c is chosen 

to be a large number (c = 102~ so as to ensure that the prior for ~ is essentially a 

noninformative fiat prior. 
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4.4 One-Step Ahead Prediction 

Many problems in actuarial science involve the building of a mathematical model that  

can be used to predict insurance costs or to forecast losses in the future, particularly 

the short-term future. Our approach is to establish a nonparametric regression model 

Yi3 = g(Y~j-1, Y~,j-2) + e~, i = 1, ..., n, where g is a smooth function of its arguments. 

This model allows us to describe the dependency between the current observations 

y~j for all policyholders i = 1, ...,n, and those past losses Y~,j-1 and Y~,~-2 through a 

nonparametric regression function at occasion j .  

Suppose that  we are interested in one step ahead prediction of Y~,j+I. We take 

the posterior mean E(Y~,j+I I Y) as the best predictor of Y~,j+I and use the posterior 

var(Y~j+l I Y) to obtain the posterior pointwise prediction interval. For convenience, 

we estimate the posterior mean and variance of Y~,~+I using empirical estimates based 

on the values of yz,~+~ generated during the sampling period by using the model in 

(30), tha t  is, 

y~j =ao+aly~ , j - l  +a2y~,j-2+ f~+e~, i = 1 , . . .  ,n. 

To generate Yi,3+l, we plug in y~j and Y~,j-1 as covariates. For each iteration, with 

the generated values of a and f from the sampling scheme, we have 

y~ , j+l=ao+aly i j+c~2y i , j_ l+f i+e i ,  i = 1 , . . .  ,n. 

Therefore, the prediction is 

A A A A 

Yij+l ~ 0 +  + +f~ ,  = c~lyi,j c~2yi,j-1 

A 

where f i  is the expected noise on yi given observed data from (22). After a burn- 
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in period, it is assumed the iterations have converged to draws from the posterior 

distribution. We estimate the posterior mean and the posterior variance of Yij+a 

based on the values of Y~,j+I generated during the sampling period. 

5 Nonparametric Regression with Higher Dimen- 

sions 

Suppose the model is now extended to handle three variables. Similarly, we can 

treat s~ and t~ as the past losses and incorporate other relevant information as v,. 

For example, vi can be the number of years a policyholder remain in the same policy 

with the same insurer, or represents different driving age group in auto insurance. 

Then, the regression model is given by 

yi=g(si ,  ti ,vi)+ei, i = 1,.-.  ,n, 

with ei independent N(0, a 2) and with g(.) of the form 

y~=c~o+cqs~+c~2ti+c~av~+ f(si, ti, v~)+q, i = 1 , . . .  ,n. 

The prior on f is specified similarly to (26) and (27), that is 

cov{f(si, ti, vi), f(sj ,  t~, vj)} = r2K{ (si, ti, v,), (sj, tj, vj)} 

where 
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K { ( s i ,  t~, vi), (sj, t j ,  v~)} = E {  (s~, t~, v~), (sj, t3, v3)} 

4 

k = l  

4 

k = l  

4 4 

k = l  /=1 

E{ (s,, t,, ,,,), (sj, tj, . j)  } = ~ log(~), 

pl(si ,  ti, vi) = - 1  + 2si + 2ti + 2v~, 

p2(s~, ti, v d = 1 - 2si, 

p3(s~, t~, v~) = 1 - 2t~, 

pa(s~, ti, vi) = 1 - 2vi 

an d  

1 1 1 1 1 1 ( 1 , ~ , 0 ) .  
~1 = (�89 2' ~),~2 = (0, 2' ~),u3 = ( p o ,  ~) ,~4 = 

This  is because  of (13), where  m = 2, d = 3, a n d  

2 4 2  



- -  

=4 .  

Without loss of generality, we assume that the variables s, t, and v all lie in the 

interval [0,1]. 

Let a = (ao, a l ,a2,a3) '  be the vector of linear regression parameters, and let 

1 sl tl vl ] 
/ 

1 s,~ tn vn j 

The priors for ~, the smoothing parameter r 2, and a 2 are the same as in (35) which 

gives us 

~~N(0,cI), 

fNN(0, T2K), 

eNN(0, a2I), 

r 2 " u n i f [ O ,  101~ 

o-2 ~ IG(IO -s, 10-1~ 

The model implementation and the sampling scheme will be exactly the same as in 
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the bivariate model. 

6 Appl icat ion  to  medical  insurance data  

In this section, the results of Bayesian nonparametric regression model for the Btihlmann- 

Stranb type data with unequal exposure units will be illustrated by an application 

to a collective medical health insurance data from an insurance company in Taiwan. 

We consider a portfolio consisting of thirty-five group policyholders that  has been 

observed for a period of three years. The claim associated with group j (= 1, . . .  , 35) 

in year of observation t (= 1, 2, 3) is represented by the random variable Yjt, which is 

an average taken over wit employee. We choose groups with moderate group size (23 

to 80 individuals), and assume that  the number of employee does not change over 

the periods. Therefore, we have w3t = wj for all t, and the claim Y~t with weights wj 

fulfill the B~lhlmann-Stranb assumptions. Table 2 shows some observed realizations 

of the Yjt, and the numbers of employee wj. We want to determine the estimated 

premium to be charged to each group in year 4. The data  is in new Taiwan dollar 

(NTD). The exchange rate is about 1 US dollar to 35.16 new Taiwan dollar in March, 

2002. 

We consider the semiparametric regression model discussed in section 4.3, 

yj,t.-:aO+alyj,t-1+c~2yj,t-2+f(yj,t-x,yj,t-2)+e~, j = l , - . .  ,n, (46) 

where e~ ~ N ( 0 , ~ ) ,  i = I , . . .  ,n. The function f(Y~,t-l,Y~,t-2) has zero initial 

conditions and is estimated nonparametrically using the priors in (42). The scatter 

plot, fitted surface by (46), and fitted surface by the Bfihlmann-Straub (BS) model 

are shown in Figure 1. The contour plots shown in Figure 2 provide a better look of 

different levels of surfaces. 
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To examine the performance of the regression function, the average squared error 

(ASE) was calculated for the estimates of the regression functions. The ASE is 

calculated as follows 

n 

ASE = ,1 E w  j(~(sj,tj) - g(sj,~j))2. (47) 
~w~ 5=1 
j = l  

The ASE of the bivariate spline nonparametric regression modal is about 214.26, 

while that of the BtLlalmann-Straub model is 2208.07. Clearly, the bivariate spline 

nonparametric regression model outperforms the Bt~.hlmarm-Straub model. 

Our goal is to determine the estimated premium to be charged to each group in 

year 4. We perform one-step ahead prediction discussed in section 4.5. We estimate 

tl~e posterior mean and variance of Y~,4 using empirical estimates based on the values 

of Yj,4 generated during the samphng period. Figure 3 shows some of the posterior 

distributions of Yj,4. Some of the estimated premiums together with 95 percent 

posterior pointwise prediction intervals (in parenthesis) are shown in Table 3. For 

example, for group 3, the estimated premium is 5965.36 NTD for each employee in 

this group, and the total estimated premium is 49 x (5965.36) = 292302.64 NTD. 

Similar calculations can be done for other groups. 

7 Conclusions 

Many problems in actuarial science involve the building mathematical models that 

can.be used to predict insurance cost in the future, particularly the short-term future. 

A Bayesian nonparametric approach is proposed to the problem of risk modeling. 

The model incorporates past and present observations related to the risk, as well as 

relevant covariate information, and uses MCMC technique to compute the predictive 
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distribution of the future claims based on the available data, where the covariance 

structure is based on a thin-plate spline (Wahba, 1990). 

We have illustrated applications of Gibbs sampling within the context of non- 

parametric regression and smoothing. Gibbs sampling provides feasible approach 

to the computation of posterior distributions. Combined with assumed thin-plate 

spline structure of the regression surface and the computational availability of the 

bivariate or trivariate surface estimation, this methodology opens up a new dimen- 

sion to credibility literature. Although our discussion concentrates primarily on two 

and three-dimensional applications, the technique can be easily extended to higher 

dimensional problems. Our investigation shows that  this method performs at a su- 

perior level compared to the existing techniques in the credibility literature. 

In this paper, we have outlined a new approach to modeling actuarial and financial 

data. The model uses a Bayesian nonparametric procedure in a novel manner by 

incorporating a Gaussian prior on function space. We believe that  this procedure 

provides a flexible approach to function estimation and can be used successfully in 

the statistical analyses of a wide range of important problems. 
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Policyholder 
Average claim 1 
No. in group 

Average claim 2 
No. in group 

: 

Average claim 35 
No. in group 

Year l  Year2 Year3 Year4 
5419.09 1691.38 5984.65 ? 

74 74 74 74 
5603.50 4150.12 5797.48 ? 

52 52 52 52 
: : : 

4554.38 4646.96 5059.80 ? 
80 80 80 80 

Table 2: Average claims in group policyholders during three years. 

Policyholder Year 4 
Average claim 3 5965.36 (3080.30, 8877.31) 
No. in group 49 

Average claim 5 5485.61 (1429.58, 9398.640) 
No. in group 45 

Average claim 9 5024.05 (-595.66, 10495.44) 
No. in group 42 
Average claim 14 5000.68 (2173.55, 7648.52) 
No. in group 31 
Average claim 20 6437.74 (2558.72, 7116.71) 
No. in group 36 
Average claim 24 5217.51 (-361.08, 10462,63) 
No. in group 35 
Average claim 26 4959.50 (308.02, 9345.16) 
No in group 42 
Average claim 35 5074.70 (4620.35, 5497.48) 
No. in group 80 

Table 3: Estimated average claim for year 4 with 95 percent posterior pointwise 
prediction interval in parenthesis. 
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Figure 1: Surface Plots. (a) Scatter plot. (b) Plot of regression surface as a function 
of yt-1 and yt-2. (c) Plot of BS model surface. 
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Figure 2: Contour Plots. (a) Plot of regression function as a function of yt-1 and 
yt-2. (b) Plot of BS model. 
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Figure 3: Posterior Plots. (a) Y3,,. (b) Y5,4. (c) Y9,4. (d) Y35,4. 
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Classification Ratemaking Using Decision Trees 

By 

Nasser Hadidi, Ph.D., FCAS, MAAA 

Introduction 

Manual rating of specific risks begin with a base rate, which is then modified by 

appropriate relativity factors depending on characteristics of each risk. Classical methods 

of deriving indicated relativities, are described by McClenahan (1996) and Finger 

(1996). A number of different modeling procedures are described in Brown's (1988) 

"minimum bias" paper and Venter's (1990) review of Brown's paper. These methods 

generally rely on the "multiplicative" or "additive" assumptions, which may not be 

reasonable for all types of risk. In this paper an alternative method of calculating 

indicated relativities is described, and demonstrated using a commercial Business 

Owners' Product (BOP) data set. Accident year 1997 to 2000 data is used to describe the 

method. The results are then applied to claims with accident year 2001. The derived 2001 

relativities are compared with observed relativities, thereby demonstrating the extent of 

suitability of this method. It should be stressed that the intent here is entirely 

demonstration of a procedure. For actual practical implementation, modification would 

be required. 

First a few words about the ten-ninology and the data set. Relativities are based on 

grouping of risks with similar risk characteristics. This is essentially a classification 

problem. The purpose of any classification procedure is partitioning of objects - in our 

case risks - into demonstrably more homogeneous groups. For the BOP data we seek 

groups of risks with significantly differing claim frequencies, severities, pure premiums 

or loss ratios. Typically partitioning is based on a number of risk factors, which for BOP 

might be Coverage, Risk State, ISO territory, ISO coverage code, Property versus 

Liability, etc. 

Distinctions must be made between these rating factors, which are used to group risks 

together and variables such as frequency, severity, pure premium or loss ratio, which 
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must be estimated partially based on these risk factors. The former are independent or 

predictor variables while the latter are dependent variables. Both of these variables may 

be assumed to be either categorical or vary continuously in a given interval. The statistics 

used as the basis of classification depends on whether the dependent and/or the 

independent variables are categorical or interval scale. For risk classification the 

independent variables are typically categorical. For example the BOP data includes losses 

for three different coverages, in 51 different risk states, and with 178 different ISO 

territory codes, 6 different ISO construction codes, etc. It is customary to say that the 

classification variable - risk state - has 51 different levels. Similarly, there axe six levels 

of ISO construction code, etc. 

The BOP data set under consideration includes 27,854 claims with accident years 1997 

through 2000, and 9011 claims with accident year 2001. These are broken down by: 

Number of Levels 

Risk State 51 

Company 4 

ISO protection code 1014 

ISO territory code 178 

ISO construction code 6 

Property/Liability indicator 2 

Building/Content/Other indicator 3 

Coverage code 3 

ISO subline 2 

ISO coverage code 4, 

as well as a few other variables. 

The data includes paid and incurred loss and expense (combined), basic limit (300k) loss 

and expense, and excess as well as cat losses. 
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The customary and classical method of  splitting data for the purposes of  deriving 

relativities is to consider all possible combinations of  levels of  permissible classification 

factors. For auto coverage, for example, in some states a 2x2 table of  gender by 

rural/urban may be considered. Or in this case for any risk state, company and territory 

we may have a typical 2x3 table of  property versus liability by building versus content 

versus other. The biggest drawback of  such splits is that a specific rating factor may have 

a large impact on one level o f  another rating factor, but no impact at all on other levels. 

Or if  it does, the nature o f  the impact may be quite different. For example ISO 

construction code may influence losses in one way in one ISO territory and in no way or 

a completely different way in another territory. The methodology described here is 

intended to avoid this drawback without the necessity of  introducing numerous 

"interaction" parameters. 

Rather than splitting the data in all possible ways, the data can be sequentially and 

selectively split in mutually exclusive homogeneous groups. Splits would be made only if  

clearly indicated by data to be meaningful. Meaningful in the sense that, risks are indeed 

more homogeneous in whatever it is that we are measuring- typically frequency or 

severity. The term decision "tree" is derived from this sequential approach. That is, start 

with the whole data - appropriately split the data into branches by one "best" rating factor 

to begin with. Then concentrate on one branch by itself, disregarding the rest o f  the 

branches, and find the next "best" rating factor for it, thereby creating new branches for 

this branch. Then concentrate on the next branch and find the next "best" rating factor for 

it, which may be - and in fact often is - a different rating factor. New branches are then 

created for this second branch and so on. Details o f  how exactly this can be done in 

practice is given below, but first it should be stated that this method is based on principles 

underpinning a large number of  classification procedures - referred to as classification or 

decision tree procedures - which are amply reported in the statistical data mining 

literature. 

These procedures appear with a variety of  acronyms including: 

AID Automatic Interaction Detection 
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THAID 

CHAID 

Exhaustive CHAID 

C&RT / CART 

QUEST 

FACT 

FIRM 

C4.5 

ID3 

GUIDE 

CRUISE 

Etc. 

Theta AID 

Chi-Squared Automatic Interaction Detection 

Modified CHAID 

Classification And Regression Trees 

Quick, Unbiased, Efficient Statistical Tree 

Fast Algorithm for Classification Trees 

Formal Inference-based Recursive Modeling 

A set of computer programs that construct classification models 

The predecessor of C4.5 

Generalized Unbiased Interaction Detection and Estimation 

Classification Rule with Unbiased Interaction Selection and 

Estimation 

AID, THAID, CHAID and Exhaustive CHAID 

AID was first described by Morgan and Sonquist in1963 as a sequential procedure for 

analysis of survey data. It is intended to avoid the problem of interaction between 

variables used for classification. In the case of classifying risks, the problem of 

interaction translates into the possibility that type of coverage, for example, may have a 

different impact on rates for one territory as opposed to another territory. They propose 

bisecting the data sequentially, one factor at a time, based on maximizing the between 

levels sum of squared deviation. This is somewhat similar to the ordinary analysis of 

variance procedure, though in their 1963 paper they propose stopping the splits simply 

when the reduction in error sum of squares is less than a specified value. THAID, which 

was proposed by Messenger and Mandell in 1972, similarly bisects data, but based on a 

different statistic. This statistic, which they call THeta, is related to the proportional 

reduction in misclassification errors. CHAID was described by Kass in (1980). As the 

acronym indicates the predominant statistic used for splits in this procedure is the Chi- 

square statistic. Whereas for AID the dependent variable is interval scaled, here the 

dependent variable is nominal. As an example one would look at the overall proportion of 

policies that resulted in none, one, or 2 or more claims; that is three categories. And then 
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split policies in groups so that the proportion of policies in each category would differ 

significantly between groups. Independent variables also being categorical, typical two 

way contingency tables are constructed and Chi-square statistics are calculated which 

form the basis of the splits. This procedure is demonstrated by Gallager Monroe, and Fish 

(2001) for private passenger automobile experience. Exhaustive CHAID (spss.com) is 

based on Biggs, de ViUe, and Suen. (1991). It is a refinement and expansion of the 

method given by Kass. The significance level of the utilized Chi-square statistic is 

appropriately adjusted for the number of independent variables. 

CART, C&RT, QUEST, FACT,  GUIDE and CRUISE 

CART, (cart.corn) was introduced by Breiman, Friedman, Olshen, and Stone in (1984). It 

is similar to AID in that to achieve the final classification a series of binary splits are 

made. But it is far different from AID or CHAID in the splitting mechanism. Here at each 

step of the classification a series of queries is made regarding the value of each of the 

independent variables. For categorical independent variables such queries take the form 

of whether or not each case belongs to a given subset of levels of each independent 

variable. All possible subsets of all independent variables are considered. For interval 

scale independent variables the percentage of cases with values less than all observed 

values of this variable are considered. A misclassification cost is then calculated and the 

split is based on minimizing that misclassification cost. C&RT is another vendor's 

(spss.com) version of CART. QUEST is proposed by of Loh and Shih (1997). It is 

intended to reduce the bias in favor Of splits that are based on independent variables for 

which more branching is possible. Categorical independent variables with more levels 

and interval scale independent variables with more distinct values are more likely to be 

selected first in classification tree procedure. This bias is a frequently recurring criticism 

of these classification procedures and several efforts in minimizing the bias are reported 

in the literature. FACT is also proposed by Loh and Vanichsetakul, (1988). It is 

described as an algorithm combining CART and Linear Discriminant Analysis (LDA). 

Discriminant analysis is the classical method of predicting group membership based on 

predictive characteristics. Depending on the number of groups one or more discriminant 

functions are estimated from the data. These functions are linear combinations of 
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independent variables, and are in turn used to predict group membership. The values of 

these functions are, ideally, substantially different for each group. This would be the case 

if predictors have sufficient discriminating information. FACT differs from CART in that 

it uses a different misclassification cost based on these discriminant functions. GUIDE is 

proposed by Loh (2002). It is also intended to eliminate the variable selection bias. As 

mentioned for QUEST this bias refers to the fact that categorical independent variables 

with more levels as well as interval scale variables with more distinct observed values are 

more likely to be selected first in the tree structure. The bias is eliminated by an 

adjustment to the Chi-square p-value. CRUISE is the described by Kim and Loll (2001). 

It borrows ideas from FACT, QUEST, GUIDE, and CART, and is claimed to be faster 

and further reduce the variable selection bias. 

FIRM, C4.5 and 11)3 

FIRM is a collection of codes presented by Hawkins (1990) for implementation of 

CHAID. Two versions, CATFIRM and CONFIRM, are given respectively for categorical 

and interval scale dependent variable. Details of the procedure are given in Hawkins and 

Kass (1982). Here essentially the interval scale variables are converted to categorical 

variables by clustering adjacent values in one category. C4.5 and its predecessor ID3 are 

presented by Quinlan (1993). They are a collection of computer programs that construct 

classification trees. The construction method is based on what they refer to as "divide and 

conquer algorithm" which uses the "gain" criterion. They refer to the data as "training 

set" and for any split of the training set the gain is defined in terms of the information or 

entropy obtained thereby. 

Procedure Description 

Almost all of the above procedures are packaged, some more elegantly than others, and 

are available commercially. But none can be used without modifications with actuarial 

data since they are not specifically designed as such. Many of the splits automatically 

tested in these procedures are meaningless for actuarial data. CART would routinely test 

if a BOP policy belongs to all subsets of the rating variable ISO construction code. 

Clearly only subsets including only one element are meaningful for actuarial data. None 
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address the credibility issue. Furthermore routine 'black box' style use of these packages 

usually mask the statistics used as splitting criteria. It is therefore not clear whether the 

assumptions required, especially with regard to the distribution of such statistics are 

indeed valid for the data at hand. Therefore, with actuarial data the common underlying 

principles of these procedures should be grasped, modified appropriately and 

implemented directly. 

These underlying principles are the sequential consideration of the rating factors, splitting 

the data based on an appropriate metric and at each split combining the levels of each 

rating factor as long as they are not significantlydifferent. How this can be done in 

practice would now be demonstrated using the described BOP data. For this illustration 

the natural log of basic limit losses is considered the dependent variable, and the 

following factors are independent variables: 

Coverage code, Risk State, Company, ISO protection code, ISO territory code, ISO 

construction code, Property/Liability indicator, Building/Content/Other indicator, ISO 

Subline, ISO coverage code 

The selected metric is the F statistics (or equivalently its p-value) given by the ratio of 

between and within mean squares as described below. The choice of this statistic is 

justified by the fact that basic limit losses here very closely follow the lognormal 

distribution. It is essential to check thi s lognormai assumption which results in the F 

distribution for the mean square ratios when we use log of losses. 

Splits will not be made if the p-value of the F statistic is more than 0.01 or the resulting 

splits will have less than 200 claims. 

As stated earlier risk state, ISO protection code, and ISO territory code have, 51, 1014, 

and 178 levels respectively. Most of these levels have very few claims. Risk state '54' 

(Alaska) and '99' (miscellaneous) have 3 and 1 claims respectively. Therefore before any 

analysis, for each factor the number of levels is reduced by appropriate level 
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combinations and/or introduction of an 'all other' category. The exact number of levels 

to reduce to is not crucial at this stage of the analysis since groups will be reeombined 

objectively with the tree structure in the next steps. Simply inspecting the mean severity 

by level of each factor along with the standard errors of each mean (confidence interval) 

provides an adequate means of  combining levels. 

In this fashion the rating factor risk state was combined into nine distinct groups. 

Similarly the levels oflSO protection code, and ISO territory were regrouped into 9 and 8 

levels respectively. Exhibit 3 is a description of these reeodes along with the number of 

claims in each group. 

A standard multivariate split of this data would result in at most 

(9 Risk State)x(4 Company)x (9 ISO protection code)x(8 ISO territory eode)x 

(6 ISO construction code)x(2 Property/Liability indicator)x(3 Building/Content/Other 

indicator)x(3 Coverage code)x(2 ISO subline)x(4 ISO coverage code)=2,239,488 cells, 

The whole idea of this method is which of these 2,239,488 cells are indeed materially 

different from the rest, and must be evaluated individually. The tree structure is intended 

to isolate these significantly different cells from the total. As shown below for the BOP 

data only 21 tiers or nodes, need be considered separately. Obviously each risk would 

belong to one and only one of these 21 tiers. Here is how the procedure works. 

For the entire data, the so called node 0, the mean and standard deviation of log severity 

based on 27,845 claims is 7.5944 and 1.7692 respectively. At this stage the "best" 

predictor of  this log severity is risk state. The best predictor means the predictor 

producing the highest F ratio, which here is the selected metric of choice for splitting, or 

equivalently the lowest p-value for the F statistic. This factor would divide risks into five 

groups: 

Risk States log Severity 

9 8.1405 1736 

7,8 7.9598 2548 

5,6 7.6994 7056 

3,4 7.5127 11181 

1,2 7.2742 5324 

All 7.5944 27845 

Number of claims 
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The fol lowing graphs demonstrate the reasoning behind these combinations. 

Confidence Intervals for Mean log Severity 
8.4 

8.2 

8.0 

78 

, 2  ~ ! 
7.0 

1 2 3 4 5 6 7 8 9 

Groups of Risk States 

Confidence Intervals for Mean log Severity 
84 ,  

8.2- I 

78-1 

7.6-I 

74 t 7.2 
7.0 

(p 

N, ~ 4  1.al ~ee 2 ~  17,~ 

1 2 3 4 5 

Groups  of  R isk  States 

From the first graph it is observed that there is no clear reason not to combine 1 and 2, 3 

and 4, 5 and 6, 7,8 and 9. But once 7 and 8 are combined, 9 would be significantly 

different from that combination. From the second graph it is clear that the five new 

groups have significantly different means. Graphical descriptions aside, the F statistic is 

the ratio o f  between mean square 

[1736(8.1405-7.5944) 2 +2548(7.9598-7.5944)  2 +7056(7.6994-7.5944)  2 + 

11181 (7.5127-7.5944) 2 +5324(7.2742-7.5944)2]/4 = 389.0511 

2 6 2  



and within (error) mean square 

(27844xl.76922-4x389.0511)/27840= 3.0746 

This ratio equals 126.5, which is of course highly significant leading to the necessity of 

the above split. 

Let us now concentrate on states 3 and 4, disregarding other states for now. For this 

branch the next best predictor is property/liability indicator, which again based on the F 

ratio of69.0divides risk into 2 branches: 

log Severity 

Property 7.2632 2533 

Liability 7.5858 8648 

All 7.5127 11181 

Number of claims 

Next, consider liability claims in states 3 and 4. These have to be broken down by ISO 

territory. The resulting F statistic is 28.5 based on 3 distinct groups of territories: 

Territory log Severity Number ofclaims 

2,6,7 7.6988 4357 

1,3,4,5 7.5001 3961 

8 7.1206 330 

All 7.5858 8648 

Next, consider liability claims in states 3 and 4 and ISO territories 1,3,4,5. These have to 

be broken down by ISO constuction code. The resulting F statistic is 16.35. 

Construction log Severity Number of claims 

3,4,5,6 7.6257 1632 

1,2 7.4121 2329 

All 7.5001 3961 
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Next, consider liability claims in states 3 and 4, ISO territories 1,3,4,5 and ISO 

construction code 1,2. These have to be broken down by building/content indicator. 

The resulting F statistic is 9.61. 

log Severity Number of claims 

Building 7.2992 1050 

Cotent 7.5049 1279 

All 7.4121 2329 

With the constraint of a p-value less than 0.01 and at least 200 claims, no further splits 

based on any other independent variable is implied by this procedure. 

In this manner a number of distinct tiers, or the so called terminal nodes can be identified. 

It is customary to depict these tiers with a tree structure as follows: 

�9 mm m 

m 
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There are corresponding structures containing tier standard deviations and sample sizes 

needed for credibility adjustments, which are given in Exhibits 1 and 2. 

The point is that while the overall mean is 7.594, 21 distinct tiers have in this manner 

been identified with means ranging from as low as 6.731 and as high as 8.452. 

The profiles of risks in each tier are listed below: 

Tier Profile 

Risk State 1 

Liability 

log Severity Number of Claims 

6.7313 317 

2 Risk State 5,6 6.8069 279 

ISO Territories 4,6,8 

ISO Subline 2 

3 Risk State 2 7.1072 898 

Liability 

4 Risk State 3,4 7.1206 330 

ISO Territories 8 

Property 

5 Risk State 1,2 7.1355 1708 

ISO Territories 2,5,6,8 

Property 

6 Risk States 3,4 7.1477 2039 

Liability 

Building, Other 
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10 

11 

12 

13 

Risk State 3,4 

ISO Territories 1,3,4,5 

Property 

ISO Construction 1,2 

Building, Other 

7.2992 

Risk State 3,4 

ISO Territories 1,3,4,5 

Property 

ISO Construction Code 1,2 

Content 

7.5049 

Risk State 1,2 

ISO Territories 1,3,4,7 

Property 

7.5071 

Risk State 5,6 

ISO Territory Code 1,2,3,5,7 

ISO Construction Code 1 

7.5107 

Risk State 3,4 

ISO Territory Code 2,6,7 

Property 

7.6988 

1050 

1279 

2401 

989 

4357 

Risk States 3,4 7,6257 1632 

ISO Territories 1,3,4,5 

Property 

ISO Construction Code 3,4,5,6 

Risk State 5,6 7.6359 518 

ISO Territories 4,6,8 

ISO Subline 1 
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14 7.7114 2359 Risk State 5,6 

ISO Territories 1,2,3,5,7 

ISO Construction Code 2,3,5 

15 Risk State 3,4 

Liability 

Content 

7.7398 494 

16 Risk State 9 

Building 

7.7726 407 

17 Risk State 5,6 

ISO Territories 1,2,3,5,7 

ISO Construction Code 4,6 

7.8505 2911 

18 Risk State 7,8 

Coverage 1,3 

7.8360 1769 

19 Risk State 7 

Coverage 2 

8.0208 381 

20 Risk State 9 

Content, Other 

8.2532 1329 

21 Risk State 8 

Coverage 2 

All 

8.4521 398 

7.5944 27,845 
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Based on this procedure, certain independent variables do not impact claim costs at most 

levels of other independent variables. Coverage for example is only relevant for risk state 

groups 7 and 8. 

Credibility Adjustments 

Consider tier 20 with mean and standard deviations equal to 8.2532 and 1.8208 

respectively. The estimated mean here is 

e 8'2532+~176 = 20,148 

which once compared with the overall mean of 

e 7.5~4-o.5,,1.7692^2 = 9,504 

results in relativity of  2.120. This figure is based on 1329 claims. So it is not fully 

credible. 

The standard of full credibility utilized here is to be within one percent of the estimated 

mean with a probability of 0.99. As stated before limited losses being very closely 

distributed as a lognormal random variable, for this class the full credibility standard 

would be at least 

(2.575xl.8208/0.01xS.2532) 2 = 3,227 

claims. Using the square root rule, the partial credibility of 2.120 is thus 

(1329/3227) ~ = 0.642. 

The complement of credibility is assigned here to the non-terminal node immediately 

preceding this tier, the so called parent node. I f  there are not sufficient claims in this 

parent node to attain full credibility one can first adjust this relativity with its own parent 

node before using it as a complement. In this ease the parent of tier 20 has log severity 

mean and standard deviation of 8.1405 and 1.8078 respectively, giving the severity mean 
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of 

e s.1405+0.Sxl.S07s^2 = 17,581 

and relativity of 1.850. But the number of claims here is only 1736 not reaching its own 

full credibility standard of  

(2.575xl.g078/0.01x8.1405) 2 = 3,270. 

The 1.850 estimate therefore has partial credibility of 0.729. The node immediately 

preceding this node has a relativity of 1, which has full credibility. Therefore the 

complement of credibility for tier 20 is attached to 

0.729xl.850 + 0.271xl -- 1.619 

Henco the credibility adjusted estimate of relativity for tier 20 is 

0.642x2.120 + 0.358x1'.619 = 1.941. 

The necessary calculations for all 21 tiers are given in Exhibits 4-9. 

C r o s s  V a l i d a t i o n  

As stated earlier the BOP data set includes 9011 claims with accident year 2001 which 

were not used for this classification scheme. These were deliberately let~ out for cross 

validation of the procedure. The accident year 2001 claims are grouped into 21 tiers 

based on the above scheme. For example coverage 2 claims in risk state 8 form tier 21, 

etc. Tier I includes 126 claims with the observed mean of $7,053. This value compared 

with the overall observed mean of $12,253 gives an observed relativity of 0.575. 

How does this compare with the estimated relativity based on 1997-2000 data? 

The unadjusted relativity in that tier computed as explained above and listed inExhibit 4, 

is 0.392 with a partial credibility of(317/4368) ~ = 0.269. The complement of this 

credibility is assigned to the adjusted relativity of the parent node, which is 
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0.509x0.664 + 0.491 x0.604 = 0.634. Thus the credibility adjusted estimated relativity of 

tier 1 is 0.269x0.392 + 0.731x0.634 = 0.569. 

This sort of  calculation and comparison of course has to be done for all tiers. Details are 

given in Exhibits 4-9 in the appendix. The resulting credibility adjusted relativities and 

the actual observed 2001 relativities are listed below. The extent of association between 

these values can be observed from the chart. 

~,ccident Year Credibility 

2001 Adjusted 

Observed Relativities Relativities 

0.575 0.569 

0.833 0.904 

0.994 0.700 

0.820 0.760 

0.602 0.492 

0.813 0.820 

0.510 0.602 

0.791 0.652 

0.717 0.658 

0.758 0.975 

0.781 0.92(3 

0.677 0.853 

0.655 0.982 

1.116 0.951 

1.217 1.14E 

1.107 1.431 

1.086 1.72~ 

0.870 1.40~ = 

1.021 2.651 

2.725 1.941 

1.384 2.65~ = 
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Summary and Conclusions 

Classical methods of deriving rate relativities, are based on either a univariate or 

multivariate analysis of the data. The former requires the additive or multiplicative 

assumption and the latter may require estimation of numerous interaction parameters. An 

alternative method based on classification tree procedures is described in this paper. It is 

shown how risks with homogeneous loss severities can be grouped, based on appropriate 

combinations of levels of rating factors. Using accident year 1997-2000 data for a 

particular product, relativities are computed for 2001 accident year claims. With 

appropriate adjustment for credibility, these relativities axe then compared with actual 

observed relativities demonstrating the suitability of this method. Because of the 

particular description of risk tiers, results obtained by these procedures might be 

somewhat difficult to implement. However, as an additional underwriting guideline, 

especially when deviating from manual rates, these procedures can be quite useful. 
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Exhibit 1 
Node log Severity Standard Deviations 

m 

n 
m m 
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Exhibit 2 
Node Number of Claims 

ii!1 m m 
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Exhibit 3 
Recoded Levels of Risk Factors 

Risk State 

5,45,32,49,36,3,26,18 1 
10,37,35,22,28 2 
47,2,25,30,43,15 3 
29,17 4 
6,16,21,8,38,42 5 
12,19,41,27,46,23,24,1,39,44,33,54 6 
31 7 
9,20,4,7 8 
34,14,11,13,48,99,40 9 

Company 

BD 1 
BE 2 
BG 3 
Others 4 

ISO Protection Code 

1,10 
2 
3 
4 
5 
6 
7,11 
8,9 
Missing 

ISO Territory Code 

1 
2 
3 
4 
5 
6 
Missing 
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Others 7 

ISO Construction Code 

1 
2 
3 
4 
Missing 
Others 

ISO Coverage Code 

21 
22 
Missing 
Others 

Coverage 

81 
84 
Others 

ISO Subline 

915 
Missing 
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Exhibit 4 
Unadjusted Observed Relativities by Tier 
(a]) (bl) (GI) (dl) (el) 

Underlying Underlying 
Normal Number of Normal Mean Unadjusted 

Tier Mean Claims Std. Deviation Severity Relativity 
1 6.7313 317 1.7276 3,728 0.392 
2 6.8069 279 1.8531 5,034 0.53fl 
3 7.1072 898 1.9032 7,467 0.786 
4 7.1206 330 1.7528 5,749 0.605 
5 7.1355 1708 1.5776 4,359 0.45g 
6 7.1477 2039 1.8772 7,403 0.779 
7 7.2992 1050 1.6163 5,461 0.575 
8 7.5049 1279 1.5741 6,272 0.66G 
9 7.5071 2401 1.5785 6,329 0.666 

10 7.5107 989 1.6621 7,273 0.765 
11 7.6988 4357 1.6600 8,748 0.92C 
12 7.6257 1632 1.6927 8,590 0.90~ 
13 7.6359 518 1.6985 8,764 0.922 
14 7.7114 2359 1.6474 8,676 0.913 
15 7.7398 494 1.9485 15,339 1.614 
16 7.7726 407 1.7156 10,345 1.088 
17 7.8505 2911 1.9540 17,319 1.822 
18 7.8360 1769 1.7872 12,494 1.315 
19 8.0208 381 2.1538 30,953 3.257 
20 8.2532 1329 1.8208 20,148 2.12E 
21 8.4521 398 1.9216 29,684 3.122 

To~l 7.5944 27845 1.7692 9,504 1.00C 

(dl)= Exp[(al)+0.5X(Cl) 2] 
(el) = (dl)/[Total Entry of (dl)] 
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Exhibit 5 
Required Number of Claims for Full 

Credibility by Tier 
(a2) (b2) 

Number of 
Claims for full Partial 

rier Credibility Credibilit 

1 4,368 0.26 r . 
2 4,914 0.23~ 
3 4,755 0.43, = 
4 4,018 0.28; 
5 3,241 0.72(~ 
6 4,573 0.66~ 
7 3,251 0.568 
8 2,917 0 662 
9 2,932 0.90~ = 

10 3,247 0.55; 
11 3,083 1.00C 
12 3,267 0.707 
13 3,281 0.397 
14 3,026 0.88~ 
15 4,202 0.34" 
16 3,230 0.35~ = 
17 4,108 0.84; 
18 3,449 0.71E 
19 4,781 0.28; 
20 3,227 0.64; 
21 3,427 0.341 

(az)=[2.575X(Cl)/(.O1)X(al)] 2 
(b2)=[(bl)/(a2)] 05 
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Exhibit 6 
Parent Node Partial Credibility 

(a3) (b3) 

Tier 

Parent Node 

Normal 

Mean S~. Deviation 

1 7.0092 1.8656 

2 7.3457 1.7971 

3 7.0092 1.8656 

4 7.5858 1.6597 

5 7.3526 1.5885 

6 7.2632 1.9055 

7 7 .4121  1.5962 

8 7 .4121  1.5962 

9 7.3526 1.5885 

10 7.7444 1.8023 

11 7.5858 1.6597 

12 7 .5001  1.6398 

13 7.3457 1.7971 

14 7.7477 1.8023 

15 7.2632 1.9055 

16 8.1405 1.8078 

17 7.7444 1.8023 

18 7.9598 1.8798 

19 8.2409 2.0486 

20 8.1405 1.8078 

21 8.2409 2.0486 

Parent Node Number of claims 

Number of Mean Unadjusted for Partial 

Claims Severity Relativity Full Credibility Credibility 

1,215 6,307 0.664 4,697 0.50~ c 

797 7,789 0.819 3,969 0.44E 

1,215 6,307 0.664 4,697 0.50 c 

8,648 7,810 0.822 3,174 1.00C 

4,109 5,510 0.580 3,095 1.00C 

2,533 8,766 0.922 4,564 0.74~ = 

2,329 5,920 0.623 3,075 0.87C 

2,329 5,920 0.623 3,075 0.87C 

4,109 5,510 0.580 3,095 1.00C 

6,259 11,714 1.233 3,591 1.00C 

8,648 7,810 0.822 3,174 1.00C 

3,961 6,937 0.730 3,170 1.00C 

797 7,789 0.820 3,969 0.44E 

6,259 11,753 1.237 3,588 1.00C 

2,533 8,766 0.922 4,564 0.74~ = 

1,736 17,581 1.850 3,270 0.72 c 

6,259 11,714 1.233 3,591 1.00C 

2,548 16,758 1.763 3,698 0.83C 

779 30,924 3.254 4,098 0.43E 

1,736 17,581 1.850 3,270 0.72 c 

779 30,924 3.254 4,098 0.43E 

(a3) and (b3) are calculated as in Exhibit 4 
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Exhibit 7 
Parent of Parent Node Relativity 

(a4) 

tier 

Parent of 
Parent Node 
Mean Std. Deviation 

1 7 .2742 1.6619 

2 7 .6994 1.8060 
3 7.2742 1.6619 

4 
5 
6 7.5127 1.7237 
7 7.5001 1.6398 

8 7.5001 1.6398 
9 

10 
11 
12 
13 7.6994 1.8060 
14 7.6994 1.8060 
15 7.5127 1.7237 
16 7.5944 1.7692 

17 7.5127 1.7237 
18 7.5944 1.7692 
19 7.9598 1.8798 
20 7.5944 1.7692 

21 7.9598 1.8798 

Number of Mean 
Claims Severity Relativity" 

5,324 5,740 0.604 
7,056 11,274 1.186 
5,324 5,740 0.604 

11,181 8,089 0.851 
3,961 6,937 0.730 
3,961 6,937 0.730 

7,056 11,274 1.185 

7,056 11,274 1.188 
11,181 8,089 0.851 
27,845 9,504 1.00G 
11,181 8,089 0.851 
27,845 9,504 1.000 
2,548 16,758 1.763 

27,845 9,504 1.000 

2,546 16,758 1.763 

*) Same as Exhibit 3 and 4 
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Exhibit 8 
Observed Claims and Relativities for 

Accident Year 2001 

Observed 

Mean Number of Observed 
Tier Severity Claims Relativity 

1 7,053 126 0.575 

2 10,213 69 0.833 

3 12,179 339 0.994 

4 10,052 75 0.820 

5 7,380 344 0.602 

6 9,968 344 0.813 

7 6,250 216 0.510 

8 9,689 229 0.791 

9 8,788 775 0.717 

10 9,287 300 0.758 

11 9,578 1443 0.781 

12 8,297 456 0.677 

13 8,033 157 0.655 

14 13,679 691 1.116 

15 14,913 489 1.217 

16 13,574 131 1.107 

17 13,314 1072 1.086 

18 10,661 810 0.870 

19 12,518 234 1.021 

20 33,395 579 2.725 

21 16,964 132 1.384 
All 12,253 9011 1.00C 
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Exhibit 9 
Comparison of 2001 Observed and 

1997-2000 Credibility Adjusted 
Relativities 

(as) 
~,ccident Year Credibility 

2001 Adjusted 
3bserved Relativities RelativiUes 

0.575 0.569 

0.833 0.904 

0.994 0.700 

0.820 0.76( 

0.602 0.49; 

0.813 0.82( 

0.510 0.60; 

0.791 0.65; 

0.717 0.65E 

0.758 0.97, = 

0.781 0.92( 

0.677 0.85,~ 

0.655 0.98,~ 

1.116 0.951 

1.217 1.14E 

1.107 1.431 

1.086 1.72~ c 

0.870 1.40~ = 

1.021 2.651 

2.725 1.941 

1.384 2.655 

(as) = (el)(b2)+[ 1-('02)] [(a3)C03) + { l-(b3) } (a4)] 
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Quantifying the Impact of Non-modeled Catastrophes on 
Homeowners Experience 

Israel Krakowski 

Abstract 

Much has been done in recent years to quantify the impact of hurricanes and earthquakes on 
Homeowners loss experience, primarily through the construction of simulation models. Non- 
modeled catastrophes, primarily Wind, have retained the standard catastrophe ratemaking 
methodology. This paper examines various different ways of improving that methodology via 
the incorporation of other states' data. 

ACKNOWLEDGEMENT 

Many thanks to Joel Atkins, Erik Bouvin, Dave Chemick, Fred Cripe, Kevin Dickson, Sara 
Drexler, Christopher Monsour, and Fei Zeng, and readers of the paper for valuable input and 
suggestions. 

INTRODUCTION 

The 1990's saw considerable attention paid by the actuarial community to natural 
catastrophes, that is: hurricanes and earthquakes. The impetus for this focus was the 
gargantuan losses incurred by these perils, most dramatically by Andrew and Northridge. The 
most significant pricing related development to evolve from this attention has been the 
creation of catastrophe models by various entities (insurance companies, consulting firms, 
and companies whose primary product are these models). To a large extent these catastrophe 
models are black box simulations, not typical actuarial models. They have, however, by now 
gained a wide measure of acceptance by all segments of the industry. And their use has been 
addressed by Actuarial Standard of Practice #38. 

This paper will not deal with the aforementioned models, about which a considerable amount 
has been written.l It will rather focus on other natural catastrophes, of which the most 
significant peril, from an insured loss perspective, is (non-hurricane) wind and hail (which 
are lumped together and referred to as "wind" in the balance of the paper); though fire, water, 
and explosion, can cause substantial damage as well. To distinguish the catastrophe losses 
generated by these perils from hurricane and earthquake losses, they shall be referred to as 
"non-modeled catastrophes". The criteria for what constitutes a catastrophe vary by 
company. Typically there will be a dollar threshold (not increased nearly often enough) and 

I See for instance Burger, et. al. [1 ], Chernick [ 2 ], Walters and Morin [3 ] 
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some other criteria, such as more than one insured sustaining a loss. On an industrywide 
basis Property Claims Service (PCS) assigns catastrophe numbers to natural events based on 
its estimate of  total damage. 

In the last few years two phenomena have begun to focus attention on non-modeled 
catastrophes. The first is that by mere Virtue of the fact that there exist models that quantify 
hurricane and earthquake catastrophe risk, the "remainder" has taken on an identity of its 
own, and become the subject of distinct analyses. From an operations perspective a similar 
process has occurred. Companies have mitigated their hurricane and earthquake exposures 
via reinsurance---private and governmental, higher mandatory deductibles, limiting writings 
in designated areas, etc.. Homeowners insurance, which has not in recent memory been 
significantly profitable, has had particularly poor results recently. For 1991 through 2000 the 
industry has run a 110.9 operating ratio (combined ratio after dividends and investment 
income); for only one of these years has the ratio been less than 100. 2 Non-modeled 
catastrophes, now separated from hurricanes and earthquakes, have drawn attention as a 
distinct and significant contributor to these poor losses. 

The second phenomenon is that not only have the non-modeled losses begun to stand out in 
relief as a distinct peril (to use the term broadly) worthy of study, but the actual quantity of 
losses derived from these events have been rising, when measured over the long term (see for 
example Figure 1 and Exhibit 2). This is so whether one measures losses in absolute dollars, 
per dollar of premium, per house year or per amount of insurance year (these latter being the 
natural exposure bases). 

2. CURRENT METHODOLOGY 

Prior to the creation of the hurricane and earthquake models, the most widely used method of 
quantifying catastrophe risk was the ISO excess wind methodology. While many of its faults 
were clearly understood, it nevertheless remained the best that could be done. As simulation 
models have gained popularity for the hurricane peril, the ISO methodology, or one of its 
many variants, has been the primary methodology for quantifying what's left over. (Note that 
sometimes this procedure is applied to non-hurricane catastrophe wind losses only, and 
sometimes to all non-hurricane, non-earthquake catastrophes.) The basic concept is to take a 
long-term ratio of catastrophe losses to non-catastrophe losses. Thus the ISO excess wind 
methodology takes as excess losses all wind losses in. excess of the long term historical 
median ratio of wind to non-wind losses, but only for years in which that wind/non-wind 
ratio is in excess of 1,5 times the historical median ratio. These excess losses are then spread 
to all years. Again, the basic concept, for this and the many variants, is to take a long-term 
ratio of catastrophe losses--however defined-- to non-catastrophe losses, and spread the 
losses across years (or_equivalently load in the average). 

There are many problems with these procedures. Some of them are. 3 

2 And 2001 has likewise been a poor year. 
3 Some of the points are mentioned already in Hays and Farris[4], and McCarthy[5] and Chernick[2 ]. 
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The impact of distributional changes over time: in policy forms, geography, etc.. Changes 
over time in policy form, such as actual cash value vs. replacement cost, and coverages 
can affect the extent to which a natural event will yield covered losses. Even more 
significantly changes in exposure concentration over time will affect loss potential. 

The impact of changes in the definition and coding of catastrophes. PCS has gone from 
being in excess of 1 to 5 to 25 million as its definition of catastrophe. It is safe to 
conjecture that all major companies periodically change their definitions as well. 

�9 Even what is considered long term (e.g. 30 years) for the calculation of the catastrophe 
factors, is not long enough, for a given state. 

Adjustments that are typically made to numbers in the rate analysis process, such as trend 
and loss development, should probably be done separately for the catastrophe and non- 
catastrophe components. This is not so much a problem as a suggested refinement. The 
impact of severity trends and development on "excess" losses (in for instance the excess 
wind procedure) call for individualized attention. Similarly, frequency of catastrophe 
events might possibly not track with the frequency of non-catastrophe events. 

Changes in premium adequacy over time, if the statistic one is using is loss ratio, should 
be adjusted for. A very poor loss ratio could be a function of very poor rates and not 
unusually large losses. Capping should not be a function of premium adequacy. 

The non-catastrophe losses that form the base for the excess ratio comprehend multiple 
perils. Trends in some of these perils, such as liability and crime, may have no correlation 
to catastrophes, and cause distortion in excess ratios. Thus if liability losses become a 
much greater proportion of all coverages, then the ratio of catastrophe to non-catastrophe 
losses will artificially appear to go down, all other things being equal. 

* For those procedures that apply to excess wind only, there needs to be some adjustment 
for non-wind catastrophe such as fire, explosion, and water. 

We shall stop at this summary description of the current methodology. Those wishing further 
details can see Chernick [2 ], Hays and Farris [4], and Homan [6]. Bradshaw and Homan [7] 
suggest a variation which incorporates the output of a simulation model. McCarthy [5] 
recommends a procedure, which develops the catastrophe load based on non-hurricane wind 
loss frequency. Dean, Hailing, Wegner and Wilson [8], suggest a variation wherein capping 
is done below as well as above. (This list is not necessarily comprehensive). 
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3. GENERAL CONSIDERATIONS 

The primary focus of this paper will be on methods for analyzing a given state's non- 
modeled catastrophe experience by incorporating other states' data. The lack of such external 
data is a deficiency in most currently used methods. We will not be discussing how to take 
the indicated non-modeled catastrophe damage ratio, and incorporate it into an overall (loss 
ratio or pure premium) rate indication methodology. (Damage ratio is defined as losses over 
AIY--amount of insurance years. This is the primary statistic we will be dealing with.) 
While there are details to be worked out, the overall procedure should be fairly 
straightforward. Exhibit 1 gives one such way. 

Before discussing specific methods some general comments are in order. First, all the 
methods to be presented had, in their creation, various externally imposed requirements. 
1) That the separate indicated state damage ratios sum to a reasonable countrywide damage 
ratio. 2) If credibility is used, states with very stable damage ratios over time, even if small, 
should have relatively high credibilities. (In many of these states we would have good reason 
to believe that the state' process variance is lower than average, to put it in these terms, based 
on external---e.g, meteorological--considerations.) 3) States which had (what appears to be) 
an extreme (once in a hundred year or greater, say) event, should not be unduly penalized for 
said event. 

Most of the methods examined were constrained by the nature of the data available. An 
analysis with better or more restricted data can adjust the methods accordingly. The primary 
data used consisted of a summary, by state and calendar year, of various Allstate companies 
catastrophe losses and amount of insurance years from 1971 to 2000. 4 These losses are for 
Homeowners, Renters and Condo. In addition, for the years 1988 to 2000, data was 
available in some further detail. For these latter years thought was given to segregating other 
than wind (non-modeled) catastrophes, and perhaps having a separate load for these in 
selected states, s 

Some of the methods to be presented below (e.g. the trended method) will likely strike the 
reader as having problems which make them less optimal than the other methods, since they 
yield results that are significantly unintuitive for specific states. For the remaining methods 
though, it is not obvious which one is best Aside from meeting the above extemally 
imposed requirements there are three primary criteria by which a method is judged. The first 
is accuracy. This is the most important but most difficult to apply, since by their very nature, 
the existence or absence of catastrophes in a state in years subsequent to the predicted 
indication, do not necessarily bear directly on the accuracy of the indication. The second 
criterion is stability. This is easier to measure, and some exhibits will be presented below. 
The final is "sellability". Especially given the lack of a good test for accuracy, characteristics 
deemed unacceptable to either regulators or parts of one's internal organization, will count 

4 Because these were calendar year one does get, in a few instances, odd results such as negative loss numbers. 
5 This option was rejected since it did not seem to improve the results. Water catastrophe losses correlate with 
wind catastrophe losses, and other catastrophe perils--with exceptions in a few states--are usually small. 
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heavily against a method. One instance of such a characteristic is having losses spread from 
one state to another. 

Since it is unclear which of the methods to be presented is optimum, this paper should be 
viewed as providing ideas on how to improve the non-modeled catastrophe component of the 
rate indication process. For this reason, and to keep the number of permutations down, not 
every modification or refinement (e.g., of credibility) is presented for each method. 

4. SIMULATION MODELS 

Since our goal is to improve on the current methodology, we briefly note a potential 
methodology, not discussed in detail, which--once fully developed--may be the most 
accurate. That method is to construct simulation models for the non-hurricane wind peril 
analogous to those developed for hurricanes. Such models are in fact actively being worked 
on by the various modeling firms, and some of the first (Beta) versions are being released. 

The most glaring problem of other methods, including those to be presented below, is the 
omission from the analyses of change over time in exposure concentration, in areas that are 
likely to have windstorms or other natural disasters. No doubt increases in non-modeled 
catastrophe losses are to a significant extent driven by increases in these concentrations. To 
quantify the impact of increases in concentration we need the likelihood of natural events for 
each geographic area, where what constitutes a geographic area varies by the type of natural 
event. We need to understand how losses caused by different types of events are 
differentially impacted by the interaction of changes in exposure concentration and 
topography. In short, we need a simulation model that, in its very broad outline, is similar to 
hurricane models. 

Why not then use the soon to be available commercial models? First one should never use a 
Beta version of anything. Secondly, hurricane models required quite a few iterations until 
they reached their present state. The non-hurricane wind models will be, it appears, even 
harder to get right than hurricane models because of the different sorts of events and the high 
level of resolution needed 6. The combinations of types of event and topography are 
numerous, and the amount of historical data needed for accurate simulations great indeed. 
Nevertheless one can be (cautiously) optimistic that eventually we will have a workable 
model. In the meantime the methods presented below may be of some use. 

6 Even restricting ourselves to windstorms there are hailstorms, tornadoes, and straight line windstorms; each of  
these have a wide range of  intensities and interact differently to the geographical environment. 
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5. TRENDED METHOD 

The first method to be discussed is the "trended method". It might be conjectured that data 
going back as far as 1971 would be sufficient to calculate each state's own indicated damage 
ratio. One major problem (not discussed in the literature) is the calculation of trend factors 
for catastrophe data at the state level. Catastrophe losses are dramatically more volatile than 
non-catastrophe losses, and fitting trends to an individual state's catastrophe data does not 
give reliable results. Nor would applying a countrywide trend to each state's be appropriate, 
since the true trends (which are indiscernible with the data we have) will clearly vary by 
state. Credibility weighting trend (of which there are a few methods) might have been 
pursued, but without a good understanding of the drivers underlying these trends, would not 
likely result in reliable estimates: Methods of credibility weighting trend line s usually assign 
credibility as some function of the variability of the trend (parameter) estimate. Catastrophe 
experience at the state level would tend to be very variable, and one would like to be able to 
distinguish the ~aoise from true trends. Typically the level of exposure in a state would be a 
factor in estimation variability. If, however, because of concentration impacts additional 
exposure does not yield less variability (and more credibility) to damage ratios--as would be 
typically assumed, then one should know what these increases in concentration are, and what 
their impact is, before assigning a credibility weight to a trend indication. 7 

One solution is as follows: first calculate a countrywide (linear) trend in damage ratios, 
weighted by amount of insurance years (AIY). Exhibit 2 gives the calculation of the 
countrywide trend. Note that the numbers are unadjusted (e.g., for development, change in 
threshold, etc.). The trend is projected out to the average loss date under consideration. 

The ratio of this countrywide trended damage ratio to the countrywide arithmetic mean 
damage ratio is calculated. This ratio, 1.701 from line 10 of Exhibit 2, is then applied to the 
arithmetic mean damage ratio of each state, to produce the indicated non-modeled 
catastrophe damage ratio. This method applies a "trend" factor to state data, while mitigating 
many of the problems with a straightforward trend calculation. Thus, since it is only one of 
30 years, any outlier in a given state will not significantly distort the state indication, as the 
direct application of trend to state data frequently does. 

There do remain significant problems with the method. States which appear to have no 
trend, or much higher trend than countrywide, are multiplied by a seemingly inappropriate 
factor. 8 Further, distributional shifts alone could and do distort the indications. Thus there is 
about a five point difference between the countrywide trended damage ratio, and the sum of 
the state damage ratios derived by using the "trended" methodology, when weighted by 2000 
AIY. A large part of this discrepancy is due to a distributional shift, caused by much higher 
growth than average in the most recent years in a state having particularly poor catastrophe 
experience. In short, while initially promising, there still remain problems with this method. 

7 It must be admitted though, that further investigation along these lines---even with the data at hand--might 
Drove fruitful. 

Though one typically tends to hear complaints only when the factor was too high. 
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6. REGIONWIDE METHODS 

All of the subsequent methods--barring the last which skips the second step--bagin with the 
same first two steps. Step one calculates a countrywide indicated damage ratio. Step two 
divides the country into "regions", i.e., collections of states, and then calculates an indicated 
damage ratio for each such region. These region-wide indications are rebalanced, based on 
the most recent year's AIY (which should take care of the problem of distributional shifts), to 
the overall countrywide indicated damage ratio. These rebalanced indicated regional damage 
ratios are the beginning points for all subsequent calculations. It should be noted that the 
actual method used here of calculating the indicated regional and countrywide damage ratios 
(as discussed immediately below), are not an essential component of the methodologies. One 
could, if  so inclined, use more elaborate procedures. What is essential is that there be a 
countrywide indication and regional indications to be balanced back to it. 

A. Countrywide Indication 

The first step then is to calculate a countrywide indicated damage ratio, to be balanced back 
to. Figure 1 shows the raw countrywide damage ratios over time. The increases appear to 
come in steps and from 1990 on there appears to be no trend. As noted at the bottom of the 
graph the trend for each segment is very close to 0, and the means for each segment (the 
horizontal bars on the graph) are significantly different. Consequently the arithmetic mean of 
years 1990 on is used 9. The mean is not weighted (by AIY), for the accuracy of cach 
estimate (year) is, as far as can be told, independent of the size of that year. From the exhibit 
it is apparent that the 1990-2000 numbers already incorporate all the "trend" of  prior years. 
Consequently the state indications, which ultimately balance back to the countrywide 
indication, are "trended" without the explicit application of trend on an individual state 
basis. Again, this is particularly significant given that data was not available on the 
previously mentioned drivers of these trends (on a countrywide or individual state basis) such 
as exposure concentration, or on the nature of data related distortions. 

9 In practice a (somewhat arbitrary) load of 4% was tacked on to the countrywide damage ratio. This was done 
to recognize the fact that deviation is likely to be on the upside: I.e., it is much less likely that countrywide 
damage ratios will systematically start going down. 
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It will not have escaped the observant reader 's attention that the endpoints on Figure 1 were 
selected so as to make the trends look flat and have discrete jumps,  and could have been 
made to look dramatically otherwise had the endpoints been chosen differently. This is 
correct. The crucial point is that given countrywide data the best guess  as to the following 
year ' s  damage ratio is the average o f  the years since 1990, or so we would claim, l~ 

There is one other minor point to be addressed. Given the above should one use 1990 
forward for the countrywide indication, or take a rolling 10 years (1991-2000 currently) 
average. On the one hand we want to use all relevant points that have information. On the 
other hand, 10 years is a more standard choice (e.g. in a filing). And i f  there is in fact a trend 
in countrywide numbers  going forward, a rolling average will pick it up better. There does 
not seem to be a clear-cut answer to this question. 

B. State Groupings 

The second step is to group the states into regions based on their catastrophe experience 
(historical damage ratios). Since we only have aggregated data by state and year, there is a 
limit to the analysis that can be done. Basically, contiguous states with similar damage ratios 
are grouped together. A few large states are standalone groupings. Where a state looks as i f  
it might  reasonably go into more than one region, historical correlations o f  damage ratios are 
used to decide the issue. H 

Some more sophisticated method o f  grouping than above might  conceivably produce better 
results, but with the data available it is doubtful. Grouping states will be problematic no 
matter how it is done, for natural catastrophes do not obey arbitrarily drawn political 
boundaries. Frequently, an appropriate meteorological territory will cross state lines, and 
there may be natural breaks within a state. (E.g., Colorado which is divided into mountain 
ranges and plains with very different weather patterns). Indeed one could argue for needing 
different regions for different catastrophe perils. Since wind is such a dominant component  o f  
the losses, in practice this is not an issue. 

10 It is not that we have totally discounted the possibility of damage ratios trending up further: whether 
continuously or via a "jump'(see the previous footnote). But we should need evidence. Certainly over time one 
would think that a constant threshold and monetary inflation would, cetirus paribus, cause damage ratios to rise. 
But thresholds can be changed, and monetary inflation affects the denominator (AIYs) as well as the numerator 
(catastrophe losses)--though the effects on losses have historically been greater than on AIYs. More 
importantly, there are presumably more significant forces affecting the overall catastrophe damage ratios: 
Frequency and severity of natural events, changes in concentration (have our writings in concentrated areas 
remained relatively constant, or even gone down, over the last 10, 11 years, where it had been increasing 
previously?), and so on. The impact of these will clearly swamp the impact of, e.g., pure monetary inflation 
(especially in the current monetary environment). So given the data we have, the most rational assumption 
would be to take a recent average, until the evidence argues otherwise. 
~ This procedure is due to Kevin Dickson (personal communication). I do not give additional details, since the 
actual grouping process is somewhat tangential to the main concerns. 
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Even when working within our constraint o f  using state and not topographic groupings what 
looks like an obvious grouping based on the data, may not be optimal. 12 In order to 
circumvent these problems and create more refined territories one would need to have both 
meteorological data and geographic exposure distributions: i.e., would be back to the 
simulation model data requirements. 

Once the "regions" are constructed, indicated damage ratios are then calculated. Once again 
a straight arithmetic mean o f  the latest 10 or 11 years was chosen as the indicated damage 
ratio. These average damage ratios are rebalanced to the countrywide indication based on the 
most recent year's AIY distribution. Exhibit 3 provides state groupings and the rebalanced 
damage ratios for use in one of  the methods below. Other equally reasonable groupings could 
have been chosen. 

7. DUAL CAPPING METHODOLOGY 

The first method considered is a modification of  one proposed by Dean et al [8]. Their 
method is a variation of  the excess wind methodology, but with loss ratios censored below as 
well as above. In a given state non-modeled catastrophe loss ratios--catastrophe losses 
divided by total earned premium--are calculated for each year (of seventeen). These are 
ranked from low to high. A low and high loss ratio is chosen (corresponding to percentiles 
previously decided on). Any loss ratios below or above these two designated loss ratios are 
"capped" at the low and high loss ratios respectively. The net o f  losses excluded from above 
minus losses excluded from below are "excess" losses. These excess losses are summed and 
divided by the total earned premium for all seventeen years, to yield a load factor. In the 
overall rate indication calculation, wind losses are again capped above and below for each 
year at the chosen loss ratios, and the previously calculated load is factored in; these adjusted 
wind loss ratios are then added back to the loss ratios for all other perils. 

While two sided censoring is certainly an improvement over the traditional method, there still 
remain problems. First the use o f  earned premium could distort the procedure if  there are 
substantial differences in premium adequacy over the years. Changing to damage ratios, as 
we do below, addresses this issue. The next problem, and it is a large one, is that the losses 
ratios are either trended or they are not. (Their paper does not say, a reasonable guess is that 
they are.) At the state level, as discussed above, trending catastrophe losses is a problematic 
exercise: changes in catastrophe thresholds and definitions; changes in storm frequency and 
severity; changes in concentration of  exposure, all need to be taken into account. If  the 
numbers are not trended, then there is an inconsistency with the non-catastrophe indications, 
wherein the losses are standardly trended. Further the capping procedure itself will be 

~2 Two states may be close geographically, have approximately the same level of damage ratio, with a relatively 
consistent pattern over a short period of time, and still not in reality belong in the same group. One state may 
have, for example, an increase in its catastrophe damage ratio due primarily to a large increase in concentration 
of exposures, while the frequency of catastrophes remains constant; while a second state could have no or a 
negative increase in concentration, but have an increase (random or not) in the frequency of natural events 
causing catastrophes. Though their numbers make them look similar, they might be more appropriately slotted 
in different groupings. But without more detailed data there is no way to tell. 
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distorted: The most recent and oldest years will more likely be capped-- f rom above and 
below, respectively-- than the other years. Finally, as the authors recognize, seventeen years, 
while a considerable amount for most purposes, is not adequate for a catastrophe load in any 
one given state. 

A synthesis of  two-sided capping method with some of  the components from above, 
neutralizes some of  these problems. Rather than going back in time as far as possible, one 
gets more data points by using all the damage ratios from a region. For each state in such a 
region one takes the latest ten years damage ratios (so there will be 10 x the number of  states, 
points). One then ranks these ratios irrespective of  state. The two-sided capping procedure 
is then applied to the damage ratios within the region, so ranked. The method then proceeds 
as in the original paper with a load calculated and incorporated into the rate indication 
process. Exhibit 4 provides an example for one region of  the calculation of  an excess load 
factor which would be applied to the wind peril in a Homeowners indication calculation. 

This modification has various benefits. First, since it uses damage ratios and not loss ratios, 
premium adequacy is not an issue. Secondly, it typically contains more points: in Exhibit 4 
there are ninety versus seventeen in the original paper.13 Finally, since we are assuming that 
trend is already incorporated into the most recent ten years, there is no trending problem. 

There are some remaining problems. As discussed, there is no perfect grouping of  states. 
Consequently, some states may seem out of  place, having lower or higher damage ratios on 
average than the rest of  the states in its region. (Percentiles should be chosen so that the 
capping procedure does not penalize or reward a particular state because of  this 
phenomenon.) Further the procedure might have a difficult time gaining acceptance because 
it appears too much to just  be spreading losses from one state to another. 

8. CREDIBILITY WEIGHTING STATE INDICATIONS 

The remaining four methods all credibility weight individual state indications: the first two 
use actual damage ratios, the latter two relativities. The first three weight against the 
previously referenced "regional" (rebalanced) indications, the last directly against a 
countrywide indication. 

The use of  credibility in these methods proceeded in an extremely pragmatic and somewhat 
ad-hoc fashion (some would say alarmingly so). Given the external constraints listed above 
the rational for a given formula is often to a large extent teleological. Further, it is clear (see 
below) that the standard Buhlman-Straub formulation is not appropriate in the present 
context. Mahler [9] in a recent comprehensive paper, expounds--among many other th ings - -  
on how one might adjust for different behavior for different size risks; for parameter shifts 
over time, for parameter uncertainty and for use of  external state data. All these adjustments 
are potentially applicable, with modifications, to our case. However because of  the summary 
nature of  the data, credibilities so adjusted often can not be derived; and even where 

~3 And our working assumption is that the region consists of states with roughly similar catastrophe exposures; 
to the extent that this is true the points can be considered drawn from the same population. 
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quantities could be calculated, they would not be trustworthy since, once again, the primary 
drivers o f  the variance and eovariance o f  the damage ratios, e.g. increases in concentration o f  
exposure, 14 are not known. 

For our purposes then our pragmatic approach, which is somewhat forced upon us, does not 
lose us  much,  especially since it has been shown 15 that within a wide range o f  values the use 
o f  any credibility weighting will be superior to none (even if  it is not the best). Our 
adjustments were to the calculation o f  the process variance, and to the variance o f  the 
hypothetical means  16. In the presentation o f  these methods various credibility adjustments 
have been made not beeanse a particular adjustment is necessarily tied to the method in 
which it is presented, but simply as a way o f  presenting examples. 

A. Credibility Weighting Damage Ratios with the Region As Complement 

The first credibility method uses the latest 11 years o f  catastrophe damage ratios for each 
state, (circumventing trending problems). The unweighted mean  damage ratios for each 
state, is credibility weighted against the average (unweighted) damage ratio for its region. 
The standard calculation o f  process variance, which weights by exposures (in this case AIY) 
would be inappropriate here, as it would also be in the next three methods. An assumption 
underlying the weighting is that the process variance (in this case o f  the damage ratio) is 
inversely proportional to the exposures; and that in turn assumes that exposures are (more or 
less) independent. With the catastrophe peril this is very often not the case: additional 
exposures, in an already concentrated area, are very much  correlated. And one should not 
expect a proportional decrease in variance with additional exposures, in such a case.17 Hence 
the credibility formula used here is z=y/(y+k) where y is the number o f  years, and k is the 
ratio o f  the expected process variance to the variance o f  the hypothetical means,  without 
consideration o f  exposure level. This is a case where, given the data we have, the decision 
not to use exposures as weights seems theoretically as well as pragmatically correct, lg 

Because some regions have what seems clearly to be different process variances by state, the 
first credibility method presented uses a weighting o f  each state 's own calculated process 
variance with the average process variance (See exhibit 5); This might be thought o f  as a 
very crude attempt to capture some o f  the additional structure in the data. 19 

14 Even if an effort were made to gather data on the change in exposure concentration, there is not currently a 
clear conception of what the appropriate level of detail is: is it relevant how concentrated one's become in a 
state, a county, a zip, or a census track? The answer no doubt varies with topography. 
Is See Loss Models [10] pp 451-454 
1~ There does not seem much point to making other refinements, such as using the credibility weighted overall 
mean as the complement of credibility. 
17 There is some, admittedly weak, evidence for this. See table 2 below. 
is There are various empirical tests one could attempt to estimate the relationship between size and variance 
(See Mahler[9]). Because of the aggregated nature of the data, and more importantly because, as mentioned, the 
process variance is among other things a function of size and concentration--which we do not have---one 
would have to be very suspicious of any quantitative inferences about how the process variance should vary 
with exposure. Hence assuming no relationship seemed safest. 
19 While in general using the average expected value of the process variance is mathematically less variable than 
the using each state's own estimated process variance, in the present case our adjustment will hopefully yield a 
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Three different estimates of  the variance of  the hypothetical means are calculated. 1) The 
variance of  the state mean damage ratios; 2) The difference between the total variance and 
the average process variance; 3) The covariance of /he  sum of /he  first five years damage 
ratios and the second five years, across the states in the region. The covariance estimator has 
in other contexts proven to be quite good. In the present context it was not, yielding wide 
swings by region, including negative results. The other two calculations also yielded slightly 
negative numbers in some cases. The standard interpretation is that this entails that each 
state should get 0 credibility. This is a hard conclusion to accept, particularly given the 
somewhat arbitrary way some of  the regions were put together. Consequently the bias 
adjustment from the estimate o f  the variance o f  the means (i.e. subtracting the process 
variance/number of  years) was eliminated from the first estimate, and a floor of  zero was 
put on the second; the average of /he  two was/hen taken, as can be seen in exhibit 5. 20 

Once the credibility weighted state damage ratios--with the complement being the region- 
wide (unweighted) average damage ratio--are calculated, they are adjusted to the chosen 
regional factor. First the damage ratio for each state is multiplied by its most recent year 's 
AIY. These are summed and compared to the latest year's losses implied by the previously 
calculated regional factor (The regional latest year AIY x the indicated regional damage 
ratio). The difference between these two is spread back to each state on a fiat percentage 
basis. Exhibit 5 provides details of  this procedure for one region. 

B. Including Non-Hurricane Wind Data 

more accurate estimate.( About twenty years ago I asked Glenn Meyers why a particular ISO credibility 
procedure had settled on the average process variance for the expected process variance, rather than have each 
state (or class--I don't recall) use it's own calculated variance. His reply was--if memory serves me 
correctly--that ISO had indeed looked into that alternative, but the results were too variable.) 

Our case might be thought similar to Mahler's cases of heterogeneity; his example is a large WC insured with 
several locations. These locations might share some risk characteristics, and be different on others. (His other 
example is commercial auto.) He derives formulas that give less credibility to heterogeneous risks by virtue of 
the variance of the hypothetical means increasing less slowly that as the square of the sizes of the risk (as it 
would in Buhlman credibility). 

Let us take an auto example, where we have divided the populations into various classes based on some 
subjective criteria, and wherein each insured is assumed to have a Poisson distribution. Each class is certainly 
still heterogeneous to a certain extent, so if we could estimate the various parameters in Mahler's procedure we 
could apply that procedure. But it is difficult to estimate the parameters. Another possibility is to focus in on the 
classes themselves; think of them as indivisible entities, and assume, say, that they have Negative Binomial 
distributions--as is ot~en done. In that case differences in heterogeneity will manifest themselves in different 
Negative binomial parameters for the classes and hence in different process variances. One way to 
accommodate these differences would be to take into~account a class's own (sample) process variance as well as 
the average. This is what wehave done above--where, by the way, it would be well nigh impossible to come 
up with an estimate of heterogeneity. 

20 This "adjustment" is indeed arbitrary. However, even though estimating the variance of the hypothetical 
means with the correction included, is an unbiased estimate, the consequent estimation of the credibility factor 
Z remains biased.(See Venmer[l 1] pp 440-446). Since it is reasonable that each state does have some 
credibility, my adjustments do not seem unreasonable. 
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The next regional method, is really not so much a change in method as a change in data. 
Rather than non-modeled catastrophes only, losses are taken for all non-hurricane wind plus 
all non-modeled catastrophes. 21 Combining the two might seem to run counter to the 
standard rational for a separate catastrophe analysis that catastrophe losses make indications 
too variable: that by analyzing the catastrophe losses separately we cap the underlying wind 
losses and hence provide more stable indications for that segment; while the catastrophe 
losses can then be grouped (across many years, many states, etc.). We loose refinement, but 
we gain stability. 

While the above is true, there are various practical considerations arguing for combining non- 
hurricane wind with non-modeled catastrophe losses. First there are the standard coding 
problems that will misclassify catastrophe losses. Further, catastrophe thresholds and 
definitions typically vary over time and are not necessarily consistently applied across all 
states. Combining eliminates these potential, and frequently occurring, distortions. 

Territorial indications, also become considerably more stable and reasonable when wind and 
catastrophe are combined. Finally because o f  the additional ballast provided by the wind 
numbers, the  standard deviations and coefficients o f  variation for the indications are 
substantially reduced for the catastrophe portion o f  the indications(though not necessarily for 
the indication process in aggregate), as is presented in Table 1. 

Table 1 

State State Year Year 
SD CV SD CV 

Cat 0.61 1.21 0.12 0.25 
Cat+wind 0.78 0.82 0.12 0.16 

For this second method, the process variance is calculated slightly differently. It reflects the 
consideration that even a state which has been very stable could have a huge catastrophe; that 
there is an element o f  randomness in one particular state within a region having had the once 
in a hundred year event rather than the others (which is why they were grouped into the same 
region). 22 Therefore the expected process variance was calculated as a weighting o f  the 
average process variance with the maximum process variance of  any state in the region. 

Exhibits 6 presents the results o f  using the procedure on the combined non-hurricane wind 
and non-modeled catastrophe losses. 

21 Again, we have an apples and oranges situation somewhat. The catastrophes contain perils other than wind. 
The justification for this is that the other peril catastrophes are too small to be analyzed on a standalone basis, 
and do not seem to distort the indications here. 
22 Many regions had at least one state that had a huge catastrophe (10 times the median for that state as an 
approximation) 
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C. Credibility Weighting Relativities with the Region As Complement 

The final two methods use non-modeled catastrophe 23damage ratio relativities rather than 
the damage ratios themselves. The motivation for using relativities is that though for a given 
state the damage ratios typically vary significantly over the long term, we might expect the 
relativities to be more stable: even i f  there is trend in the damage ratios we might hope for 
none in the relativities, thus allowing for a longer time period for each state's data; and 
indeed there is in general no significant trend as can be seen from the line labeled "linear 
trend," on exhibit 7, 24 which contains other descriptive statistics as well for examining the 
reasonableness of  using relativities 25. 

While data is available from 1971 on, the early years are too sparse and variable even when 
using relativities (some years have 0 losses), as can be seen in table 226. Therefore only 1981 
and subsequent is used. 

Table 2 

Average state variance ofrelativities 

Average 

Years Variance 

1971-1980 11.07 

1981-1990 1.87 

1991-2000 4.24 

The procedure proceeds, as can be seen on Exhibit 8, along the same lines as the first 
regional method, but uses relativities as the statistic. Once a credibility weighted relativity is 
calculated the estimated damage ratto" is" calculated by multiplying the estimated relativity27 
factor by the indicated region-wide damage factor. They are then rebalanced as before. 

One additional detail which needs to be addressed when using relativities is the impact o f  
distributional shifts in exposure between states. These can, and on occasion do, have 
significant impacts. This problem is addressed by adjusting all relativities to the 2000 AIY 

23 Because of the greater number of years used, non-hurricane wind could not be included. 
z4 These relativities are to adjusted countrywide damage ratios; relativities to region-wide damage ratios should 
be even more stable. 
2~ The R-squared that goes along with the trend is given. Standard deviation and coefficients of variations of the 
relativities with which to measure the variability of relativities by state are given. The correlation of each states 
damage ratio (not relativity) to the countrywide (adjusted) damage ratios, is also given. All rows are labeled. 
z6 One would conjecture that the variance has gone up in the most recent years due to increases in concentration. 
But the data is not available to test this hypothesis. 
27 In the calculation of credibility the process variance was again calculated as a weighting of the maximum 
process variance for any state within the region with the average process variance of all states. 
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level. Thus let wi be the 2000 ,MY for state i; let d U be the damage ratio for state i in year j; 
then the adjusted region-wide damage ratio for yearj is Aj = Y-i (wi x dlj )/Zi wi. Relativities 
are then taken to this adjusted region-wide damage ratio; that is the relativity for state i and 
yearj is dij / Aj. A similar adjustment is made to the relativities in the next method. For a 
simple numerical example assume there are 3 states in the region (or countrywide for the 
next ease). 

Year Statel State 2 State 3 Regionwide Adjusted 
,MY DR ,MY DR ,MY DR 

1981 10 .3 10 .6 10 .9 .6 .7 
I 

2000 20 .05 40 .1 60 .20 .142 .142 

Here DR represents the damage ratio relativity. The 1981 regionwide adjusted relativity 
would be (20".3+40".6+60".9)/120 = .7. The relativity for State 1 in 1981 would be .3/.7. 

The three previously referenced estimates of the variance of the hypothetical means come 
out to be quite close (for this and the next method) and the first estimate of the variance was 
used. Exhibit 8 gives the results of these calculations for one region. 

D. Credibility Weighting Relativities with Countrywide As Complement 

The final method calculates relativities in a year as each state's damage ratio divided by the 
countrywide adjusted damage ratio. 2s For the countrywide damage ratio (by which the final 
calculated state relativities are multiplied to obtain the final state indicated damage ratios) it 
was also necessary to use the mean of the adjusted countrywide averages, rather than the 
mean of the raw countrywide averages. This had the effect of changing the countrywide 
damage ratio to approximately .56 from approximately .52. Texas had tripled its AIY 
between 1990 and 2000 while all other states had on average approximately only doubled. 
This state had huge catastrophes in two of the last I 0 years, and had significant impact on the 
countrywide average. Without readjusting to the 2000 AIY distribution the relativities as well 
as the countrywide average would have been distorted. 

Using countrywide relativities has one major drawback. The complement is biased. That is, 
it is clear that many states have an expected relativity, while not known precisely, much 
different than 1. Indeed, a significant argument for using regional relativities, is that it 
eliminates (imperfectly) this problem. Exacerbating this problem is the desiderata that a 
given method should not overly penalize a state for a one in a hundred (or greater) year 
event. 29 For these extreme states one desires lower credibility than would otherwise be 
obtained given the wide spread of countrywide relativities. 

With the same adjustment, but with the adjusted countrywide damage ratio replacing the regionwide damage 
ratio in the above explanation. 
29 These losses could not simply be eliminated, since another desiderata was that on a countrywide level, they 
be accommodated. 
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This problem was resolved by having unusually large relativities capped and the off balance 
spread back to each state in proportion to the state's relativity standard deviation (after 
capping), as measured in 2000 expected losses. This method of rebalancing gives states with 
high average relativities (excluding the impact of once in a hundred year events) more load 
and those with lower relativities less, counterbalancing the impact of the biased complement. 
Further the loading back of these losses (a catastrophe load for catastrophe losses, if you 
will), is a function of the state's own characteristics. States with lower variance get less load 
and states smaller in absolute size (AIY) get less load, and vice versa. This procedure is 
intuitively appealing: smaller states, all else being equal, should get a commensurately 
smaller load, and less variable states, all else being equal, should get smaller loads. This 
characteristic should also make the capping and spreading more palatable to outside parties. 

The capping procedure calls for some comment. Within each state, the standard deviation of 
the relativities before capping is calculated. If any relativity for that state is greater than the 
arithmetic mean relativity plus three standard deviations, that relativity is capped (between 1 
and 2% of the points were capped). The relativity exceeding the cap is changed not to the 
mean plus 3 standard deviations, but to the highest actual relativity lower than the cap- 
almost always the next lower actual relativity. To cap the losses more conventionally would 
not have accomplished much, since the standard deviation calculation included the extreme 
event, and the conventionally capped number would have been much higher than desired. 
Further, on an intuitive basis, this procedure replaces an extreme year with an estimate of a 
typical (once in 20) really bad year. While the proposed method does have the disadvantage 
that a state with a damage ratio slightly beneath the cap might easily have a higher indication 
than if it had come in slightly above the cap, this is not a major problem in practice. 

The spreading back of losses is calculated as follow (references are to exhibit 9). The 
indicated damage ratio relativity for state i is di (line 7); expected 2000 losses for the state i 
(line 8) is the indicated damage ratio relativity times the countrywide chosen damage ratio 
times its 2000 AIY: di x CWD x AIYi. One standard deviations worth of these losses are (line 
9) line 8 x sdi. The offbalance, calculated in a manner similar to previous methods, is 
spread back in proportion to line 9. The detailed steps for one state are given in Exhibit 9. 

10. CONCLUSION 

Various methods have been presented which use additional states' data to calculate non- 
modeled catastrophe loads. Every one of these methods is an improvement over current 
methodology, and each has its own strengths and weaknesses. The trended and dual capping 
methods have problems (discussed previously) that the other methods do not. Of the 
remaining four, using relativities, for either the regional or countrywide method, would seem 
superior to using damage ratios since it allows for the inclusion of many more years without 
concern about adjusting the numbers for trend. On the other hand, in our case we can no 
longer include ground up wind experience in the data; if one does have wind data going back 
that far, then incorporating it into the relativity methods would be optimal. 
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This leaves the regional and countrywide relativity methods, with wind data if one has it. 
Exhibit 11 gives a comparison of the results by state for these two methods as well as the 
trended method and the "Agg/Agg" method, which is simply a weighted average of all years 
of a state's (untrended) damage ratios. How do these two remaining methods compare on the 
criteria delineated at the beginning of the paper? 

The first, and most important criteria is accuracy; as mentioned we unfortunately know of no 
way to measure this, even on a relative basis. While, as can be seen on Exhibit 10, there are 
some significant differences in estimates, especially for the larger damage ratio states, even 
had we the results of the next few years because of the nature of catastrophes we could not 
assess how well each method has done. The second criterion is stability. Exhibit 11 provides 
a test of the stability of the countrywide relativity method: i.e. the change in state indications 
between 1999 and 2000. The results are much more stable than the trended and Agg/Agg 
method to which it is compared. Similar results obtain for the regionwide method. And 
indeed the regionwide method is superior in this regard. Because of the capping process used 
in the countrywide method a capped year might become uncapped the next calendar year and 
vice versa. While this is not necessarily a drawback--our assessment of what is extreme will 
change with new information--it does cause less stable results. The third criterion is 
sellability. Here the countrywide method comes out ahead. Most audiences understand and 
are willing to accept the concept of a relativity to countrywide. However, somewhat 
paradoxically, once the relativity is to a region, there is, based on informal observation, more 
of a (negative) flavor of spreading losses. So there remains in the end no clear cut winner. 
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EXHIBIT 1 
HOMEOWNERS 

DEVELOPMENT OF EXPECTED CATASTROPHEINCURRED LOSS RATIO 

(1) Average Earned AIY* for 12 month period ending 3/31/2001 135.88 

(2) Factor to Adjust AIY @ 01101/2003 1.046 

(3) Average AIY Trended to 01101/2003 (1) x (2) 142.13 

(4) Total Dollar Catastrophe Provision Per AIY 0.431 
including all LAE 

(Refer to the Dev. of Total Catastrophe Provision Exhibit) 

(5) Expected Catastrophe Losses (3) x (4) $61.26 

(6) Average Eamed Premium @CRL $443.87 

(7) Factor to Adjust Premium for Premium Trend @ 01/01/2003 1.046 

(8) Trended Average Earned Premium @CRL (6) x (7) $464.29 

(9) Expected Catastrophe Loss Ratio including all LAE (5) / (8) 13.20% 

�9 1 AIY = $1000 Of Coverage in Force for One Year 

305 



(1) (2) 
AMOUNT OF 

CALENDAR INSURANCE 
YEAR YEARS 
1971  50,744,591 
1972 56,809,992 
1973 63,630,027 
1974 71,301,809 
1975 79,935,311 
1976 92,593,646 
1977 109,629,993 
1978 140,793,253 
1979 172,171,716 
1980 205,704,018 
1981 229,742,921 
1982 244,770,419 
1983 259,520,483 
1984 282,063,918 
1985 309,884,767 
1986 352,952,506 
1987 400,596,851 
1988 447,064,515 
1989 503,736,622 
1990 551,875,055 
1991 604,545,778 
1992 628,498,039 
1993 643,057,601 
1994 673,490,999 
1995 709,520,629 
1996 743,945,331 
1997 783,663,555 
1998 831,623,953 
1999 878,902,781 
2000 927,355,116 

EXHIBIT 2 

HOMEOWNERS 
COUNTRYWIDE 

DEVELOPMENT OF CATASTROPHE TREND FACTOR 

(3) (4) (5) 
CATASTROPHE CATASTROPHE FITTED 

INCURRED RATIO CATASTROPHE 
LOSS (3) / (2) RATIO 

5,574,000 0.11 0.155 
5,357,000 0.094 0.168 
8,119,000 0.128 0.182 

23,660,000 0.332 0.196 
18,550,000 0.232 0.209 
9,278,000 0.1 0.223 
11,545,000 0.105 0.237 
29,102,000 0.207 0.25 
67,836,000 0.394 0.264 
56,214,000 0.273 0.278 
37,883,000 0.165 0.291 
74,005,000 0.302 0.305 
91,019,000 0.351 0.319 
107,694,000 0.382 0.332 
116,237,000 0.375 0.346 
95,634,000 0.271 0.36 
75,712,000 0.189 0.373 
121,665,000 0.272 0.387 
184,044,000 0.365 0.401 
299,840,000 0.543 0.414 
328,134,000 0.543 0.428 
357,020,000 0.568 0.442 
312,072,000 0.485 0.456 
394,674,000 0.586 0.469 
405,451,000 0.571 0.483 
513,895,000 0.691 0.497 
195,818,000 0.25 0.51 
328,613,000 0.395 0.524 
385,679,000 0.439 0.538 
566,488,000 0.611 0.551 

1 ) Projected Catastrophe Ratio 

2) Average Catastrophe Ratio 

3) Catastrophe Trend Factor 

0.585 

0.344 

1.701 
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EXHIBIT 3 

NON-CATASTROPHE WIND PLUS NON-MODELED CATASTROPHES 

.,,4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Countrywide 

(1) (2) (3) (4) (5) 
1990-2000 (4) x (6) 

1990-2000 AIY Damage ratio 2000 AIY (2) x (3) Adj. Dam Ratio 

1,459,116,130 0.66 167,735,984 111,360,643 0.62 
625,160,130 1.22 73,452,055 89,944,077 1.14 
299,750,783 2.03 36,862,828 74,758,372 1.88 
968,763,429 0.59 109,989,815 64,731,746 0.55 

1,768,915,559 0.37 191,130,811 71,461,447 0.35 
278,441,837 0.28 28,216,696 7,898,130 0.26 
322,105,688 0.44 43,943,005 19,175,022 0.41 
307,439,130 0.37 39,331,209 14,450,301 0.34 

1,443,547,377 0.60 158,041,453 94,466,352 0.56 
415,847,509 2.65 67,147,524 177,723,848 2.46 

43,338,576 0 .28 5,551,336 1,561,510 0.26 

7,932,426,148 0.734 921,402,716 727,531,450 0.79 

(6) 
(3)1(5) 

Adjustment 

0.93 



Scrambled 
State 

7 
2 
19 
19 
1 
19 
6 
12 
1 
6 
19 
2 
19 
12 
19 
6 
6 
3 
19 
19 
1 
7 
6 
6 
6 
6 
6 
1 
3 
3 
12 
1 
2 
2 
1 
19 
12 
2 
6 
12 
12 
3 
7 

Year 
1997 
1992 
1990 
1995 
1995 
1993 
1995 
1991 
1992 
1990 
1996 
1993 
1997 
1998 
1999 
1993 
1992 
1992 
1994 
1992 
1991 
1992 
1990 
1993 
1992 
1991 
1994 
1998 
1991 
1999 
1995 
1994 
1995 
1996 
1993 
1991 
1997 
1990 
1994 
1992 
1990 
1990 
1999 

EXHIBIT4 

WIND+NON-MODELED CATASTROPHE DAMAGE RATIOS 
CALCULATION OF EXCESS LOAD 

AI__YY Ratio Normalized Difference Load 
4932842 0.13 0,35 -0 ,22  -1105963 
1558165 0.13 0,35 -0 .22  -338129 
4968539 0.18 0.35 -0 .17  -854218 
6103028 0.18 0.35 -0 .17  -1013489 

47046433 0.20 0.35 -0 .15  -7132006 
5512493 0.20 0.35 -0.15 -819112 
6222733 0.21 0.35 -0.14 -884108 
21348083 0.22 0.35 -0.13 -2861658 
39866439 0,22 0,35 -0.13 -5273210 
17708641 0.22 0,35 -0.13 -2244416 
6446360 0.22 0.35 -0.13 -805847 
1555988 0,23 0.35 -0 .12  -194307 
6768754 0.24 0.35 -0 .11  -752187 
26544315 0.24 0.35 -0.11 -2893222 
7309175 0.24 0.35 -0 .11 -770019 

21492188 0.25 0.35 -0 .10  -2236552 
20173868 0,25 0.35 -0 ,10  -1922780 
5222934 0.26 0.35 -0 .09  -471473 
5750330 0.27 0.35 -0 .08  -487845 
5397392 0.29 0.35 -0 .06  -340511 

38340227 0.31 0.35 -0 .04  -1667870 
4171362 0.31 0.35 -0 .04  -164660 
5365445 0.31 0.35 -0 .04  -199001 
5859889 0.32 0,35 -0 .03  -169550 
5719858 0.33 0,35 -0 ,02  -108512 
5519497 0.34 0.35 -0.01 -47540 
5901932 0.34 0.35 -0.01 -35195 

54028023 0.35 0.35 0 . 0 0  -221306 
5025826 0.36 0.36 0.00 0 
7300808 0.36 0.36 0,00 0 

23459255 0.37 0,37 0.00 0 
43867236 0.38 0.38 0.00 0 
10422946 0.40 0,40 0.00 0 
1748661 0.40 0.40 0.00 0 

41086429 0.40 0.40 0.00 0 
5207609 0.42 0.42 0.00 0 

25333505 0.43 0,43 0.00 0 
1369293 0.44 0,44 0.00 0 

23166192 0.46 0.46 0.00 0 
21804382 0.47 0.47 0.00 0 
19740580 0.47 0.47 0.00 0 
4442279 0,48 0.48 0.00 0 
6011216 0.49 0.49 0.00 0 

Ratio with 
Excess Load 

0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.46 
0.47 
0.48 
0.48 
0.49 
0.51 
0.51 
0.52 
0.53 
0.54 
0.55 
0.57 
0.58 
0.58 
0.59 
0.60 
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State 
7 
2 
6 
1 
6 
6 
1 
2 
12 
12 
2 
2 
8 
7 
1 
2 
2 
12 
1 
6 
2 
2 
7 
2 
7 
6 
3 
3 
12 
2 
6 
7 
2 
3 
7 
7 
3 
6 
19 
6 
3 
2 
2 
2 
2 
3 
6 

Totals 

Year 
1998 
1994 
1991 
1999 
1996 
1995 
1997 
1995 
1999 
1993 
1990 
1998 
1996 
1990 
1990 
1999 
1991 
1994 
1996 
1997 
1992 
1993 
1993 
1997 
1991 
1998 
1997 
1995 
1996 
1997 
1997 
1994 
1991 
1994 
1995 
1996 
1993 
1999 
1998 
1999 
1998 
1999 
1998 
1994 
1996 
1996 
1998 

AI._Y_Y Ratio Normalized Difference 
5459194 0.50 0.50 0.00 
9659257 0.52 0.52 0.00 
19287517 0,53 0.53 0.00 
55360869 0.53 0.53 0.00 
6543222 0.54 0.54 0.00 
25501750 0.54 0.54 0.00 
52321296 0.55 0.55 0.00 
1655078 0.57 0.57 0.06 

27638612 0.58 0.58 0.00 
22146895 0.59 0.59 0.00 
8596674 0.59 0.59 0.00 
12701378 0.60 0.60 0.00 
28761106 0.61 0.61 0.00 
4083888 0.62 0.62 0,00 
34421881 0.64 0.64 0,00 
2224422 0.66 0.66 0.00 
9124509 0.68 0.68 0.00 
22671807 0.70 0.70 0.00 
49718593 0.74 0.74 0.06 
30502724 0.76 0.76 0.06 
9038422 0.77 0.77 0.86 
9178447 0.79 0.79 0.00 
3993066 0.81 0.81 0,00 
12162994 0.81 0.81 0.00 
4326154 0.83 0.83 0.00 
31253404 0.87 0.87 0.00 
6474537 0.90 0.90 0.00 
5867127 0.92 0.92 0.00 
24394643 0.92 0.92 0.00 
1839770 0.95 0.95 0.00 
6853448 1.08 0.95 0.13 
4099556 1.16 0,95 0.21 
1521594 1.16 0,95 0.21 
5506161 1.17 0.95 0.22 
4282047 1.21 0,95 0.26 
4865126 1.30 0,95 0.35 
5258085 1.31 0,95 0.36 
32900006 1.41 0,95 0.46 
7099487 1.43 0,95 0.48 
7355554 1.74 0.95 0.79 
6946682 2.15 0.95 1.20 
13029501 2.16 0.95 1.21 
1982210 2.21 0.95 1.26 
1581060 3.39 0.95 2.44 
11328705 3.49 0,95 2.54 
6226123 5,19 0.95 4,24 
7116595 9,86 0.95 8.91 

1291380146 0.11 

Load 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

868074 
868622 
323906 
1199413 
1106249 
1582846 
1898605 
15220088 
3399160 
5802451 
8309594 
15829750 
2488907 
3854807 

28789905 
26405747 
63430190 
145363632 

Excess Load 
0,61 
0.64 
0.64 
0.64 
0.65 
0.65 
0.86 
0.68 
0.69 
0.70 
0.70 
0.71 
0.72 
0.73 
0.75 
0.77 
0.79 
0,82 
0.86 
0.87 
0.89 
0.91 
0.92 
0.92 
0.95 
0.98 
1.01 
1.03 
1.94 
1.06 
1.06 
1.06 
1.06 
1.06 
1.06 
1.06 
1.06 
1,06 
1.06 
1.08 
1.06 
1.06 
1.06 
1.06 
1.06 
1.86 
1.06 
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EXHIBIT 8 

Credibility weighting by State grouping 
States1,2,3,4,5,6 

Non-Modeled Catatrophee 

1 _2 3 4_ _5 _6 

1990 0.29 0.86 0.00 
1991 0.41 0.72 1.32 
1992 0.18 0.61 0.16 
1993 0.03 0.19 0.09 
1994 0.76 0.09 1.12 
1995 0.56 1.69 0.23 
1996 5.65 0.93 1.57 
1997 0.87 0.37 0.07 
1998 0.07 0.27 0.45 
1999 3.06 0.46 0.12 
2000 2.00 5.21 0.14 

Adihmetic m 1.26 1.04 0.48 

Process variance 2.971 2.111 0.328 
Estimated Process vadance 1.989 1.559 0.667 

Total variance 1,012 
Estimated VHM 0.052 

(1) Cred estimate 0.207 0.249 0,437 
(2) Damage ratio estimate 0.89 0.85 0.66 
(3) 2000 AIY 3153771 9386777 2389888 
(4) (2)*(3) 2805442 8007591 1566336 

Balanced estimates 0.82 0.79 0.61 

1.11 0.59 0.43 
1.02 0.25 0.43 
0.18 0.36 0.01 
0.93 0.90 0.32 
0.82 0.69 1.82 
0.89 0.18 0.70 
1.15 0.24 0.60 
0.23 0,12 0,81 
1.60 1.26 1.33 
0.04 0.21 0.96 
0.96 0.45 0.15 
0.81 0.48 0.69 

0.225 0.126 0.281 
0.616 0.566 0.644 

0.457 0.478 0.446 
0.80 0.64 0,75 

7501237 15807745 7830024 
6003659 10142149 5834552 

0.74 0.59 0.69 

Regional Variance of 
Mean Means 
0.79 0.098 

Avereae Process Variance 
1.007 

SUM 
46069442 
34359729 

0.746 Implied 2000 regional damage ratio 
0.69 Chosen regional damage ratio 

0.925 Balancing adjustment 
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L.O 

1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 

ARh. Mean 

process variance 
Estimated Process variance 

Total variance 1.1026 
Estimated VHM 0.0881 

(1) Cred estimate 
(2) Damage ratio estimate 
(3) 2000 AIY 
(4) (2)*(3) 

Balanced estimates 

EXHIBIT 6 

Credibil ity weight ing by State grouping 
1,2,3,4,5,6 

Non-modeled Catastrophes end Non-Hurricane Wind 

1_ 
1.10 
1.41 
1.13 
0.74 
1.55 
1.17 
6.40 
1.34 
9.55 
367 
2.58 

1.97 

_2 3 4 _5 6 
1.42 0.89 1.90 1.02 0.86 
1.71 2.82 1.59 0.68 0.86 
1.34 0.97 0.64 0.73 0.34 
0.74 0.74 1.39 1.33 0.76 
0.39 1.80 1.20 1.01 2.11 
2.02 0.85 1.47 0.61 1.05 
1.39 2.17 1,61 0.54 1.07 
0,89 0,74 0.88 0.49 1,27 
0.83 1 20 2.37 1.86 2.26 
0,92 0,69 0,71 0.64 1,32 
5,78 0,67 1.36 0.96 0.57 

1,58 1,23 1.37 0.90 1.14 Grand Mean: 1.37 
Variance of means: 0.14 

0,52 0,26 0.17 0.36 Average Process Var 1,07 
2.00 2.00 2.00 2.00 

2.94 2.15 
2.00 2.00 

0.3259 0.3259 0.3259 0.3259 0.3259 0.3259 
1.56 1.44 1.32 1.37 1.21 1.29 

3,153,771 9,386,777 2,389,888 7,501,237 15,807,745 7,830,024 
4,924,742 13,485,689 3,157,599 10,263,966 19,177,172 10,106,926 

1.34 1.23 1.14 1.18 1.04 1.11 

Totals 
46,069,442 
61,116,094 

1.3266 Implied 2000 regional damage ratio 
1.1400 Chosen regional damage ratio 
0.659 Balancing adjustment 



EXHIBIT7 

Arithmetic mean 

Weighted mean 

CorreLation of Damage 

Ratios to Adjusted CW 

process variance 

C O U N ~ D E  NON-MODELED CATASTROPHE RELATIVITIES 

CALENDAR State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10 State 11 State 12 State 13 

YEAR 
1981 0.17 0.27 0 . 0 1  0.23 0.63 0.52 1.04 4.53 0.14 0 . 4 1  0.22 0.67 0.10 
1982 0.60 0.78 7.99 0.00 0.79 1.69 0 . 4 1  5 . 4 1  1.29 0.56 0.03 0.77 0.74 
1983 0.31 1.10 1.75 0.02 0.32 0.26 0.58 1 .31  0.40 2.05 -0 .01 0.60 2.73 
1984 1.37 1.70 0.42 0 . 1 1  1.48 0.55 0.70 1.95 0.85 0,68 0.03 0.22 0.80 
1985 0.12 1 . 1 7  0.30 0.00 0.40 0.26 0.15 2.82 0.74 0.74 0.02 0.33 0.45 
1986 0.00 0,20 0.18 0.20 0.07 0 . 3 1  3.50 1.63 4.75 0.97 0.50 0 . 0 1  0.13 
1987 0.22 0.08 1.07 1.47 0.74 1.03 1.25 6.22 1.13 1.72 0.15 1.16 0.12 
1988 0.75 0.29 -0.45 0.04 0 . 6 1  1.47 2 , 5 1  0.30 0.22 1 . 4 4  0.02 0.42 0.06 
1989 0.43 0.85 0 . 0 1  0.17 0.38 2.19 0.29 0.36 0 .31  3.00 0.02 0.54 0.00 
1990 0.00 0.92 0.00 0.18 0.76 0 . 6 1  0.47 1 . 9 4  0.34 1.36 0.04 0 . 1 1  0.04 
1991 0.01 0.43 0 .01  0.29 0,26 0.87 1.68 8.27 0.20 1.24 0.03 0 .01  0.55 
1992 0.16 0.50 0.02 0.20 0.13 0.84 0.05 17.13 0.03 0.84 -0 .01 0.02 0.07 
1993 0.28 1.70 -0.03 0.03 0.47 1.16 0.12 6.49 1 . 9 5  0.36 0.07 0.35 0.00 
1994 0.78 1.02 0.00 0.00 0.23 0.45 4.82 2.96 1 . 2 2  0.14 0.15 0 . 7 1  0.12 
1995 0.00 0.26 0.00 0.12 0.08 0.27 0 . 7 1  2,88 0.99 2.50 0.34 0.12 0.28 
1996 0.25 0.33 0.00 0.18 0 . 8 1  4.52 0.38 1 . 7 3  6.91 1.31 0.03 0.95 0.36 
1997 0.05 0.47 0.00 0.13 1.56 2.23 3 .21  0.72 2.55 1.43 -0.03 0.46 1.84 
1998 0,20 3.16 0.00 0 . 0 1  0.51 1,01 5.15 2.98 4.74 0.69 4.20 -0.05 1.63 
1999 -0.01 0.48 0.00 0.00 0.73 4.34 0.98 5.05 0.20 1.04 0 . 0 1  0.18 2.44 
20OO 0.01 0,74 0.00 0.01 1.71 1.94 0.53 -0.15 1.97 8.53 0.12 0.42 0.51 

0.28 0.82 0.56 0.17 0.63 1.33 1.43 3.73 1 . 5 5  1.55 0.30 0.40 0.65 
0.26 0.90 0.19 0.12 0.75 1.68 1,59 4.01 1.91 2.00 0.35 0.40 0.69 

Max 1,37 3.16 7.99 1.47 1 .71  4.52 5.15 17.13 6 .91  8.53 4,20 1 . 1 6  2.73 
SiDer 0,35 0.72 1 .81  0.32 0.47 1,24 1 . 5 7  3.90 1.87 1.79 0.93 0.34 0.83 
CV 1.24 0.87 3 . 2 1  1.90 0.75 0.93 1.10 1 . 0 5  1 , 2 1  1.16 3.13 0.84 1.28 
LthearTrend -0.02 0.02 -0.15 -0.01 0.00 0 . 1 1  0.10 0.05 0.12 0 . 0 1  0.05 -0.02 0.03 
R-Squared 0.12 0.02 0.20 0.02 0.00 0.26 0.12 0.00 0.13 0.00 0.10 0,08 0.05 

0.14 0.32 -0,24 0.08 0.26 0.40 0.14 0,47 0.33 0.37 -0.04 0.28 -0.08 

0.12 0.52 3.27 0.10 0.23 1.53 2.45 15.25 3.49 3.22 0.86 0 .11  0.70 



EXHIBIT 8 

Ragion I Non .mode led  Catast rophe Relat iv l tkm 

(Ad jus ted  to  regional  2000 A i r  d is t r ibu t ion)  

1 2 3 4 6 iS 7 8 3 
1981 3.044 2.110 3.271 0.275 1.272 0.547 0.213 
1983 0.161 0.426 4.293 1.347 6,829 0.238 0.7/I 
1883 1.301 0.649 1.238 0,453 0.354 0,230 3.057 
1984 0.633 0.671 3.923 0.811 1.423 0.784 0.770 
1886 0.033 0.234 3.149 1.148 0.6~) 0.S23 0.7105 
1986 0.220 8,671 1.206 11.792 0.170 0.020 0.332 
1987 1.664 1,9~0 1.503 1.795 1.170 0.2~0 0.188 
I~I~ 0.016 5,905 6.286 0.528 1.446 0.148 0.153 
131MI 0.425 0,7/8 0.571 0,845 t.020 1.00~ 0.009 
18110 0.464 1.050 1.282 0.756 t.678 0.218 0.0et 
1~)1 0.607 4.280 2.401 0.522 0.669 1,2~ 1,409 
1892 0.472 0,214 1.061 0.128 0.60~ t,302 0.316 
I ~  0.257 0.229 1.9~Q 3,697 0.8ge 0.177 0,007 
t8~4 0.200 10,870 3,221 2.761 0,525 0.137 0.266 
t996 0,006 2,7/6 5,405 3.900 0.301 0.002 1.t09 
t 8 N  0.351 0.296 1.1~ 5.388 0.632 0.114 0,284 
1397 1.388 2.002 -0.1t6 t.860 1.015 0.266 1,1~ 
t998 10.964 2.323 0.371 2.140 0.229 1.442 0,736 
t899 2.345 0.673 0.326 0.134 0.500 0,084 1.674 

1.587 0.429 0.014 1.5S6 1.386 1.325 0.415 

Arth, Mean 1.308 2.333 1.828 2,084 0.739 0.837 0.509 0.685 Gramd Mean: 1.366 

Vnwilnce of mourn: 0.320 

0.541 Average Process Vsr 3.079 
4.223 

0.519 1.059 
0.B81 1,764 
0.399 0.293 
0.214 0.529 
2.294 0,397 
0.420 0,758 
0.933 1.642 
0.279 3.460 
0.156 5.884 
0.905 1.359 
0.126 2.227 
1.636 3.825 
1.370 2.202 
1.373 1.006 
0.823 I ,(~0 
0.672 3.528 
0.586 1,454 
0,(MQ 0.457 
0.550 2.972 
0.544 1.560 

1.872 

P~oCeu vadance 5.884 8.799 2.472 7.199 0.321 2.053 0.200 0.244 
Es~nated Procmm variance 4.223 4.223 4.223 4.223 4.223 4.223 4.223 4.223 

Total variance 3.244 
Estimated VHM 0.320 

(1) Cr~l es~nlahp 0.833 0.035 0.635 0.635 0.635 0,635 0.635 0.455 0.455 
(2)Rela~ht~y ~ 1.323 1.976 1.633 1.813 0,963 t ,684 1,026 0.870 1.050 
(3) 2000 AIY 7630138 269300B 8658491 7677641 28965458 13673377 5~042460 7548625 34836783 
(4) (2)~176 Regionll 4 3 9 7 8 7 7  23129e6 4787313 6064115 12123511 10002277 25867396 3181945 15896752 

Damage Ral~o 
Balanced (m~llatee 0.496 0.739 0.619 0.680 0.360 0.630 0,384 0.383 0.383 

Totall 
167,733.984 
84,633.973 
0,505 Im~ied 2000 reg 
0.434 Choum 
0.861 Ballmck~ ad)m;bn 



EXHIBIT 9 

S a m p l e  o f  P r o p o s e d  N o n - m o d e l e d  Ca t  l o a d i n g  c a l c u l a t i o n  

CW Damage 
Damage Ratio Relativity Capped 

Year Ratio (reweighted) to CW Relativities 
1981" I I I I 

I I I I I 
1990 6.728 0.634 10.619 6.250 
1991 3.639 0.582 6.250 6.250 
1992 0.970 0.721 1.346 1.346 
1993 0.634 0.531 1.195 1.195 
1994 2.008 0.680 2.954 2.954 
1995 0.117 0.675 0.173 0.173 
1996 0.762 0.712 1.070 1.070 
1997 0.824 0.257 3.206 3.206 
1998 0.296 0.397 0.745 0.745 
1999 0.297 0.443 0.670 0.670 
2000 0.205 0.610 0.336 0.336 

(1) arithmetic mean 2.650 2.394 
(2) standard deviation 2.527 
(3) max relativity 10.619 
(4) relativity cap:(1)+3"(2) 10.232 
(5) process variance 3.68 
(6) credibility 0.901 
(7) credibility weighted relativity 2.290 
(8) implied 2000 losses 19,794,656 
(9) implied 2000 1 sd loss 37,976,702 
(10) rebalanced, to 1.0, relativity 2.645 
(11) balanced damage ratio 1.367 

NOTES: 
(4) Three standard deviations (calculated from the unadjusted numbers) above the arithmetic mean 

(5) The process variance is the unweighted variance of the adjusted 20 year relativities. 
The average across states of this number is the process variance used in the credibility formula 

(6) Credibility is 20/(20+K); K is the ratio of the above process variance and the VHP(not shown) 

(7) (1);'(6)+(1 -(6))'1 

(8) is (7)*selected CW damage ratio*Stata 2000AIY 

(9) is sqrt((5))*(8) 

(10) adjusts individual state indicated relativibes for the difference between the weighted (by AIY) 
CW relativity and 1. This adjustment by state is done in proportion to (9) 

11) The balanced damage ratio is (10)*the selected CW damage ratio 
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Exhibit 10 

COMPARISON OF METHODS 

R e l a t i v i t y  R e l a t i v i t y  

STATE A c l a - t o - a a a  T r e n d e d  R e g i o n a l  C o u n t r y w i d e  

1 1.984 2.522 1.71 2.184 

2 1.872 2.555 1.60 1.861 

3 1.683 2.337 2.20 2.114 

4 1.133 1.524 1.30 1.367 

5 1.073 1.578 1.43 1.384 

6 1,008 1.57 1.35 1,073 

7 0.900 0.908 0.47 0,502 

8 0.868 1.994 1.60 1,024 

9 0.819 0.98 0.60 0.889 

10 0.720 1.024 0.78 0.816 

11 0,698 0,963 0.62 0,888 

12 0.693 0,865 1,05 0.801 

13 0.689 0.743 0,58 0,755 

14 0.642 0.795 1.15 0.859 

15 0.614 0,783 1,03 0.798 

16 0.567 03  0.53 0.671 

17 0,539 0,668 0,60 0.718 

18 0.525 0.83 0.52 0.602 

19 0.515 0.98 0.56 0.659 

20 0.449 0,549 0.91 0.578 

21 0.422 0.516 0,52 0.557 

22 0.405 0.397 0.30 0.450 

23 0.391 0.495 0,45 0,442 

24 0.356 0.505 0,43 0,534 

25 0,335 0.412 0,29 0,364 

26 0,296 0.413 0.35 0.471 

27 0.296 0,359 0,40 0.395 

28 0.284 0.288 0.27 0,261 

29 0,269 0.426 0,40 0.382 

30 0.239 0,271 0.32 0,320 

31 0.236 0.384 0.38 0.309 

32 0,236 0.274 0,34 0.291 

33 0.226 0.308 0.30 0,186 

34 0.210 0.359 0.20 0.147 

35 0.202 0.247 0.23 0.232 

36 0,201 0,208 0.25 0.212 

37 0.189 0.256 0.38 0,249 

38 0.184 0.24 0,28 0.331 

39 0.173 0.252 0.24 0.261 

40 0.164 0.199 0.16 0.261 

41 0.158 0.136 0.15 0.113 

42 0.144 0,165 0.14 0.173 

43 0.141 0,171 0.21 0.176 

44 0.120 0.197 0.28 0.298 

45 0.099 0.133 0.17 0.147 

46 0.090 0.368 0.085 O. 187 

47 0.058 0.069 0.15 0.116 

48 0.048 0.061 0.08 0.099 

49 0.033 0.042 0.08 0.098 
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EXHIBIT 11 

SENSITIVITY: CHANGE IN INDICATED DAMAGE RATIO BE1WEEN 1999 AND 2000 

State 
1 
2 
3 
4 
5 
6 
7 
8 
9 
lO 
11 
12 
13 
14 
15 
18 
17 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
CW 

CW Relativity 
Trended AGGIAGG Method 

-2.4% -9.0% 2.2% 
-1.5% -9.0% -3.5% 
-1.4% -7.3% -4.0% 
-1.4% -6.4% -4.3% 
-1.4% -10.6% -3.1% 
-1.3% -7.1% -2,6% 
-1.3% -10.9% -12.0% 
-1.2% -9.8% -2.9% 
-1.2% -6,9% -4.0% 
-1.1% -7,4% -4.0% 
-1.1% -6.7% -3.7% 
-1.0% -8.0% -3.8% 
-0.9% -7.4% -3.9% 
-0,7% -7.1% -3.3% 
-0.6% -7.1% -2.9% 
-0.5% -6.8% -3.4% 
-6.4% -6.5% -2.6% 
-0.1% -5.2% -2.8% 
0.0% -6.4% -1.6% 
0,0% -4,8% -2.3% 
0.4% -4.3% -2.3% 
0.5% -6.0% 2.8% 
0.8% -3.6% -1.9% 
1.2% -3.3% -1.8% 
1.3% -2.9% -2,0% 
1.4% -4,0% -1,3% 
2.2% -3.9% 1.0% 
2.8% -2.0% -0.4% 
3.0% -0.5% -0.4% 
3.6% 0.4% 0.0% 
3,8% 1.3% 0.6% 
3.9% 2,4% -6.2% 
4.0% 3.5% 0.9% 
4.0% 2.3% 0.8% 
4.4% 4.9% 2.7% 
4.5% 2,8% 1.6% 
5.3% 7.5% 0.7% 
5.6% 3.6% 2.2% 
5.7% 4.5% 2.2% 
5.7% 1.7% 1A% 
6.0% 1.9% 0.7% 
6.1% 2.2% 7.5% 
7.5% 5.3% 3.2% 
9,6% 7.2% 4,6% 
12.2% 21.2% 9.7% 
16.4% 34.1% 16.3% 
16.6% 20.2% 8.7% 
20.3% 29.0% 32.0% 
41.5% 61.4% 8.1% 
3.9% 1.9% 0,6% 

Countrywide numbers weighted by 2000 AIY's 
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A Unifying Approach to Pricing Insurance and Financial Risk 

September 10, 2002 

Andreas Kull* 

Abstract 

The actuarial and the financial approach to the pricing of risk remain 
different despite the increasingly direct interconnection of financial and 
insurance markets. The difference can be summarized as pricing based on 
classical risk theory (insurance) vs. non-arbitrage pricing (finance). 
However, comparable pricing principles are of importance when it comes 
to transferring insurance risk to financial markets and vice versa as it is 
done e.g. by alternative risk-transfer instruments or derivative products. 
Incompatibilities blur business opportunities or may open up the 
possibility to arbitrage. 

For these situations, the paper aims to bridge the gap between insurance 
and finance by extending the non-arbitrage pricing principle to insurance. 
The main obstacle that has to be tackled is related to the incompleteness of 
the insurance market. It implies that equivalent martingale probabilities 
are not uniquely defined. By the information theoretical maximum entropy 
principle a sensible way to choose a particular equivalent martingale 
measure is found. This approach parallels the successful application of the 
maximum entropy principle in finance. 

The paper pays special attention to the role that investment opportunities 
beyond risk-free investments play for insurance operations. Equivalent 
martingale probabilities for the combination of insurance operation risk- 
free investment and a risky investment are determined. They turn out to be 
connected to the Esscher measure. This recovers a generalized form of a 
well-known actuarial premium calculation principle. 

The sketched approach is further investigated for typical reinsurance 
structures like stop-loss and excess-of-loss reinsurance. Arbitrage-free 
reinsurance premiums are calculated. A numerical example stresses the 
influence that characteristics of risky investment opportunities have on 
arbitrage-free premiums. 

* Converium Ltd, General Guisan-Quai 26, CH-8022 Zurich, Switzerland (e-mail: Andreas.Kull @converium.com) 
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1 Introduction 

The interconnection of financial and insurance markets has become more direct during the past 

two decades. This is due to the repositioning of insurance companies as integral financial service 

providers, increasing exposures that tend to exceed the capacity of the insurance market and 

finance-related insurance products (e.g. catastrophe-bonds). Presumably, the convergence of 

insurance and finance has attained its most advanced level in alternative risk transfer contracts, 

where insurance and financial risks are covered jointly. 

Financial and insurance markets and the pricing of respective products differ in many respects. 

On the market side, the main difference can be summarized as warehousing of risk (insurance) 

versus intermediation of risk (finance). Insurance pricing on the other hand is in general based on 

classical risk theory while finance relies on non-arbitrage pricing. Establishing comparable 

pricing principles is, however, of importance when it comes to transferring insurance risk to 

financial markets and vice versa. Incompatibilities blur business opportunities or open up the 

possibility to arbitrage. This is a main motivation for this paper. 

Non-arbitrage pricing relies on liquid and efficient markets. Clearly, most of the insurance 

market is neither liquid nor efficient. Nevertheless, there are situations where in addition to 

pricing based on classical risk theory the corresponding non-arbitrage value of an insurance 

contract is of interest, e.g. when part of the risk is transferred to the financial markets or 

insurance risk is traded. With a growing interconnection of financial and insurance markets this 

situation becomes more frequent. A pioneering area in this respect is the insurance of credit risk, 

where warehousing and intermediation of risk overlap in a very natural way. 

Pricing of insurance contracts is commonly based on real probabilities P ,  i.e. probabilities 

reflecting the actual likelihood of loss events. In the simplest one period case, the premium for an 

insurance contract covering losses X according to the equivalence principle is 
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1 
premium = Ee[X ] + S[X ] 

l + r  I 

(I.I) 

where EP[X] is the loss expectation calculated under the real probability measure P ,  discounted 

with a risk-discount rate r t chosen according to actuarial judgement. S[X] is the safety loading 

or risk premium. A particular choice of r r and S[X] should reflect the overall risk related to the 

contract, the risk-free interest rate, the cost of capital, the expected investment return, market 

conditions etc. For complex contracts this is usually not an easy task. 

Following the seminal work of Black, Scholes and Melton in the early 70's, in finance, the non- 

arbitrage pricing principle lead to a shift away from the real probability measure P to equivalent 

martingale measures Q. Valuation of a future (stochastic) cash flow F under the equivalent 

martingale measure Q takes the form 

1 
price = Ee[F] 

l+r~  

0.2) 

where EQ[ .] denotes the expectation operator under the measure Q. Pricing in this context thus 

invokes again the equivalence principle, however, with respect to the equivalent martingale 

measure Q. The discounting is performed with the directly observable risk-free interest rate r~r 

and there is no modification due to a loading. An appealing feature of (1.2) is that once the 

equivalent martingale measure Q is known, the valuation of the cash flow F is performed 

without recourse to subjective criteria. Economically, non-arbitrage pricing derives its 

justification from the existence of a hedge portfolio that creates an overall risk-less position. The 

existence of a hedge portfolio in turn relies on liquid and efficient markets. Arbitrage-free 

pricing was pioneered by Black and Scholes (1973). Cox and Ross (1976) and Harrison and 

Kreps (1979) established the sound theoretical basis in terms of risk-neutral valuation and 

equivalent martingale measures. 
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The main difference between classical risk theory and the non-arbitrage approach to pricing is 

that the non-arbitrage approach substitutes real probabilities and expert knowledge for 

'preference-free' probabilities that comply with the non-arbitrage assumption. The fundamental 

task in both cases remains to find the corresponding probabilities. 

Gerber (1973) has introduced martingale methods to risk theory. Since then, a number of papers 

have been investigating martingales in risk theory. Mainly, these papers deal with assessing ruin 

probabilities. For a review of insurance related use of martingals see e.g. Schmidli (1996). The 

martingale approach to premium calculation, which is considered here, has been pioneered by 

Delbaen and Haezendonck (1989). In this paper it was shown that common premium principles 

can be recovered by martingale methods. Another important paper in this context is by 

Sondermann ( 1991), who considers arbitrage-free pricing for reinsurance. 

The emphasis of this paper lies on the practical application of martingales to the pricing of 

insurance contracts whose performances depend on financial markets. The main problem arising 

is that, due to the incompleteness of the insurance market, equivalent martingale probabilities are 

not uniquely defined. Another difficulty arises since often the return distribution of insurance 

contracts is fundamentally different from that of asset returns ('heavy tails'). Thus it is not 

straightforward to apply standard financial techniques as e.g. the Black-Scholes-Merton 

framework. We show how the information theoretical maximum entropy principle can be applied 

to choose in a sensible way a particular equivalent martingale measure in this situation. 

The paper pays special attention to the role that investment opportunities beyond risk-free 

investments play for insurance operations. Equivalent martingale probabilities for the 

combination of insurance operation risk-free investment and a risky investment are determined. 

They turn out to be connected to the Esscher measure. This recovers a generalized form of a 

well-known actuarial premium calculation principle. 
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The maximum entropy principle has been successfully applied in other fields and to similar 

problems in finance (e.g. Stutzer, 1996). The methods used here thus are not new. Also, other 

approaches to unify the actuarial and financial pricing based on different methodology (e.g. 

deflators, Jarvis et al. 2001) exist. 

The paper is organized as follows: Section 2 gives a very brief review of basic concepts used in 

this paper. In Section 3 a non-arbitrage condition for insurance contracts is formulated. Section 4 

tackles the problem of determining equivalent martingale probabilities in an incomplete market. 

Equivalent martingale probabilities are determined by making use of the maximum entropy 

principle. Section 5 generalizes the theory to include investment opportunities. Section 6 

discusses issues related to unique valuation and implied discounting rates. As an example, simple 

reinsurance structures are considered in Section 7. This section also contains results of numerical 

simulations that illustrate some of the main results. Section 8 extends the one-period case of 

Section 7 to a multi-period framework. The last section presents conclusions. 

2 Brief Review of Basic Concepts used in this Paper 

This paper aims at bridging the gap between financial and insurance pricing by introducing some 

of the concepts of modem finance and information theory into insurance. For our purpose, the 

concepts of non-arbitrage pricing and equivalent martingale probabilities are of importance. 

They are covered by standard textbooks like e.g. Hull (2000) or Copeland and Weston (1992). In 

short, non-arbitrage pricing relies on the insight I that, in the absence of arbitrage opportunities, 

the price (or premium) of some contingent claim should match the price for a position perfectly 

hedging its risk. As has first been shown by Cox and Ross (1976) and Harrison and Kreps 

(1979), this insight can be reformulated mathematically in terms of 'equivalent martingale 

probabilities', i.e. in terms of a probability measure Q satisfying for a given random process X 

E q X T ] =  X, 

(2A) 

J It was this insight (and its mathematical tormulation) that gained Merton and Scholes the Nobel price in 1997. 
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Equation (2.1) has a straightforward interpretation: The best forecast of future values X r at 

T > t is the observed value X,. 

When pricing contingent claims in the non-arbitrage framework, equivalent martingale 

probabilities substitute the 'real' probabilities P e.g. derived from historical data. Dealing with 

equivalent martingale probabilities one should keep in mind that they emerge as a consequence 

of the non-arbitrage assumption and that they're 'artificial' insofar as they do not need to 

correspond to any real probabilities or beliefs. Second, it is important to note that only for 

complete and efficient markets there exists a unique equivalent martingale measure. In 

incomplete markets, however, equivalent martingale measures are not uniquely defined. This 

reflects the fact that contingent claims can be hedged only partially. 

In our context of incomplete insurance markets, basic concepts of information theory come into 

play when a particular equivalent martingale measure Q is chosen from the infinite possibilities. 

Information theoretical concepts prove useful by providing a measure of the information a 

particular equivalent martingale measure Q embodies. In the absence of information other than 

the non-arbitrage assumption, the rationale is to choose the distribution that embodies least 

additional information. In a discrete setting, this is achieved by maximizing the entropy 2 

S =-'~ql" ln[qi] 
i 

(2.2) 

where the ql 's  are the probabilities associated with a particular equivalent martingale measure Q 

Defining probability distributions by maximizing (2.2) has a longstanding history in information 

theory and statistical ph~,sics. The method is known as the Information Theoretical Maximum 

Entropy Principle. A more comprehensive review of information theoretical concepts lies 

beyond the scope of this paper. However, there are accessible textbooks covering these topics 

(see e.g. Cover and Thomas (1991)). 
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3 Formulating the Non-Arbitrage Constraint 
Consider the simplest form of insurance: An insurer accepts the liability to pay for the compound 

loss 

U 
X = ~"~ Lj 

j=! 

(3.1) 

occurring over a period [0,T] where Lj is the (random)jth claim amount during the time period 

and N is the random number of claims. Here we will assume that the claim amounts L~ are 

independently and identically distributed and Lj --L refers to the claim distribution without 

deductible or limit. In exchange for this liability, the insurer receives a premium b .  For 

simplicity it is assumed that there are no costs or investment returns and payments are made at 

time T only (for a generalization see Section 4). Then, the premium b can be interpreted as a 

risky asset generating one-period returns 

b - X  

b 

(3.2) 

The definition of the insurance related return R directly depends on b .  To stress this point, 

b will be referred to as the reference premium in the following. 

The non-arbitrage theorem can be expressed in different ways. An intuitive formulation in a 

discrete setting refers to different states i of the world, each of which is characterized by a set of 

payoffs. These payoffs originate from assets, e.g. in our case from the premium b or a risk-free 

bond. To formulate the non-arbitrage condition, realizations lj.~ and n i of the single claim 

amount L and the claim number N are considered. They translate by (3.1) and (3.2) into 

realizations xl and r~ of the compound loss X and return R respectively. In addition, a risk-free 

z Behind this lies the equivalence of  the expression for information content and the expression for entropy as 
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bond with return r,1 is considered. Following standard procedures (see e.g. Neftci (2000)) in 

finance, (1 + r~ ) and (1 + r,r ) are identified with the insurance and bond related payoffs in the ith 

state. Grouping the payoffs in a matrix D e ~2.x where K is the total number of states leads to 

D=[(l+re) (l+re.) A (l+rr 
[ ( l + r  0 ( l + r z ) A  (l+rx) j 

(3.3) 

The non-arbitrage theorem now states that if there is no arbitrage, positive constants V/~ exist 

such that 

11 [(l+r~/)(l+r~) A (l+rr 1 
l J = L ( l + f i )  ( l + r  21 A (l+rx) j [Vtx 

holds. With qi = g i .  (1 + re ) relation (3.4) becomes 

I llqq l 1 ( 1 + ~  (l+rO L (l+r~) 
[ ( l+r r  (l+r,~) (l+re-"---~] LqxJ 

(3.4) 

(3.5) 

can be interpreted as probabilities (as the from which it is evident that the quantities qi 

inspection of the first component demonstrates the positive ql 's  sum up to one). The q~ 's are 

interpreted as 'risk-adjusted' or 'risk-neutral' probabilities. From (3.5) it follows that under the 

probability measure Q we have 

discovered by Shannon (1948) who identified the generation of information with the reduction of entropy. 

325 



[l+~] l+r~ L b J 

(3.6) 

i.e. under the measure Q, (1 + R)/(1 + re )is a martingale and the q~ 's are equivalent martingale 

probabilities. 

Given the probabilities q~, the arbitrage-free pricing of an arbitrary insurance contract referring 

to the losses L and the claim number N is straightforward. It takes the form 

n o n -  arbitrage premium = 1 E Q[f(L,N)] 
l + r e  

(3.7) 

where f(L,N) stands for the loss amount to be paid according to the insurance contract. 

Relation (3.7) is formally identical to (1.2). According to it, the non-arbitrage premium is the 

expectation value calculated under the equivalent martingale measure Q, discounted by the risk- 

free interest rate rq. No risk premium is added since the risk adjustment is internalized by the 

change of the probability measure. Pricing any insurance contract whose loss can be written as 

f(L,N) thusreduces to determine the equivalent martingale probabilities q~. 

In complete and efficient markets, the strict economic justification of (3.7) relies on the fact that 

the non-arbitrage premium coincides with the (unique) price of a hedging portfolio that yields an 

overall risk-less position. In incomplete markets (e.g. insurance markets) considered here, 

however, the situation is more complex. It can be shown that no unique and perfect hedging 

portfolio exists. This is reflected by the fact that in general the equivalent martingale 

probabilities q~ are not uniquely defined. The question that arises is how the martingale 

probabilities should be defined, or, in other words, what particular equivalent martingale 

measure Q should be chosen out of the infinitely many possibilities. We will address this 

question in the next section. 
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4 Equivalent Martingale Measure 
The insurance market is neither liquid, effective, nor it is complete. An immediate consequence 

is that pricing contingent claims by their replication cost is not possible which implies that no 

unique equivalent martingale measure exists. Other practical difficulties arise since often the loss 

distribution of L is fundamentally different from that of asset returns. In particular, the loss 

distribution L may often show heavy tails, i.e. relatively high probabilities of  large losses 3. Thus 

it is not straightforward to apply standard financial techniques like the Black-Scholes-Merton 

framework, which implicitly relies on complete markets and log-normal distributed random 

variables. How can, nevertheless, as much as possible of the appealing properties of  non- 

arbitrage pricing be recovered in this situation? 

The equivalent martingale probabilities q~ have to fulfill according to the non-arbitrage 

assumption the relation (3.5) representing a linear system of two equations and K unknowns ql- 

The system is of the form 

1 S = D*q 
l + r  0 

(4.1) 

For given S =[1,1] r and D (specified by K realizations r~ ), q is not determined uniquely. 

Indeed, there exist an infinite number of solutions for q~ which reflects market incompleteness. 

The underdetermined nature of  (4.1) is formally known as the 'Inverse Problem'. Several 

methods exist to deal with such situations. One of the most elegant and well-founded ways is 

provided by the maximum entropy principle of information theory, which we will follow here. In 

finance, the maximum entropy principle has been successfully applied in a similar context to 

problems related to option pricing. Rubinstein (1994) used the maximum entropy principle to 

:~ A characteristic property of heavy tailed distributions is the non-existence of higher moments E[X k] for 

somek > k 0. As an example, consider the Pareto distribution whose second and higher moments do not exist if 

a < 2 .  
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infer martingale measures from observed option prices (Rubinstein 1994). Buchen and Kelly 

(1996), Stutzer (1996) and Gulko (1999) worked out generalizations and applications of this idea 

referring to option pricing. In the following, we use to a large extent the same well known 

information theoretic methods as Stutzer (1996). 

4.1 Determining Equivalent Martingale Probabilities 

The only information available about the equivalent martingale probabilities q; is the non- 

arbitrage constraint as specified by (3.5) and the assumption that all realizations r; are equally 

alike. Any other additional information (e.g. the volatility of the equivalent martingale 

probabilities q;) would be imposed on the martingale probabilities q; without justification since 

relation (3.5) is the only constraint defining properties of the equivalent martingale probabilities. 

A consistent criterion to make a choice along this line is the additional information a particular 

distribution is adding besides the constraint (3.5). One should try to minimize it. Minimizing 

additional information is equivalent to maximize the entropy 

S =-~[qi .In[q/] 
i 

(4.2) 

associated with a particular distribution {q;} (Jaynes, 1957a,b). This information theoretical 

Maximum Entropy Principle guarantees the chosen distribution to incorporate no information 

other than specified by the constraint (3.5), which is equivalent to choose the distribution that is 

'most unbiased' or is 'embodying least structure'. 

The problem of maximizing the entropy associated with the distribution q; is a constraint 

maximizing problem: 

maxS = - y ~ q ; .  ln[qi] 
i 

(4.3) 

under the constraints 
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I: ~,qi = 1 (normalization) 
i 

(4.4) 

II: q~ _> 0, Vi (positivity) 

III: Eo[ I + R  ] [l---~r#j=l~r#~qi(l+r~):Sd (non-arbitrage condition) 

(4.5) 

(4.6) 

It is solved by using Lagrangian multiplier techniques, i.e. maximizing the expression 

(4.7) 

where, Y and fl represent the Lagrangian multipliers associated with the constraints (4.4) and 

(4.6). Maximizing (4.7) leads to 

E [_~l+r,.] XpL, - r,J 
q/= ~ r l+ r  i 1 

(4.8) 

where /~- '= ~Exp[y(l+r~)/(l+r,r (constraint (4.4)). The parameter ~ is to be determined 

numerically by the non-arbitrage constraint (4.6). Since the distribution (4.8) is an exponential, 

constraint (4.5) is automatically fulfilled. 
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To recapitulate: The distribution (4.8) is the maximum entropy probability distribution (or 'most 

unbiased' probability distribution). It has been deduced from the maximum entropy principle and 

the non-arbitrage constraint. By construction, the probabilities (4.8) are equivalent martingale 

probabilities. Their distribution is consistent with the non-arbitrage theorem and is otherwise 

assumption-free. 

4.2 A Information Theoretical Justification of the Esscher Premium Principle 

As a side remark note that (4.8) is equivalent to a special case of the Esscher Transform 

x 

SExp[~,. y]-dF(y,t) 

F(x,y) = Pr[X < x,y] = -- 

i Exp[y �9 y]. dF(y,t) 

(4.9) 

where the parameter )' can be chosen to be consistent with a non-arbitrage condition similar to 

(4.6). As discussed by Gerber and Shiu (1994), resulting equivalent martingale probabilities can 

be used for option pricing. For discrete probabilities ql as discussed here, the Esscher Transform 

becomes 

~ E x p [ y  l+r~ ] 

F(r,y)=Pr[R<rdt] - r,<r L l + r q j  

~ E x p [ y  l+~  ] 
., [ l + r # j  

(4.10) 

With y = y, (4.10) is consistent with the non-arbitrage constraint and (4.8) is recovered. This 

shows the special case of the Esscher transform to be equivalent to the maximum entropy 

330 



probability distribution. In this sense, the Esscher transformation (4.10), which lies at the heart  o f  

the well-known Esscher premium principle 4, has an information theoretical justification. 

5 Including Costs and Investment Return 

Costs and investments play a crucial role for the profitability of  insurance operations. While  

costs enter premium calculations in a straightforward way, this is less obvious for investments .  

Pricing of  contracts and assessing reserves depends directly on the anticipated investment  return. 

Usually, investment opportunities are taken into account by a risk-adjusted discounting factor in 

(1.1) whose determination is left for actuarial judgment.  From the market perspective, the 

difficulty lies in finding a market conforming discount factor for the combined risk o f  insurance 

and investment operation or, in other terms, the market price of  the overall risk. A way to address 

this problem is to consider arbitrage-free pricing o f  insurance operations that reflects and 

incorporates investment possibilities. 

The max imum entropy approach provides an elegant way to account for investment returns and 

cost simply by modifying or adding constraints. Fixed costs c modify the return related to 

insurance (risky asset b ) according to 

b - c - X  
R - - -  

b 

(5.0 

Further, assume that the insurer is investing the amount  b during the period [0,T] in which no 

payments  are made in a risky asset with (stochastic) return Y. The overall return of  the insurance 

operation then becomes 

. 

4 The Esscher premium principle defines (as e.g. the Variance premium principle) a particular way of calculating a 
safety loading or risk premium. Interestingly enough, the Esscher premium principle relies on 'distorted' 
probabilities in much the same way as non-arbitrage pricing relies on equivalent martingale probabilities. Indeed, in 
our case here, the martingale probabilities can be seen as originating as a special case from the Esscher premium 
principle. Besides this, there exist other economically relevant links (e.g. to the framework of Pareto-optimal risk 
exchange, see Biihlmann (1980)). I thank Peter Blum for stressing this point. 
The connection of the Esscher premium principle to information theory, non-arbitrage pricing, and Pareto-optimal 
risk exchange certainly warrants a more detailed study. 
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b - c - X  
R "  - - -  I- Y 

b 
(5.2) 

Note that the overall return R"' of the insurance operation will reflect diversification effects that 

are present due to the non (or only partially) correlated nature of the returns R and Y. 

Again, equivalent martingale probabilities are calculated as outlined in Section 2 and 3. The only 

differences are that the constraint (4.6) is modified to reflect the cost c and that a new non- 

arbitrage constraint 

Ilr: 
Q I+Y 1 

E [ - - ]  = - - ~ q i ( l +  yi):~ 
Ll+r~ J l+r, /  , 

(5.3) 

for the investment return is added. Because of linearity, (1 + R'~ r,r is automatically a 

martingale, i.e. no modification for R "  is needed. Maximizing the entropy in analogy to (4.7) 

leads to 

_ Exp[(1 + r.)-'!?,(l + ~,)+ 72(1 + y,))] 
q i -  ~Exp[(1 + re)-(2~,(1 + r , )+?2(l+ y,))] 

i 

(5.4) 

where the parameters Yt and Y2 are determined by the constraints (4.6) and (5.3), respectively. 

The non-arbitrage value of an insurance contract is defined according to (3.7) again. Note that 

the discounting is done with respect to the risk-free interest rate r e , i.e. the dependence on the 

investment return is internalized. 

Evaluating (3.7) with the equivalent martingale measure (5.4) will account for investment 

opportunities. Specifically, it will yield the non-arbitrage value of the combination of insurance 

and investment operation and, by this, the market price of the overall risk. Thus, the non- 

arbitrage pricing principle (3.7) together with the equivalent martingale measure (5.4) provides a 

unified valuation of assets and liabilities. 
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The equivalent martingale measure (5.4) will also reflect diversification effects present due to the 

non (or only partially) correlated nature of the returns R and Y. To see this, consider that (5.4) 

depends on the correlation of R and Y. How the correlation affects the non-arbitrage premium, 

however, is not easy to guess since it depends on the parameters 7~ and 72 that depend on the 

correlation themselves. What can be inferred from (5.4) is that for negative, fixed #j and 92 a 

positive correlation between R and Y results in relatively more weight being put on low returns. 

Vice versa, no correlation or negative correlation will decrease the relative weight on low 

returns. This feature of (5.4) can be interpreted in terms of a portfolio effect. We will come back 

to these issues in Section 7. 

To end this Section, note that relation (5.4) can be interpreted as a generalization of the Esscher 

transformation (4.10). The transformed measure Q in (5.3) depends not on a single measure P 

but on two measures P~ and P2 related to insurance and investment returns. Relation (5.4) can 

easily be extended to cover more complex situation with additional investment (or insurance) 

opportunities (provided that the number of states of the world is bigger than the number of 

incorporated risk factors plus two). 

6 Unique Valuation and Implied Discounting 
In comparison to real probabilities P ,  the equivalent martingale probabilities Q will put more 

weight on low returns. This connects in a natural way to the insurance related concept of the 

safety loading. In Delbaen and Haezendonck (1989) it was shown that common premium and 

loading principles can be recovered by suitably choosing martingale probabilities. The case of a 

compound Poisson process was considered. The situation here is different in two respects: First, 

in addition to the insurance return, the stochastic investment return is considered. Second, we 

will be interested in the discounting factor that is implied by the overall non-arbitrage value of 

the contract and a particular loading. The motivation for this stems from the fact that according 
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to standard finance, the non-arbitrage value coincidences with the (unique) market price. While 

this interpretation relies on liquidity, effectiveness and completeness of the market that don't  

fully apply in the current case, the implied discounting rate may nevertheless shed some light on 

how the discounting factor in (1.1) has to be chosen. 

The implied discounting factor is obtained by solving the equation 

l E p [ f ( L ) ] + S [ f ( L ) ] =  1 Ee[f(L)]  
l+r,. l + r ~  

(6.1) 

for (l+r~) where f (L)  stands for the loss occurred by an insurance structure. It reconnects the 

actuarial and financial view. By definition, it is consistent with the chosen loading principle and 

the market value of the overall risk of insurance and investment operation as implied by non- 

arbitrage pricing. 

Relation (6.1) defines the implied discounting factor (l+r~) in a unique way. One has to keep in 

mind however that the right hand side of equation (6.1) depends on the martingale measure Q, 

which is, due to the incompleteness of the insurance market, not uniquely defined. As well, Q is 

linked by construction to the reference premium b.  Thus, the implied discounting factor (1 + r,) is 

relative to the reference premium b as defined 'ground-up' by (1.1) 

1 
B = Ev[XI+S[X] 

l + r  I 

Other definitions for b can be considered. And indeed, in a real life situation likely a reference 

premium would be considered that is referring to Ee[f'(L)] and S(f'(L)),  or simply to a 

premium of an already placed contract. 
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7 An Example: Simple Reinsurance Structures 

An illustrative example of non-arbitrage pricing with methods discussed here is reinsurance. 

Sonderman (1991) has pioneered pricing of reinsurance contracts with martingales. Premiums 

are calculated under the assumption of an arbitrage-free reinsurance market and in the context of 

the continuous Lundberg model. Considering discounted cash flows based on stochastic interest 

rates links the insurance and finance side. However, there is no explicit non-arbitrage condition 

for investments in financial assets. By these assumptions, the model of Sondermann (1991) 

differs in two respects from the approach followed here. First, we developed a unified view of 

insurance .and investment operations. There is no discounting of cash flows that creates the 

somehow artificial bridge between insurance and finance. Investments in financial and 

insurance-related risky assets are considered on an equal footage. Second, a discrete setting is 

investigated which reflects the reality of basic reinsurance policies that are renewable once a 

year. The quarterly traded catastrophe insurance futures traded at the Chicago Board of Trade 

give a comparable real-life example. 

Two simple reinsurance structures will be considered here, one of which is related to compound 

claim amounts X (stop-loss insurance) and the other one to single claim amounts L i (excess of 

loss insurance). Both refer to the same underlying asset b with stochastic one-period returns 

defined by (3.2). 

7.1 Stop-Loss Reinsurance 

In the case of stop-loss reinsurance, an insurer cedes the risk of being exposed to compound 

losses X surpassing some threshold d to a reinsurer. For simplicity, it is again assumed that no 

payments are made in the time period [0,T]. What is the non-arbitrage value of reinsurance in 

this situation and its relation to the premium b ? The incurred loss, which at time T is ceded to 

the reinsurer, is 

f ( L , N )  = f ( X )  = max(X -d ,0 )  

(7.1) 
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where d is the deductible. Note that (7.1) is basically the payoff of a call option. On the other 

hand, the insurer incurs the loss 

min (X ,d )  

(7.2) 

Taking the expectation value of (7.1) with respect to the equivalent martingale measure Q and 

discounting with the risk-free rate leads to the non-arbitrage reinsurance premium 

Because of the relation 

b r ~ i ~  ~ - 
E~ [max(X - d,0)] 

l+r,~ 

(7.3) 

max(X - d ,0) = X - min(X,  d)  = X - (d - max(d - X,0)) 

the reinsurance premium br,i, ~ can also be expressed as 

(7.4) 

b,,,~, = ( b - d )  + E~ - X,0) ]  
l + r  e l+r,r  

(7.5) 

The first term in (7.5) is the discounted value of a cash amount ( b - d )  while the second term 

corresponds to the value of a 'put option on insured losses' with strike d .  Thus, the value of 

reinsurance for the insurer equals to holding (or lending) the cash amount (b - d )  at the risk-free 

rate r,.f and selling a put option with strike d .  In this context it is important to keep in mind that 

by the equivalent martingale measure Q expression (7.3) (or (7.5)) for the reinsurance premium 

b,~.~ implicitly takes into account the investment return Y which means that the equivalent 

martingale measure Q depends on both, the insurance return related to X and the investment 

return Y. 

3 3 6  



Relation (7.5) shows how the insurance premium b and reinsurance premium bre~n ~ are 

interconnected when no arbitrage is present. Other relations can be deduced. An illustrative 

reminiscence to the well known 'call-put parity' in finance following from (7.4) is 

b + E ~ [max(d - X,0)] = d + E ~ [max(X - d,0)] 

(7.6) 

With respect to the premium b and the deductibled, equation (6.6) interconnects the value of 

put and call options with equal strike (i.e. deductible) on compound losses X .  Similar relations 

for more complicated reinsurance structures can be deduced. 

7.2 Excess-of-Loss Reinsurance 

Up to now, only a compound claim amount X has been considered. In the most common cases 

of insurance and reinsurance, however, the amount to be paid does depend on single claim 

amounts. As an example consider excess-of-loss reinsurance where the amount for the ith claim 

to be paid by the reinsurer is 

max(L i - d,O) 

(7.7) 

The total amount paid in the period [O,T] is obtained by summing over i 

N 
f(L, N) = ~ max(L, - d,O) 

i=l 

(7.8) 

Here, N is the (random) number of claims occurring in the period [0,T]. Interpreting (7.8) as a 

payoff functionf(L,N) of the underlying asset b ,  the non-arbitrage premium is calculated by 

taking the expectation value of (7.9) with respect to the equivalent martingale measure Q 

E Q max - d, 

br = eins 
l + r e  

(7.9) 
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The expectation value E Q [.] in expression (7.9) can be written (see e.g. Daykin, Pentikaienen 

and Pensonen (1994)) as 

) r e i n s  - -  

E ~ [N]. E ~ [max(L~ - d,0)] 

i + r r  

(7.10) 

and, in analogy to Section 7.1, an equivalent expression 

b,~i,. ~ (b-Ee[Nl'd) ~ EO[N].Ee[max(d-L,O)] 
l + r ~  l+r,r 

can be obtained. In the same manner, relation (7.6) now becomes 

(7.11) 

EQ[max(L-d,O)]=( EO~]-d )+ Ee[max(d- L,O)] 
(7.12) 

The interpretation is similar to the one in the case of compound losses. With respect to the 

premium b ,  the deductible d and the expected value of number of claims evaluated under the 

equivalent martingale measure Q, equation (7.12) interconnects the value of  put and call options 

with equal strike (i.e. deductible) on individual losses L i . 

7.3 Numerical Examples 

For illustrative purposes, this section presents numerical results for the reinsurance examples of  

Section 7.1 and 7.2. Arbitrage-free reinsurance premiums are calculated as a function of the 

deductible d .  Particular attention is paid to the role of investment possibilities. 
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We assume that the investment return Y over the period T is a normally distributed with mean 

#1 and standard deviation o" I . The dependence of  non-arbitrage premiums on investment 

opportunities is investigated by comparing non-arbitrage premiums for different parameter 

values Pl  and tr I . The numerical examples are based on loss amounts generated from Poisson 

distributed claim numbers N and lognormal distributed claim amounts L.  The corresponding 

parameter values are given in Table 1, together with the characterization of  the investment return 

Y. Investment returns Y for different parameter values /.t I and 0" I have been obtained by 

scaling and shifting. The numerical results are based on 50 scenarios (i.e. states of  the world) that 

correspond to about 200 single losses 5. These numbers are sufficient to sample a large part of  the 

compound loss distribution X .  

The compound loss distribution is shown in Figure 1 together with an example of  equivalent 

martingale probabilities. The equivalent martingale probabilities are shown for parameter values 

/.t I = 6 %  and o" t = 5%. Figure 2 and Figure 3 present non-arbitrage premiums for stop-loss 

reinsurance as a function of  the deductible d and various combinations of/.t I andt:r I . 

Corresponding non-arbitrage premiums for excess-of-loss reinsurance are shown in Figure 4 and 

Figure 5, again as a function of  the deductible d .  This time however the deductible d refers to 

single claim amounts. The Figures show generic features: By construction of  the equivalent 

martingale probabilities, all non-arbitrage premiums coincide f o r d  =0. This reflects the fact that 

as discussed in Section 6 non-arbitrage premiums are defined relative to a given premium b .  It 

should be noted that the particular choice d =0 is arbitrary. In principle, corresponding results 

for any reference premium b' can be derived. For d ~ 0 the non-arbitrage premiums reflect the 

investment characteristics: For a fixed volatility tr I the higher the average investment return p /  

is, the higher is the non-arbitrage premium, i.e. the arbitrage-free value of  the contract. For a 

fixed average return /.t~ and varying volatility o ' t ,  a reversed situation is encountered: The 

higher the volatility ty~, the lower is the non-arbitrage premium. These relations are the same 

5 The investment return time-series and the loss scenarios correspond to the typical data that is needed in real life 
examples. Historical data can be used in a straightforward way. 
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independently of the nature of the reinsurance contract (i.e. excess-of-loss or stop-loss) 

considered here. 

Figure 2 to Figure 5 in addition show the expected loss EP[f(X )] as a function of the deductible 

d and sample insurance premiums calculated from the variance premium principle 

1 Ee[f(X)]+S[f(X)]=l~rEe[f(X)]+Ot.Var[f(X)] premium = 1 + r e 

with ct -----0.015. By equating the insurance premium with the non-arbitrage premium, the implied 

discounting factor (1+ r~) can be deduced. Implied discount factors corresponding to Figure 5 

are plotted in Figure 6. The arbitrage-free premiums (and the related implied discounting factor 

(l+r~)) have to be understood as originating from the combined insurance and investment 

operations. This explains the somewhat counterintuitive fact the higher investment returns 

correspond to lower implied discounting rates. In the present one-period case, these implied 

discount factors have little meaning besides reconnecting the actuarial and financial premium 

calculation. 

The example considered here is one in which the insurance premium is in general higher than the 

non-arbitrage premium. Obviously, depending on the loading S[f(X)] and other parameters, the 

situation could be reversed. In such a situation, the question of how investment related value 

could be transferred back to the insured by lowering the premium becomes important. A 

discussion of these issues lies beyond the scope of this paper. However we note that a consistent 

way of valuing the passing of investment generated value to the primary insurer should be based 

on the equivalent martingale measure Q, i.e. on an arbitrage-free valuation. 

Finally, Figure 7 demonstrates the presence of a portfolio effect. It shows excess-of-loss non- 

arbitrage premiums for different correlations between insurance and investment return. The 

different cases have been obtained by considering insurance and investment returns with rank 
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correlation 1, approximately, 0 and -1, respectively. These cases thus represent the extremes. 

The graphs show a pronounced and expected dependence on the correlation between insurance 

and investment return. 

8 Multi-Period Contracts 

The one-period setting considered here is easily generalized to the multi-period case. Basically, 

the constraints (3.6) and (5.3) have to capture multi-period payoffs. As well, the discounting with 

respect to the risk-free interest rate r,/should account for multiple periods. In the simplest case 

where no term structure is present, constraint (3.6) e.g. becomes 

[ ~  (1 + ro,)' J ~1 

Considering multiple periods will allow for the valuation of long-term contracts, which often 

come with complex option-like structures (e.g. commutation features, guarantees). Recently, 

with the pressure from under-performing financial markets, issues related to the valuation of 

options became especially important in life insurance. 

9 Conclusions 

The relevance of arbitrage-free pricing relies on the liquidity and efficiency of the insurance 

market. Liquidity and efficiency are not features of the insurance market in general and thus the 

non-arbitrage approach to pricing of insurance contracts may be inadequate. The situation is 

different when insurance risk is traded or transferred to the financial markets and vice versa. In 

this case, the implicit assumptions underlying the non-arbitrage approach may be satisfied in that 

a (at least partial) hedge can be set up. Even for traditional insurance structures the financial risk 

due to investments can become comparable to the insurance risk itself (e.g. life insurance). In 
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these cases the price for the overall risk should reflect in some way the price financial markets 

are putting on risk. In this paper we tried to tackle this problem by extending the non-arbitrage 

principle to the insurance side. Due to incompleteness of the insurance market, no unique 

equivalent martingale measure exists. The information theoretical maximum entropy principle is 

applied to make a sensible choice in this situation. 

Equivalent martingale probabilities consistent with the combined non-arbitrage conditions for 

insurance and investment operations for a one-period horizon are calculated. They turn out to be 

linked to a generalized form of the Esscher measure and show correlation dependence. The latter 

illustrates the presence of a portfolio effect. These findings are illustrated by a numerical 

example referring to common reinsurance-like structures. 

In summary, a practicable and well-motivated way to infer overall market prices for combined 

insurance and investment operations based on the non-arbitrage pricing principle has been 

outlined. While the relevance of this approach may be limited for traditional insurance structures 

with only limited exposure to financial risk, the market price is clearly of relevance for insurance 

structures whose performances depend heavily on the performance of financial markets. 

Acknowledgements 
I thank Peter Blum (Converium), Victor Choi and Sergei Esipov (Centre Solutions) for valuable 

comments and stimulating discussions. Part of this work has been performed at Centre Solutions. 

The views expressed here are those of the author and not Converiums' or Centre Solutions'. All 

remaining errors are the authors' responsibility. 

342 



References 

Black, F. and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, Journal of 

Political Economy, Vol. 81, pp. 637-659. 

Buchen, P., and M. Kelly (1996), The maximum entropy distribution of an asset inferred from 

option prices, Journal of Financial and Quantitative Analysis, Vol. 31, pp. 143 - 159. 

Btihlmann, H. (1980), An Economic Premium Principle, ASTIN Bulletin, Vol. 11, 1980, pp. 52- 

60. 

Copeland, T. E. and Weston, J. F. (1992), Financial Theory and Corporate Policy, Addison 

Wesley. 

Cover, T. M. and Thomas, J. A. (1991), Elements of Information Theory, John Wiley. 

Daykin, C.D., Pentikainen, T. and Pesonen, M. (1994), Practical Risk Theory for Actuaries., 

Chapman & Hall: London, New York. 

Delbaen, F. and Haezendonck, J. M., (1989), A martingale approach to premium calculation 

principles in an arbitrage-free market, Insurance: Mathematics and Economics, Vol. 8, 269-277. 

Gerber, H. U. and Shiu, S. W. (1994), Martingale Approach to Pricing Perpetual American 

Options, ASTIN Bulletin, Vol. 24, 1994, pp. 195-220. 

Gerber, H. U. and Shiu, S. W. (1994), Option Pricing by Esscher Transforms, TSA, Vol. 16, pp. 

99-140. 

343 



Golan, A., G. G. Judge, and D. Miller (1997), The Maximum Entropy Approach To Estimation 

and Inference: An Overview, Advances in Econometrics, Vol. 12, pp. 3-24. 

Gulko, L. (1997), Dart Board and Asset Prices: Introducing the Entropy Pricing Theory, 

Advances in Econometrics, Vol. 12, pp. 237-276. 

Harrison, J. M., and Kreps, D. M., 1979, Martingales and Arbitrage in Multiperiod Securities 

Markets, Journal of Economic Theory, Vol. 20, 381-408. 

Hull, J.C. (2000), Options, Futures and other Derivatives, Prentice Hall. 

Jaynes, E. T. (1957a), Information Theory and Statistical Mechanics, Physics Review, Vol. 106, 

pp. 620-630. 

Jaynes, E. T. (1957b), Information Theory and Statistical Mechanics II, Physics Review, Vol. 

108, pp. 171-190. 

Jarvis S., Southall F. and Varnell E. (2001), Modem Valuation Techniques, available at 

www.sias.org.uk/papers/mvt.pdf 

Neftci, S. (2000), Mathematics of Financial Derivatives, Academic Press. 

Schmidli, H., 1996, Martingales and insurance risk. In: Obretenov A. (ed.) Lecture notes of the 

8-th international summer school on probability and mathematical statistics (Vama). Science 

Culture Technology Publishing, Singapore, 155-188. 

Shannon, C. E., 1948, A Mathematical Theory of Information, The Bell System Technical 

Journal, 27, 379-423 and 623-656. 

344 



Stutzer, M. (1996), A Simple Nonparametric Approach to Derivative Security Valuation, 

Journal of Finance, Vol. 51, pp. 1633-1652. 

Sondermann D., 1991, Reinsurance in arbitrage-free markets. Insurance: Mathematics and 

Economics, Vol. 10, 191-202. 

Rubinstein, M. (1994), Implied Binominal Trees, Journal of Finance, Vol. 49, pp. 771-818. 

345 



Type 
/a 

(7  

Loss Number Loss Severity Invest. Return Risk-free Rate 

Poisson LogNormal Normal Constant 

4.0 1.0 4%, 5%, 6% 3% 

8.0 3%,4%,5%,7% 

Table I Distribution types and parameter values referring to numerical examples discussed in 

Section 7. 

0.9 

0.8 _ _  m ~  _ _  

i 
0.7 - -  - -  

0.6 - -  - -  - -  

0.5 . . . .  
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0.2 _ I + Real ~ o b a b i l i t i e ~  i 
0 . 0 1  ~ ~ ~ ~ -  ~ -  ~ -  ~ 1  l . . . .  " Martingale Probabilities Q 

0 5 10 15 20 25 30 35 0 
x 

Figure 1 Real probabilities P and corresponding equivalent martingale probabilities Q referring 

to an investment return #~ =6% with volatility cr~ =5% (see text). 
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FiguP 2 Stop-loss structure. Expected loss, premium and non-arbitrage premiums for different 

investment opportunities as a function of the deductible d. 
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Figure 3 Stop-loss structure. Expected loss, premium and non-arbitrage premiums for different 

investment opportunities as a function of the deductible d. 
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Figure 4 Excess-of-loss structure. Expected loss, premium and non-arbitrage premiums for 

different investment opportunities as a function of the deductible d. 
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Figure 5 Excess-of-loss structure. Expected loss, premium and non-arbitrage premiums for 

different investment opportunities as a function of the deductible d. 
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Figure 6 Implied discount factors (corresponding to Figure 5) as a function of the deductible d. 
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Figure 7 Effect of correlation between insurance and investment returns on non-arbitrage 
premiums for the excess-of loss structure. 
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1. Introduction 

This paper introduces a capital consumption methodology for the price evaluation 
of reinsurance in a stochastic environment. It differs from the common practice of 
risk-based capital allocation and release by: (i) evaluating the actual contract 
cash flows at the scenario level; (ii) eliminating the need for contract-level 
supporting capital allocation and release; (iii) evaluating each scenario's 
operating deficits as contingent capital calls on the company capital pool; and (iv) 
reflecting the expected cost of contingent capital calls as an expense load. 

This method eliminates the need for capital allocation and release; creates 
scenarios that more closely model actual contract capital usage; allows more 
flexibility in stochastic modeling; and makes risk-return preferences an explicit 
part of the pricing decision. 

Section 2 begins with an overview of the capital consumption approach, framing 
the major differences from capital allocation. Section 3 then presents the details 
of the approach. Section 4 delves further into the concept of contingent capital 
consumption and its costs. Section 5 shows examples of price evaluation using 
this approach. Section 6 concludes with linkages to other current research 
efforts. Appendix A addresses the question: Does insurance capital allocation 
make sense? Appendix B demonstrates one approach for calibrating to the 
portfolio level. 

2. Capital Consumption Overview 

This paper challenges many fundamental conceptual underpinnings of 
reinsurance pricing, Any attempt at an overview will be difficult. As a start, we will 
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outline the major differences in treatment of capital under an allocation versus 
consumption framework by considering four questions: 

1. What happens to the total capital? 
2. How are the segments evaluated? 
3. What does being in a portfolio mean? 
4. How is relative risk contribution reflected? 

uestion 1: What happens to the total capital'., 
Allocation 

Divided up among the 
segments. 
Either by explicit 
allocation, or assignment 
of the marginal change in 
the total capital 
requirement from adding 
the segment to the 
remaining portfolio 

Consumption 
Left intact 
Each segment has the right 
to "call" upon the total capital 
to pay its operating deficits 
or shortfalls 

Allocation splits up the total capital and doles it out to segments. Two critical 
assumptions underlie this approach: that the capital itself is divisible; and that, 
similar to manufactured products, insurance products require up-front capital 
investment to produce. Consumption instead recognizes the right (widely 
acknowledged among capital allocation proponents) of any contract to consume 
potentially all the company's capital. 

Puestion 2: How are the segments evaluated: 
Allocation 

�9 Give the allocations to 
each segment 

�9 Evaluate each segment's 
return on their allocated 
capital 

�9 Must clear their hurdle 
rate 

Consumption 
�9 Give each segment "access 

rights" to the entire capital 
�9 Evaluate each segment's 

potential calls (both 
likelihood and magnitude) on 
the total capital 

�9 Must pay for the likelihood 
and magnitude of their 
potential calls 

Allocation proponents ask, without capital allocation, how can you make either 
performance evaluations or investment decisions? How can you decide where to 
grow or shrink your book? How can you divide a bonus pool? They also advocate 
this as a translation vehicle to results from other industries. 
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Consumption is a valid alternative for either performance evaluation or portfolio 
composition decision-making. Both approaches are based upon the premise that 
riskier segments must pay for their risk. Both approaches are also dependent 
upon a sound portfolio risk model, the true foundation of stochastic reinsurance 
pricing. 

Allocation 
Being standalone with 
less capital 
But still having access to 
all the capital if 
necessary, although it is 
unclear how this is 
reflected 

Consumption 
�9 Being standalone with 

potential access to all the 
capital 

�9 But all other segments have 
similar access rights 

This is the critical difference. Allocation treats segments as if standalone, with 
less capital. This means being in a portfolio is like being on your own, but you 
have to support less capital. Consumption on the other hand treats being in a 
portfolio like being standalone, with access to potentially all the capital, but with 
the added wrinkle that all the other segments have similar access rights. 

Puestion 4: H o w  i,, 
Allocation 

�9 Use a single risk measure 
to determine required 
capital 

�9 Select a dependence 
structure for the 
aggregation of segment 
distributions into a 
portfolio aggregate 
distribution 

�9 The marginal impact of 
adding a segment to the 
remaining portfolio is that 
segment's risk 
contribution 

Consumption 
�9 Use scenario-level detail 

generated by stochastic 
modeling 

�9 Use explicit risk-return 
evaluation via utility function 

�9 Segment's risk contribution 
is determined at the scenario 
level, then aggregated over 
all scenarios 

This is a deep question, one that will be covered in extensive detail in the 
remainder of the paper. The essential point: once you move to the modeled 
scenario level, capital allocation becomes increasingly difficult to meaningfully 
interpret. Allocated capital is determined based on a risk measure of the 
distribution in total. For any given scenario, though, this overall amount is never 
the actual required amount - -  namely, the modeled operating deficit. The 
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allocated capital is excessive for favorable scenarios, and grossly inadequate in 
severe loss scenarios (unless the capital equals the policy limit) 1 . 

3. Details of the Capital Consumption Approach 

We will demonstrate the capital consumption approach within a stochastic 
contract analysis framework. We will cover the three major differences from 
typical risk-based capital allocation approaches: (i) analyzing the contract 
outcome at the scenario level, (ii) discounting at a default-free rate, and (iii) 
calculating the contract's capital consumption within each scenario. 

Scenario Analysis 
The first modification requires maintaining the scenario detail, and analyzing the 
contract's outcomes at the scenario level. Stochastic model ing is basically 
scenario analysis extended to a high level of granularity. Modeling thousands of 
points of a contract outcome distribution means generating thousands of 
scenarios. This extension to scenario detail may appear trivial. If the functions 
are linear, or the distributions symmetric, no benefit will be gained by expanding 
the detail. Expected values are sufficient for deCision-making. Jensen's 
inequality 2 becomes Jensen's "equality" in these conditions: 

g(E[x])= E[g(x)] 
However, reinsurance contracts have non-linear contract features such as 
aggregate deductibles, caps, corridors, and co-participations. They also have 
extremely skewed distributions. In such conditions, we must evaluate EIg(x)]  to 
get an accurate result. Evaluating each point of the distribution requires 
maintenance and use of the scenario detail. 

Default-Free Discountinq 
The second modification involves discounting cash flows at a default-free rate. 
Scenario analysis (indeed, simulation modeling) is built upon the premise that 
possible, realizable, plausible outcomes can be generated and analyzed. For the 
entire process to work, each generated scenario is "cond i t iona l l y  certain":  given 
the scenario occurs, its outcome is certain. Where it is not, the entire practice of 

1 This problem is particularly striking in the evaluation of catastrophe reinsurance contracts, with 
small probabilities of a full contract limit loss. A "risk-based" capital amount might be some small 
fraction of the limit--say 5%. What sense does this capital amount make in the limit loss 
scenario? We held 5% of the limit as capital? And then how exactly did we fund the remaining 
loss amount? It came from company capital in total. The alternative--holding the full limit as 
capital--puts an unrealistic return burden on the contract. Current market price levels would likely 
make the contract look unattractive. 
2 Jensen's inequality states that for a cumulative probability distribution F(x) and a convex 
function g(x), E[g(x)] >= g(E[x]). There are countless references on this--e.g., Heyer [7], p. 98. 

355 



simulation modeling would be undermined by "meta-uncertainty." The scenarios 
themselves must withstand the scrutiny of a reality check. 

Uncertainty for the contract in total is represented in the distribution across all 
modeled scenarios, and the probability weights assigned to those scenarios. In 
other words, uncertainty is reflected between scenarios, not within them. Given 
conditional certainty, scenario cash flows can be discounted at a default-free rate 
(or a simulated path of default-free forward rates). 

Scenario Capital Consumption 
The final, and perhaps most controversial, change involves the treatment of 
capital. Most methodologies focus on up-front allocation of supporting risk-based 
capital, and its release over time. The capital actually consumed (if any) by each 
modeled scenario of the contract is the focus here. 

Capital is still required at the company level and still needs to be invested in an 
insurance company. However, it plays a fundamentally different role in an insurer 
than in a manufacturer. Capital investment in manufacturing is typically up-front, 
in equipment and raw materials. In contrast, insurance "products" are promises to 
pay contingent on valid claims. Thus the costs of insurance products are claim- 
related payments. They are not specific investments, and occur (if at all) in the 
future. 

Insurers receive revenue in the form of premium that includes an estimated 
provision for their expected costs, plus some volatility loading. Insurance capital 
acts more like a "claims paying reservoir," an overall buffer for unpredictability 
and volatility of aggregated product results. This reservoir is subject to 
unpredictable future inflows and outflows. What has been termed an "allocation" 
of capital for underwriting new contracts is more like the granting of additional 
rights to draw upon future capital. The critical issue is, therefore, both the 
likelihood and magnitude of exposure of capital to possible consumption by 
contracts. 

The cost of maintaining the capital reservoir is an overall cost of business - -  an 
overhead expense. This approach essentially assesses contracts for this 
overhead expense in a "risk-based" manner. The bases for the assessment are 
likelihood and magnitude of capital reservoir drawdowns. 

Maintaining the scenario detail, and recognizing that scenarios are conditionally 
certain, we can evaluate the capital amounts actually consumed by each 
scenario. A contract can "pay its own way" if its total revenues exceed its total 
costs. Total revenues include premium and investment income on its own flows. 
Total costs means expenses and losses. Company capital is needed when the 
contract runs an operating deficit - -  when its costs exceed its revenues. 
Philbrick and Painter make this point well: 
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'When an insurance company writes a policy, a premium is received. A portion of 
this policy can be viewed as the loss component. When a particular policy incurs 
a loss, the company can look to three places to pay the loss. The first place is the 
loss component (together with the investment income earned) of the policy itself. 
In many cases, this will not be sufficient to pay the loss. The second source is 
unused loss components of other policies. In most cases, these two sources will 
be sufficient to pay the losses. In some years, it will not, and the company will 
have to look to a third source, the surplus, to pay the losses." [16, p. 124] 

To evaluate scenario-level capital consumption and operating deficit, we look at 
the contract's experience fund. An experience fund is a concept from finite risk 
reinsurance. It is an account containing available revenue (premium net of 
expenses) plus investment income earned on the fund balance (at an assumed 
investment rate). All subject losses are paid from the fund. An experience fund 
allows us to calculate the contract's "terminal value" or cumulative operating 
result. Consider Example 1, the experience fund of a realistic long-tailed contract. 

Example i 
Experience Fund for Long-tailed Contract 
120% Loss Ratio Scenario 

Probability 

Investment Rate 8.0% Loss Ratio 

I 2 3 4 5 
Beginnln 

Fun�9 Paymeni 
Time Ba iance  premiums Expenses Psnem 

0 $ $ 100,000 $ 15,000 0.0% $ 
1 $ 85,000 $ $ s $ 
2 $ 27,C00 $ $ 25.0% $ 
3 $ $ $ 12.0% $ 
4 $ $ $ 6.0*/. $ 
5 $ $ $ 4.0% $ 
6 $ $ $ 2.0% $ 
7 $ $ $ 1.0% $ 
8 $ $ $ 0.0% $ 
9 $ $ $ 0.0% $ 

"tO I $ $ $ 0.0% $ 

10.0% 
Ultimate 

120,0% Loss 120,000 

6 7 8 9 

Paid Investment Ending Fund Capital 
Losses Income Balance Call 

$ $ 85,OOO $ 
coO,(300 $ 2,000 $ 27,000 $ 
30,000 $ $ (3,000) $ 3,000 
14,400 $ $ (14,400 $ 14,400 
7,200 $ $ (7,200' $ 7,200 
4,800 $ $ (4,8001 $ 4,800 
2,400 $ $ (2,4001 $ 2,400 
1,200 $ $ (1,2001 $ 1,200 

$ $ $ 
$ $ $ 
$ $ $ 

TOTAL $ 100,000 $ 15,000 100.0% $ 120,000 $ $ 33r000 
NPV $ 100,000 $ 15,000 86.2% $ 1031479 $ 24,775 

Each column is expla ined in detail: 

o Column 1 is t ime from inception of the contract in years. 
o Column 2 is the fund balance at the beginning of each year. 
o Column 3 is the premium f low into the fund. 
o Column 4 is the expense flow out of the fund. 
o Column 5 is the expected payment  pattern as a percentage of ul t imate 

loss. Ult imate loss is expressed as a ratio to premium. In this case, it is 
120%. 

o Column 6 is the product of ult imate losses $120,000 and the pattern in 
Column 5. 
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o Column 7 is the investment income earned on the end-of-year fund 
balance less all payments during the year, assuming those payments 
are made at the end of the year. This is assumed to go back into the 
fund for the next year. This could be adjusted to the midpoint of the 
year if desired. 

o Column 8 is the end-of-year fund balance. It equals (2) + (3) - (4) - (6) 
+ (7) .  

o Column 9 shows the capital calls. 

Once Column 8 falls below zero, the contract is in an operating deficit position: 
the fund is empty, yet loss payments must be made. In order to make the 
payments, a capital call is made for the amount needed to make the required 
loss payment. Once the fund hits zero, it never rises above it again. Capital is 
only provided as needed to make the loss payments. Thus the contract makes 
what amount to a series of capital calls stretching into the future. 

Time Profile of Capital Consumption 
Compare Example 1A, which shows the capital calls for the contract in Example 
1 with everything identical except a quicker payment pattern - -  a shorter tail. 

Example 1A 
Experience Fund for Short-tailed Contract 
120% Loss Ratio Scenario 

Investment Rata 8.0% Loss Ratio 

1 2 3 4 5 
Beginnins 

Fun�9 Paymenl 
Time Balance Premiume Expenses Pattern 

0 $ $ 100,000 $ 18,000 0.0% $ 
1 $ 85,000 $ $ 80.0% $ 
2 $ $ $ 15.0% $ 
3 $ $ $ 5.0% $ 

Ultimate 
120.0% Loss 120,000 

6 7 8 

Pale1 Investment Ending Fund 
Losses Incomq Balance 

$ $ 85.000 $ 
96,000 $ $ (11,000) $ 
18,000 $ $ (18,000) $ 
6,000 $ $ (6,000) $ 

4 $ $ $ 0.0% $ $ 
5 $ $ $ 0.0~ $ $ 
6 $ $ $ 0.0% $ $ 
7 5  S $ 0.O%$ $ 
8 $ $ $ 0.0% $ $ 
9 $ $ $ 0.0% $ $ 

10 $ $ $ 0.0% $ $ 

$ $ 
$ $ 
$ $ 
$ $ 
$ $ 
$ $ 
$ $ 

9 

Capital 
Call 

11,000 
18,000 
6,000 

I TOTAL $ 100,000 $ 15,000 100.0% $ 120,000 $ 35,000 I 
NPV $ 100,000 $ 15,000 90.9% $ 109,084 $ 30,380 I 

Because of the reduced investment income and shorter tail, the capital calls are 
larger ($35,000 vs $33 000) and sooner. Chart 1 shows the time profile 
comparison: 
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Chart 1: Capital Consumption Profile Over Time 
Short versus Long Tail with 120% Loss Ratio 
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This chart visually depicts a major difference between short and long tail 
contracts that has yet to be fully understood and integrated into evaluation 
frameworks. Clearly the capital concept needs a significant extension over time. 
One can envision measures of concentration expanding from scalars to vectors, 
indexed into the future. For example, the impact on the company's future cash 
position could be reflected in the pricing and underwriting decision for a contract. 
A contract may have an attractive upside, but may have undesirable structural 
relationships to other portions of the portfolio (e.g., with respect to a large return 
premium or reserve adjustment). This concept will be elaborated on in future 
papers. 

Reduced Operating Deficit 
Under the 120% Loss Ratio scenario, the Long-tailed contract calls for a total of 
$33,000 in capital over time. If the loss ratio under another scenario were lower 
- -  say 100% - -  the contract would make smaller capital calls, since its operating 
deficit would be smaller. Consider Example 2: 
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Example 2 
Experience Fund for Long-tailed Contract 
1 00% Loss Ratio Scenario 

Probability 30.0% 
Ultimate 

Investment Rate 8.0~ Loss Ratio 100.0"/. Loss 100,000 

1 2 3 4 5 6 7 8 9 
Beglnnin! 

Fun( Paymenl Paic Investmen Ending Func Capita 
Tim( ~ianc( Premium. ~ Expense.~ Patterr Losse~ Incorm Bslanr Cal 

!$ S 100,000 S iS,COO 0.0% $ - )$ $ 85,000 $ 
$ 85,000 $ $ 50.0*/, m $ 50,000 I $ 2,800 $ 37,800 $ 

~1 $ 13,824 $ $ 12.0% 12,000 146 $ 1,970 $ 
41 ~ 1,970 = = e.0% 6,~0 s (4,0~ s 4,030 
5 S i S 4.0% 4,CO0 $ (4,00~ $ 4,000 
e $ $ is  2.0% $ 2,ooo $ $ (2,00c s 2,000 
7 $ $ I$ 1.0% $ 1,000 $ $ (1,000) $ 1,000 
, s  s is 00%=s s s s 

, , is o0%$ , , , 
10 $ $ $ 0.0% $ $ I$ $ 

I TOTAL $ 100,000 $ 15,000 100.0% $ 100~000 $ $ 11,030 
NPV $ 100,000 $ 15,000 86.2% $ 86r232 $ 7t528 

Now it only asks for $11,030.  If the loss ratio were low enough, the contract 
would make no capital calls, as in Example 3: 

Example 3 
Experience Fund for Long-tailed Contract 
80% Loss Ratio Scenario 

Probability 60.0*/* 
Ultimate 

Investment Rate 8.0% Loss Ratio 80.0% Loss 80,000 

1 2 3 4 5 6 7 8 9 
Beginning 

Fun(J Paymenl Paid Investmenl Ending Fund Capital 
Time Ba lance Premiums Expenses Pattern Losses Income Balance Call 

0 $ $ 100,000 $ 15,000 0.0% $ $ $ 85,000 $ 
1 $ 85,000 $ $ 60.0% $ 40,CO0 $ 3,600 $ 48,600 $ 
2 $ 48,600 $ $ 25.0% $ 20,000 $ 2,288 $ 30,888 $ 
3 $ 30,888 $ $ 12.0% $ 9,600 $ 1,703 $ 22,991 $ 
4 $ 22,991 $ $ 6.0% $ 4,800 $ 1,455 $ 19,646 $ 
5 $ 19,646 $ $ 4.0% $ 3,200 $ 1,316 $ 17,762 $ 
6 $ 17,762 $ $ 2.0% $ 1,600 $ 1,293 $ 17,455 $ 
7 $ 17,455 $ $ 1.0% $ 8CO $ 1,332 $ 17,987 $ 
8 $ 17,987 $ $ 0.0% $ $ 1,439 $ 19,426 $ 
9 $ 19,426 $ $ 0.0% $ $ 1,554 $ 20,980 $ 

I0 $ 20,980 $ $ 0.0% $ $ 1,678 $ 22,659 $ 

I TOTAL $ 100,000 $ 15,000 100.0% $ 80,000 $ 22,659 $ 
NPV $ 100,000 $ 15,000 86.2% $ 68,986 $ 

The experience fund and capital calls give us the analytic framework. Now we 
consider explicit valuation of the calls, on our way to price determination. 
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4. Valuat ion of Con t ingen t  Capital  Cal ls  

The concept of contingent capital calls was presented in Philbrick and Painter 
(emphasis mine): 

"The entire surplus is available to every policy to pay losses in excess of the 
aggregate loss component. Some policies are more likely to create this need 
than others are, even if the expected loss portions are equal. Roughly speaking, 
for policies with similar expected losses, we would expect the policies with a 
large variability of possible results to require more contributions from surplus to 
pay the losses. We can envision an insurance company instituting a charge for 
the access to the surplus. This charge should depend, not just on the 
likelihood that surplus might be needed, but on the amount of such a 
surplus call." [17, p. 124] 

They continue (my inline comments are [bold and italicizec~): 

"We can think of a capital allocation method as determining a charge to each line 
of business that is dependant on the need to access the surplus account 
[contingent capital]. Conceptually, we might want to allocate a specific cost to 
each line for the right to access the surplus account [call]. In practice though, we 
tend to express it by allocating a portion of surplus to the line, and then requiring 
that the line earn (on average) an adequate return on surplus. Lines with more of 
a need for surplus will have a larger portion allocated to them, and hence will 
have to charge more to the customers to earn an adequate rate of return on the 
surplus. Effectively, this will create a charge to each line for its fair share of the 
overall cost of capital." [17, p. 124] 

Thus, Philbrick and Painter would like to charge a line of business for the right to 
access the surplus account - -  i.e., to make capital calls. However, they are still 
thinking in terms of a supporting capital allocation framework, within which no 
such concept exists. In contrast, the capital consumption approach is built around 
such a charge. 

What exactly would such a charge mean? It could have several meanings 
simultaneously: 

1. A risk-based overhead expense loading, though it may not be a payment 
to an outside entity. 

2. A decision va.riable that influences the attractiveness of certain product 
types. 

3. An explicit expression of the company's risk-return preferences by 
application of concepts from utility theory. 

Each is considered in detail: 
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1. Risk-based Overhead Expense Loading 
As requested by Philbfick and Painter, the charge is based on the 
magnitude and likelihood of calls upon the common capital pool. Since 
capital is at the company level only, and available to all contracts, the cost 
of that capital should be an overhead expense - -  like rent. However, 
unlike rent, the cost may not correspond to actual payments being made 
by the company. However, it is a cost of doing business, in that without 
capital in total to support the portfolio and guarantee a certain level of 
perceived claims-paying ability, the contracts could not be sold. All 
contracts partake of the benefits of the capital pool and, therefore, must be 
assessed some share of its maintenance cost. 

2. Pricing Decision Variable 
In order to make informed pricing decisions, product costs must be 
accurately and objectively assessed for all product types. The "science" of 
overhead expense allocation is far from exact, yet the stakes are high. 
Product viability decisions are driven to a large extent by expense figures. 
What company does not have product managers who feel the overhead 
cost allocations to their products are unfair or inaccurate? Yet without 
some kind of objective decision framework, the company may not be 
reflecting all the costs of a product when determining price adequacy. It is 
critical that the magnitude and likelihood of capital calls be assessed in a 
fair and reasonable manner, so that the cost of risk enters the pricing 
decision. 

3. Application of Concepts from Utility Theory 
Assessing a cost by scenario is akin to introducing a ut i l i ty  func t ion  3. The 
Faculty and Institute of Actuaries Subject 109 Financial Economics 
reading introduces utility as follows: 

"In the application of utility theory to finance it is assumed that a 
numerical value called the utility can be assigned to each possible value 
of an investor's wealth by what is known as a preference function or utility 
function....Decisions are made on the basis of maximising the expected 
value of utility under the investor's particular beliefs about the probability 
of different outcomes. Therefore the investor's risk-return preference will 
be described by the form of his utility function." [4, Unit 1, p. 1] 

Introducing a utility function into reinsurance pricing analysis means the 
company is expressing its risk-return preferences in mathematical form. 
Borch stated the same thing forty years ago: 

3 Many papers have been written on the application of utility theory to insurance and reinsurance 
analysis. European actuaries include Karl Borch [1], Hans Gerber and Gerard Pafumi [6], and 
Hans Buhlmann [2]. In North America, Leigh Halliwell [8], Oakley Van Slyke [19], Alistair Longley- 
Cook [12], Daniel Heyer [7], and Frank Schnapp [18] have all published articles on utility theory 
and insurance. 
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'q'o introduce a utility function which the company seeks to maximize, 
means only that such consistency requirements (in the various subjective 
judgements made by an insurance company) are put into mathematical 
form." [1, p. 23] 

This appears to be a profound change in reinsurance pricing practice. 
However, the change really entails making the impl ici t  explicit. Any 
reinsurance pdcing practice includes a utility assumption buried within it. 
Consider the marginal standard deviation pricing formula from Kreps [10], 
a de facto reinsurance industry standard pdcing method paraphrased 
here: 

Our company values the risk of a contract using the marginal impact to 
the portfolio standard deviation. That is, we take the square root of the 
expected value of the square of deviations from the mean of the portfolio 
outcome distribution both with and without the new contract. This 
difference is used to determine the marginal capital requirement, to which 
we assess a cost of capital figure. 

Implicit in this method are the following utility assumptions - -  
mathematical expressions of preferences: 

The marginal impact on the portfolio standard deviation is our chosen 
functional form for transforming a given distribution of outcomes to a 
single risk measure. 

Risk is completely reflected, properly measured and valued by this 
transform. 

Upward deviations are treated the same as downward deviations. 

In fact, any risk-based pricing methodology has an implicit underlying 
utility function 4. Utility is the mathematical valuation of uncertainty, the 
essence of reinsurance pricing. One wonders why an industry that exists 
to purchase risk has not made a point of being explicit about its risk-retum 
preferences. 

Cost Functions 
How do we assess this capital call cost at the scenario level? We need a cost 
function. The simplest cost function would be a flat percentage of the capital call 
amount. Table 1 shows the costs for Examples 1 - 3, assuming the scenario 
probabilities shown in column 3, and a flat capital call cost of 150% of the capital 
call amount: 

4 See Section 6.1 of Mango [13] for more on this. 
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Table 1 
Sample Capital Call Costs 

1 2 3 4 5 
Example Loss Probability Total Capital Call Capital Call 

Ratio Amount Cost 
= 150% of (4) 

1 120% 10% $33,000 $49,500 
2 100% 30% $11,030 $16,545 
3 8O% 6O% $0 $0 

Using the assumed probabilities, the expected capital call cost over the three 
scenarios would be: 

(10% x $49,500) + (30% x $16,545) + (60% x $0) 
= $9,914 

This is Elf(x)], where f(x) is our cost function, which is a scenario-dependent, 
skewed cost function. We need the scenario detail, because the skewness and 
scenario-dependence imply that Elf(x)] >= f(E[x]). 

Kreps [11] proposes a similar approach, one much more deeply grounded in 
theory. The cost function example here would represent a simplistic special case 
of what Kreps proposes. His represents one of the few approaches to date in the 
actuarial literature that recommends modification of the outcomes to reflect risk. 
Specifically, he suggests: 

"[The] risk load is a probability-weighted average of riskiness over outcomes of 
the total net loss: 

R(X)=Sdxf(x)r(x) (1.17) 

where r(x)= (x-lz)g(x) 
The function g(x) can be thought of as  the "riskiness leverage ratio" that 
multiplies the actual dollar excess  that an outcome would entail to get the 
riskiness. It reflects that not all dollars are equal, especially dollars that trigger 
analyst or regulatory tests." [11, p. 4] 

Risk Neutrality 
The simplistic cost assessment is a flat charge: all capital calls cost 150% of call 
amount. This is equivalent to a risk-neutral utility function. Implementing such a 
utility function suggests our attitude towards risk is linear with respect to capital 
call magnitude - -  e.g., a $2M capital call costs a scenario twice as much as a 
$1M call. Such linear scaling implies for example that a $100M deficit is "100 
times worse" than a $1M deficit. 

There are some benefits to a simple capital cost charge like this. It is easy to 
explain, and as Schnapp points out, makes prices additive - a desirable property 
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[18]. However, the linear charge also implies a constant cost of marginal capital 
utilization. This has troubling implications; for example, 

Two scenarios consuming an additional $1M in capital would be charged the 
same for that additional capital call magnitude, despite the fact that one is 
increasing its call from $1M to $2M, while the other is increasing from $99M to 
$100M. 

Risk A version 
We may in practice believe capital consumption costs are not linear with respect 
to magnitude. There are two arguments for considering a non-linear cost 
function. 

First, at the company level, there are definitely non-linear effects of loss 
magnitude. Certain catastrophe loss scenarios are intolerable, because they will 
impair our ability to continue as a going concern. Losses of a certain size may 
also trigger rating agency downgrades, rendering us uncompetitive. We might 
even segment decreases to a company's capital into qualitative "bands" or "tiers" 
whose properties change non-linearlyS: 

1. Acceptable (0-10%) - acceptable variation, cost of doing business. 
2. Troubling (10%-20%) - enough deviation to cause material concern, 

disclosure to shareholders and rating agencies. 
3. Impairment~rating downgrade (20%-30%) - hinders functioning of firm as 

a going concern. 
4. Regulatory control (30%-50%) - substantial intervention and rehabilitation. 
5. Insolvency (>50%) 

Second, reinsurance pricing actuaries know any pricing methodology implies 
preferences and cost allocations, creates incentives, and ultimately steers the 
composition of the portfolio. It is in essence a ranking and scoring scheme. 
Linear marginal consumption costs may steer us toward product lines with higher 
risk or greater downside potential than we are comfortable with. Whether or not 
there are non-linear effects observable at the contract level, from a consistency 
and portfolio management viewpoint, we may want to have non-linear cost 
assessment. 

A non-linear, increasing marginal cost of capital is equivalent to a risk-averse 
utility function. Rather than having a constant implicit marginal cost of capital, a 
risk-averse utility function will increase the capital call cost rate (non-linearly) as a 
function of capital call magnitude. 

A risk-averse utility function need not be expressed in a closed-form. A perfectly 
valid risk-averse capital call cost function can be a lookup table like Table 2: 

s See Mango [13] for additional detail on this concept. 
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Table 2 
Sample Risk-Averse Capital Call Function 

Capital Call 
Magnitude 
$0 - $5,000 

Capital Call 
Charge 
125% 

$5,001 - $10,000 150% 
$10,001 - $20,000 200% 

OverS20,000 400% 

Table 3 shows the capital call costs using the risk-averse capital call function. 

Table 3 
Sample Capital Call Costs 

Using Risk-Averse Capital Call Function 

1 2 3 4 5 5 
Example Loss 

Ratio 

120% 

Probability 

10% 

Total Capital 
Call Amount 

$33,000 

Capital 
Call 

Charge 
400% 

Capital Call 
Cost 

$132,000 
2 100% 30% $11,030 200% $22,060 
3 80% 60% $0 125% $0 

Now the expected cost is 

(10% x $132,000) + (30% x $22,060) + (60% x $0) 
= $19,818 

Compared to the risk-neutral cost of $9,914, the risk-averse function resulted in a 
higher capital call cost. This is the response we would expect, since we are 
mathematically stating that we have an increasing aversion to risk. 

Portfolio Calibration 
Ultimately, the cost function is a critical portfolio management decision, since the 
implicit risk-return preferences embedded in it will heavily influence the eventual 
portfolio composition. It represents the mathematical expression of a firm's risk 
appetite. This represents perhaps the most dramatic recommendation in this 
paper. Critics may understandably argue it is too theoretical, that mathematical 
expression of preferences is practically impossible. Capital allocation techniques 
have the apparent advantage of "observability." A "cost of capital" or "risk- 
adjusted discount rate" can be derived using CAPM (see Section IV of Feldblum 
[5]), which appears to ground the result in the capital markets, giving many a 
sense of comfort. 
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Unfortunately, the comfort is illusory at best. Hanging pricing decisions on a 
CAPM-dedved cost of capital merely pushes the parameterization problem onto 
the capital markets. Reality checks are of course important, as a firm that wishes 
to have returns far in excess of any of its competitors will be in for a rude 
awakening. Cost function calibration wil l be difficult; but, it is groundbreaking 
work, so it should be difficult. This is true research, and involves the elucidation 
of intuitive risk return preferences that guide a firm's decision process. This will 
require framing of the decision process in a progressively more refined, analytical 
manner. It will mean constant feedback loops, testing of assumptions, portrayal 
of tradeoffs via graphical depictions, and reframing of preferences to provide 
different perspectives. It will be an ongoing process involving a cross-functional 
team of senior personnel throughout the company. 

Difficult calibration is also not unique to the capital consumption approach. In 
fact, the comparable calibration of allocated capital to total capital is at least as 
difficult in its own right. Here is a sampling of issues related to capital allocation 
which have yet to be adequately resolved. 

�9 Static o r  Dynamic? 
Is capital allocated annually at plan time, or "real-time" as actual premium 
volumes by line come in? If it is annual, what happens when an 
underwriting unit "hits its goal"? Are the remaining contracts free? 

�9 Top-Down or  Bot tom-Up? 
Perform a true allocation, or build up from contract or segment level 
values? This quickly becomes a calibration nightmare s. 

�9 Capital Good  or  Bad? 
Does allocated capital represent underwriting capacity or an expense 
burden? In other words, do underwriting units want more or less capital? 

�9 Ongoing or  Runoff? 
Should capital be allocated to reserves, assets, latent, or runoff lines? 

�9 Zero  sum game? 
That is, is the total capital fixed? If so, if one segment's capital 
requirement decreases, does that mean all the other segments' capital 
increases? 

�9 Add#iv#y? 
Do you allocate on a marginal basis? Do you re-balance so it adds up to 
the total? What about order dependency? 

Calibration of a utility function should be no harder than calibration of a capital 
allocation exercise. The end result could arguably be of more value, being a 
tested, explicit, mathematical representation of a company's risk-return 
preferences. Appendix B explains one method that can be used to calibrate by- 
segment pricing targets to a portfolio measure. 

8 Mango and Sandor [12] explains in detail an experimental study of "bottom-up" capital allocation 
and calibration to a portfolio measure. 
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5. Examples: Reinsurance Price Evaluation 

We have proposed the following principles of stochastic reinsurance contract 
evaluation: 

�9 Contingent capital calls have a cost associated with them, which is a 
function of the magnitude of the call. 

�9 This cost is assessed at the scenario level. 

�9 The expected value of the cost over all scenarios is treated as an 
overhead expense loading in the contract pricing evaluation. 

We determine the risk-adjusted net present value of the contract as the 
expected net present value of contract cash flows minus the expected 
value of the capital call cost. 

We will now demonstrate these principles on two example reinsurance contracts. 

Long-Tail 
We will look at the pricing of the Long-tailed contract from Examples 1 - 3, using 
Table 2, the Risk-Averse capital call cost function. For a $100,000 premium, we 
can pull the results from Table 3 with an additional column for NPV: 

Table 3 
Sample Capital Call Costs 

Using Risk-Averse Capital Call Function 

1 2 3 4 5 
Example Loss Probability Capital Call NPV of Capital 

Ratio Cost Call Cost 
1 120% 10% $132,000 $99,099 
2 100% 30% $22,060 $15,057 
3 80% 60% $0 $0 
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The total costs on a discounted basis would be: 

1 2 3 4 5 
Example  N P V  

P r e m i u m  
NPV 

Expenses  
N P V  

Losses  

1 $100,000 $15,000 $103,479 
2 $100,000 $15,000 $86,232 

$15,000 $100,000 $68,986 

Underwr i t ing  
NPV 
= (2 )  

- (3) - (4) 
($18,479) 

($1,232) 
$16,014 

6 
N P V  of 
Capital  

Call  
Cost  

$99,099 
$15,057 

$0 

7 
Overall 

N P V  
= (5) - (6) 

($117,578) 
($16,289) 

16,014 

The expected value of the Underwriting NPV is 

10% * ($18,479) + 30% * ($1,232) + 60% * 16,014 
= $7,391 

The expected value of the Overall NPV including capital costs is 

10% * ($117,578) + 30% * ($16,289) + 60% * 16,014 
= ($7,036) 

Thus, reflecting all costs, this deal is below break-even. Assuming constant 
expenses and the same ultimate loss dollars, we find the risk-adjusted "break- 
even" premium to be $103,305. The term "break-even" should not imply that 
overall the company is eaming no retum. The cost function can be calibrated to 
any desired level of portfolio return measure. A more appropriate term would 
probably be '~arget premium." Here are the figures at target: 

1 2 3 4 5 
Example  N P V  

P r e m i u m  
NPV 

Expenses  
N P V  

Losses  

1 $103,305 $15,000 $103,479 
2 $103,305 $15,000 $86,232 

$15,000 $103,305 $68,986 

6 7 
Underwriting NPV of Overall 

NPV Capital  N P V  
= (2) Call = (5) - (6) 

- (3) - (4) Cost  
($15,173) $86,858 ($102,031) 

$2,073 $6,702 ($4,629) 
$19,320 $0 19,320 

The expected value of the Overall NPV including capital costs would be 

10% * ($102,031) + 30% * ($4,629) + 60% * 19,320 
= $0 

Property Catastrophe 
Consider a high-layer contract, with a 2% chance of being hit (1 in 50 years). 
However, when it is hit, it suffers a full limit loss. Example 4 shows the details: 
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E x a m p l e  4 

P r o p e r t y  C a t a s t r o p h e  C o n t r a c t  

Premium[ $ 
Limit] $ 

1,000,000 J 
10,000,000 

Probability 
Premiums 
Expenses 

Losses 
Capital Call Amount 

Capital Call Factor 
Capital Call Charge 

Expected NPV 
Expected Capital Call Cost 

Expected Risk-adjusted NPV 

No Loss Scenario 
98.0% 

1,000,000 

0.0% 

$ 800,000 
$ 720,000 
$ 80,000 

Loss Scenario 
2.0% I 

$ $ 1,000,000 " ] 

S 10,000,000 I 
$ 9,000,000 J 

400.0% I 
$ 36,000,0o0 1 

In the full limit loss scenario, the capital call is for $9M. Hitting this with a 400% 
capital call charge factor, the expected risk-adjusted NPV is $80,000 - close to 
target. 

6. C o n c l u s i o n s  

This paper has ties to much current work in both actuarial and financial literature. 
In particular, it is l inked to: 

o Pricing via probability measure change - from voluminous capital 
markets literature; 

o Utility theory in p d c i n g -  from Halliwell, Heyer and Schnapp; 
o The Wang Transform - from Wang; 
o The market cost of r i s k -  from Van Slyke; and 
o Additive Co -Measu res - f r om Kreps. 

Of particular note are comments made by Kreps [11]: 

"[It] seems plausible that for managing the company the risk load for an outcome: 

(1) should be a down side measure (the accountant's point of view); 
(2) should be proportional to that excess over the mean for excess small 
compared to surplus (risk of not making plan, but also not a disaster); 
(3) should become much larger for excess significantly impacting surplus; and 
(4) should flatten out for excess significantly exceeding surplus - once you are 
buried it doesn't matter how much dirt is on top. "[11, p. 9] 

The proposed approach focuses on downside, and can support discontinuous, 
non-l inear risk measures as functions of surplus. 
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This approach also represents an attempt at conscious, intentional and explicit 
introduction of "information content" into reinsurance market prices. Perhaps one 
of the more dubious assumptions of competitive market theory is that market 
prices reflect all the information available. Even setting aside the enormous 
informational asymmetries in the reinsurance arrangement, one cannot ignore 
the large role of interpretation. In order for reinsurance market prices to contain 
all this information - -  i.e., to really "mean something" - -  the submission 
information must be converted into prices. The process is one of interpretation by 
reinsurance underwriters and actuaries, including subjective and objective 
considerations, market intelligence, internal strategy, tips and hints from the 
broker or client, relationship, bank .... With all this confluence of strategies and 
signals, the discipline of an explicit, objective utility approach seems desperately 
needed and sorely overdue. 
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Appendix A 
Does Capital Allocation Make Sense for Insurance? 

This appendix addresses whether the practice of capital allocation even makes 
sense for insurance. Capital allocation was originally applied to manufacturing 
firms. However, the nature of their usage of capital is fundamentally different 
from insurers. 

Manufactudnq 
Consider a representative example from Halliwell: 

"A company is considering entering the widget business, which entails the 
purchase of a machine to produce widgets. The company estimates that the 
machine will last five years, and the profits from the sale of its widgets over those 
five years will be $100,000, $125,000, $125,000, $100,000, and $75,000." [8, p. 
73] 

This example typifies the manufacturing capital analysis framework. Capital is 
invested up front, and profits (hopefully) come in the future. This approach was 
de.signed for analysis of investment opportunities in industries where production 
comes before revenue collection. We might term such industries "spend-then- 
receive." These industries must invest capital into production and distribution 
costs before they can hope to collect revenue. There are no products to sell 
without capital. Manufacturers have the following time dynamic with respect to 
capital usage: 

�9 Capital investment costs are mostly up-front and well known, while 
�9 Revenues are in the future and unknown. 

Manufacturing capital also must cover operating deficits. In order for the firm to 
continue operations when revenues are less than costs, additional capital must 
be invested 7. 

It iS important to note that capital investment represents a cost, an expenditure of 
a known amount. Large manufacturing organizations that "allocate capital" 
between business units actually spend the capital they are allocating. Capital is 
"consumed by production." There is nothing theoretical about either the total 
amount available_, or the amounts allocated to various product lines. Since real 
spending of real money is involved, capital allocation decisions receive a 
tremendous amount of attention, scrutiny and peer review. They lie at the heart 
of strategic planning for manufacturing firms. Capital allocation is the lifeblood of 
a manufacturing business unit, the means to continue activities. 

7 Venture capitalists often refer to the "burn rate" of a start-up company: the rate at which the 
operation consumes capital during its start up period, when there are typically no revenues, only 
costs. 
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The manufacturer hopes this capital investment will be followed by profits in the 
future, but is uncertain how much revenue will come, or when. Typically, this 
uncertainty influences the decision in the form of a risk-adjusted discount rate 
applied to future revenue projections 8. 

Insurance 
In contrast to manufacturing, which is "spend-then-receive," insurance is a 
"receive-then-spend' industry. What we term production is really revenue 
collection. Our revenues are fairly predictable, even by product line. Demand is 
somewhat inelastic, given the legal and regulatory requirements. Insurers can 
plan their premium volume with a good degree of accuracy. They struggle to 
assess the loss cost of their products that come in the future. Comparing the time 
dynamic of insurance and manufacturing is illuminating: 

Item Manufacturing 
Revenue In the future, 

unknown 
Costs Up front, well known 

Insurance 
Up front, well known 

In the future, unknown 

Insurers are actually something of a "temporal mirror image" of manufacturers: 
they collect revenue up front, and hope the future costs aren't too high or too 
soon. There is no question that insurers need capital in total to secure claims 
paying ability. However, it is critical to recognize this distinction: insurers can 
collect revenue on products w i thout  having had to invest any capital  in 
product production. Insurance "production costs" are actually loss payments. 

It is surprising that such a striking difference in capital usage has not resulted in 
any materially different capital treatment in the insurance IRR framework. In fact, 
actuaries have kept the manufacturing capital usage profile, treating insurance 
products as if they require supporting capital to be invested up-front, then 
released. This insurance IRR framework is actually pseudo-manufacturing: the 
capital amount is "risk-based," derived from stochastic analysis; yet it is invested 
in an essentially deterministic framework that ignores the reality that insurance 
products do not require capital investment to produce. 

Several major problems with this hybrid approach are immediately apparent. 

First, when evaluated in a stochastic environment, the allocated suppor t ing 
capital makes no sense at the modeled scenario level. The risk-based 
supporting capital is determined based on a risk measure of the distribution in 

8 The end goal of "dis-counting" - literally, reducing the value of - uncertain future revenues is 
appropriate. The method of risk-adjusted discounting - effecting that reduction in value by using 
compounded discounting at a higher rate - is unnecessary and (as Halliwell [8] has shown) 
fraught with inconsistencies. It represents an example of "overloading an operator," piling 
additional functional burden onto what should be a single purpose operator. 
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total. For any given scenario, though, this overall amount is never the actual 
required amount - -  namely, the modeled operating deficit. The allocated capital 
is excessive for favorable scenarios, and grossly inadequate in severe loss 
scenarios (unless capital equals the policy limit). This problem is particularly 
striking in the evaluation of catastrophe reinsurance contracts, with small 
probabilities of a full contract limit loss. A "risk-based" capital amount might be 
some small fraction of the limit - -  say 5%. What sense does this capital amount 
make in the limit loss scenario? We held 5% of the limit as capital? And then how 
exactly did we fund the remaining loss amount? It came from company capital in 
total. The alternative - -  holding the full limit as capital - -  puts an unrealistic 
return burden on the contract. Current market price levels would likely make the 
contract look unattractive. 

Second, insurance contracts use capital in the future. Insurance "production" 
costs are in fact distribution and revenue collection costs. Manufacturing capital 
funds true production costs, as well as operating deficits. Since the vast majority 
of insurance costs come in the future in the form of loss payments, insurance 
capital usage belongs in the future as well. However, capital would only be 
needed if the contract began running an operating deficit or loss - -  a negative 
cash position reflecting all sources of revenue, including investment income. 

Third, allocated supporting capital is completely theoretical. In contrast to 
manufacturing, where allocation means actual spending of actual known 
amounts, allocated supporting capital simply does not exist at the contract level. 
Nothing is actually spent or invested. The strong ties to reality inherent in the 
manufacturing framework have been lost, and with them go much of the 
discipline and meaning of capital allocation. 

Finally, on a more philosophical level, supporting capital is a portfolio 
concept, and may not be meaningfully divisible. There is no question that 
supporting capital in total is essentia/to the insurance operation. The product we 
sell is current and future claims paying ability; however, this ability applies to the 
insurer in total as a going concern. Future claims paying ability is heavily 
dependent on total supporting capital. There is also no question that allocation of 
supporting capital is possible. The issue is with the meaning of that allocated 
capital. There are many holistic phenomena that have no divisible component 
pieces. An historical example is found in the ancient scientists' search in vain for 
the "seat of the soul" in the brain. They sought a physically grounded, identifiable 
location for what is now believed to be a "field" phenomenon. One might well 
consider trying to allocate life to the component organs of the body, or allocating 
the success of the Lakers to individual players: 38% to Shaq, 33% to Kobe .... 
Since actuaries like to communicate mathematically, in equation form: 

~.. (Promises To Pay):/: Promise To Pay(~ ) 
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Appendix B 
One Approach to Portfolio Calibration 

This appendix will outline one approach for calibration of a contract capital call 
cost function with a company total cost of capital. This approach can be used to 
develop risk-adjusted target combined ratios by LOB without allocating capital. 
No matter which cost function is used, a testing period is recommended where 
several possible functions and/or parameter sets can be evaluated across a 
significant sample of the portfolio. Once the results are aggregated, the total 
assessed cost of risk can be estimated and expressed as a percentage of a base 
such as expected losses or premium. 

Here are the steps of the suggested process: 

1. Generate modeled scenarios of company operating income and individual 
line of business underwriting result over a projected three calendar year 
period. Include reserves as well as prospective business in the definition 
of a line of business. Also include asset risk and linkages with generated 
economic scenarios. 

2. Apply a risk-averse utility function to the company's operating income 
distribution to assess a "capital depletion" cost at the scenario level to 
those scenarios with negative operation income. Calibrate the expected 
value of this cost over all scenarios to a desired target cost of capital 
measure. 

3. Allocate the scenario capital depletion costs back to line of business at the 
scenario level in proportion among all lines having an underwriting loss in 
that scenario. 

4. Calculate the expected value of allocated depletion cost by line of 
business over all scenarios. Express this charge as a percentage of 
expected loss. 

5. Generate the other components of a break-even risk-adjusted combined 
ratio, namely discounted loss ratio and expense ratio. 

Example 5 shows a simplified flowchart of steps 1-4. 

376 



Example 5 
Company Risk Adjustment Methodology Flowchart 

Step 1: Gimerate 
Operating and UN/ 

Resu4tl 
Jndenvdting Results 

LOB 1 LOB2 
(100) 10 
100 (200) 

(300) 50 

J StSp 3: AIIocltet Tolal R i i k ~ C h a r g e  to LOB 
JNeg U/W Results - Shares | " 

t ~ l  LOB 1 LOB 2 LOB 3 LOB I LOB 2 LOB 3 
11 33.3% 0.0% 66.7% - - 
2 0.3% 33.3% 66.7% ~ - (41) (82) 
3 80.0% 0.0% 4o,0% (29) (20) 
4 28.6% 71.4% 0.0% 122 305 - 

I Step 4: Calculate the Expected Risk Cha~ges J 

I E~e~edLoBL~ LO3~ I E~p~ Risk Charges LOB 3 l 
J 1.000 LOB2 , J  LOB1 LOB2 

800 i 3.8% 10.8% 1.9% 

Step 2: Apply Risk I 
A d ~ t m e n t  Fortnu~ to 

We Will cover each step in more detail. 

Step 1: Model Company Operatinq Income and LOB Underwritinq Income 
We use company calendar year operating income as the risk measure at the 
scenario level. Negative operating income depletes capital, so the cost of capital 
depletion is assessed here, based on the magnitude of the depletion. We also 
model the line of business (LOB) calendar year underwriting income at the 
scenario level. The calendar year variation includes the random effects of 
reserve runoff for carried reserves as of the start of the simulation period. 

The main strength of this approach lies in its inclusion of so many modeled 
dependencies and interactions: between reserve runoff LOB's, between reserves 
and prospective business; between liabilities and assets via the economic 
scenarios, etc. 

Step 2: Apply a Utility Function to Assess the Cost of Capital Depletion 
As can be seen in the demo flowchart, a risk-averse exponential utility function 
assesses a capital depletion charge to scenarios with negative operating income. 
The calibration of the expected assessed charge with a portfolio capital cost is 
straightforward. 

Step 3: Allocate Capital Depletion Cost back to LOB 
At the scenario level, the calculated depletion cost is allocated back to those LOB 
with underwriting losses, in proportion to their underwriting loss as a percent of 
the total of underwriting losses for LOB with an underwriting loss. This is one 
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allocation rule, and obviously not the only or even best. The point is that an 
allocation rule can be applied at the scenario level. 

Step 4: Calculate Expected Capital Depletion Cost by LOB 
Each LOB has an expected value of the allocated depletion costs over all 
scenarios. This figure is expressed as a percent of expected loss to facilitate 
inclusion in the break-even risk-adjusted combined ratio calculation. 

Step 5: Calculate the Break-even Risk-adiusted Combined Ratio 
The additional required elements are a discounted loss payment pattern and 
expense load. The goal is to calculate economically break-even combined ratios 
- -  i.e., 100% discounted combined ratio - -  including a load for the cost of capital. 

Advantaqes 
This approach shows one way to implement insurance portfolio management 
using a dynamic portfolio model. The approach links corporate cost of capital 
needs with LOB pricing targets in a simple, coherent framework, without 
allocating capital. A dynamic portfolio model also has other advantages, including 
the development of a more complete picture of current capital adequacy; the 
ability to introduce a time dimension into risk modeling; and a framework for 
introducing systematic risk from the insurance and capital markets. 
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Estimating the Cost of Commercial Airlines Catastrophes - A Stochastic Simulation Approach 

Romel Salam, FCAS, MAAA 

Abstract 

Actuaries are increasingly finding more applications for stochastic simulation in pricing, reserving, 

DFA, and other insurance and financial engineering problems. For instance, stochastic simulation has 

gained acceptance as a pricing tool for property catastrophe coverage in the insurance, reinsurance, 

broker, and investment communities. This has required primary companies to compile and provide 

information at a more detailed level than they did only a few years ago. Various commercial 

simulation products have emerged to help companies assess and price their property catastrophe 

exposures. Although there are many parallels between the catastrophe exposures of property and 

commercial aviation risks, the use of  simulation is not widespread in the assessment of commercial 

aviation catastrophic exposures. In this paper, we present the framework for a simulation model for 

commercial aviation catastrophes and we discuss various aspects of  designing such a model including 

the level and type of information needed. 
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Introduct ion  - The  need for a stochast ic  m o d e l  

The claims covered by a comprehensive commercial airline policy can be broken into two groups. The 

first group consists of  trivial claims such as lost luggage, "slip and fall" accidents, or minor damage to 

the hull of an aircraft while the second group comprises catastrophic claims arising out of airplane 

crashes resulting in serious injuries, fatalities, property damage, and major or total loss of an aircraft. 

Most of the pricing tools that are used to price airline's hull and liability exposures tend to rely on 

experience rating techniques. Under a basic experience rating method, the projected losses are based 

on an average of past losses adjusted for trend and development. An experience rating approach may 

work relatively well when only the non-catastrophic exposure of airlines is considered. However, 

traditional experience rating methods would tend to overstate the expected loss when one or more 

catastrophes are included in the experience period, and, conversely would tend to understate the 

expected loss when there are no catastrophes in the experience period. Under a more sophisticated 

experience rating approach, losses are separated into their catastrophic and non-catastrophic 

components. The catastrophe losses are then compiled and averaged over a very long period of time in 

order to come up with an "expected catastrophe loss amount" similar to what is used in property 

ratemaking. Even under the latter approach, the question needs to be asked as to whether past 

catastrophe experience is representative of future experience. First, the frequency of  catastrophic 

accidents may have changed over time due to such factors as improved aviation technology, better or 

worse safety regulation, or increased air traffic. Secondly, the costs of hull and liability coverage are 

indeed impacted by not only general inflationary trends which can be reflected within a traditional 

experience rating model, but also by changes in an airline's fleet, passenger load factors ~, destination 

and passenger profiles 2 which are harder to reflect in an experience rating exercise. Finally, as we look 

to the future, the introduction of  new aircraft models such as the Airbus 380 model - which could 

i Passenger load factor represents the average percentage of an airline's seating capacity that is filled. 

2 Destination profile for an airline refers to the coun~'ies to which the airline is flying. The liability 
damage award of accident victims may vary by country. For instance, a priori, an airline operating 
domestic flights solely in India would have a lower liability potential than one operating solely in the 
United States. Passenger profile refers to the age, occupation, income of passengers as these are all 
factors that can determine the level of compensatory damage of accident victims. A priori, an airline 
whose core clientele was made up of college freshmen going on vacation would have a lower liability 
potential than one whose core clientele consisted of well paid corporate managers going to business 
meetings. 
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accommodate up to 840 passengers in a single class configuration - to an airline's fleet, the addition of 

new set of routes and destinations, the continued evolution of contracts and laws establishing the 

compensation of victims of airline accidents will all make it less likely that traditional experience rating 

will remain an adequate forecasting tool. 

The stochastic model that we present avoids most, if  not all, of the pitfalls of traditional experience 

rating methods. While judiciously making use of historical data such as past accident rates, the model 

will rely on the most current information relating to an airline's fleet, passenger and destination 

profiles, number of departures (or miles flown), and passenger load factors. The model will also be 

flexible enough to allow the user to incorporate his/her views on the impact of legal changes on the cost 

of liability, hull or other related costs of accidents. This model will be especially well suited for 

analyzing contracts which carry a lot of bells and whistles. A simulation model that breaks down the 

loss process into its many components also forces the user to think about the different factors that 

impact on the costs of airline catastrophes. Perhaps, one drawback of such a model is that it requires a 

more detailed level of information than generally needed in performing an experience rating exercise. 

However, such information is generally available with a little bit of research. 

This paper is organized into eight sections. In section 1, we present a schematic of a stochastic 

simulation model for evaluating the cost of passenger liability coverage. In section 2, we define 

commercial airlines and airline catastrophes. In section 3, we delve into the area of frequency, 

including the choice of an appropriate measure of exposure. In that section, we also explore the issue 

of classification by relying on work presented in "Reinventing Risk Classification - A Set Theory 

Approach" [6]. We revisit a statistic introduced in that paper for the purpose of making inferences 

about Poisson distributed events. We use this statistic to comment on a Wall Street Journal article, 

which sought to discuss the relative safety of several aircrat~ models. We then tackle the issue of 

whether the rate of airline catastrophes has changed at all over time in the same section. In section 4, 

we look at the cost of catastrophes for different coverages, including more easily determined costs such 

as those for hull coverage to more challenging ones such as passenger liability, third party liability, and 

products liability. We also briefly touch on the issue of classification relating to passenger liability 

costs in that section. In section 5, we discuss how various results coming from the model can be 
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validated against actual historical data. In section 6, we offer some thoughts on how to incorporate the 

risks of terrorism or sabotage in the model. In section 7, we give an example of  the simulation model 

for a cover for a hypothetical group of airlines. In section 8, we provide final thoughts. 

1) Simulation Scheme 

Figure 1.1 below s~ows how we would generate passenger liability losses using a simulation model. 

This scheme would vary depending on the level of information available and the coverage of interest. 

2) Definitions 

Before we go too far into this discussion, let's try to agree on the topic of discussion itself by 

attempting to put some parameters around two of  the terms that are central to this paper: 

2.1) Commercial Airlines 

Insurance underwriters generally differentiate between commercial and general aviation. General 

aviation typically encompasses operation of smaller airplanes used for leisure, industrial and 

agricultural purposes, or simply in the private transportation of  individuals or employees. Helicopter 

and balloon operations are generally lumped into the general aviation category. Commercial aviation 

involves the transportation, for compensation or hire, of persons or cargo by aircraft. In the US, a 

commercial operator is one that has been certificated by the Federal Aviation Administration (FAA) 

under Code of Federal Regulation (CFR) part 121 (airlines) or CFR Part 135 (commuters) to provide 

air transport of passengers or cargo. So-called air taxis and commuters operate smaller aircrafts and 

carry few passengers per flight whereas airlines typically operate jet aircrafts that can carry large loads 

of  passengers per flight. More recently, the line between commuters and airlines has been blurred by 

acquisitions as well as the amendment of some of the FAA codes. This paper is concerned mostly 
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Figure 1.1 - A  simulation framework 
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with commercial airlines, as most of the statistics we will discuss will relate to airlines represented by 

US operators certificated under CFR Part 121 and operators in other countries with similar 

certification. 

2.2) Airline Catastrophes 

We have referred several times already to airline catastrophes as i f  the term was self-explanatory. In 

fact, one might take several views as to what constitutes a catastrophe. One perspective of catastrophes 

could be that of  an excess of loss reinsurer who would typically be impacted only by events above a 

certain threshold. For instance, a reinsurer could define a catastrophe as an accident, occurring 

between takeoff and landing, involving one or several aircrafts, and which results in major damage to 

or destruction of  an aircraft's hull. Under this definition, for instance, damage to an aircraft from a 

hailstorm or an earthquake while garaged would not be counted as a catastrophe, neither would 

fatalities or injuries occurring as a result of air turbulence, food poisoning, or falling luggage. A midair 

collision between two or more aircrafts would be counted as one catastrophe. Throughout this paper, 

we will use slightly different definitions of  catastrophe and different data sources to illustrate different 

aspects oftbe simulation model. The exact definition used is of no particular importance since we are 

not trying to promote any one definition but rather trying to present a method by which the cost of such 

catastrophes, however defined, can be evaluated. It is, however, important that the data collected for 

the purpose of constructing a model be consistent with the definitions used in the contracts and 

products that are being evaluated. 

3) Modeling the Frequency of Airline Catastrophes 

How do we best model the number of  airline catastrophes? Within the casualty and property actuarial 

practice, there are two distributions that are commonly used to represent the frequency distribution of 

accidents, namely the Poisson and the Negative Binomial distributions. We, a priori, will work with 

the Poisson distribution because of its simplicity end its intuitive appeal 3. A modeler is free to choose 

other distributions that might work better or as well. 

3 There are three postulates implied by a Poisson process: 
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The Poisson model is defined as foil . . . .  f(x) = (Ad)~ e-Caa) , 
x! 

where x is the number of catastrophic accidents, A, is the expected rate of accident per exposure unit, 

and d is the number of exposure units for the period under review. 

3.1) Picking anexposure base 

The exposure base as will be used here is the unit upon which frequency will be measured. Airlines 

usually report the number of departures, miles (or kilometers) flown, hours flown for annual, quarterly, 

and even monthly periods. Any of these measures could serve as an exposure base since they are 

almost perfectly correlated. The modeler's decision as to which of these potential units of exposure to 

use may be based on which is found to be more accessible, more accurate, measured and defined more 

consistently overtime. The modeler needs to be well aware of potantial distortions in the exposure data 

especially when using different sources to gather the data. We will use the number of departures as our 

unit of exposure because of some evidence showing that the risk of catastrophic occurrences is 

concentrated around takeoffs and landings. We, however, have not found any significant differences in 

our results when we used hours or miles flown as measures of exposure. 

3.2) Classification 

For the twanty-two year period from 1980 to 2001, commercial airlines catastrophes 4 occurred in the 

world at a frequency of 1.22 per million departures. Should we look at this frequency rate as being 

applicable to all commercial airlines and use it as the basis for the ,,~ in the Poisson model for all 

airlines? This approach could potentially result in the underestimation of the accident risk for some 

groups of airlines while resulting in the overestimation of that risk for some other groups. 

1 ) The numbers of occurrences in non-overlapping time intervals are independent. 
2) The number of occurrencas in a time interval has the same probability for all intervals. 
3) The probability of two or more events in a small time interval is zero. 

We believe that the occurrence of catastrophic airline accidents, excluding those caused by willful acts, 
satisfy all three postulates. 

4 Catastrophe here is defined as accidents resulting in total destruction of an aircraft. Data comes from 
a proprietary source and is based on Western-built aircrafts only. 
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Conversely, should we group airlines into cells ~ along certain risk characteristics 6 and proceed to 

calculate frequency rates for each cell based on the data within? Are we to then presume that airlines 

across these cells have fundamentally different rates of catastrophic accidents by virtue of our having 

devised the grouping scheme? Under this approach, we risk assigning different, perhaps even 

significantly different, frequency rates to cells of airlines that have essentially the same propensity for 

catastrophic accidents. Let's assume for a moment that airlines are grouped based on the subcontinent 

on which they are domiciled. In the twenty-two year period from 1980 to 2001, the average frequency 

of catastrophic accidents for North-Amcrican airlines has been around 0.5 per million of departures 

while that for Western-European airlines has been closer to 0.6 per million of  departures. Did the 

difference in the observed accident rates arise out of the random nature of catastrophic accidents or did 

it arise out of a fundamental difference in the propensity of accident for the two groups? The search for 

answers to these questions spun a classification methodology introduced in the paper titled 

"Reinventing Risk Classification - A Set Theory Approach" [6]. We will use the procedures from this 

paper to give an example of a classification scheme for airlines. Before we do, however, we want to 

^ 
reacquaint the reader with a statistic, Ro, introduced in the aforementioned paper and which was used 

to make inferences about Poisson distributed populations. 

^ 

3.2.1 ) A review of the R o statistic. 

Let )/,~ and ~a represent the expected frequency rates for two Poisson populations A and B, with 

^ ^ 
dAand dnunitsofexposure,  respectively. Also, let g, A and ~,s , represent the maximum likelihood 

estimates of A M and fiB, respectively. In [6, p. 105-114], we show that i f ) ,  A = .3,0, 

k o ~f-~-----~_ --). N(O,1) for large 7 d A a n d d e v a l  . . . .  

V dA de 

A cell is a set of  airlines with the same risk characteristics [6, p. 89]. 
6 Risk characteristic is an attribute that identifies a risk or group of risks [6, p. 88]. 

7 i.e. as d A a n d  d n ~ oo [6, p. 105-114]. 
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We then use Roto make inferences about the equality of the frequency rates underlying pairs of 

Poisson distributed populations. If we define the null hypothesis as ~.4 = ~B, then we will reject that 

hypothesis at the 10% significance level (90% confidence interval) if R0 falls outside the range of (- 

1.65, 1.65). We explain in [6, p 94] that/~0 can be thought of as the observed distance between the two 

populations' samples. If that distance is small, we tend to accept the hypothesis that the populations 

have the same expected frequency. If  it is large, we tend to reject the equality hypothesis. Observe that 

/~0 depends not only on the MLE estimates of the population frequencies but also on the number of 

exposure units of the respective populations. For instance, the absolute value of/~ 0 increases as the 

number of  exposure units increases (everything else being equal). 

A Wall Street Journal article [5] in which the author sought to demonstrate the poor safety record of the 

^ 
MD- 11 aircraft relative to other similar models provides a good example of how R o can be used to 

make inferences about Poisson populations. The article shows a graphic with accident rates by airplane 

types, which we summarize in table 3.1 below. 

If we assume that the number of accidents for each of the aircraft models is Poisson distributed, we can 

use Ro to make inferences about the relative safety of these models. The exposure units are the 

number of millions of departures, while the maximum likelihood estimates of the expected frequencies 

are represented by the frequency per miltion departures. For instance, to test the hypothesis that the 

^ 
underlying accident rates for the MD-11 and the A300-Early are the same, we calculate Ro, using an 
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algebraic equivalent s of the formula introduced in section 3.2.1, as 

follows: Ro = 6.54 - 1.29 = 1.771. 

~ 6 ' ~  42 1 ' 2 9 ~ +  7 

Table 3.1- Accident Rates by Airplane Type 9 

(1)=(2)/(3) 
~,ircraft Million of 
Wlodel  Departures 
3-7071720 17.6 
3C-8 12.2 
3-727 72.2 
3-737-1 & 2 50.4 
3C-9 58.1 
3AC 1-11 8.3 
=-28 8.1 
3747-Early 11.1 
)C-10 7.8 
~300-Early 5.4 
.-1011 5.2 
rID-80/90 23.3 
3-767 7.3 
3-757 8.7 
3ae146 5.1 
z,-310 2.9 
z,-300/600 2.2 
3-737-3, 4 & 5 30.8 
~,-320/319/321 7.3 
---100 3.8 
3747-400 2.0 
dD-11 0.8 

(3) 
(2) Frequency 

Hull per million 
.osses I~ Departures 

115 6.46 
71 5.84 
70 0.97 
62 1.23 
75 1.29 
22 2.64 
32 3.94 
21 1.90 
20 2.57 
7 1.29 
4 0.77 
10 0.43 
3 0.41 
4 0.46 
3 0.59 
4 1.40 
3 1.34 
12 0.39 
7 0.96 
3 0.80 
1 0.49 
5 6.54 

8 R0 = ~ = ~ where n A and n B represent the number of accidents for 

I/~A ,% I,',A . ~ B  - - + - -  - - + - -  

HA -- nB 
populations A and B, respectively, and "~A = dA-7- and ~a - ad--" 

9 The article lists Boeing as the source of the data. The exposure units (million of departures) were not 
p, rovided but calculated as the ratio of the number of accidents to the accident rate. 
10 The article defines hull losses as damage so severe the plane isn't repaired. 
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At a 10% significance level, we would reject the hypothesis that the two aircraft models have the same 

^ 
propensity for accident since R 0 falls outside the interval (-1.65, 1.65). However, we would not be 

able to reject the hypothesis at a 5% significance level since R0 fails in the interval (-1.96, 1.96). In 

table 3.2, we calculate the R0 values between the MD- 11 model and other aircraft models in table 3.1. 

Table 3.2 - 2~ 0 values between MD -11 and other models 

ModelAircraft Ro/MD - 11 

B-7071720 0.027 

DO-8 0.233 

B-727 1.903 

B-737-1 & 2 1.813 
DC-9 1.793 

BAC 1-11 1.309 
F-28 0.865 
B747-Early 1.571 
DC-10 1.332 
A300-Early 1.771 
L-1011 1.956 
MD-80/90 2.087 
B-767 2.089 
B-757 2.072 
BAe146 2.021 
A-310 1.709 
A-300/600 1.719 
B-737-3, 4 & 5 2.101 
A-320/319/321 1.893 
F-100 1.939 
B747-400 2.040 

Before drawing any conclusions from the above table however, one would need to look into other 

factors that may impact on the accident rates. For instance, i f  the MD-11 losses were coming 

disproportionately from a particular operator or group of operators, the issue might be more specific to 

the operator or group of operators rather than to the aircraft model itself. 
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3.2.2) A classification scheme for the frequency of airline catastrophic accidents 

A priori, one might expect airlines operating under similar jurisdictions and having similar types of 

operations, fleet, stafftraining, and safety procedures to display the same expected rate of  accidents. 

The jurisdictions - which could be tantamount to countries - help explain the degree of oversight to 

which airlines are subject, the adequacy and competence of air traffic control, the level of competition 

in the market, the resources available to regulators to enforce safety rules, the degree of  accountability 

of regulators and airlines to the public, and the public's attitude toward safety. Factors that may help 

delineate among jurisdictions include political system, economic standing, and judicial/tort system. 

Factors that may explain differences between airlines within the same jurisdictional group include size 

and years of operation. For instance, to the extent that there are economies of scale present in aircraft 

maintenance or stafftraining, larger airlines may exhibit a better safety record than smaller ones. For 

illustration purposes only, let's look at a two-dimensional classification scheme where jurisdiction and 

size of operations are the two classification variables. Then, we will define five jurisdictional groups 

and three sizes, which will result in fifteen cells for which the exposures and MLE estimates are shown 

in tables 3.3 and 3.4 below: 

Table 3.3 - Departures in millions 

Large 

Medium 

Small 

Judsdiction 1 JudsdicUon 2 Judsdiction 3 Judsdiction 

4.8 

4 Jurisdiction 5 

56.9 120.8 15.8 

33.5 8.9 7.4 12.5 15.5 

3.5 2.2 2.8 2.6 2.0 

Table 3.4 - Initial MLE Estimates (Accidents / Million Departures) 

Jurisdiction 1 Jurisdiction ; Jurisdiction : Jurisdiction 4 Jurisdiction 5 

Large 0.527 0.35E N/,~ 3.121 2.019 

Medium 0.507 1.67~ 4.305 2.800 2.710 

Small 1.443 2.73E 17.852 9.237 4.085 

A revised set of estimates is obtained in table 3.7 below based on a procedure introduced in "Risk 

Classification - A Set Theory Approach" [6] and at the presentation of  the paper at the winter 2002 

meeting. Basically, each cell 5 defines a class ~1 made up of the cell itself and possibly of other cells that 

~ Please refer to [6, p. 88 -90] for a definition of these terms. 
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are compatible n with it. Once the classes are defined, each cell within a class is given a credibility u 

weight and the revised estimate for each cell is the credibility weighted average of all the cells in its 

class. The classes defined by each cell and the credibility weights assigned to all the cells in each class 

are shown in tables 3.5 and 3.6 below, and again in exhibits 5 and 6 of Appendix A. The steps leading 

to table 3.5, 3.6, and 3.7 are detailed in Appendix A. 

Table 3.5 - Classes defined by each cell 

Cells Classes 
J1/L JIFL, JlfM, J1/S} 

J2/L {J2/L} 
J41L {J4/L, J4/M} 
JS/L {J5/L} 
JIlM {JI/M, J1/L, J1/S} 
J21M {J2/M, J2S} 
J3/M {J3/M} 
J4/M {J4/M, J4/L, J5M} 
J5/M {JS/M, J4/M, J5/S} 
JIlS {JI/S, JllL, J1/M} 
J2/S {J2/S, J2/M, J5/S} 
J31S {J3/S} 

=J41S {J4/S} 
J5/S {J5/S, J2/S, J5/M} 

Table 3.6 - Credibility weights 

Cells Classes 
[1/L JI/L.606, I1/M.357, J1/S .037} 

J21L {J2/L, 1.00} 
J41L {J4/L.278, J4/M .722} 
J51L {J5/L, 1.000} 
JIlM {JI/M .357, JI/L .606, J1/S .037 
J2/M {J2/M .803, J2S .197} 
J3/M {J3/M, 1.000} 
J41M {J4/M .381, J4/L .147, J5M .472} 
JSIM {J5/M .517, J41M .417, J5/S .065 
JIlS {JI/S .037, JI/L .606, JI/M .357 
J2/S {J21S .168, J2/M .683, J5/S .150 
J31S {J3]S, 1.000} 
J41S {J4/S, 1.000} 
J51S {J5/S .112, J2/S .112, J5/M .789 
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Table 3.5 - Revised MLE Estimates (Accidents / Million Departures) 

Large 
Medium 
Small 

Jurisdiction 1 Jurisdiction 2 Jurisdiction 3 Jurisdiction 4 Jurisdiction 5 
0.554 0.356 N/A 2.889 2.019 
0.554 1.887 4.305 2.804 2.837 
0.554 2.216 17.852 9.237 2.850 

Unlike schemas that rely on arithmetic functions, this scheme does not force certain relationships to 

hold across jurisdictions or across size categories. For instance, while the frequency of small airlines is 

nearly four times that ofmediurn size airlines in Jurisdiction 3, the difference is not nearly as 

pronounced in other jurisdictions. In fact, in jurisdiction 1, small, medium, and large airlines all have 

the same accident frequency. 

The current classification scheme is one of many that could have been devised using our classification 

procedure. It should be compared to others to decide which is the most efficient. The notion of 

efficiency is addressed in [6, p 98]. 

3.3) Trend 

Has the rate of accident changed overtime? If so, how has it changed? The answer to these questions 

has implications on how the accident rate is projected into the future. Other questions come up as well. 

Should we look at the change in the rate of accident over the entire cell universe or should we only be 

concerned with changes within individual ceils or within individual classes? Can we even examine the 

issue of trend independently of that of classification? Should we look at time as one more variable in 

the classification scheme or do we examine changes over time after the scheme itself has been 

established? Isn't it possible for some cells to show improvement in frequency overtime while others 

show deterioration or no change in their accident frequency? Isn't it also possible for the accident rates 

of two cells or two classes to converge or diverge over time? We do not pretend to have the answers to 

all these questions. For now, we will look at the question of trend as a one-dimensional problem, In 

order to measure a trend pattern over time, we first need to specify a model as to how the frequency 

rate is changing over time. Just as importantly, we have to be able to estimate the parameters of the 

model and specify the distribution of these parameters. 
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We now use data from the National Transportation Safety Board shown in table 3.7 below to illustrate 

how a trend can be estimated and how we can make inferences about the significance of such trend. 

We will look at a linear and an exponential decay models described, respectively, by equations 1 and 2 

below: 

,~, = f ~ ( y j )  = a + flyj ,  i = 1 ,2 , . . . , n  Equation 1 

2, =f2(y~)=ct '+f l 'e  z'r i=l ,2 , . . . ,n  w h e r e S ' - < 0 , a '  > 0 Equation 2 

Other than familiarity perhaps, there is not much rationale for choosing a linear model t2. We show it 

here only because its use is so pervasive in casualty actuarial practice. In fact, the NTSB data below 

will show the potential fallacy of using a linear trend model. The exponential decay model is used 

commonly in biology and the rationale for its use in biology is applicable in the context of accident 

frequencies. We can think of  the frequency as being made up of two components. The first one, 

represented by a " ,  is the fixed, intrinsic, or ultimate portion of the accident rate due to a type of error 

that cannot be eliminated over time whereas the second part f l ~ ' ~  is the variable portion of the 

accident rate due to the type of error that changes (decays) over time perhaps as a result of 

technological advaneas. 

^ 

We know that the "~l's do not have a constant variance ~3. Therefore, it would be inappropriate to 

estimate the parameters of equations 1 and 2 by using the ordinary least square function. Since the 

^ 
variance of each )'i is inversely proportional ~3 to the number of exposures d / ,  we instead minimize the 

n 
following weighted sum of square function: WSS = E d, (2i - f :  (Y , ) )2 ,  and we obtain the 

following weighted least square estimates for models 1 and 2: 

12 Even if a linear model is used, the parameters and their associated errors should not be estimated 
using simple linear regression. The assumptions of normality and of uniform variance that underlie 

the simple linear regression model do not hold for the "~i ~s. 

~3 Vat(2 ) = Var(X--~ ) = 1-~Var(x.) = 2.,d, = 2_L 
' a ,  d~ ' d 2 d~ 
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Model 1: & = 42.66and /J  = - . 0 2 1 2 .  

Model 2: t~' = 0 ,  ~ '  = .749 ,  ~ '  = - . 0 3 5  

Figure 3.5 shows the graph for the actual and least square estimates of models 1 and 2. Both models 

give similar results in the 1982 through 2000 period. However, the models diverge significantly 

beyond that period. Extrapolation from either model has to be done carefully and should not go out 

more than a couple of years. However, some situations may call on the modeler to extrapolate over a 

longer time horizon. For these situations, the exponential decay model may be more appropriate than 

the linear model. The indications from the linear model are counterintuitive in the long run as they 

indicate a negative frequency by the year 2018. For the NTSB data, the estimate of the ultimate 

frequency G '  is zero. The indications from the exponential decay model taper offmuch more slowly 

and never quite reach zero. Taken at face value, this would be encouraging news for the probability of 

major accidents in the future. 

In appendix B, we show the closed, form formula for the weighted least square estimates & and/~ for 

model 1 and we also show they are unbiased estimates of ~ and f l .  The weighted least square 

estimates ofmedel 2 are obtained through numerical methods and no closed form formulas are 

available. What is the distribution of these parameter estimates? Are there statistics that can help us 

make inferences about the significance of these estimates? What is the error associated with the 

forecast based on these estimates? We will have to research further for answers to these questions. 
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Table 3.7 - Major Accident by NTSB Classification for US Air Carriers Operating under CFR 121,4 

{Frequency 
Million of Major i per Million 

Year Depa~ures ~ccidents ~epa~ures 
1982 5.35 3 0.56 
1983 5.44 4 0.73 
1984 5.90 2 0.34 
1985 6.31 8 1.27 
1986 7.20 4 0.56 
1987 7.60 5 0.66 
1988 7.72 4 0.52 
1989 7.65 8 1.05 
1990 8.09 4 0.49 
1991 7.81 5 0.64 
1992 7.88 3 0.38 
1993 8.07 1 0.12 
1994 8.24 4 0.49 
1995 8.46 3 0.35 
199~ 8.23 6 0.73 

14Source: Departures www.ntsb.gov/aviation/Table5.htm; Major Accidents 
www.ntsb.gov/aviationfr able2.htm. 

The NTSB defines a major accident as one that meets any of the following three conditions: 
a Part 121 aircraft was destroyed, or 
there were multiple fatalities, or 
there was one fatality and a Part 121 aircraft was substantially damaged. 

The NTSB provides data through the 2001 year. However, starting in 1997, aircrafts with 10 or more 
seats used in scheduled passenger service began operating under 14 CFR 21. We did not want to 
analyze the data beyond 1996 as we were not sure whether the inclusion of this new category of 
aircrafts would distort the indicated trend. 
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Figure 3.4 - Accident per million departures 1982 - 1996 

Major Accident per million Departures 

i ~ . ~ A c t u a l  Linear M o d e l . . .  Exponential Decay Model I 
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,3.4) Modeling the number of aircrafts involved in accidents 

Airline catastrophes may be the result of collisions involving several aircrafts. Most accidents involve 

the failure of a single aircraft. Accidents involving collision of multiple airplanes are relatively rare. 

However, these types of accidents have occurred and need to be reflected in the simulation model. It 

would be a mistake not to provide in the model for the possibility of  two, three, and perhaps more 

airplanes being involved in a single collision. We are not talking about collisions triggered by willful 

acts of sabotage, war, or terrorism. Accidents caused by willful acts will be discussed in section 6. 

Multiple aircrat~ collisions can put serious financial strains on the insurers and reinsurers who are 

responsible for indemnifying the airlines. In addition to the probability distribution of the number of 

accidents, the modeler needs to specify a conditional distribution for the number of  aircrafts involved 

once there has been an accident. The parameters of this distribution might need to be derived from a 

fair amount of judgment. A conditional probability distribution table for the number of aircraft 

involved in an accident is shown in table 3.8 below: 
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Table 3.8 - Conditional probability for the number of aircrafts involved in an accident 

Number of Aircrafts Probability 
1 .97 
2 .02 
3 .01 

4 or more .00 

If  an accident is the result of a collision of multiple aircrafts, one also needs to determine the airlines 

and aircrafts involved. The modeler essentially needs to build yet another conditional probability table 

laying out the probability of collision between different airlines and aircrafts. Airlines that use a lot of 

the same airports are more likely to be in a collision than those that use few common airports. Hence, 

intuitively, these probabilities should be proportional to the proximity of the operation of the airlines 

and to their relative exposures (say, number of departures). This may seem like a daunting task given 

the low probability of such events and especially given that the exact identity of the other airlines 

involved may not be of interest in many applications. However, such table can be greatly simplified by 

making some broad assumptions. For instance, looking at the probability of two-aircraft collisions for 

a given airline, one may simply endeavor to compute the conditional probability of collisions involving 

only aircrafts from that airline. The complement of that probability would be the probability of 

collisions involving an aircraft from the given airline with one from any other airline. 

4) Modeling the cost of catastrophes 

The financial costs of airline accidents can be staggering and wide-ranging, affecting individuals, small 

business entities, corporations, and indeed entire financial markets. The insured portion of these costs 

is in principle bounded by the parameters of the insurance contract. It is this portion only that we hope 

to forecast. Here we discuss how to estimate the costs associated with coverage for hull, passenger 

liability, third party liability, and products liability. However, this model could be used to forecast the 

costs of other types of coverage such as accident and health, workers compensation, and cargo, for 

instance, and virtually any financial product where payment is dependent on catastrophic airline 

accidents. 
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4.1) Hull Costs 

Once an accident has occurred, the hull costs are determined relatively quickly. The insured value of 

an airline's fleet is pre-determined by the insurance contract. The latter provides for a schedule of 

insured values for each aircraft in a fleet. The first four columns of table 4.1 below show a typical 

schedule of aircraft and insured values. This information often does not trickle down to reinsurers, 

retrocessionaires, or even to some of the smaller primary markets perhaps because it is not used in the 

rating process. Total fleet value, which is the aggregate of the insured values of individual aircrafts, is 

usually available but this information is mostly useless in the context of this type of  simulation model. 

In order to accurately forecast the hull cost, the modeler needs to have some idea of  the fleet and 

utilization profile ~5 of the airline involved as well as the pre-agreed insured values. It behooves the 

modeler to make sure this information is obtained. The fleet and utilization profile of  an airline is 

typically public information that can be obtained from the airline's website or from airline industry 

publications or regulatory agencies. However, insured values need to be obtained through insurance 

channels. As a substitute for actual insured values, one could estimate the hull cost using the price of a 

new similar aircraft (ballpark numbers are available from the manufacturers) and factor in a discount 

based on the aircraft age and configuration. This approach adds a layer of uncertainty in an area where 

there should be none. 

Once the fleet distribution and utilization profile for a given airline is known, the conditional 

probability of  a particular aircraft being involved in an accident can be determined. For instance, the 

conditional probabilities can simply be calculated as the ratio of each aircraft's projected number of 

departures to the total number of departures. One may want to factor in the age and model of aircraft in 

the determination of the conditional probabilities if  one believes that these impact the probability of 

accidents. However, we will work from the basic premise that, for a given airline, the conditional 

probability of accident for a given aircraft is proportional to its utilization. The fleet and distribution 

profile, the hull values for a hypothetical airline are shown in table 4.t below. The conditional 

probabilities are calculated as indicated above. 

t5 The utilization profile refers to the number of hours flown or the number of departures within a 
period of time for each aircraft within a fleet. 
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4.1 - Fleet, Utilization Profile, and Seating Capacity for a Hypothetical Airline 

Aircraft Number of 
Registration Seats excluding 

Make Number 
and Model Crew Members 
A-300-600 XXXXXX 298 
B-717 XXXXXX 106 
B-727 XXXXXX 149 

Total 

Insured 
Value 

118 
40 
60 

Projected Conditional 
Utilization Probability 
(# Departures) 
739 .74% 
1,219 1.22% 
2,147 2.15% 

100,000 100% 

4.2) Passenger Liability 

There are two important variables in determining the total cost of passenger liability in the event of an 

accident. The first is the number of passengers involved in an accident while the second is the award 

per passenger. 

4.2.1 ) Forecasting the number of passengers, survivors, and fatalities involved in an accident 

The number of passengers involved in an accident depends on the seating capacity of the aircraft model 

involved, and the percentage of capacity filled. The seating capacity of each aircraft in a fleet is 

available in the schedule of aircraft and insured values. If the seating capacity of a given aircraft is not 

available, one can use the average seating capacity for that specific aircraft model, which can be 

obtained from many different sources. The actual seating capacity for a given aircraft model may vary 

based on the specific configuration for that aircraft. The larger the business class and first class 

sections, the smaller the overall seating capacity. The other important factor in determining the number 

of passengers involved in an accident is the passenger load factor, which is available through various 

airline industry publications. The modeler - having determined the aircraft model and therefore the 

passenger capacity involved in an accident - may use either a fixed or a random passenger load factor 

to determine the number of passengers on board the aircraft. The modeler may create a simple 

distribution based on the published load factor and an upper bound of 100%. For instance, if the 

published load factor is 85%, one might use a uniform distribution with lower and upper bound of 70% 

and 100%, respectively. 
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One may also be interested in projecting the number of survivors/fatalities in a given accident. For 

that, one could look at the survivability statistics for the type of accidents one is investigating and 

derive a probability distribution for the percentage of survivorsdfatalities. That distribution will have a 

domain bounded by 0% and 100% and will likely be heavily weighted towards these two points. 

Survivability data can be obtained by reviewing fatality/survival ratios of individual accidents. In table 

7.3 below, we show survivability statistics based on data published by the National Transportation 

Safety Board. 

4.2.2) Cost per passenger 

The determination of  liability cost is more complicated and more involved than that of the number of 

passengers or injuries involved in an accident. I f  one ~ies to simulate the liability cost for each 

passenger, one has to know the jurisdiction in which compensation will be sought and information 

regarding the passenger including place of residence, age, marital status, current and projected net 

worth. Indeed, in the United States for instance, liability awards stemming from a given accident may 

vary significantly from one passenger to the next: This level of  passenger profile detail is not only 

difficult to obtain but might be unnecessary in most applications. This information will only be 

relevant if  the coverage depends on individual passenger payout such as a layer offering per passenger 

excess of loss protection, l fwe  focus rather on forecasting the average liability cost per passenger 

rather than the actual award per passenger, the overriding consideration is the jurisdiction and the 

applicable laws under which compensation is sought. Such laws are complex, numerous, and 

constantly evolving. Accidents involving international flights are especially challenging, as even the 

.jurisdiction in which compensation is sought is hard to determine. For instance, under what 

jurisdiction will compensation be sought in an accident occurring over Canadian land on a flight from 

New Delhi to New York with a stop in London? Passengers may have different recourses depending 

on their nationality, the place they purchased their ticket, their final destination on the ~'ip. The 

modeler has to make some simplifying assumption as to which jurisdiction will be involved in the 

event of an accident on an international flight. For instance, the modeler may decide that the country 

on the itinerary with the higher award potential is the country in which suit will be brought. This is 

especially important for airlines where the liability awards are much smaller in their country of  
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domicile than in some o f their other destinations. For these airlines, the liability potential on domestic 

flights will be significantly lower than the potential on international flights. For accidents involving 

US airlines wherever occurring, one may simply assume that all suits will be brought in an American 

court. The modeler needs to have an idea of a carrier's percentage of domestic versus international 

flights. For international flights, the modeler needs to know the destination profile by country or group 

of countries. In turn, this information will be used to simulate the itinerary of a flight involved in an 

accident. 

Does the modeler then need to know the distribution of the average liability award in every possible 

jurisdiction or country? This would be a daunting task even for the most industrious modeler. The 

modeler may instead look to group countries where the tort and compensation systems are similar. For 

instance, a group might be comprised of countries in the European Community, another of Mercosur 

countries 16. Also, instead of looking at the distribution of actual average award, the modeler may 

choose instead to look at the average award as a ratio to the median income or the income per capita in 

a country. Assuming that the modeler can come up with such groups, there remains the challenge of 

using the historical data to come up with the average award distribution. Since liability claims can take 

an inordinate amount of time to settle, an average award distribution will need to be built largely on 

case estimates, the accuracy of which won't be known for a long time. For those claims that have 

already been settled, inflation, changes in law, voluntary agreements, and statutes may render them less 

relevant for the purpose of projecting the cost of future claims. The upshot of all this is that an average 

liability award distribution will involve significant judgment on the part of both the modeler and others. 

Once groups of countries have been defined, the modeler may try to find a distribution that fits the 

actual data adjusted for inflation and for past and expected future changes. Similarly to the frequency 

portion of the model, should the modeler devise some statistical tests to help him decide whether the 

distribution of liability awards (as a percentage of, say, median income) for the various groups are 

indeed dissimilar? For instance, upon close analysis, it may turn out that the average award potential in 

the European Community is not dissimilar to that in the Mercosur countries. 
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4.3) Third Party Liability 

Third party liability costs are even more difficult to forecast. The range of scenarios for third party 

liability is obviously much wider than that for passenger liability. Also, relatively few commercial 

airline accidents result in injury or property damage to third parties. This is perhaps because the 

location of airports and the air mutes have tended to steer airplanes away from populated areas. 

However, these events have occurred and need to be considered in the simulation model. One 

approach might be to look at the passenger and third party liability together. So instead of looking at 

the distribution of  the average passenger liability per passenger as suggested in the preceding section, 

one would look at the average total liability per passenger. The tail of that distribution would be a lot 

more skewed than that of the average passenger liability award. Another approach is to estimate the 

number or percentage of accidents that will resua in third party damage and to estimate the cost of such 

liabilities separately. This approach is better at allowing the modeler to factor in extreme scenarios. 

For instance, the modeler might include a scenario where, as a result of a midair collision, two jumbo 

airplanes plow onto a crowded area destroying life and property. There, considerable judgment might 

be used to determine the likelihood of different scenarios. 

4.4) Products Liability 

Defendants in lawsuits stemming from aireraf~ accidents include not only the airlines but also aircraft 

and parts manufacturers as well as other parties involved in the operation of the airline. Also, the 

airlines themselves can try to recoup losses by suing other parties not necessarily named in a suit. For 

this reason, aircraft and parts manufacturers require products liability to shield them from such suits. 

To understand the products liability exposure in the context of this simulation model, information about 

manufacturers and suppliers of  engine, navigation equipment, electrical system and other components 

has to be collected for each insured aircraft. The identity of  the aircraft manufacturer itself should be 

obvious. In the event of  an accident, we would then have a list of potential defendants. We have 

I~ Mercosur countries, as of the time of this writing, are made up of Agrentina, Brazil, Uruguay, and 
Paraguay. 
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already shown how the total liability from a given accident can be estimated. We then need to allocate 

that liability between airline operators and the product manufacturers. The actual allocation of liability 

will depend very much on what is determined to be the cause of accident, and, furthermore, may vary 

from one jurisdiction to the next. This is a very difficult area in need of much research. Considerable 

judgment or simplification might be used to come up with an allocation. In order to figure out the 

product liability exposure of a given manufacturer, we would then accumulate its exposure over the 

entire universe of airline operators. 

5) Validation 

Before using any model to forecast, the modeler needs to make sure that the model's assumptions are 

reasonable. The particular model we have presented makes many assumptions, one nested inside 

another. To develop any sense of how well the model will forecast the future, one can look at how well 

the model would have predicted past experience. Let's say that data from 1980 through 2000 is 

available. The modeler may endeavor to see how well the simulation model would have projected 

1991 based on data through 1990, 1992 based on data through 1991, and so on, thus obtaining a 

comparison with actual data for ten years. The validation should be done in stages, starting with a look 

at the number of accidents, the number of passengers involved in accidents, the number of fatalities and 

injuries, and the insurance costs in that order. Doing the validation in stages allows one to identify 

where in the simulation process a bias may be occurring and to make the necessary adjustments. The 

results of the simulation will be a probability distribution for the projected variables similar to the one 

shown in table 7.5 of section 7 below. Focusing on the number of fatalities for instance, one would 

compare the actual number of fatalities in 1991, 1992 and subsequent years with the distribution 

predicted for each of these years by the simulation model. If, on one hand, the actual number of 

fatalities for the ten-year sample (1991 through 2000) looks like a random draw from each of the 

predicted distribution, this would tend to validate the simulation model. If, on the other hand, the 

actual number of fatalities for the ten-year sample tends to fall systematically either to the right of, say, 

the 95 th percentile or to the let~ of, say, the 5 th percentile of the predicted distributions, this would be a 

strong indication that the model's projections are biased. 
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6) Terrorism 

The audacity and severity of the events of September 11 ~ caught most insurance professionals off  

guard. Reportcdly, aviation underwriters had been "giving away" for free the coverage for terrorist 

acts. In light of the devastating potential of terrorist acts, actuaries and underwriters have since been 

scrambling to put a price on terrorism coverage. While some pundits will offer nothing more than their 

eloquent prose enlightening us with revelations such as "...the risk [of terrorism] is real", underwriters 

and actuaries are left with the unenviable task of putting a price on the risk of terrorism. Perhaps, in no 

other area will the actuary need to use all available sources of  information and rely on the expertise of 

others in order to try to quantify the risk of  terrorism. Many of the assumptions we have made in 

relation to accidental airline catastrophes certainly don't apply to crashes occurring as a result of willful 

acts. We know that terrorist acts are neither random nor are they uncorrelated. This contradicts the 

assumptions implicit in our use of the Poissun distribution. We also know that history is perhaps a 

poor guide for figuring out future acts. The risk of terrorism is highly fluid as our geopolitical 

landscape changes constantly, and as airlines and law enforcement authorities learn how to better 

protect the public from such acts. In our preceding discussion, we rely extensively on historical data to 

derive expected frequencies. We could not do the same with terrorism although a look at the history 

can be instructive. Table 6.2 shows the number of hijackings perpetrated against US and foreign 

airlines, respectively, from 1970 through 2000�9 The sharp drop in the number of hijackings against US 

airlines, with none recorded between 1992 and 2000, testifies perhaps to the success US airlines and 

authorities have had in deterring and preventing such acts. The events of September 11 th, 2001 serve as 

a staunch reminder that the probability of  such acts is never quite zero. Although, we have focused 

here on hijackings, they are by no means the only terrorist threat facing airlines. We should also keep 

in mind that not all bijackings have resulted in death, injury, or destruction of property as people have 

sought to hijack airplanes for a variety of  reasons. Hijackings need not be the result of some political 

conflicts. For instance, mentally deranged individuals with no apparent political motives have hijacked 

airplanes. 

Although individual airlines may have their own security procedures, the modeler can work from the 

assumption that the risk of  terrorist acts against an airline depends primarily on the level of security in 
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the airports and counties where the airline operates. Actuaries could work with security experts in 

developing a grouping system to rate airports' and countries' potential for terrorist acts. The level of 

conflict in a country and its surrounding regions as well as a country's will and ability to effectively 

fight terrorism need to be factored in such a grouping. Actuaries could then try to formulate a 

probability of an airline being hit by a terrorist for each category in a grouping. For instance, table 6.1 

below shows a hypothetical two-dimensional box which groups airports based on their level of security 

and the existence of a terrorist threat around them. The probability of an airline's being hit by a 

terrorist act would be calculated as the weighted average of  the probabilities of each airport where it 

has exposure. 

Table 6.1 - Probability (odds in 1 million) of a Terrorist Act in a 12 Month Period 

ity 

rot Threat",,,, 
Constant 
Potential 
Some 
None 

ImpeneWable Strict Adequate Lax Non-existent 

10 100 250 1,000 10,000 
4 50 200 800 9,500 
2 20 150 700 8,000 
1 5 10 500 6,000 

As we mentioned before, these probabilities ere dynamic and should change as conflicts evolve or new 

ones emerge, as new information comes to light, and as new acts of terrorism ere committed or 

attempted. This implies that the price for such coverage will. at least in theory, be dynamic, changing 

as the risk of terrorist acts is continuously reassessed. 
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Table6.2-H~ackings 

Year U.S. Foreign Year U.S. Foreign Year U.S. Foreign 
1970 25 4~ 1981 24 1992 C 12 
1971 25 3( 1982 23 1993 s 31 
1972 26 3( 1983 1~ 15 1994 C 23 
1973 2 2( 1984 21 1995 C 9 
1974 3 1; 1985 22 1996 C 14 
1975 6 15 1986 5 1997 C 10 
1976 2 1= 1987 5 1998 C 9 
1977 5 2( 1988 1C 1999 C 11 
1978 7 1( 1989 14 2000 C 20 
1979 11 15 1990 30 
1980 21 1~ 1991 23 

S ~ :  1970-1998 US. Department of T~apottadon, Federal Aviation Adn~nislrati~, Criminal Acts Against Civil Aviation - 1998, Chm't~ and Graph; 

1999-2tm0 http://~.f~gov/crimacts/doc/crim2000doc AppmdlcesA&B 

7) A simplified application of a simulation model 

A simulation model has many applications for assessing the costs of insurance coverages and other 

financial instruments affected by airline catastrophes. Here, we present an example where we look at 

the costs of a cover that pays for the full insured value of a destroyed or damaged aireraR as well as 

$50,000 per fatality and $100,000 per injured passenger for a hypothetical group of airlines for the 

2003 year. This coverage excludes acts of war and terrorism. The information and assumptions are set 

in the tables 7.1 through 7.4. The results of the simulation are presented in table 7.5. 
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Table 7.1 - Fleet, Utilization Profile, and Seating Capacity 

S, ircraft Type Count 

Mrbus lndustrie A300-600 79 298 

Airbus Industrie A300B2/B4 19 298 

Mrbus Industrie A310 44 249 

Mrbus Industrie A319 137 125 

Mrbus lndustrie A320 227 172 

Mrbus Industrie A380 6 60(3 

~.vro RJ Avroliner 36 7(3 

BAE SYSTEMS (HS) 146 18 94 

Boeing (McDonnell-Douglas) DC- 10 239 264 

Boeing (McDonnell-Douglas) DC-8 194 146 

Boeing (McDonnell-Douglas) DC-9 430 115 

Boeing (McDonnell-Douglas) MD-11 66 325 

Boeing (McDonnell-Douglas) MD-80 670 155 

Boeing (McDonnell-Douglas) MD-90 21 163 

Boeing 717 31 106 

Boeing 727 729 167 

Boeing 737 (CFMI) 779 149 

Boeing 737 (JTSD) 248 149 

Boeing 737 (NG) 303 149 

Boeing 747 Classic 138 472 

Boeing 747-400 73 544 

Boeing 757 589 214 

Boeing 767 328 251 

Boeing 777 98 373 

Bombardier (Canadair) CILI Regional Jet 273 5(3 

Embraer ERJ-135 53 36 

Embraer ERJ- 145 169 5C 

Fairehild/Dornier 328JET 22 3s 

Fokker 100 123 113 

Fokker F.28 22 85 

Lockheed L-1011 TriStar 81 28C 

total 6,245 1,108,002 

Insured # of  
Seats V a l u e ( M M )  Departures Prob 

11 ~ 58,39( 0.69~ 

11~ 6,16-' 0.07~ 

92 22,25" 0.26~ 

52 148 ,73~ 1.770A 

55 287,30] 3.42~ 

25( 4,72 c, 0.06% 

26 71,17] 0.85~ 

4C 47,42( 0.56~ 

IIC 123 ,74~ 1.47~ 

6C 92,46. c 1.10~ 

5s 684,70: 8.15~ 

15s 41,92" 0.50~ 

6C 1,056,05:12.57~ 

6C 34,38~ 0.41~ 

4s 37,77 r 0.45% 

6C 715,32( 8.51~ 

6C 1,672,50. ~ 19.90~ 

6C 518,65~ 6.17~ 

6C 372,02( 4.43~ 

215 66,09] 0.79~ 

211 37,83] 0.45~ 

85 728,72l 8.67~ 

11s 274,90] 3.27~ 

19( 60,62: 0.72~ 

25 543,57~ 6.47~ 

14 64,28] 0.76% 

2C 274,35.' 3.26~ 

13 20,83~ 0.25~ 

5s 234,759 2.79% 

4s 53,688 0.64~ 

l l (  48,412 0.58~ 

450,332 8,403,831 

Table 7.2 - Projected Exposures, Frequencies, and Passenger Loads 

Year 2003 

Projected Departures 8,918,213 

Projected Average Passenger Load 0.65 

Expected Frequency per million departures 0.45 
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Distribution of survival ratio based on B~a distribution fitted to data in table 7.3 below: 

Table 7,3 - Empirical Survival percentages from a sample of 27 accidents 

% of  
Passengers Survivors Fatalities Survivors 

31 0 31 0.0~ 

25 0 2, = O.O~ 
132 0 13" O.O~ 
68 0 6~ 0.0% 

110 0 11( 0.0~ 
230 0 23( 0.0% 
155 1 15~ O.6~ 
71 1 7( 1.4~ 

163 29 1341 17.8% 
57 20 3; 35.1~ 
51 24 2~ 47.1~ 

296 185 111 62.5~ 
82 54 2~ 65.9~ 
89 67 2,; 75.3~ 
44 36 81.8~ 

108 94 1,~ 87.0~ 
145 134 11 92.4~ 
33 32 97.0~ 

149 147 98.7% 
142 142 IO0.O~ 
39 39 100.0~ 
23 23 100.0~ 
40 40 100.0% 

102 102 100.0~ 
292 292 100.0~ 
62 62 01 100.0~ 

2,73g I 1,s241 1,2.1 ss.6~ 

S i n :  Nalicctal T m m ' i ~  Slf~y ~ "$mvivlbility of A~identl Involving Part 121 US. Air C~r Operations, 1983 Through 2000" Safety gepo~ 

NTSB/$R4)I/0l, table 4, p. 14. http:l/www.ntsbjiov/Publicm/A_Sm.htm 

Table 7.4 - Conditional Probability for the Number of Aircrafts Involved in an Accident 

Number of Aircrafts Probability 
1 .970 
2 .029 
3 .001 
4 or more .000 
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Additional Assumptions 

�9 Destroyed aircraft is immediately replaced with similar aircraft. 

�9 Projected departures, passenger loads and frequencies are fixed. More realistically, these 

should be allowed to vary. 

�9 Collision occurs between aircrafts within group. 

�9 Selections of parameters only loosely based on real data 

/arlables 
3est Case 

Nrst Case 

Expected 

Std Dev 

5% 

10% 
15% 

2O% 
25% 
3O% 

35% 
4O% 
45% 

5O% 
55% 

50% 
65% 

7O% 
75% 

B0% 
B5% 

9O% 
95% 

Table 7.5 - Simulation Results from 5000 iterations 

Total 
~ccident Aircraft Passger Injured Death lull Passger Cost 
:ount Count Count Count ~-ount .3ost (MM) Cost (MM) (MM) 

C 0 0 0 { C C 0 
13 14 1,790 1,015 1,01,~ 1,131 1,376 2,507 

3.59 3.69 375 197 179 233 286 519 
1.91 1.99 230 154 144 139 182 315 

1 58 0 50 42 95 

1 109 18 8 60 76 149 
,~ 2 144 43 30 95 105 204 

2 176 65 51 115 128 248 
,~ ,~ 204 81 70 120 150 283 
,~ 3 231 97 86 145 172 322 

3 259 114 103 170 194 363 
3 287 131 121 180 214 398 
3 317 148 135 195i 236 434 

4 347 167 150 216 258 474 
4 377 184 168 230 282 518 

4 407 209 190 252 305 559 
4 4 44C 230 212 270 333 604 
4 474 254 233 290 364 652 

5 50s 281 258 315 396 714 
5 554 314 287 345 430 772 
6 614 355 325 375 473 845 

6 681 407 371 415 531 932 

7 7 79~ 488 447 485 627 1,08~ 

The distribution presented in table 7.5 above shows the variability in the loss process but does not 

incorporate parameter error. We have assumed for instance that the claim process follows a Poisson 

distribution with an expected frequency per million departures of .45. In reality, we will never know 

the true expected frequency of such distribution or the exact form of the distribution for that matter. At 

best, we will have an estimate of the frequency with an error margin. The conditional probability 

distribution for the number of aircrafts involved in an accident, the distribution of the passenger load 
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factors and of the survival ratios are all subject to parameter error. One way to incorporate the 

parameter uncertainty into the results would be to allow the parameters to vary according to some 

distribution. A different but simpler approach might be to look at different combinations of  parameter 

estimates and to run the simulation for each combination. 

Applications for this type of simulation model extend much beyond the type of  examples we have just 

presented. We have only scratched the surface of the possibilities that a simulation approach offers. 

The CAS's literature is replete with articles on how simulation models could be used to structure and 

price reinsurance products. Please see [1], [2], and [4] for a sample of such articles. Obviously the 

more detailed information available to the modeler, the more accurate the projections will be and the 

more specific the applications will be for this type of model. Modelers have to weigh the trouble of 

gathering the additional data against the additional accuracy and flexibility that would be gained. 

8) Final Thoughts 

Compared to a traditional experience rating approach, a simulation approach promises much more in 

terms of accuracy and range of  applications. For instance, the pricing of reinsurance contracts that 

feature loss triggers, aggregate limits and deductibles, contingent profit will be more readily handled 

through simulation than through experience rating. The body of available actual experience would 

often not suffice to test the multitude of scenarios that can present themselves under such contracts. 

For the cover we introduced in the preceding section, assume we were interested in pricing an 

aggregate layer providing 1.0B in limit in excess o fa  1.0B retention. According to the aggregate loss 

distribution in table 7.5 above, there is about a 5% chance that actual aggregate losses would exceed 

the 1.0B retention in any one year. Looking at the actual experience, over a five to ten year period, 

may not reveal any losses in the layer. Even when there would be losses in the layer, they may not 

have much predictive value. 

Many of the benefits of  using a stochastic simulation approach in the evaluation of property catastrophe 

extend to catastrophic airline exposures as well. Rade T. Musulin, in an article titled "Issues in the 

Regulatory Acceptance of Computer Modeling for Property Insurance Ratemaking ~', [3, p 354] lists the 
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comprehensibility of prices, rational behavior, fair pricing, reduced information risk, and stable pricing 

as benefits of the improved estimates provided by a simulation model in evaluating property 

catastrophe exposures. It should be readily apparent how the use of a simulation approach in 

evaluating airline catastrophe would enhance the comprehensibility of  prices, reduce information risk, 

and promote stable pricing. 

Ultimately, whether simulation models gain acceptance in the commercial aviation realm will depend 

on whether the perceived benefits outweigh the additional effort required in implementing such models. 

In a sense, the widespread use and acceptance of property catastrophe modeling should have already 

paved the way for the use of  simulation models not only in commercial aviation but also in other lines 

such as surety, credit, and workers compensation. These days, insurers and reinsurers have the means 

necessary to keep large amount of information about their property exposures at a zip code, and 

sometimes, finer level. More importantly, this level of detailed information is accepted as a normal 

course of doing business in the property catastrophe lines. The task of gathering information on 

individual aircrafts is relatively small due to the limited number of commercial airlines servicing the 

world and also the limited number of aireral% they operate. For instance, the current fleet of US- 

domiciled airlines consists of less than 6,500 aircrafts of roughly 30 different models. Furthermore, 

two companies, Boeing and Airbus, manufacture 85% of these aircrafts. Once one goes through the 

trouble of tallying that information, subsequent updates should be relatively simple as airlines do not 

change their fleet drastically overnight. 

We have left open a number of issues including inferences about the parameters of the exponential 

decay trend model. We also think that a substantial amount of work has to be done to make realistic 

projections for third party liability exposures and in the allocation of liability between airline operators 

and manufacturers. Finally, we have barely broached the issue of terrorism. However, we are 

confident that there will be a wealth of papers addressing these issues in a much more comprehensive 

fashion, 
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Appendix A 

Risk Classification Procedure 

Following the procedure introduced in "Risk Classification - A Set Theory Approach"  and at the 

presentation o f  the paper at the winter 2002 meeting, we take the following steps: 

^ 

i. We calculate the R o values for all pairs o f  adjacent cellst as shown in exhibit 1. In figure A. 1 

below, we show the J~0 values between the cell Jurisdiction 1/Large (J1/L) and the ceils that are 

adjacent to it. 

^ 

Figure A.1 - R0between large airlines in jurisdiction 1 (J1/L) and those in adjacent ceils 

No Data 

(1.55)~ J2/L 

I (0.12) 

1.40 Jll M J2/M 

4.04 

-3.20 

4 : J4/L [ JS/L 

J31M J41M 

r - - - - - -  

i 
i JS/M 

r 

Those adjacent cells for which the J~o values fall within the interval (-1.65,1.65) are said to be 

compatible. All other pairs o f  cells are said to be incompatible. Exhibit 2 shows the compatibility 

relationship for all pair  of  cells. Below, in figure A.2, we answer the question of  compatibility for 

large airlines in jurisdiction 1. 

t Two ceils are said to be adjacent if  they have at least one common risk characteristic [6, p.89]. 
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Figure A.2 - Are cells compatible with J1/L (before validation)? 

No 

, No Data I 

r L ~ Y e s ~  J3/L 

Yi' 
JI lM 

^ 

The values of R 0 shown in exhibit 2 and in figure A.2 may have been the result of  a chance 

occurrence or some oddity in the data and may not reflect the true relationship between cells. 

^ ^ 
Rather than relying on just one drawing of R0,  we repeat the calculation of the R o values for 1,000 

randomly selected samples from each cell in order to validate the compatibility relationships. A 

sample consists of a random draw of between 50% and 85% of the exposures (or airlines) within a 

cell. If the number of times J~0 falls in the interval (-1.65, 1.65) for a given pair of cells is large 

(greater or equal to 875), then, compatibility is validated for that pair. Exhibits 3 and 4 show the 

^ 
number of times R o falls in the interval for all pairs of adjacent cells and whether these cells are 

deemed compatible, respectively. This information is shown for the cell Jurisdiction 1/Large in 

figures A.3 and A.4 below. 
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Figure A.3 - Number of times out of 1,000 trials k o falls in (-1.65, 1.65) interval 

L . . . .  1 
No Data 

. . . . .  

451 J ~  L 

i 991 

18 

39 

,I J3'' lJ , 

] i ~ . . . . . .  904 J I / M  ] J2/M 
I 
, ~ . . . . . .  ] i J 

r- . . . . .  

J 3 / M  [ J 4 / M  

. . . . . . . . .  J 

[ - -  

I J 5 / M  

J 5 / S  J 3 / S  

Figure A.4 - Are cells compatible with J1/L (after validation)? 

No 
I 
~ . . . . . . . . . . . . . . .  NO 

No Data . . . . . . . . . . .  �9 
I 

4 
Yes  

F-J,IM ', 

r 
~ Jll S 

L 

"I J I / L  ~ N o ~  'J J 2 / L  i 

1 _ ~ _ 5  L . . . .  J 

J 2 / M  

J 2 / S  I 

I 

J31L  ! i J 4 / L  ! 

I i ............... 

J31 M i J 4 / M  
I 
k . . . . . . . . .  L I 

i [ 
J31 S ~ ! J 4 / S  

. . . . . . . . . . .  J �9 

J 5 / L  

J5/M 
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iii. Each cell def'mes a class made up of these cells that are compatible with it, including the cell itself. 

In tables A.I and A.2, respectively, we show the classes defined by each cell and the credibility 

weights assigned to each cell in a class. The class def'med by large airlines in jurisdiction 1 

consists of the following three cells: {Jurisdiction 1/Large, Jurisdiction I/Medium, and 

Jurisdiction l/Small} 

iv. The revised MLE estimates for each cell is the weighted average of the MLE estimates of the cells 

in its class where the credibility weights are the exposures in each cell relative to the total 

exposures for the class. 

Table A.1 - Calculation of Revised MLE Estimates for Jurisdiction 1/Large 

Jurisdiction 1 Jurisdiction 1 Jurisdiction 1 l"otal/Weighte�9 
Large Medium Small Average 

Initial MLE 0.527 .507 1.443 .55~1 

Departure., 56.93 33.50 3.46 214.74 

Weights 0.61 0.36 0.04 1 .OC 

Large 

Mediurr 

Small 

Table A.2 - Revised MLE Estimates 

Jurisdiction 1 Jurisdiction 2 Jurisdiction 3 Jurisdiction 4 Jurisdiction ~= 

0.554 0.356 N/A 2.88~ 2.01 c 

0.554 1.887 4.305 2.80,~ 2.837 

0.554 2.21! 17.852 9.23; 2.85C 
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Appendix B 

Derivation of  parameter estimates for a linear trend Model 

Let X i be a Poisson distributed random variable for year Yi, i = 1,2,..., n ,  with mean 

2ida, where d :epresen ts  the number of  exposures associated with yearyj .  

We posit the following linear relationship between the ).~'s : 

2j = a  +]~Vl, i = 1,2,...,n 

Let A~ = X,.  be the random variable representing the maximum likelihood estimate of  
d i 

e (A, )  = E ( ~ , '  ) = 4, = a + ~ ,  

Also, Var(Ai)  = -~- 
di 

^ X i 
We denote byx~and2  i = -7" the realizations of  the random variables X t and A i , 

ai 

respectively. 

We define the weighted least square error function: 
n n 

WLSe = ~ a,(~, - 4 , )  2 = ~  d,(~, - 6 -  py,)~ 
i - I  i f f i l  

Let tl a n d / ~  represent the values o f  a and fl that minimize the weighted least square 

function. ~ and ]~ are obtained as follows: 
n 

dWLSE = -2~-~di(,~ - a -  fly,) = 0 (1) 
d a  i=t 

d W L S E  
= - 2 ~ . J , y i ( A  i - a  - flYi) = 0 (2) 

d •  ill 

Solving these two equations simultaneously yields: 
n 

di (wY - Y, )'~, 
= ~" and &=~, i - I~wy,  where 

~'~ d i [ , y2  - w(y2)] 
ill 
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n n 

E di"~i ~ ' ~ d i y  , Z d ,  y ?  " ^ 

, _ J.t and  w 2 = ~.t ,-~.._3...~ .,y2 =(wy)2, w ( y 2 ) _  ,, , n 

y d, 
i=l 

w y =  n 

E,t, E,t, 
l-I i=| 

^ n ^ 
L e t  to i = d i ( w Y  - Y i )  w e  r e w r i t e  f l  = ~"o912  i 

" 

n 

/~ is the realization o f ~ e  random variable B = ~-" colA i 
i-I 

n n n n n 

E ( B )  = ~-]ahE(A;) = ~-'~ co,2, = ~'~co,E(a + fly,) = E(a )~ .co ,  + E ( f l ) ~ j a , y ,  = E(B) = B 

Therefore/1 is an unbiased estimate of f t .  
n n ,~ 

Also,  V a r ( B )  = ~ , o J ~ V a r ( A i )  ~,~co2 i = / ~  l - -  

1-1 i=l di 
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Exhibit 1 

Calculation of -~o between adjacent cells 

mm~~l l l l l la l l l l l l l i l l l t l / ta l l l l l l lJ[ l lE[ | l ]~r~mm m 
I r ~  r n ~  ~ r~L~ r~m l r~ i~ ,~ .  I,nl= =fin11= m/Hi#n= rat~lmT/x ~ m 
Irrr~ I w n  ~ l m  w w  E B ]  ~ =u#l= =11n1= , , ~  �9 =/////= = l n # = l ~ x l ~ = l ~ ] l ~  

IIr'/~ 17#~  LeJm Ir~7J i r / ~ j  F I ' ~  _ _ [~,]~,:,.. w ~ r ,  . .  q ~HH,- r/111r~ ir##/j i ,##/j  1~7~7J 
~'r1117~7J 177~ i m J  i r / m  L~r l  =~,~,. _ - -  = = . * p  r .~ , .~# . , - I rm~l~Sl~ l r#t~ l rm2 

m ~ l  w/#J  m J W ~ l g ~ l ~ l = ~ ; = l . = : . H . ~ - -  - ~ , , . - I r m m r / m l ~ = l ~ ]  

Exhibit 2 

Are cells compatible (before validation)? 

Jl lL J2/L J4/L J5/L JIlM J2/M J3/M J4/M J51M JI/S J2/S J3/S J41S J5/S 
J1/L Yes Yes No No Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  
J2/L Yes Yes No No / / / / / /  No / / / / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  / / / / / /  / / / / / /  
J4/L No No Yes Yes / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  
JS/L No No Yes Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes 
JIlM Yes / / / / / /  / / / / / /  / / / / / /  Yes No No No No Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  
J2/M / / / / / /  No / / / / / /  / / / / / /  No Yes No No No / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  
J3/M / / / / / /  / / / / / /  / / / / / /  / / / / / /  No No Yes No No / / / / / /  / / / / / /  No / / / / / /  / / / / / /  
iJ4/M / / / / / /  / / / / / /  Yes / / / / / /  No No No Yes Yes / / / / / /  / / / / / /  / / / / / /  No / / / / / /  
J51M / / / / / /  / / / / / /  / / / / / /  Yes No No No Yes lYes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes 

i 

JIlS Yes / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  / / / / / /  Yes Yes No No No 
J21S////// No / / / / / /  / / / / / /  / / / / / /  Yes / / / / / /  / / / / / /  / / / / / /  Yes Yes No No Yes 
J31S / / / / / /  / / / I / /  I / I / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  / / / / / /  No No Yes No No 
J4/S / / / / / /  / / / / / /  No / / / / / /  / / / / / /  / / / / / /  / / / / / /  No / / / / / /  No No No Yes No 
JS/S I I I I I I  I I I I I I  III/11 Yes I I I I I I  I I I I I I  I I I I I I  I I I I I I  Yes No Yes No No Yes 
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Jl lL 
Jl lL 
J2/L 451 
J4/L 18 
Jw 39 
JIlM 991 
J2/M /11/11 
J3/M l u l l /  
J4/M / / / / / /  
JS/M / / / / / /  
JIlS 904 
J2/S / / / / / /  
J3/S / / / / / /  
J4/S / / / / / /  
J5/S / / / / / /  

Jl lL 
JI/L Yes 
J2JL No 
J41L No 
JS/L No 
JIlM Yes 
J2/M I I / / / I  
J3/M I I I I I I  
J4/M I I I I I I  
J5/M I I I I I I  
JIlS Yes 
J21S I I I I I I  
J31S U/ l l l  
J4/S I I I I I I  
J5/S I I I I I I  

Exhibit 3 

Number of times Ro falls in (-1.65,1.65) interval 

J2/L J4/L J51L JIlM J21M J31M J4/M Jw 
451 18 39 991 I I I I I I  I I I I I I  I I I I I I  I I I I I I  

0 18 / / / / / /  38 / / / / / /  / / / / / /  / / / / / /  
0 824 / / / / I /  I / / / / /  / / / / / /  J 966 / / i l l /  
18 824 / / / / / /  / / / / / I  / / / I / /  l / i l l /  791 

/ I / / / I  / I / / / /  / / / / / /  189 1 4 10 
38 1/1111 I I I I I I  189 170 642 760 

I / I / / /  /111/I / I / / I /  1 170 r 583 449 
I I I I I I  966 I I I I I I  4 642 583 904 
I I I I I I  I I I I I I  791 10 760 449 904 
I I I I I I  I I I I I I  I I I I I I  905 ' I I I I I I  I I I I I I  U/ l l l  I I I I I I  
393 I I I I I I  I I I I I I  I I I I I I  999 I I I I I I  I I I I I I  I I I I I I  
/H i l l  I / f i l l  I / /HI I I I I I I  I I I I I I  10 I I I I I I  i / I / l l l  
I I I I I I  129 I I I I I I  I I I I I I  I I I I I I  I I I I I I  75 I I I I I I  
I I I I I I  I I I I I I  861 I I I I I I  I I I I I I  I I I I I I  I I I I I I  932 

JI/S J2/S J3/S J4/S JSIS 
9 0 4  I I I I I I  I I I I I I  I I I I I I  I I I I I I  
/ / / / / /  393 / / / / / /  / / / / / /  / / / / / /  
/ / / / / /  / / / / / /  / / / / / /  129 / / / / / /  
/ / / / / /  / / / / / /  / / / / / /  / / / / / /  861 
905 / / I / / /  /I/111 I//111 II/111 
/ / / / / /  999 / / I / / /  / / / / / /  I / / / / /  
I I I I I I  111111 10 I I I I I I  I I I I I1 
I I I I I I  I I I I I I  I I I I I I  75 I I I I I I  
I I I I I I  I I I I I I  I I I I I I  I I I I I I  932 

809 0 0 413 
809 1 127 976 
0 1 315 20 
0 127 315 455 

413 976 20 455 

Exhibit 4 

Are cells compatible (after validation)? 
Cut offpoint 875 

~ i E ~ i ~ l ' ~ i l l l l l i i l l l l l i i l l l l l i l l l l l l i W ~ l l l l l l a | l l l l l J l l l l l l J ~  
~I~P'JlI~PIIIIIIIAI~+t'~II/IIIIIIIIIIIIIIIIIIIIIII//IIPP'BIIIIIIIII/IIIII~ 
~~wm/xwm/xm'~lWm/Bml/,wmiJw////n+m= m 
~j~j~j~)~j~~p1~r~r~j~r~m~ 

~w////mwm/mm~rnz,vr~:~m ,~ rnzm~razm~razw////n'~lW////H/////J~ 
~wm/u//mmm~ram~raa,=.~'~m:~m~raaw////jwm/im~rnz|lm/j ~ 
jli~lrmll..+m.+~.-'em.=',.m,,,,,,,,m,,,..+m.lE 

~ m ~ l l l l l / J Z w / / / / / i l l l / l l l l / m / i z v + ~ l - , + r n m + r n z m + r n a ~  
~ l l l l l l l l l l l l l | l l l l l l i l ' ~ l l l l l l l l l l l l l l l l l l l l l l + ~ h ' ~ i + ~ l + ~  
~ l l l l l l l l l l l l l l l l l l l l l l l l l l / i l + ~ l l l l l l l l l l l l l l l + ~ i + ~ h ' ~ l + ~  
~L~mziwm/~w//mawm//xm~razw///i/xa=,mzm~mzi:mzz.~ ~ 
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Exhibit 5 

Classes defined by each cell 

!Cells Classes 
JIIL (JI/L, JI/M, J1/S} 
J2JL {J2/L} 
J4/L {J4/L, J4/M} 
J51L {J5/L} 
JI/M {J1/M, J1/L, J1/S} 
J2/M {J2/M, J2S} 
J31M {J3/M} 
J41M {J4/M, J4/L, J5M} 
J51M {J5/M, J4/M, J5/S} 
JIIS {JI/S, J1/L, J1/M} 
J2/S {J2/S, J2/M, J5/S} 
J315 {J3/S} 
J4/S {J41S} 
J51S {J5/S, J2/S, J5/M} 

Exhibit 6 

Credibility weights 

Cells Classes 
J1/L {JI/L .606, JI/M.357, Jl/S.037 
J2/L {J2/L, 1.00} 
J41L {J4/L .278, J4/M .722} 
JSIL {J5/L, 1.000} 
JIIM {JI/M .357, JI/L .606, JI/S .037} 
!J2/M {J2/M .803, J2S .197} 
J31M (J3/M, 1.000} 
J41M {J4/M .381, J4/L .147, J5 i  .472} 
J51M {J5/M .517, J4/M .417, J5/S .065} 
Jl/S {JI/S .037, J1/L .606, J1/M.357} 
.J2/S {J2/S .168, J2/M .683, J5/S .150} 
J31S {J3/S, 1.000} 
J4/$ {J4/S, 1.000} 
J5/S {J5/S .112, J2/S .112, J5/M .789} 
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P a i d  L o s s  D e v e l o p m e n t  o f  F i x e d  S i z e  C l a i m s  t 

Dan Corro 
National Council on C o i t i o n  Insurance, Inc. 

December, 2002 

Abstract: This paper considers a simple context in which we can quantify the impact of the 
payment schedule on paid loss development. To isolate the effect of the payment schedule, we 
restrict to the special case when all claims have the same incurred loss. We consider three 
simple periodic payment schedules: (1) a uniform payment schedule (2) an escalated (discounted) 
payment schedule and (3) a schedule that allows a single, fixedproportional adjustment to the 
payment amount. The paper defines a mathematical model for paid loss development and 
presents numeric examples to illustrate the sensitivity of paid loss development to the different 
schedules. 

It is apparent that the payment schedule influences paid loss development. In general a 
faster (slower) schedule will make losses develop faster (slower). While the direct nature 
of that relationship is apparent, it is not so apparent how to quantify it. This paper 
quantifies it in some very particular cases. 

Let S(t) denote a survival function on the fme  interval (0,b) .  2 Weregard  S ( t ) a s a  

distribution of  closure times and let F ( t )  = 1 - S(t) be the corresponding cumulative 

distribution function [CDF]. In effect, all claims are asstaned to close on or before time b. 

We are interested in a related CDF, which we denote byF( t )  to emphasize its relation 

with F ( t ) ,  which models the paid loss development as a function of time. More 

precisely, /3(0 is the proportion of  total loss paid by time t, i.e. the proportion paid out 

dufing(0,t) (without any discount adjustmer~). F ( t )  is the reciprocal of  the paid to 

ultimate loss development factor and we will refer to i f ( t )  as the paid loss development 

divisor [PLDD]. 3 

In this note we make two basic assumptions on the size and the payment pattern of  each 
claim: 

�9 The same (undiscounted) amount is paid out on all claims. 

�9 Payments are made conlSnuously from a common the firne ofloss, t = 0  toclaim 
closure. 

i The author expresses his thanks to Greg Engl, also of NCCI, who reviewed many versions of this paper, 
pointed out some serious errors, and made numerous suggestions for improvements. 
2 We are most interested in the case when b < ~o is finite, although most of what we say applies to the 
case b = oo. We are, however, admittedly rather cavalier about making whatever assumptions are needed 
to assure that all improper integrals exist and are finite. 
3 Gillam and Couret [4] consider the reciprocal of the loss development factor and call it the loss 
development divisor. 
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We consider first the "flat" case when all payments are of  the same amount. We then 
weaken that assumption in a couple ways: first we allow the payments to vary at a 
constant rate of  inflation---this is called a ease of"COLA". Second we allow a single 
fixed proportional change in the payment amount, applicable during the unit of time just 
prior to claim closure--called a case of "Step". Some simple numeric examples are 
followed through the three cases. We begin the discussion with a general model for paid 
loss development. 

Notation and Setup 

With S, F , /~  and b as above, we also let f ( t )  = d F  be the probability density function 
dt 

[PDF], h(t) = f (t) the hazard rate function, C V  = cr the coefficient of variation, and T 
S(t)  Iz 

the random variable that gives the "time" of closure t. We use those same letter symbols 
and "transparent" notation to specify the relationship between these functions. For 

example h',, (t) denotes the hazard rate function of the PLDD Fa (t) that corresponds to the 

claim survival functionSa (t) and T~ the random variable with CDF F~ (t). 

In each of the eases we consider, the complete payment pattern of a claim is completely 
determined by the claim duration. So we make the assumption that for any time t, 0<t<b, 
all claims with duration t have the same pre,-determined and differentiable payment 
pattern. We can capture this mathematically by defining the function 

G(x,t)=amount paid through time t on a claim, conditional upon claim duraficm=x. 

Then define 

g(x,t)---parfial derivative of G(x,t) with respect to t. 

We may interpret g(x,t) as the rate of  payment at time t on any claim of duration x. Both 
G(x,t) and g(x,t) are defined for x,t in (0,b). Note that for t>x we have g(x,t) = 0 and 
G(x,x) = G(x,t) = G(x,b) = the ultimate inCtLrred on any claim of duration x. In this paper 
we only consider the case when all claims have the same ultimate incurred cost. So 
without any w.al loss of  generality we further make the assumption tlroughout the rest of  
this paper that G(x, b) = 1 for all x (see [ 1 ] for a consideration of the more general case). 

As noted, we refer to the case when the rate of  payment g(x,t) does not vary with time t as 
the "flat case". The "COLA case" means the rate corresponds to a fixed rate of inflation 
or discount and the "step case" provides for a one-time change in the rate g(x,t)---the 
precise meaning of those assumptions provided in their respective sections of the paper. 
We consider the cumulative payment for such a claim disln]mtion in which all claims 
occur at time t=0 and conforming to these assumptions (sort of  an accident instant, as 
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opposed to an accident year). The only "stochastic" ingredient in this model is claim 
duration, for which the ffastribuf~onF(t) is specified. Under these asstm~ptions, F(t) 
determines not just closures but all payments. There is a well-defined expected 
ctmaulative paid loss P(t) at any time t, from ~ to ultimate paid at t=b. Indeed, we 
have: 

t b  b t b 

t b 

= f f ( x ) G ( x , t ) d x  + f f ( x )  G(x,t)dx 
0 t 

t b 

b 

= F(t)  + f f ( x ) G ( x , t ) d x  
t 

since G(x,t ) = 1 for t > x. In par~cular, the expected ulfL'nate loss per claim is normalized 
�9 by  our  a s s ~ n N o n s :  

b 

P(b ) = J f (x)ax = F(b)  = 1 
o 

The (expec t )  ultimate paid loss development factor from time t is: 

~.(t) = P(b) = 

P(t) e( t )  

and the inverse provides the PLDD on (0,b) that is the focus of this study: 
b 

(*) F( t )  = P(t)  = F(t)  + J f (x)G(x,t)dx 
t 

For the PDF of the PLDD, we have, by the fundamental theorem of calculus: 
d/'tb ~ b b 

<..) h,>=-z, lf 
--to o ] o t 

since g(x,t) = 0 for t>x. 
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Findings-Flat Case 

In this section we assume a constant payment pattern. With the above notation, the 
following ixogxmition documents some basic relationships between the duration density 
and the PLDD density'. 

Proposition 1: Assume the "flat case" holds, then for t r (O,b ) 

i) F ( t ) = F ( t ) + t $ ,  b f ( f ) d x  = t ( l +  i b ~ ]  

il) )7(t) = ~ f(-~dx= 1 + f F(.~2) x_ F(,)= S(t)- S(t)= F( t ) -  F(t) 
.v x O t x t t t 

s(t) - t  
S(t) �9 ) ~(t)= 

t 

iv) e ( ~ ) =  E(r+) k=1,2 .... 
k+l  

Proof" By our assumptions on the payment pattern, and using the above notation, we 
have: 

G(x,t)= O<t<x 
x<t 

From that we eonflt-m that: 

g(x,t)= O<t<_x 

x<t 

does not vary with t. The above equations (*) (**) show that in this fiat case: 

b ~ b ~ 
?(t) = F(t) + f f (x)G(x,t)dx = F(t) + t f  f ) dx 

t 

Integration by parts gives: 
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f ( . = ~  m hi/ 

x j ,  b t "~ x ~ 
and we find tha~ 

,~(,)=,,.>+,I' :~)~ 
1 F ( t )  1 b F ( x )  

proving (i) and the lust two ext~a~m in (ii). For the r~t of(ii) and (iii) we obs~e  ~a t  

S( t )  = 1 - F ( t )  = i -  F ( t ) - t ~  b f (X)dx  = S ( t ) - q ( t ) ,  
x 

Integration by parts also gives (c.f [2]): 

E(T k ) = k~:t i -IS( t)dt  

And applying t~s toT and T:  

E(T') = k S~ t'='S(t)d, = k ~:ti-iS(t)- ti f (t)dt = E(Ti)- kE(7*) 

and (iv) holds. For (v). subslitute l- .7 forF in (hS: 

S . .  ~_.. f l  r F(t)]  / ' 1  @ l - S ( x ) .  l - S ( t ) ]  

"'-~"='lYJ,  ;,Ze~--r-J=~,~+J, : -7  ~ -  , J 
- t(l +r-l~ - ~ -  I-S'(t) ] = ( - ~ + - ~ )  
- t  ~ LT~ 

completes lhe proofofProposilion 1. 
Nowwe clearly have thatthe PDF f ( t ) i s  decnmsing, indeed d f = _ f ( t )  <0 mad so the 

dt t 
mode ofthe PLDD~(t) isO. Fromthe foUowing Corolla,  we see ~Sat Uhe shiit 

from F(  t ) to/~(t) shrinks ~ mean and increases the coefficient of vari~on, but li~ effect 

onthe vafiancedepends onvalue ofCV (~  >or r < l ~ ) .  
z y z  
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Corollary 1.1: 

Or7 = U-- 
2 

a 2 + #  z a2(1  + 1 "~ 
i~'r=T ~-=Tt, 4---~) 

~.~ #~,=.W_cv~ + l_ 
V 3  3 

Proof" The proof is clear from the general observation that cr 2 +~2 _E(T2)and 
Proposition 1 (iv). 

In the WC work that motivated this, pension cases emerge as those that take longer to 
close and it is nalmal to t~y aod use that as a way to isolate them. This leads us to 
consider what happens whe~ there is a dehy period to closure that applies to all Imasion 
claims, i.e. when f ( t ) = 0  for t e  (0,a) wh~teO<a<b.  Tl~isreaffdyaccomnmdatod, 
as indicated in: 

Corollm-y 1.2: Suppose f (t) = 0 for  t r (O,a) whereO < a < b then 

~'(t)  = t F ( a )  f o r  t r  (O,a). 
a 

Proof" Under these assumptions, Proposition 1 (i) implies that. 

F (a) = F (a) + a fb f (X) dx = a f~ f (X) dx 
Ga x ~a x 

but then for t e (0,a) : 

x . .  x 

Probably the rncst rueful family of distrim~ons defined on a finite interval is the class of 
Beta demities on (0,1). Recall that the Beta distribution is a two-parameter, a ,  f l ,  
d i s l r i ~ n  that is usually defined in ~mns of its PDF: 

f ( a , # ; x ) =  x*'~O-x)Pq = r ( a + # )  x~_~(l_x)#_, x~ (0J) ,a>0,#  >0 
B(a, #) r(a)ro) 

where B and r denote the usual Beta and Gamma functions (c.f. [1], [3]). The CDF of the Beta 
density is: 

B(~,#;t) = ~  s xa-'(l- x) #~ dx te (O,l),a >0,# >0 

and we have: 
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Corol lary 1.3: For  tt > 1, fl > 0 let f ( t ) = f ( a , [3; t ), F ( t ) = B ( ct , [3; t) be the P D F and 

CD F  o f  a beta density on (0,1), as jus t  defined, then: 

f(t)= a+ f1-1 (1-B(t~ - 1,fl;t)) 
( x - 1  

F ( t ) = B ( o t ,  f l ; t )=B(Ot , f l ; t )4  (Ot + f l - l ) t  ( 1 - B ( O t - l , f l ; t ) )  0 < t <  1. 
Or-1 

Proof" The proof is a straightforward application of  Proposition 1. For the PDF: 

7<,): rI<-~  : (  ~<" + ~) ]rx~ 
-, x I,r(a)r([3) ], ~ "~ 

: r r (a  + ~) 1~ x(=_,)_, o -  x)'- '~ 
l, r(a)r(f l)  y 

=r r<a+9) ]'r(a-1)r<fl) ~x<:- '"o-x) '- 'a,]  
I r(a)r(fl) ), r ( a -  l+ fl) ) 

= r  r(a  + fl) y r ( a  - 1)r(fl)]l_ B(a_i &t)) 
I r(a)r(fl),( r ( a -  1+ O) ~ . . . . . .  

_ r(.+a) F(a-:)(l_B(a_l,fl;t))=a+[3-1(l_B(a_l, fl;t)) 
F ( a  + fl - 1) l(Ot) Ot - 1 

And for the CDF, Proposition I gives: 

,~(t)-- F(,) +,7(,)-- s<., ~,,), (" -~1)  O- B(.-1, ~;t)) 

as claimed. 

We next consider some more specific examples: 

h - t  
Example 1: Consider the case when S(t ) = =_~..z, b < ,% is a DeMoivre survival curve. In 

this case (because we will be returning to these examples by number, we specify them 
with a subscript): 

Fl(b;t  ) = F(t )  = -~ f ( t )  = ~ b t  ~,b)) _ _ 
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Example 2: It is easy to generalize the first example in a couple of  ways. Let 
0 < a < b < ,,* where we let a represent a potentially earlier time at which all claims close 
and pick r > 0 .  Then consider the case when claim closure has the CDF: 

F2(cp,a,b; t) = F(t) = t < a 
a<t<b 

When ~p = 1, we readily see from Example 1 that 

It (1-~(t)) ?(t) = a a t < a 
a <t <b  

When ~p #1,  we let the reader verify that: 

_ [ 1 
F(t)=l~_lLal ~a) } t<a 

a<-t<-b 
Example 3: Consider the case when fewer claims close over time according to a linear 
pattern: 

[ 2 ( a - t )  

f3(t) = l ao 2 t~a 
a<t<-b<~ 

We leave to the reader the slraightforward verification that -/'3 (t) is indeed a P DF on[ O, b] 
and that: 

[-' ( 2 - - '  ,_<a 
Fa(a,b;t)=la(1 a )  a<t<_b 

Then Proposition I implies: 

' ( t 2 #  ,<_o 

While we are primarily interested in the case of  finite support, it may be useful to 
comider a couple o f  examples when b = oo. 

Example 4: Consider the case of  a single parameter Pareto (c.f. [6], p 584): 

( 0 ]  = ae= f o r t > e .  F4(a,O;t) = F(t) = 1-  f4(a,O;t)= f ( t ) =  t~+, 

It is natumlto extendthe definition ofthe PDF to assign f ( t )=0  for t e  (0,0]. For 
t _> 0 ,  Proposition 1 gives: 
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F(t) = F(t)+tSt-  f (X)dx 
X 

I x + l  

= l -  + , f "  ~-LLtx = 1 -  
.It X a+2 

+IxO at 
(Ix + l ) t  a+! 

And by Corollary 1.2 we have: 

[ I x + l  ' ' 

O<t<O 

! 

O <_ t, O =O(a + l)-'ff 

For the final example, we recall the following integration formula (c.f. [6] page 570): 

El(t ) = r e----~tt =- -~_  hi(t)_ ~ '  (-1)"t~ 
~, u ~ n.  n! 

Where ? = 0.577215... is Euler's constant. 

Example 5: Comider the case when claim closures follow an exponential density, so here 
again b = oo. In this ease, we have: 

_L 
F s (0; t) = F(t) = 1 - e o 

_t 
e o 

L (0; t )  = Y(0  = -  
o 

Then from Proposition 1 we have: 

F , - ~  ~ - e ~  l f..e-}dx l f-e-~du EI[O) 
f,(O;t)= f ( t )= = =-OJt T T = - O ~ " u  - = 0 

0 

- ( t )( ,  t ~'~(O;t)=F(t)=F(t)+~(t) " - l - e ~  + g i-~ 
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Findings-COLA Case 

In this section we replace the assumption of a flat payment rate with the assumption that 
payments are subject to a constant proportional adjustment equal to 1 + 6 per unit of time. 
Payments are still assumed to be made continuously over the interval from the time of 
toss, t = 0,  to claim closure. Since we have considered the case 6 = 0 in the previous 
section, we will assume throughout this section that 6 ~ 0. It is more convenient to 
express findings in terms of  the force of  interest ~, = In( 1 + 6 ) # 0 (c.f. [5]). 

Under these "COLA" case assumptions, it is again straightforward--just a bit messier--to 

determine the PLDD, again denoted if( t ) ,  on the time interval (0,b).  The basic result is: 

Proposition 2: Assume the "'COLA case" holds, then for  t e (O,b ) 

i) iF(t) = F( t )+ (ert - "Wb f ( x )  . 

l]j, e ~ _ l a x  

y(S(t)-S(t))  ~ o b  f ( x )  
h) f ( t )  = ~e~'/ dx 

" e :a - 1 1 - e -y 

fn) "h(t)= ~ S(t)  ) 
l_e-~  

Proof." Observe that for any claim with closure atx, the amount paid to time t _< x is in 
constant proportion to the continuous annuity (c.f. [5]): 

( l + 6 ) W d w  = e m d w  - e v - 1  
0 0 

By our assumptions on the payment pattern, then, for any claim with closure at x, we 
have: 

r 

G ( x , t )  = le~ - 1  o < t < x 

l er~l-  I x < t 

We again employ the earlier formula (*) fo r i ( t )  : 

if(t) = P ( t ) -  F(t)+ i f(x)G(x't)dx" F(t)+ (e' - l l r  
'dr e rx _ 1 

t 

And for the PDF's we have: 
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and by (**): 

YeW O < _ t < x  
g ( x , t )  = l er~__ 1 

t o x < t  

f (t) = b g ( x , t ) f  (x)dx --7e~ ~ f(-~2-dx 
,t e ~ _ 1 

The second equation in (ii) now follows fi'om: 

~ (t) = l_  ff (t) = l _ F (t) _ (ert -t)Jt'~s ~f (x) I ax = S(t) _ l  ~ l ~  (t). 
\ - - /  

Finally, we have: 

.~(t)= f ( t )  = ( S ( t ) - S ( t ' I ~ )  Y(S-(~f). - l l  

S(t)  S( t)  1 -  e -~ 

This completes the proof of Proposition 2. 

Corollary2.1: /~-/t Mr(-7)-I  
7 

of the PLDD 

where M~ (z) is the moment generatingfunction 

Proof" We have: 

e ~ - 1 ~ - 1 + e-..______~ ~ f ( t )  S ( t ) - S ( t ) = - ( 7 / f ( t  ) Y 

and so: 

s 0 b ( - ~ / ~ f ( t ) d t  = S b e - ~ f ( t ) d t - - I  -- P = [?,u S ( t )  - s ( t ) a t  
Y 

and the result follows. 

In the COLA case, we may regard the PLDD F(t) =/~(y,t) as a function of y, and we 
have: 

4 3 4  



~= ~(F(,)+ (,'-1)r~ ~=(,, _]) a_( r_t_~ ~+fr ~ ~ a__(,, _,) 
o~t L "~ e - 1  ) ayL.~ e)~-I ) L J ' e ) ~ - I  Jay 

=(e : ' - l ] / f f  a ( f ( x ) .  "~ l+ te , (~b  ~ I=  O_e,  ) ~ f ( x ) d x  +te"( r ~ 
k ~  j )  k e -1 ,] (e)~-l) ~.l, e))_l j 

_ ~ xe~ - t ~  + ( t - x ) ~  "~'§ 
- j ,  (e), _i)= f(x)dx. 

This can be used to fccmally prove what is intuitively rather evident, namely that 
/ ~ ( t ) = F ( y , t ) i s a ~ f t m c t i o n o f  y. Indee~ forany a >0:  

e a ~ 2  
ffi l + a + - - + . . . + - - + . . . > l + a  

2 n! 

Tlma for all x_>t>0: 

- . .  ' 

" ' " + " - ' " - ' "  : ' ( ' - t+  .e" * ) . . * ( 1 - . * o  

Fix t and cxmsider the function: 

h(x)= xe)~-te~ +(t -x)e  r('+*) x >_t. 

Observe that h(x) has the same sign as the integrand in the expression for a t ' .  But we 
ay 

have: 
dh ~== yx+ I +~r ~ - ~ e  )' - e  )' <0 

h(t)=O=)h(x)<O for x>t  

and it follows that ~--~-~ N 0 .  
ay 

Observe that: 
b b 

F(t)  >- F(t)  =) S (t) < S(t)  =) ~ = ~ S (t)dt < ~ S(t)dt = I~ 
o o 

with equality only when/~ = 0. Combining these observations with the flat ease, we 
have: 
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Corollary 2.2: Assume It > 0 

It < / ~ < / x ~  7 > 0  
2 

~=~ ~ r = o  
2 

0 < / ~ < &  r 
2 

b 
Proof." Indeed, consider the functiong (7)  = /~  = ~ S ( t )d t .  The above shows that 

0 

/~(0= F(y,t) is  a sNctlydecreasing funcfionof y when ~ > 0. But then S = I - . P  isa  

strictly increasing function of 7.  It follows that g (y)  is monotonic increasing when 

# > 0. But we know from the fiat case that g (0)  = ~--- and Corollary 2.2 follows. 
2 

Note that as y--~ ~ the PLDD distribution reflects payments more concentrated at time of 

closure, making that distribution approximate the distribution of closures, and we would 

expect ~n t7 = # .  On the other hand, as y -~ --~ the PLDD F (t) reflects payments 
t-+- 

becoming concentrated at time 0, suggesting that lira /~ = 0. More formally, we have: 

Corollary 2.3: ~a /7. = # and ~n ~ = O. 

Proof." First assume b < oo . Notice that for 0<t<x: 

e ~ 1 �9 n e r '  = lkn e r(t-x) �9 n G ( x , t ) = ~ n  - -  = = 0 
r-~- r-+- e r~ - 1 r-.| e rx t - . -  

Now S ( t )  is confinuous on (0,b) and with S ( 0 ) =  1, S ( b )  = 0 it follows that S ( t )  is 
unffonnly confirmous on the finite interval [0,b]. But then by Proposition 2 (i): 

t >  0 = ~  l~n i f ( t ) =  F ( t ) = ~  ~ S ( t ) =  S ( t )  

r f (  ' ,+. i =~ r-~-IJm f f  :~r_+.doS( t )d t  : J o ~ l  S ( t )  f "" : o S < t ) d t  :1~ 

Proposition 2 (i) also implies that 

- 1 ) [  t > 0 ~  lin F ( t ) = F ( t ) +  r~n (e ~ b f ( x )  
r -+ ~ r -. ~ It e r~ - 1  

,S: x s = F ( t ) + r t ~ n  ( -1  = F ( t ) +  b f ( x ) d x  =1 .  

Whence: 

7 ~  Y'-~ 0 0 0 
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For the case b = **, consider the"restricfion" ofthe densityJ~t) to fa (t)  = f ( t )  on 
F ( a )  

the finite interval [0,a]. Note that Proposition 2 (i) implies that .~o (t)  = ~ (t) which in 
r(a) 

turn implies that lkn  f ,  (t) = 7 ( t ) .  From the fiinte case we have for any a>O: 

~a  /7o = Ito 

Notice that: 

~-n l.t,, = xfa(x)dx = .,-ran o x e(a) = rrn._,. F(a,,,), ~ 

= rra l ~n ! x f  ( 7 x)dx = 1 x f  (x)dx =It 
o-'" F ( a )  o 

and by the same argument: 

a ~  

Consider the mean of the restriction g2 (a) = It. as defining a fimcfion of a. It is 

intuitively clear that g2(a) is non-decreasing (adding larger observations cannot lower 
the mean); to verify this formally, note that 

o ~ t  a) r ta )  o 
( 

dg 2 = 1 af(a)+ ixf(x)dx(_l)F(a)_2 f (a)  = f(a)la 
da F(a) a o F ( a ) [  

t 

Ot f (x)dx 
= f ( a )  a o fo r somea~  [0,a] 

F(a)[ F(a) 

f ( a )  "a "> O. = F(a) t -or)_ 

a 

x f  ( x)ax 

F(a) 

Define the function g(?', a) =/~o and g l (Y) = ~ g (Y, a) =/~.  As in the proof of 

Corollary 2.2, g(7,a) is a n o n - ~ i n g  function of 7 and from we have just noted 
g(~,, a) is also a non-decreasing function of a: 
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~ >0 gg _> 0. 
~ a  

Now we clearly have g0 ' , a )  < ~ for all y and a. So, by way of contradiction, suppose 

I,t> ha !'a=ha g,(y) = ha ha g(y,a). That would implythat there is e > 0such that 

g(y,a) < l l - ~  forall 7 anda. Butthen 

I I ~ lhn #,  = # ~ 3a o such that # - / z ,  < ~- 

and by the finite ease: 

~nn~g(y,ao)=~.~o, =Poo :=~3yo suchthat I ~ r o , O o ) - . . l < -  ~ 
- 4 

But then we have: 

I~vo.~o)-~1--I~o.~o)- ~.o § ~,  -~1 ~ l~Vo.ao)-~o.1+ I~.o-~1 <-~ § -- ~ 4 4 ~ 
E 

:=~ g(yo,ao) > # - ~ -  

This contra~clion shows that hag(7 )=~ .  Finally, suplx~that ha  g ( 7 ) = a > 0 .  
7--,~ 7 - - ~  

This implies that: 

3yo~-chthat g ( y ) > ~  for all :/ > yo 
2 

and It= "~S(t)dt =~ 3a o such that "~ S(,)d, < r 
6 

0 ao 

Also 

~ =O=a~,,suehthat [ - ~ )  ~ a  ~ foraUy>Yo 

,or ,o [6,ao] 

Selecting y > Max(y0,y, ),  we find that: 
a 

Or< g(y)=i~(t)d t =6 o ~ - ~S(t)dt + ]S(t)dt + ~S(t)dt 
2 0 0 ~ ao 

6 

<_~___+ a fa o_~)+'S(t)dt<Ot+Ot+Ot= Ot 
6 6ao~ " 6 )  ! 6 6 6 2 

This contradiction shows that ha  g(y) = 0. This completes the proof of Corollary 2.3. 
g " * ~  
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Example 1 (COLA case): Recall that here S( t) is the DeMoivre sm'vival curve 

Fi (t) = t ,  ft  (t) =71 ,b < ** and so Proposition 2 gives: 
O b 

Fj ( t )=F~( t )+(er ' - l ) [  * f l ( x ) d x =  t e ~ - I  rb dx 
.It e ~, - 1  b ' + ' ~ ' ~ J t  e ~ ' _ l  ' 

Notice that setting 

g(x )=ha(~]=ha(e r ,_ l )_yx  dg= ye" , _ y e ' - T ( e T ' - , ) _  7 
dx e ~ -1 - ? en - I e ~ -1 

and we have the formula: 
f f l ( t ) = t + e ~ - - l f b  rdx t e r l -  

=--+ i (g(b)- g(t)) 
b ~b J, e r~- I  b 7b 

t er~ - 1  ( ( erb - 1 "~ 

Example 2 (COLA case): Recall that 

F2( q~,a,b; t) = F(t) = t <- a 
a<t<b 

then Fe(t) > F2(t)= l for t > a and for t < a : 

ff2(t , F 2 , t , + ( e  , ~  ( t__] '  cp(er~- 1) f~  X ' - I  d~ " 
= - 1)5, e r~ _ l d X  = ~ a )  + a r J' e ~ - 1 

Example 3 (COLA case): Recall that 
[2(a - t )  

f3(t) = I aO 2 t<a 
a<t<b<** 

[t(2a - t) 
F3(a,b;t)= l a~ t<a 

a<t<b 

then F3 (t) _> F3 (t ) =1 for t~a and for t<a: 

f f3(t)=F3(t)+(e" )f* f3(x)  x 2 (e r t -1 )eo  a - x  - 1 ,  ~ = F 3 ( t ) + ~ /  --------------~x 
.It e ~, - 1  a J' e :a - 1  

= ~ T ( t ( 2 a _ t )  + 2a(e  ~ -..._...~1 )fo Td x _ 2( e ,  -..._..~1 ~fo y_Z~...dx I 
[ 7 y ,  e ~ - I  [ 7 2 )Jr er~_l ) 
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The function dilog (x) = f In(t) dt is useful for evaluating F3 (t) because of the integral 

form~: ~--;~-:d, X e _ l  = -dilog ~e~)- -T  x~ 

Combining this formula with what was observed in Example I(COLA), it can be verified 
that: 

2 ( e V ' - l ~ f "  ydx ~(er'-l~fo ~__~..4x] ff3(t)=-~-1t(2a-t)+ a L T ~ J  t e - ' ~ - l - z / T J J t  e r~_ l  ) 

I e ~ - 1 e TM - 1 i] = I._~ t(2a-t)+2al"-~haIe--'ff~-ll-Y(a-t' I 

a2 / + 2 ( ~ d i l o g  (er~ ( e V ) + ~ - ( a  2 - t  2 ) J 
The following table provides values ofthc taft factor ~. =/~3 (N) -j at various values of 

t~, N and a; it provides some quantification of the sensitivity of the tail factor to inflation: 

!~ ~ ~ i ' i  �84 ~ ~:'~ii ........... ~ ...... 

-0.05 10 40 
-0.05 20 40 
-0.05 30 40 

0 10 40 
0 20 40 
0 30 40 

+0.05 10 40 
+0.05 20 40 
+0.05 30 40 

1.222 
1.032 
1.002 
1.323 
1.06 

1.006 
1.431 
1.094 
1.011 

Findings-Step Case 

In this section we replace the assumption of a flat payment pattern with the assumption 
that payments are at a constant rate fl during the last unit of time (i.e. the interval (x- 1 ,x) 
prior to closure at x), and otherwise at the constant ratec~. We also require that the 
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ratiop = f l  isthesame for all clairm. Payments are still asstened to be made 
a 

continuously ove~ the interval from the time of loss, t = 0,  to claim closure. Obviously, 
the"flatease"isjustthespeeialcasea=,8 ofthis "step ease". Weasstmaeb>l inthis 

step case section, as otherwise this would reduce to the flat case. 

Under these assumptions, it is again straightforward---but messier still--to determine the 

PLDD F(t) , on the time interval (0,b). Indeed, byour asstmapfions on the payment 

patte~ for any claim with closure at x < 1, payments are at the rate fl = fl~ = 1 and the 
x 

payment pattern implies 
f 

G(x, t )=l  t t<x  

t" x < t  

while for x > 1 : 

x-i x 
1: !<,:+ I t l .  : , ,=(x- l)+p<,.  = , ~ . . _ ,  : -  

and we find that:. 

x + p - I  

ot,t  x + p - I  

G ( x , t ) =  ot ( x - 1 ) + f l , ( t - x + l ) = l - p  x - t  x - l < t < x  

1 x < t  

A straightforward verification, again using equation (*) and the fact thatf(x)=O for x>b, 
yields: 

{ F(t+l)+~'(t-x)f(X)dx+p~,+,(t-x)f(X)dx+tfb f(x) dx 
~ x x+p  -1 J'+lx+p -1 
F(t) 

F(t+l)+p~, ' i ( t-x)f(X)dx+t~[, f(x) dx 
x + p - 1  x + p - 1  

OH 

t_<l 

l_<t 
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(t- x)f (x) , _ f,+, (t- x)f(x) . . . .  fb f(x) if(t) = F(t + l ) + ~ ( t ) ~  I dx - r p /  - - - -  u..* "1-,, dx 
x ~M~,0.t) X + p - - I  ~ '+~X+p--1  

where 6 is the characteristic function of the interval (0,1 ), i.e. &(t) = 1 on the interval (0,1 ) 

and is 0 elsewhere. Note that the functionif(t ) is continuous, even though 6 is not. Note 

too that the last integral in the formula vanishes when t>b- 1 and in that case the upper 
limit of  the middle integral can be shifted down to b---this observation is helpful when 
the functional form of J(t) only behaves on (0,b). 

In the step case, we may regard the PLDD if(t) = i ( p , t  ) as a function of p and we have: 

OF 3 (F(t+l)+6(t)f,f(X)dx+pr+, (t-x)f(X)dx+t~" f(x) dx) ~p=~p~ ~t X aM~,O.t) x+p--I .7+IX+p_I 
= p[ '+'  _3____(l~t-x)f(x)dx+[ TM (~Z-x)f(X)dx+tfb+_~-:~--(1]f(x)dx aMo~O,',dp~,x+p--lf JM~,,,~, x+p-1 * ldp(x+p-l] 

=Iil,,.o(Pln(x+p-l)+x+~_l)t-x)f(x)dx+ts dx. 

As the following examples illustrate, the integral form for .P(t) may be preferable to 
some closed form expressions, especially when there is access to decent numerical 

integration software. In the examples, we set t = Max(1,t) = t +•( t ) (1-  t ) .  

Example I (Step case): Recall that here Fl(t)=b, f ~(t)=l,b < ~ , then for t < b - l :  

l l  ( t+l+t~(t)(t-a+(!t++~5)it) )] = - 1 ) h  ^t+p +~ 1 Fl(t) +p (t+p -t-  

+tln 

and for t > b - 1  : 

(t+l+pi+t~(t)(t-l+tht) ") 
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Example 2 (Step case): Recall that 

F2(fp,a,b; t) = F(t) = t < a 
a < t < b  

then F2(t)>F2(t)=l for t>a  and for t<a  .When r is a positive integer >1 and 

t ~ a - 1, we have: 

F2(t)=(~-~'[)'+a.8(;t'_l) (q~(t-1)-t'+l) 
(. -g <,-~,.-,-,c<,-,~,+,~,+,,,-o<,+ ~-,,,, +,o,/ 

+2"-g a i 

When q~ is a positive integer and t ~ a - 1, we have: 

+(~,, ~',<,- p)'-'-'(a'-E') 
t a ' ) ~  i 

Example 3 (Step case): Recall that 
[z(.-,) 

f3(t)= l a~ t<-a 
a~t<b<** 

[ t (2a  - t) 

F3(a,b;t)= l a~ t<-a 
a<_t<b 

then F3 ( t ) > F3 (t ) =1 for t > a . When t < a - l w e  have: 

and when t > a - l :  
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t 1 t 2 if3 ( t )= ( t + l  Y 2 - (  t + l  ) ) +  28_(2t)( .~_a_t_atkl  t + ( a + t ) t - - s  
I, a ]k ~ a j j  a [ z ": )  

a + p - I  
+ P f a  z _~;z + 2 ( 1 - p - a - t ) ( a - t ) + 2 ( p  + t - l X a + p -  l ) l n ( ~ ) /  

The following table provides values of g = ~3 (N) -' atvariousvaluesofp, Nanda;it 
provides some quantification of thv sensitivity of the tail facter to a change of paymant in 
~ te~mating year. 

1/2 10 40 1.307 
1/2 20 40 1.056 
1/2 30 40 1.005 
1 10 40 1.323 
1 20 40 1.06 
1 30 40 1.006 
2 10 40 1.354 
2 20 40 1.068 
2 30 40 1.008 
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Financial Pricing Models for Property-Casualty Insurance Products: 
Modeling the Equity Flows 

by Sholom Feldblum and Neeza Thandi 

This paper and its companion papers present the use of return on capital financial models to 
price property-casualty insurance products. This paper focuses on the cash flow and equity 
flow modeling that underlies the financial models. The companion papers complete the 
description of return on capital pricing models. The first two appendices to this paper-  
Appendix A on federal income taxes and Appendix B showing the workers' compensation 
pricing exhibits - apply to all the papers in this series. 

FLOW OF FUNDS 

Financial models to quantify the expected profitability of a business project consider the net 
present value of a series of cash flows or the internal rate of return of those cash flows. The 
models are used to set product prices and to measure business performance. 

The cash flows represent the expected flow of funds to and from the suppliers of capital. The 
suppliers of capital are termed the owners, the investors, the shareholders (or stockholders), 
orthe equityholders; we generally use the term "equityholders" in this paper. Although mutual 
insurance companies do not have stockholders or investors, and the "ownership" status of 
their policyholders is not clear, we assume that they face the same capital management 
constraints as a stock insurance company faces. 

For non-regulated industries, the cash flows to and from the company are reasonable proxies 
for the equity flows to and from the equityholders. 

1. A cash flow into the company provides shareholder dividends to the equityholders. 
2. A cash flow out of the company necessitates a capital contribution by the equityholders. 

The use of company cash flows as a proxy for the implied equity flows assumes that the 
company cash flows can be paid as dividends to equityholders. For regulated industries, such 
as insurance and other financial services, this assumption is not correct, because of statutory 
reserve requirements and risk-based capital requirements. 

For pricing property-casualty insurance products, we explicitly examine the expected flow of 
funds to and from the suppliers of capital- or the implied equity f lows- not the flow of funds 
to and from the company. To calculate the implied equity flows, we project the future cash 
flows, and we adjust for statutory requirements and federal income taxes? 

When the meaning is clear, we sometimes refer to implied equity flows simply as equity flows. 
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Cash flow projections are easier for insurance contracts than for many other commercial 
products. Most insurance underwriting costs are variable, and the overall demand for 
insurance is relatively stable. In contrast, other commercial products often have large fixed 
cost components and fluctuating demand from year to year. 

Cash flow estimation techniques are not unique to insurance, and actuaries are proficient at 
these estimation tasks. We assume here that future cash flows to and from the company have 
been properly estimated and that statutory and tax provisions have been accounted for. Our 
task is to determine the implied equity flows from which the net present value and the internal 
rate of return are calculated. 

Cash Flows and Equity Flows 

In most industries, cash flows to and from the company are reasonable proxies for the cash 
flows to and from the suppliers of capital. If a company invests $1,000 at time t = 0 and it 
receives $1,100 at time t = 1, the pricing model assumes that the company's owners provide 
the $1,000 in capital at time t = 0 and receive the $1,100 at time t = f. 

This is true for unregulated manufacturing or service enterprises and for some utilities. The 
accounting requirements for these industries are not directly relevant to return on capital 
pricing models. The models focus on projected cash flows and current income tax liabilities. 2 

Regulated financial institutions - life insurance companies, property-casualty insurance 
companies, depository institutions, and certain investment f i rms-  are different. For these 
industries, the cash flows to and from the company do not necessarily reflect the cash flows 
to and from investors. The potential dividends to equityholders and the capital required from 
equityholders depend on the statutory funding requirements for loss reserves and on risk- 
based capital requirements, not just on the cash and similar assets held by the company. 

For the major property-casualty insurance transactions - premium collections and loss 
payments-  the two sets of cash flows generally have opposite signs. A premium collection, 
which is a cash inflow to the company, generally necessitates a capital contribution by the 
equityholders. A loss payment, which is a cash outflow from the company, generally allows 
a return of capital to the equityholders. 

2 Current income tax liabilities are the taxes assessed by the IRS. Accrued tax liabilities are the sum 
of the current tax liabilities and the deferred tax liabilities. If there are no expected changes in the tax rate, the 
accrued tax liabilities equals the book income (either GAAP or statutory) times the tax rate. We use a balance 
sheet odentation - not an income statement orientation - to evaluate the deferred tax assets and liabilities; see 
SFAS 109. We adjust the statutory deferred tax asset for its admitted portion; see SSAP No. 10. 
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Solvency monitoring by govemmental authorities is the underlying rationale for the difference 
between the company cash flows and the implied equity flows. The flow of funds to suppliers 
of capital, the "equityholders," can be inferred from 

�9 the company cash flows, 
�9 capital requirements imposed by regulatory authorities, 
�9 reserve requirements and other accounting regulations. 

To distinguish between the company cash flows and the flow of funds to suppliers of capital, 
we refer to the former as cash flows and to the latter as implied equity flows. The financial 
community uses the term "free cash flow" instead of implied equity flow. Atkinson and Dallas 
[2000], chapter 11, use the term "distributable earnings" instead of implied equity flows. 3 

We summarize below the signs of the company cash flows and the implied equity flows for the 
four major types of property-casualty insurance transactions. A positive flow means an inflow 
to the company or to the equityholders. A negative flow means an outflow from the company 
or the equityholders. 

Premiums collected 
Losses paid 
Expenses (including federal income taxes) 4 
Investment income received 

Company Implied 
Cash flow Equity flow 

+ 
- -  + 

+ + 

The actual relationship between the cash flows and the implied equity flows is complex, and 
the chart above does not do full justice to this topic. The illustration below shows the intuition 
for the implied equity flows stemming from premium collection. The text of this paper, and the 
associated flowcharts, graphics, and tables, works through the cash flows and implied equity 
flows for a more complete illustration. Appendix B shows the full cash flows and implied equity 
flows for a workers' compensation pricing analysis, using a 50 year (200 quarter) return on 
capital pricing model. 

I//lustration: A policy with a premium of $1,000 is written and collected on 31 ,J 
i 

December 
120XX. The agent's commission is 20%, and the capital requirements equal 25% of the[ 
Iwritten premium. We ignore for the moment the tax liability and the deferred tax asset. I 

3 The life insurance pricing model in Atkinson and Dallas [2000] parallels the property-casualty insurance 
pricing model in this paper. The differences between the models reflect the differences in reserve requirements 
and federal income tax liabilities between life insurance and property-casualty insurance. 

4 For both life insurance and property-casualty insurance, deferred taxes are included with current tax 
liabilities. When Atkinson and Dallas wrote their textbook, statutory accounting did not recognize deferred tax 
assets and liabilities, so they restricted their treatment of deferred taxes to GAAP return on equity models. 
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l e Thenetcashinflowfromthepolicyholdertothecompanyis$1,0OO(premium)-$200 
(commission) = $800 on December 31. I 

�9 The company receives $800 (net of commission), but it must hold a $1,000 unearned I 
premium reserve and it must support the policy with $250 of surplus. The cash 
outflow from the equityho ders is ($1 ~000 -$800)  + $250 = $450. 

Free Cash Flows and Implied Equity Flows 

The distinction between company cash flows and implied equity flows is identical to the 
distinction between company cash flows and free cash flows. Financial analysts use free cash 
flows for return on capital pricing models. The use of company cash flows without 
consideration of changes in net working capital fails to take full account of invested capital. 

We summarize below the distinction between non-regulated and regulated industries. For 
non-regulated manufacturing enterprises, the company cash flows are adjusted for 
(i) depreciation and amortization and (ii) required investment (or"capital expenditures"). This 
adjusted income minus the change in net working capital equals the free cash flows. The free 
cash flows are used to determine the net present value and the internal rate of return. 

For regulated insurance enterprises, the statutory income equals the statutory cash flow 
adjusted for the capitalization and amortization of the unearned premium reserves and the 
loss reserves. The statutory income minus the change in requiredcapitalequals the implied 
equity flow. The implied equity flows determine the net present value and the internal rate of 
retum. The change in networking capital for other industries is equivalent to the change in 
required capital for insurance enterprises, s 

Early forms of cash flow pricing models presumed that the cash flows equal the accounting 
income adjusted for non-cash revenues and expenditures. This presumption is no longer 
used, because many cash flows do not result in revenues or expenditures. Cash is used to 
purchase material and supplies to produce goods and services. The purchase of supplies 
is the exchange of cash for a non-cash asset (inventory). There is no revenue or expenditure 
on the firm's income statement. 

s Some analysts argue that the change in net working capital for manufacturing enterprises is a real cash 
flow item. It is determined by business and economic constraints, not by regulation, and it reflects the cash 
expenditures of the firm. In contrast, reserve requirements and risk-based capital requirements for insurance 
enterprises depend on regulatory mandate, not on business and economic constraints. The perspective in this 
paper is that a regulatory mandate in a regulated industry is a business constraint. 
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ILLUSTRATION: AIRCRAFT MANUFACTURING 

The following illustration clarifies the difference between cash flows and free cash flows. A 
non-leveraged (all-equity financed) firm manufactures aircraft. The firm leases the factory, 
equipment, and work-force, so there are no capital expenditures. 

�9 At time t=0 the firm purchases material and supplies for $10 million to produce an 
airplane. 

�9 From time t=0 to time t=4, the firm manufactures the airplane, at a cost of $2 million a 
year in rent and wages. 

�9 The firm sells the airplane one year later, at time t=5, for $25 million, after paying $1 
million in storage costs and sales commissions in the last year. 

To simplify the computations, we assume that rent and wages are paid at the end of the year. 

There are no interest payments, debt payments, amortization, or depreciation of fixed assets 
for this firm. The earnings for the firm are 

�9 -$2 million at times t=l ,  2, 3, and 4 (production expenses), and 
�9 +$14 million at time t=5, calculated as sales revenue of $25 - cost of goods sold of 

$10 - sales expenses of $1. 

There are no non-.cash revenues or expenditures in this illustration. At time t=0, when the firm 
purchased the material and supplies, $10 million in cash is exchanged for $10 million of 
inventory. The inventory changes in form over the next five years, but its accounting value 
remains $10 million, with no effect on the balance sheet or the income statement. 

If the cost of equity capital is 15% per annum, the apparent NPV of this project is (in millions 
of dollars) 

- $ 2 / ( 1 . 1 5 )  - $ 2 / ( 1 . 1 5 )  2 - $ 2 / ( 1 . 1 5 ~  - $ 2 / ( 1 . 1 5 )  4 + $14  / (1.15) 5 = $ 1 . 2 5 .  

This analysis does not take into account the change in networking capital. At time t=0, there 
is a cash outflow from the equityholders equal to the increase in the net working capital of $10 
million. 6 At time t=5 there is an additional cash inflow to the equityholders equal to the 
decrease in net working capital of $10 million. The corrected net present value of this project 
is (in millions of dollars) 

- $ 1 0  - $2  / (1.15) - $ 2 / ( 1 . 1 5 ) 2  - $ 2 / ( 1 . 1 5 )  3 - $ 2 / ( 1 . 1 5 ) 4  + $24  / (1.15) 5 = -$3 .  78. 

6 Net working capital = inventory + accounts receivable + cash on hand - accounts payable. 
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Proper consideration of the timing of the cash flows tu ms the $1.25 million indicated profit into 
a $3.78 million indicated loss. 

INSURANCE ANALOGY 

The aircraft manufacturing example is elementary. We discussed it because eady property- 
casualty insurance net present value models overstated the returns by mistaken timing of the 
implied equity flows. A property-casualty insurance enterprise holds no asset called 
"inventory," but there is an equivalent equity flow stemming from regulatory constraints. 7 

Suppose an insurance policy is written at time t=0, a loss occurs at time t=l,  and the loss is 
settled for $100,000 at time t=5. 

�9 At time t=l,  there is a debit on the income statement of $100,000 for the incurred loss. 
This accounting debit is a non-cash expenditure; it does not affect the cash flows of the 
firm. $100,000 of policyholders' surplus is transferred to loss reserves on the balance 
sheet. There is no change in the cash account on the asset side of the balance sheet. 

�9 At time t=5, there is a cash outflow of $100,000 along with an offsetting non-cash reserve 
reduction of $100,000. 

The cash flows noted above are the firm's cash flows, not the implied equity flows (or the free 
cash flows). They are not the proper base for the IRR or the NPV calculations. The proper 
perspective is that at time t=l, the insurance company purchases a loss reserve for $100,000. 
The equityholders no longer have access to these funds. 

The loss reserve is like the inventory. It is an inventory of money, instead of an inventory of 
goods. But this money has changed from free cash that equityholders can use to a stock of 
funds that is not accessible to the equityholders. 

Similarly, when the insurance company collects premium, it uses the funds to purchase an 
unearned premium reserve, as though it were purchasing a premium inventory. The premium 
collected is not a free cash flow. 

IMPLIED EQUITY FLOWS 

The implied equity flows are the implicit flow of funds to and from the suppliers of capital. The 
implied equity flows may be determined directly from the assets held by the company to 
support the insurance operations. The required assets comprise three pieces: 

We use the term "implied equity flow" to emphasize that there is not - and there need not be - any 
actual flow of funds. The term "equityholders" refers to the firm's owners, whether they be common stock 
investors or other owners of a property-casualty insurance company. 
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�9 assets backing the (gross) unearned premium reserves 
�9 assets backing the (full value) loss reserves 
�9 assets backing policyholders' surplus 

Because stockholder dividends from insurance enterprises are restricted by statutory 
accounting rules, statutory accounting determines the implied equity flows. 

Illustration: A company begins operations on January 1,20XX, and writes property-casualty 
insurance business during the year. The invested capital on December 31,20XX, equals 
the sum of three components: 

�9 the gross unearned premium reserves minus the present value of future losses and 
expenses stemming from unexpired policies 

�9 the full value loss reserves minus the present value of future loss and loss adjustment 
expenses on claims that have already occurred 

�9 policyholders' surplus to satisfy the NAIC's risk-based capital requirements and 
similar rating acjency capital requirements. 

If the company holds only financial assets, the fundamental equation linking implied equity 
flows and required assets is that 

cash flows minus implied equity flows during the accounting period equal the change 
in required assets from the beginning to the end of the period. 

This equation is not correct if the company holds non-financial assets, such as premium 
receivables and deferred tax assets. Beginning with the codification of statutory accounting 
in January 1,2001, almost all companies hold substantial deferred tax assets, stemming from 
revenue offset and from IRS loss reserve discounting. 

Illustration: An insurer writes workers' compensation policies during 20XX. At December 
31,20XX-1, the required assets are zero. During 20XX, it wdtes $100 million of business. 
During 20XX, the company collects all the premium, and it pays $25 million in expenses, $18 
million in losses, and $5 million in federal income taxes. At year end, it has $50 million in 
unearned premium reserves and $45 million in full value loss reserves. The capital 
requirements at year end consist of $12 million in written premium risk charges and $15 
million in reserving risk charges. 

�9 The required assets at the end of the year are $50 million + $45 million + $12 million 
+ $15 million = $122 million. 

�9 The cash flows during the year are $100 million - $25 million - $18 million - $5 
million = $52 million. 
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l e The implied equity flow is $52 million - ($122 million - $0) = -$70 million. I 

The negative implied equity flow is a flow from the equityholders to the company. It ] 
represents an investment in the insurance operations by the equityholders. 

Equity Flows in Practice 

Some actuaries object that the equity flows are not real, based on the following reasoning: 

We speak of an implied equity flow to fund the underwriting loss at policy inception. But 
there is no actual capital contribution when a policy is written. In contrast, the company 
cash flows used in other industries are actual transfers of cash. 

This objection is specious. The implied equity flows are real, though they are submerged 
under a multitude of policies and the other capital structure decisions of the company. 

Illustration A: A reinsurer writes a $100 million book of casualty excess-of-loss reinsurance 
on January 1, 20XX. The risk-based capital requirements are $25 million for the written 
premium risk charge. 

The pricing model uses an implied equity flow of $25 million on January 1. There is, of course, 
no actual cash flow. But on December 31,20XX-1, the reinsurer's book of 20XX-1 policies 
expired, and $25 million of written premium risk capital was freed. The capital is transferred 
from one block of business to another block of business. 

Illustration B: The reinsurer's premium volume increases from $80 million in 20XX-1 to $100 
million in 20XX. The written premium risk charge increases from $20 million to $25 million, 
with a net capital contribution of $5 million. There may be no actual cash flow corresponding 
to this implied capital contribution. But the reinsurer may have decided not to write other 
business because of capital constraints, or it may have decided not to pursue other financial 
activities, such as acquisitions. These are the real world reflections ofthe implied equity flow. 

Illustration C: The reinsurer's premium volume decreases from $120 million in 20XX-1 to 
$100 million in 20XX. The written premium risk charge decreases from $30 million to $25 
million, with a net capital contribution of-$5 million. In this scenario, the reinsurer might pay 
greater stockholder dividends than it otherwise would have, it might buy back some stock, or 
it might use the capital to write other business or to engage in other financial activities. 

The real world reflections of the implied equity flows may be slow, but eventually they are 
realized. The pricing model attributes these equity flows to the policies that require the capital. 
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Determination of the Equity Flow 

C o m p a n y  C a s h  

O U • O W S  t 

(-3 units) 

C o m p a n y  C a s ~ h  

In f lows t 

(+2 units) 

Equ i ty  F low  t 

(+2 units) 

/ 

C a s h  F low  Def in i t ion  of  Equ i ty  Flow: 

I Equity Flow t = -Asset Flow t + Company Cash Flow t I 

Company  Cash Flow t = Co Cash Inflow t - Co Cash Out f low t 

Asset  Flow t = Assets(t+1) - Assetst 

Composition of Assets at time t is a function of business environment constraints: 

IAssets, = UEPR ,+ Loss Reserve t+ Surplus, I 

I n c o m e  S t a t e m e n t  Def in i t ion  of Equ i ty  Flow: 

Equity Flow t = Accting Net Income t - A (Accting Capital) t 

For  the  a b o v e  I l lustrat ion:  
Asset Flow t = (4-7) = -3 

Company Cash Flow t = Co Cash Inflow t - Co Cash Outflow t 

= +2 - 3 = -1 
... Equity Flow t = -(-3) + (-1) = 2 

4 5 4  



Insurance Transactions 

The implied equity flows depend on the cash flows, statutory accounting rules, and capital 
requirements. The two illustrations below cover the major insurance transactions: 

�9 premium wdting 
�9 premium collection 
�9 loss incurral 
�9 loss payment 
�9 expense incurral and payment 
�9 investment income 
�9 federal income tax payments 
�9 deferred tax assets and liabilities 

The implied equity flow equals the statutory income minus the change in required capital (see 
also Robbin [1993; 1998], who uses the same perspective). We use statutory income, not 
GAAP income, since statutory income and capital requirements determine the funds that are 
available for distribution to owners. ~ The economic income (the NPV) to the equityholders 
from issuance of the insurance policy is the present value of the future implied equity flows. 

An actual pricing model would use quarterly valuations for the lifetime of the book of business. ~ 
For this illustration, we use a simplified example with three years of semi-annual valuation 
periods. We provide item by item documentation, along with graphical depictions of the 
implied equity flows from premium and loss transactions. 

Translating the cash flows, accounting requirements, and capital requirements into implied 
equity flows is the largest hurdle to proper use of the return on capital pricing models. 10 

o The American Academy of Actuaries Standard of Practice No. 19, Actuarial Appraisals, paragraph 
5.2.1, emphasizes the centrality of statutory accounting for modeling insurance company cash flows and equity 
flows: =Distributable ECmings - For insurance companies, statutory earnings form the basis for determining 
distributable earnings, since the availability of dividends to owners is constrained by the amount of accumulated 
earnings and minimum capital and surplus requirements, both of which must be determined on a statutory 
accounting basis. Distributable earnings consist of statutory earnings, adjusted as appropriate to allow for the 
retention of a portion thereof or the release of a portion of prior accumulated eamings therein, in recognition of 
minimum capital and surplus levels necessary to support existing business." 

Appendix B shows the modeled equity flows for a workers' compensation block of business, using 50 
years of quarterly valuation periods, or a tota! of 200 periods. 

~o Some older papers on property-casualty insurance pricing models have used company cash flows 
instead of equity flows for the return on capital models. Modeling the cash flows instead of the equity flows 
provides distorted rate indications. Since the signs of the premium and loss equity flows are the opposite of 
the signs of the premium and loss cash flows, use of company cash flows instead of implied equity flows 
transforms an investment project into a borrowing transaction. For an investment project, higher IRR's are 
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PREMIUM TRANSACTIONS 

This paper is both a template for the practicing actuary and a teaching text for the actuarial 
student. We do not simply state the results; we show the calculations step-by-step, so that 
readers can replicate the procedures. 

The illustration here is clear, and the computations are straight-forward. Nevertheless, there 
are many figures, and it is easy to lose track of the relationships. To keep the intuition clear, 
we divide the illustration into two pieces. The first piece deals with premiums, expenses, and 
the associated investment income, federal income taxes, capital requirements, and implied 
equity flows. The second piece adds losses and the associated equity flows. 

The documentation in this paper has three components: (i) textual exposition, (ii) numerical 
exhibits, and (iii) graphics. Readers may find it helpful to trace the figures in the exhibits and 
the graphics as they proceed through the text. 

ILLUSTRATION A: PREMIUMS 

A company writes and collects a $1,000 annual premium on December 31, 20XX. 
Acquisition expenses of $250 are incurred and paid on that day. Maintenance and 
general expenses of $150 are incurred and paid evenly over the policy term. 

The pre-tax investment yield benchmark is an 8% per annum bond equivalent yield 
(semi-annual compounding). The marginal tax rate on both underwriting income and 
investment income is 35%. 

No losses are incurred. The capital requirements are based on the NAIC risk-based 
capita/formula. For this scenario, the capita/requirements are 25% of annual written 
premium plus 15% of loss reserves. 

We use the following modeling order: 

a. underwriting cash flows: premiums, expenses, losses, and taxes on underwriting 
b. statutory accounting entries: loss reserves and deferred tax assets 
c. required surplus amounts: risk-based capital requirements 
d. investment income on the investable assets 
e. implied equity flows to and from the equityholders 

The same sequence is used for the second half of the illustration as well, which deals with the 
loss cash flows and the associated components. 

better; for a borrowing transaction, lower IRR's are better. 
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VALUATION DATES 

In theory, we should use continuous accounting changes, cash flows, and implied equity flows. 
Even if accounting entries are made at specified dates, such as the end of the year, insurance 
contracts are written throughout the year. An individual policy may have discrete accounting 
entries, but a policy year has continuous entries, cash flows, and equity flows. 

In practice, we use quarterly valuation periods. Many readers find discrete entries simpler 
than continuous functions. Spreadsheet representations are also easier with discrete entdes. 
The enhanced accuracy from continuous functions is outweighed by the added complexity. ~ 

For the illustration here, we use semi-annual valuations, not quarterly valuations. This 
simplifies the exposition while retaining the structure of the analysis. 

Premiums and Premium Receivables 

A premium inflow of $1,000 occurs on December 31, 20XX. This illustration assumes full 
premium collection on the effective date. If the premium is not fully collected on December 31, 
20XX, the company shows a premium receivable for the uncollected portion. 

�9 Ifthe premium receivable is an admitted asset, there is no effect on the implied equity 
flows. 

�9 Any non-admittedpramium receivable increases the implied equity outflow from the 
equityholders. 

�9 The premium collection pattern affects the investment income cash flows, even if all 
premium receivables are admitted. The investment income cash flows affect the 
implied equity flows in subsequent periods. 

For blocks of business with significant deferral of premium collection, such as large account 
workers' compensation policies, the actuary may estimate the expected non-admitted portion 
of the premiums receivable asset and increase the required capital contribution. ~2 

DISTRIBUTION SYSTEMS AND ACQUISITION EXPENSES 

Companies use a variety of distribution systems, such as independent agency, direct writing, 
salaried sales force, and mass marketing systems. Within each system, there are different 

11 Pricing models using continuous functions have often been proposed for life insurance contracts, 
though generally not for property-casuaity insurance contracts. 

12 The statutory rules for the non-admitted portion of the premiums receivable are summarized in Feldblum 
[2002: SchP]. 
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methods of premium billing. The modeling process for premium collection and acquisition 
expenses depends on the distribution system and the premium billing system. 

�9 For independent agency companies, acquisition costs are primarily agents' 
commissions. These expenses are incurred on the policy writing date or on the 
premium collection date. 

�9 For direct writers and for companies with salaried sales forces, acquisition costs 
include advertising expenses and fixed costs of the agency system. These additional 
expenses occur before the policy effective date. 

�9 For commercial lines companies writing large accounts, acquisition costs include the 
costs of developing sales proposals and of soliciting business. These expenses also 
occur before the policy effective date. 

The pricing actuary should use the policy distribution system and the premium billing system 
consistent with actual company practice. 

The illustration in the text uses the independent agency distribution system, with which most 
readers are familiar. An acquisition expense outflow of $250 occurs on December 31,20XX. 
The independent agency distribution system is particularly useful for the exposition in this 
paper, since it has a large initial underwriting loss, causing a large difference between the 
company cash flows and the implied equity flows. 

General Expenses 

A general expense outflow of $150 occurs evenly over the policy term. This can be modeled 

�9 as a single $150 outflow on June 30, 20XX+I 
�9 as three semi-annual outflows of $50 on each half year valuation date from December 

31,20XX, through December 31,20XX+I. 
�9 as five quarterly outflows of $30 on each quarterly valuation date from December 31, 

20XX, through December 31,20XX+I. 

Common actuarial practice is to use quarterly cash flows and equity flows, at least for the first 
several years. For ease of exposition, this illustration uses a single expense payment at June 
30, 20XX+I, not quarterly payments. 

Many actuaries model some general expense costs at the policy effective date. For instance, 
the NAIC defines pre-paid acquisition expenses as commissions, other acquisition expenses, 
premium taxes, and one half of general expenses (see Feldblum [1997: lEE]). Alternatively, 
the general expenses incurred on the policy effective date may be included with acquisition 
costs. This illustration assumes that the $250 of pre-paid acquisition costs includes the 
general expenses that are incurred on the effective date of the policy. 
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TAX ON UNDERWRITING INCOME 

Taxable underwriting income equals 

written premium 
- underwriting expenses 
- 80% of the change in the gross unearned premium reserve 
- paid losses 
- the change in the discounted loss and loss adjustment expense reserves. 

This may also be written as 

statutory earned premium 
+ 20% of the change in the statutory unearned premium reserve 

- underwriting expenses 
- statutory incurred losses 
+ the change in the IRS loss and loss adjustment expense reserve discount. 

Taxable underwriting income for 20XX is 

$200 (income from revenue offset)- $250 (acquisition expenses) = -$50. 

The tax outflow is a negative $17.50 (or a tax refund of $17.50). The '~cax refund" does not rely 
on tax carrybacks orcarry-forwards. The tax refund stemming from negative taxable income 
offsets tax liabilities stemming from other insurance contracts and from investment income. 
We chose an illustration with an acquisition expense greater than 20% of premium to 
emphasize that expected tax cash flows can be positive or negative. 

The taxable premium income of $200 may be evaluated in two ways. 

�9 As written premium minus 80% of the change in the unearned premium reserves = 
$1000 - 80% x $1000 = $200 

�9 As statutory eamed premium income plus 20% of the change in the uneamed premium 
reserves = $0 + 20% x $1000 = $200. 

The tax liability is 35% times the taxable income: 35% x ($200 - $250) = -$17.50. 

Taxable underwriting income for 20XX+I equals 

$800 of taxable premium income - $150 of general expenses = $650. 
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The tax liability is $650 x 35% = $227.50. Written premium during the year  is $0 and the 
unearned premium reserve decl ines from $1,000 to $0. We use the same two computat ion 
methods: 

(i) $ 0  - 80% x (-$1,000) - $150 = $650 
(ii) $1,000 + 20% x (-$1,000) - $150 = $650. 

We use semi-annual  valuat ions for this illustration, and we assume the tax on underwrit ing 
income is incurred evenly  between the two halves of the year, or $227.50 / 2 = $113.75 in 
each half year. Alternatively, if all general expenses are assumed to be paid exact ly on June 
30, 20XX+I ,  the underwrit ing income is $400 - $150 = $250 in the first half of the year  and 
$400 - $0 = $400 in the second half of the year. 

For the exposition, we model the tax cash flows stemming from premium collection separately 
from the tax cash flows stemming from incurred losses. We do this to clarify the tax liabilities 
and the deferred tax assets; there is no qualitative difference in the cash flows. 13 

We have not yet included the investment income cash flows, since these depend on statutory 
account ing constraints and on the capital requirements. 14 

STATUTORY ACCOUNTING ENTRIES 

The fol lowing statutory accounting entries are relevant for the implied equity flows: 

13 In contrast, Myers and Cohn distinguish between the taxes stemming from premium earning and those 
stemming from loss accruals because they use different capitalization rates to determine the present values 
of each. See Myers and Cohn [1987] as well as the discussion in Feldblum, [2003: PCAS d/d discussion]. 

14 In the past, some casualty actuaries differentiated between investment income from policyholder 
supplied funds and investment income from equityholder supplied funds; cf Bailey [1967]. The investment 
income on policyholder supplied funds depends on the underwriting cash flows; the investment income on 
equityholder supplied funds depends also on the accounting entries and the capital requirements. The rationale 
was that policyholders were entitled to the investment income on their own funds but they were not entitled to 
the investment income on capital and surplus funds. 

Although this distinction is not retevant to return on capital pricing models, it is usefu~ for modeling the source 
of profits. If premiums are exactly adequate, the profit in the policyholder supplied funds (sometimes called 
policyholder supplied capital) is needed to fund the difference between the cost of equity capital and the after- 
tax investment yield on equityholder supplied capital. Myers and Cohn [1978] have a similar perspective, 
though they fail to take into account the equityholder supplied capital embedded in the statutory loss reserves 
and the gross unearned premium reserves. 
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A unearned premium reserve of $1000 is set up on December 31,20XX. It is amortized 
ratably as the insurance protection is provided. For most types of business, the 
amortization is even over the policy term. 15 

Surplus of $250 is added to the balance sheet on December 31,20XX, and it is removed 
on December 31,20XX+I.  The surplus requirement is notamortized over the policy term. 
This is a consequence of the NAIC risk-based capital formula and the corresponding 
rating agency formulas. The illustrations evaluate capital requirements by applying the 
risk-based capital charges to the written premium for the year and to the loss reserves at 
the valuation date. 18 

�9 A deferred tax asset of $200 x 35% = $70 stemming frem the revenue offset provision is 
entered on the balance sheet on December 31,20XX, and it is amortized over the course 
of the policy term. The full deferred tax asset from revenue offset is recognized on the 
statutory balance sheet, since it reverses within 12 months of the balance sheet date (for 
annual policies). 17 

IMPLIED EQUITY FLOW AT POLICY INCEPTION 

We discuss the implied equity flows in more detail further below. The implied equity flows 
affect the investment income, and the investment income affects the implied equity flows. We 
show the implied equity f low at policy inception before discussing the investment income for 
the first half of the year to clarify the inter-relationship of these items. 

The required assets of the company on December 31,20XX, equal the $1,000 of unearned 
premium reserve plus the $250 of required surplus, or $1,250. The company holds statutory 
assets equal to the following: 

is See SFAS 60 and SSAP No. 65. Exceptions occur for certain lines of business. (a) Workers' 
compensation premiums may be earned when billed for statutory accounting purposes, though not for tax 
purposes; see SSAP No. 53, "Property-Casualty Contracts - Premiums," paragraph 4 and IRS tax regulation 
2001 FED I] 26,153, w sections (a)(4) and (a)(5). Companies which use different statutory accounting 
and tax accounting procedures for recording workers' compensation premium must use two sets of premium 
writing pattems in the pricing model. We do not show these scenarios in the exhibits. (b) Product warranty 
unearned premium reserves have more complex computations; see SSAP No. 65, "Property and Casualty 
Contracts," paragraphs 21-33, and Hayne [1999]. 

16 Atkinson and Dallas [2000], chapter 8, use a slightly different procedure. They determine the risk-based 
capital requirements at year-end dates and they discount at the after-tax investment yield to the beginning of 
the year. 

17 See SFAS 109 for a general discussion of deferred tax assets and liabilities and SSAP No. 10, "Income 
Taxes," paragraph 10, for the statutory accounting rules on recognition of deferred tax assets. Appendix A of 
this paper reviews the post-codification statutory accounting rules for deferred tax assets and liabilities. 
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+ $1000.00 in cash (written premium collected) 
- $ 250.00 in cash (acquisition costs paid) 
+ $ 17.50 in cash (tax refund) 
+ $ 70.00 (deferred tax asset, which is an admitted non-cash asset) 
= $ 837.50. 

The remaining capital needed to fund the required assets is provided by equityholders: $1250 
- $837.50 = $412.50. We assume that all capital supplied by equityholders is investable. 

INVESTMENT INCOME 

The invested assets on December 31,20XX, are $750 (net premium) + $412.50 (capital) + 
$17.50 (tax refund) = $1,180.00. The deferred tax asset of $70 is not investable. 

Equivalently, the total assets required are $1,000 for the unearned premium reserve and $250 
in surplus, or $1,250. Subtracting the $70 deferred tax asset, which is not investable, gives 
$1,180 of investable assets. 

�9 For this illustration, we use an 8% per annum bond equivalent yield with semiannual 
evaluations. New money investment yields are often given in bond equivalent form. 

�9 The investment income is received on June 30, 20XX+I, and December31,20XX+I, 
with a yield of 4% per half-year. 

�9 The unearned premium reserve declines to $500 on June 30, 20XX+I, and to $0 on 
December 31,20XX+I.  

�9 The deferred tax asset declines to $35 on June 30, 20XX+I, and to $0 on December 
31,20XX+I. The change in the deferred tax asset reflects tax payments and refunds 
in 20XX+I. 

The investment income during the period is the product of (i) the assets required at the 
beginning of the period minus the amount of non-investable (but admitted) assets and (ii) the 
investment yield during the time period. 

Illustration: The investment income earned during the first half of 20XX+I is 4% x $1,180 
= $47.20. The investment income is assumed to be received on June 30, 20XX+I. 

The assets required on July 1,20XX+l, are $500 of unearned premium reserve plus $250 
of required capital = $750. The non-investable deferred tax asset is $500 x 20% x 35% = 
$35, and the investable assets are $750 - $35 = $715. The investment income earned 
during the second half of 20XX+I and received on Dec 31 r 20XX+I r is $715 x 4% = $28.60. 
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Investment Income and Underwriting Expenses 

For determining federal income taxes on underwriting income, we subtracted underwriting 
expenses. For determining investment income, we have not subtracted the underwriting 
expenses. At first glance, this appears incongruous, since money paid out as expenses is not 
available for investment. It might seem that the investable assets should also be reduced for 
underwriting expenses, just as the underwriting income is reduced for expenses. 

The reasoning above is mistaken; it is mentioned here to clarify the equity flow modeling. The 
investment income is based on the investment yield times the investable assets. The 
investable assets are based on the statutory reserves and the required capital. Any expenses 
paid with policyholder supplied funds are replenished with equityholder supplied funds, since 
the company must hold the gross unearned premium reserve. Expense payments do not 
affect investable assets in the pricing model. 

Rather, an expense outflow causes a federal income tax inflowand an implied equity outflow. 

�9 The federal income tax inflow offsets 35% of the expense paid from the policy 
premium. 

�9 The implied equity outflow offsets the other (1 - 35%) of the expense paid. The 
implied equity outflow is an investment in the insurance project, so it is modeled as a 
negative number. The equity outflow is an inflow to the company. 18 

The net change in the company's assets is $0: expense outf low- 35% federal income tax 
inflow - 65% implied equity flow into the company. 

In practice, the amortization of the unearned premium reserves is offset by the accrual of loss 
reserves. The full pricing model considers premium writing patterns, premium collection 
pattems, loss accrual pattems, and loss payment pattems. To simplifythe exposition, we have 
separated the premium section from the loss section. This highlights the equity inflows as the 
premium is earned and the equity outflows as losses are incurred. The numerical exhibits at 
the end of this paper show the combined premium and loss transactions. 

In a companion paper ("Income Recognition and Performance Measurement"), we show net 
income under different accounting frameworks: statutory, GAAP, tax, fair value, net present 
value, and internal rate of return. No matterwhat accounting framework is used to measure 
income and management performance, the statutoryaccounting framework determines the 
capital contributions (cf. Atkinson and Dallas [2000], chapter 11). 

18 The premium is a pre-tax cash flow, so there is an offsetting tax liability or retum. 'An equity flow is 
an after-tax flow, so there is no offsetting tax liability or return. 
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TAXES ON INVESTMENT INCOME 

We examined earlier the federal income taxes on the net premium income. These are 
$113.75 each half year, payable on June 30, 20XX+I,  and on December 31,20XX+I ;  see 
page ?. Federal income taxes on investment income are (i) $47.20 x 35% = $16.52, paid on 
June 30, 20XX+I ,  and (ii) $28.60 x 35% = $10.01, paid on December 31 ,20XX+I .  

Some analysts presume that taxes are not paid until March or April of the following year. That 
is not correct. The federal income tax liability is computed for the tax year as whole, but 
payments to the U.S. Treasury are made quarterly in advance. For simplicity, this illustration 
shows payments on June 30, 20XX+I,  and December 31,20XX+I .  The payment date for 
the tax liabilities is actually earlier than modeled here, not later. TM 

Although the taxes are paid earlier, the premium is also earned earlier, since it is earned 
evenly over the policy term. As long as the timing of the premium earning and the federal 
income taxes on the premium income are consistent, the model is not materially biased. 

IMPLIED EQUITY FLOWS 

The implied equity flow on any valuation date is (i) a capital distribution if it is positive or (ii) a 
capital contribution if it is negative. A capital distribution may be a stockholder dividend or 
a stock repurchase. Since common stocks are cash equivalents, a capital gain - even if 
unrealized - is also a capital distribution. Shareholders can sell some of their shares to 
produce a virtual dividend payment. 2~ 

19 The method used in the text is equivalent to using an after-tax investment yield; cf. Atkinson and Dallas 
[2000], chapter 8. Some pricing models assume that tax liabilities for the current year are paid evenly during 
the year. The total investment income for the year is $47.20 + $28.60 = $75.80 and the tax is $75,80 x 35% 
= $26.53. If we assume that taxes are paid evenly between the two halves of the year, the tax payments at 
each semiannual valuation date are $26.53 + 2 = $13.265. 

The I RS allows taxpayers some leeway in the quarterly tax estimates, and companies differ in the timing of their 
tax payments. Modeling the precise tax payment stream is complex. It does not have a material effect on the 
rate indications, as long as reasonable assumptions are used. 

The procedure in the text of the paper splits the tax on underwriting income evenly between the two halves of 
the year, but it computes the tax on investment income based on the investment income earned in each half 
of the year. It is difficult to quantify the amortization of the loss reserve discount between the two halves of the 
year, so we use an even spread. In contrast, using an after-tax investment yield is not difficult. 

20 The choice between paying dividends and allowing the capital to accumulate in the company depends 
on the investment opportunities of the company and the tax situation of the equityholders. This choice affects 
the personal tax liabilities of the investors and cost of holding capital. In practice, it is difficult to model 
personal income taxes, since they vary with the tax situation of the equityholders. 
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Illustration: The ABC Insurance Company has 10 million shares outstanding and a market 
value of $500 million on January 1,20XX. The stock price is $50 per share. The company 
cams $50 million in 20XX, and it has a market value of $550 million on December 31,20XX. 

Scenario A: The company pays a stockholder dividend of $5 per share on December 
31,20XX. The market value of the company declines to $500 million after the dividend. 
The stockholder dividend is the implied equity flow on December 31,20XX. 

Scenario B: The company pays no stockholder dividend. The market value remains 
$550 million on December 31,20XX. Since the common stock is a cash equivalent, 
which can be sold in the open market, the liquid assets of the owners increase by $5 per 
share. The capital accumulation is the implied equity flow on December 31 ~ 20XX. 

We may conceive of the implied equity flow from a balance sheet perspective or from an 
income statement perspective. 

Balance sheetperspective:AtvaluaUon dates (that is, between valuation periods), excess 
assets are distributed to equityholders, and insufficient assets are augmented by 
equityholder contributions. At the start of each valuation period, the held assets equal the 
required assets. The required assets are the sum of the liabilities and the required capital. 

During the valuation period, there are two types of changes in the balance sheet entries: 
(i) cash inflows and cash outflows affect investable assets, and (ii) non-cash increases and 
non-cash decreases affect non-cash assets and liabilities. The capital requirements may 
also change from one valuation date to the next valuation date. 

To determine the implied equity flow at any valuation date, we begin with the balance sheet 
entries at the start of the valuation period and we adjust them for both the cash inflows and 
outflows and the non-cash increases and decreases, including any change in capital 
requirements. The adjusted assets at the end of the period minus the required assets at 
the beginning of the period is the implied equity flow at the end of the period. 

Income statement perspective: The implied equity flow at valuation date "r equals the 
statutory income during the period from "t- l"  to "f' minvs the change in required capital 
during this period. A direct charge or credit to surplus at the valuation date is treated as 
a component of statutory income. 

The two definitions are equivalent. We show both methods to determine the implied equity 
flow on June 30, 20XX+1. 

BALANCE SHEET PERSPECTIVE: The assets held at the beginning of the valuation period (on 
January 1,20XX+1) are the required assets at that date. This equals $1250, which is the sum 
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of the liabilities (the unearned premium reserve) and the required capital (the written premium 
risk charge). The $1250 consists of $1180 of investable assets and a $70 deferred tax asset. 

The investable assets on the balance sheet are accumulated for investment income; the non- 
investable assets are capitalized or amortized. 

�9 Cash inflow for investment income ($47.20 during the valuation period). 
�9 Cash outflows for expenses ($150 in maintenance expenses) and tax accruals ($113.75 

tax accrual for underwriting income; $16.52 tax accrual for investment income). 21 
�9 Amortization of the unearned premium reserve and of the deferred tax asset stemming 

from revenue offset ($500 amortization of the unearned premium reserve; $35 
amortization of the deferred tax asset). 

The loss reserves section of this illustration shows the capitalization of the incurred losses 
during the policy term and the capitalization and amortization of the deferred tax assets 
through the lifetime of the claims. 

The accumulated assets at June 30, 20XX+I equal the required assets atthe beginning of 
the period adjusted for these cash flows and the non-cash increases and decreases: 

Investable assets on December 31,20XX = $1180.00 
Investment income (cash inflow) = +$ 47.20 
General expenses (cash outflow) = -$150.00 
Federal income taxes on underwriting income (cash outflow) = -$113.75 
Federal income taxes on investment income (cash outflow) = -$ 16.52 
Deferred tax asset (non-cash asset) = +$ 35.00 
Total = +$981.93 

The required assets on June 30, 20XX+I, equal the statutory reserves plus the required 
capital. The unearned premium reserves are now $500 and the required capital remains 
$250, for a total of $750. The implied equity flow to the equityholders on June 30, 20XX+I, 
is $981.93 - $750.00 = $231.93. 

INCOME STATEMENT PERSPECTIVE: The statutory income during the first half of 20XX+l is 
shown below. Direct charges or credits to surplus, such as the change in the deferred tax 
asset, are included with statutory income. 

2~ The tax payments are computed separately for underwriting income and investment income: 

�9 underwriting income: $227.50 for the full year, or $113.75 for each half year, and 
�9 investment income: $16.52 for the first half year and $10.01 for the second half year 
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Eamed premium = +$500.00 
Investment income = +$ 47.20 
General expenses = -$150.00 
Federal income taxes on underwriting income = -$113.75 
Federal income taxes on investment income = -$  16.52 
Change in deferred tax asset = - $  35.00 
Total = +$231.93 

There is no change in the required capital, so the implied equity flow is +$231.93. The two 
methods are alternative ways of describing the cash flows and balance sheet changes. 

We calculate the implied equity flows for the second half of the year in the same two manners. 
For heuristic purposes, we show a third method below. A change in the implied equity flows 
between the first half of the year and the second half of the year stems from changes in 
statutory income or changes in capital requirements. We list these differences below. 

a. General expense payments are $150 on June 30, 20XX +1, and $O in the second half 
of the year. ~ 

b. Investment income is $47.20 in the first half of the yearand $28.60 in the second half 
of the year. The difference in the investment income reflects the difference in the 
investable assets. 

c. Thefederalincometaxoninvestmentincomeis$16.52inthefirsthalfoftheyearand 
$10.01 in the second half of the year. 

d. Required capital declines to $0 on December 31, 20XX+I, since we have not yet 
included losses in the illustration. 

e. The tax liability and the amortization of the deferred tax asset are spread evenly over 
the two halves of the year. 

As an alternative to the full calculation, we adjust the implied equity flow from June 30, 20XX+ 1 
with these differences to get the implied equity flow on December 31,20XX+I: 

Equity flow on June 30, 20XX+I = 
Difference in general expenses = 
Difference in investment income = 
Difference in federal income taxes on investment income = 
Difference in surplus change = 
Equity flow on December 31, 20XX+I = 

+$231.93 
+$150.00 
+($28.60 - $47.20) 
-($10.01 - $16.52) 
+$250.00 
+$619.84 

zz This difference stems from the modeling assumptions. In truth, the maintenance expenses are incurred 
evenly over the year, but we assume a single payment date to simplify the modeling. For the federal income 
tax payments on underwriting income, we implicitly assumed that the maintenance expenses are incurred 
evenly over the course of the year, and we spread the federal income tax on underwriting income evenly over 
the year. 
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We show these adjustments to highlight the sources of the implied equity flows. This analysis 
is helpful for judging the reasonableness of the implied equity flows in each period. The actual 
pricing model performs separate calculations for each valuation date. z3 

The accompanying graphic shows the cash flow view of the implied equity flows. The following 
table shows the income statement view of the implied equity flows. These views are various 
perspectives of the same phenomenon. 

23 Instead of using values at the end of the period, some actuaries use average values for each entry and 
implied equity flows in the middle of the valuation period. To do this, we amortize the uneamed premium reserve 
and the deferred tax asset evenly over the policy term. The invested assets decline from $1180 on December 
31,20XX, to $250 on December 31,20XX+I. The average invested assets are ($1180 + $250) / 2 = $715.00, 
and the investment income is $715.00 x 8% = $57.20. This is less than the 20XX investment income of $47.20 
+ $28.60 = $75.80 in the iliustratien. The lower investment income is offset by the earlier implied equity flows 
in the alternative model, and there is no material change in the model results. 
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Cash Flow View of the Equity Flow 

4 ~  

I Required I Assets 
att=o 

Cash Flow 
Activity 

from t=0 to t=0.5 

J Accumulated Required J 
Assets Assets 
at  t=o .5  a t  t=o .5  

Company 

Surplus 
$25o 

UEPR 
$1,000 

Cash Inflow ~ n 

passage of time 

~ 7 . ~  

Equity Flow 
(maow to EOHRs) 

Surplus i '~~ 
t . 

AccumulatedAssets $25o -- ~=--=--=--=-~-~ed Assets~ 
. EncRng REQ Assets 

$981.93 I = $981.93 - $750 I 

Company ~ _ _ _ _ _ _ _ ~ ~  Subtraction 
Cash $280,27 

Outflow Subtraction r 

A 
I i DTA Flow 
/ i  

i 
+ Coml~lrly Cash Inflow 
-Company Cash Outflow 

- DTA Outflow 
--$1,250 + $47.20 - 

$280.27 - $35 



Income Statement View of Equity Flows 

Earned Premium 

Undiscounted Incurred Loss 
Paid Taxes 
Undiscounted Incurred Expenses 

Incurred Costs 

Investment Income 

Change in DTA 

Net Income 

~!~i ~ 
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Net Income 

Surplus Adjustments (Capital Contributions) 
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Implied Equityflow 

ooo 0.OO 
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280.27 

47.2 

-35 

231.93 
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231.93 

0 
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231.93 

1.oo 

50O 

0 
123.76 

o 
123.76 

28.6 

-35 

369.84 

250 

369.84 

-250 
0 

619.84 
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CASH FLOWS AND EQUITY FLOWS: PREMIUM AND EXPENSE TRANSACTIONS 

The exposition above traces the cash flows and equations by type of transaction. We put the 
pieces together to show the cash flows and equity flows by valuation date. The four 
accompanying schematics show the cash flows and equity flows for Illustration A: Premium 
and Expense Transactions. The first schematic shows a summary of the cash flows and 
equity flows at the throe valuaUon dates relevant to Illustration A. The next three schematics 
show more detailed information about the cash flows and equity flows at these valuation dates: 

�9 t = 0.0, or December 31,20XX-1 
�9 t = 0.5, or June 30, 20XX 
�9 t = 1.0, or December 31,20XX 

Each schematic shows transactions among the following seven nodes. 

f. Insurer'. All transactions pass through the insurance company and are taxed at a 35% 
rate. This causes the multiple layers of taxation of the profit margin in the policy premium. 

g. U/W." All underwriting flows- premium collections, loss payments, and expense payments 
- are between the insurance company and the rectangle labeled U/W. 

h. IRS: Tax payments are flows from the insurance company to the I RS; tax refunds are flows 
from the IRS to the insurance company. 

i. Assets: To track the flow of funds, we imagine that there is a fiduciary handling the 
insurer's assets. All cash received by the insurer is sent to the rectangle labeled "assets." 

j. DTA: The insurance company holds several types of non-cash assets, the most important 
of which is the deferred tax asset (DTA). There is no cash flow or equity flow underlying 
the non-cash assets. However, an increase in a non-cash asset causes an equal and 
offsetting reduction in the implied equity flows. An increase in a non-cash asset, such as 
a deferred tax asset, is shown as though it were a flow from the DTA rectangle to the 
Assets rectangle. 

k. FinMkts: All cash assets are invested at the benchmark investment yield. The receipt of 
investment income by the insurance company is shown as a cash flow from the rectangle 
labeled FinMkts to the Insurer. 

I. Eqhr: If the insurer needs more assets than it has from its underwriting and investment 
operations, the equityholders provide additional capital. If the insurer has excess assets, 
it distributes the excess capital to its equityholders. 
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ILLUSTRATION A (Case: No Losses) CASH FLOWS 

Time 

UW TRANSACTIONS 
(, Premium 
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0.0  0.._.55 1 ....O0 1 .._.55 2..00 2.._.55 3..~0 

0.00 0.00 0.00 0.00 0.00 0.00 
250.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 150.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

70.00 35.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

70.00 35.00 0.00 0.00 0.00 0.00 0.00 

1,000.00 500.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

0.86 0.88 0.90 
0.00 0.00 0,00 

250.00 250.00 0.00 0.00 0.00 0.00 0.00 
1,250.00 750.00 0.00 0.00 0.00 0.00 0.00 
1,180.00 715.00 0.00 0.00 0.00 0.00 0.00 

200.00 800.00 0.00 0.00 0,00 0.00 
250.00 150.00 0.00 0.00 

0.00 0.00 0.00 0.00 
0.00 47.20 28.60 0.00 0.00 0.00 0.00 

-17.50 227.50 0.00 0.00 
-17.50 113.75 113.75 0.00 0.00 0.00 0.00 

0.00 16.52 10,01 0.00 0.00 0.0..__00 0.00 
-17.50 130.27 123.76 0.00 0.00 0.00 0.00 

1,250.00 -500.00 -750.00 0.00 0.00 0.00 0.00 
750.00 -150.00 0.00 0.00 0.00 0.00 0.00 

47.20 28.60 0.00 0.00 0.00 0.00 
17.50 -1~0.27 -123.76 0.00 0.00 0.00 0.00 
70.00 -35.0o -35.00 0.00 0.00 0.00 0.00 

-412.50 231.93 619.84 0.00 0.00 0.00 0.00 

Exhibit 1A 

U/W Assumptions 

Target Retum on Capital = 12.0% 
Invest Rate of Return = 8.0% 
Premium = $1,000 
Dollars of Ultimate Loss = $0 

Combined Ratio = 40% 
Loss Rat o = 0% 

SUrDIUS AssumPtions 

Premium Leverage Ratio = 25% 
Reserve Leverage Ratio = 15% 

Results 

IRR on Equityflows (annual rate) = 136.8% 

Economic Value Added = $360.08 
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Formulae For Exhibit 1A 

CASE: No Losses 

(5)t = 0 .35  * 0 .2  * (8 ) t  

(7)t = (5)t+ (6)t 

( 12 ) t=  0 . 2 5 * W P  f o r t = O , O . 5  

(13)t  = (8)t + (9)t + (12)t 

(14)t  = (13)t " (7) t 

(15)t  = (1 ) t -  [ (8 ) t -  (8)t.1 ] 

(16)t  = (2)t + (2)t.o.s + (3)t + (3)t.o.s 

(18)t  = (14)t.o.s * in teres t  ra te  

(19)t  = [ (15 ) t -  (16 ) t -  (17)t  ] * 0 .35  

(20)t  = (19)t  fo r  t = 1 , 2 ,  3 

(20)t-o.5 = (19)t fo r  t = 0.5, 1.5, 2 .5  

(21)t  = (18)t * 0 .35  

(23)t = (13)t " (13)t.0.s 

(24)t = (1 ) t "  (2 ) t -  (3 ) t "  (4)t 

(25)t = (14)t-0.S * in terest  rate 

(26)t  = (22)t  

(27)t = (7)t- (7)t-o.5 
(28)t = "(23) t+(24) t+(25) t+(26) t  

Exhibit 1 B 
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Exhibit lC  

ILLUSTRATION A (Case: No Losses) Summary of Cash Flows 
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ILLUSTRATION A (No L o s s e s  Incurred)  E x h i b i t  1 D 
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I L L U S T R A T I O N  A(No  Losses Incurred) Exhibit  1D 
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ILLUSTRATION A(No Losses Incurred) Exhibit 1 D  
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ILLUSTRATION B - LOSS TRANSACTIONS 

We retain the scenario in the previous illustration, and we add losses incurred evenly 
during the policy term and paid over several years. To simplify the illustration, we model 
the losses as if there were two losses with ultimate values of $400 each occurring on 
June 30, 20XX+ 1, and December 31, 20XX+ I. Both losses are paid on December 31, 
20XX+3. Tax rates and capital requirements are the same as before. 

There are several additional cash flows: a loss payment on December 31,20XX+3 of $800, 
federal income tax payments or refunds for two and a half years between June 30, 20XX+I, 
and December 31,20XX+3, and investment income over the same time period. There are 
non-cash changes to the balance sheet for loss reserves and for deferred tax assets 
stemming from IRS loss reserve discounting. There are changes in the capital requirements 
stemming from the reserving risk charge. The assumption of a single payment date simplifies 
the computations yet leaves enough detail to highlight the modeling principles. 

Federal Income Taxes 

We use the IRS loss reserve discount factors for computing taxable income and tax liabilities. 
The IRS provides loss reserve discount factors for each line of business and accident year. 

The text of this paper presumes knowledge of I RS tax calculations and the post-codification 
statutory accounting rules for deferred tax assets and liabilities. The appendix to this paper 
contains a more complete exposition of the tax accounting rules. 

For the illustration, we assume IRS loss reserve discount factors of 86%, 88%, and 90% for 
accident year 20XX+I as of 12 months, 24 months, and 36 months, respectively. Since we 
are pricing prospectively, the actuary must estimate the future loss reserve discount factors 
based on federal mid-term rates and either industry or company loss payment patterns. 

The offset to taxable income for 20XX+l equals the tax rate times the change in the 
discounted loss reserve. The change in the discounted reserve for 20XX+I is the discounted 
reserve itself, since losses first occur in 20XX+I. The computation for 20XX+I is 

35% x 86% x $800 = $240.80. 

The offset to taxable income may be viewed either as 

(i) 35% of the change in the IRS discounted losses or 
(ii) 35% x (statutory incurred losses minus the change in the IRS loss reserve discount). 
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On December 31,20XX+I, the IRS discounted reserves are 86% x $800 = $688.00, and the 
IRS loss reserve discount is (1 - 86%) x $800 = $112.00. Since there are no loss reserves 
on December 31,20XX, these figures are also the year-to-year changes in these quantities. 

We pro-rate the annual tax liability among the portions of the year to estimate tax payments. 
Forthe semi-annual valuation periods in this illustration, we assume tax offsets of $120.40 at 
each valuation date: June 30, 20XX+I, and December 31,20XX+I. 

The tax rate times the change in discounted reserves during 20XX+2 is 

35% x (88% x $800 - 86% x $800) = $5.60. 

The change in discounted reserves is an offset to taxable income, so the tax rate times the 
change in discounted reserves is the offset to the tax liability for December 31,20XX+2. We 
split the offset of $5.60 into equal halves of $2.80 eac h for the semi-annual valuation periods. 

The tax basis incurred loss in 20XX+3 is the paid loss plus the change in discounted reserves: 

$800 + (90% x $0 - 88% x $800) = $96.00. 

The offset to the tax liability on December 31,20XX+3, equals 

35% x ($800 + 90% x $0 - 88% x $800) = $33.60. 

We split the $33.60 offset into equal halves of $16.80 each for semi-annual valuation periods. 

Unless a policy is written on December 31 or January 1, there are two accident years for tax 
purposes. This complicates the pricing model, so we have chosen a December 31 effective 
date for the illustration ?4 

Cash Flow and Equity Flow Patterns 

The illustration shows the occurrence of losses and the payment of losses in different years. 
The company cash flows for incurred losses show the following pattern: 

�9 There are significant cash inflowsstemming from the offset to taxable income on the dates 
the losses occur (June 30, 20XX+I, and December 31,20XX+I ). The cash inflow from 
the offset to taxable income precedes the cash outflow from the payment of losses. 

�9 There is a large cash outflow on the date the loss is paid, or December 31,20XX+3. 

24 The exhibits in Appendix B use an effective date of July 1, which is a proxy for the average effective 
date for policies written evenly through the year. Two accident years are used to evaluate the underwriting tax 
effects. This is the standard modeling technique for property-casualty insurance policies. 
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�9 The offset to taxable income stemming from the unwinding of the I RS loss reserve discount 
is balanced by the investment income on the assets backing the discounted reserves. The 
total cash inflow during the period equals the pre-taxinvestment income. The balancing 
is not perfect, since it depends on the accuracy of the loss reserve discount factors. 

�9 The pricing model treats the federal income taxes on the investment income separately 
from the tax refund on the amortization of the discount in the IRS loss reserves. The 
offsetting cash flows are shown separately. 

�9 The investment income on the capital supporting the reserves is not balanced by 
amortization of the interest discount in the reserves. The supporting capital comprises 
both the capital embedded in full value reserves and the capital held in surplus for the 
reserving risk charge. 

�9 Changes in the deferred tax asset are not company cash flows. 

The implied equity flows show a different pattem. The losses cause large equity outflows 
during 20XX+I and a modest equity inflow on December 31,20XX+3. 

We assume initially that the company posts full value loss reserves on June 30, 20XX+I, and 
December 31, 20XX+I. If the coverage is priced adequately, the policyholder premium 
provides for the present value of the expected losses plus an amount to fund the cost of 
holding capital and the associated federal income taxes. 2s The equityholders fund the loss 
reserve with assets equal to 

0 the difference between the held reserve and the present value of the reserve 
the capital requirement for reserving risk 
the amount of capital provided by the policyholders. ~ 

To distinguish the components of the loss reserves and the sources of capital, we conceive 
of the held reserve as the present value of future loss payments plus the capital embedded in 
the statutory held reserve. 

The capital requirement is the explicit capital in the surplus account. For illustration, we 
assume a capital requirement equal to 15% of held loss reserves. This is consistent with 
current NAIC risk-based capital requirementsY 

25 On the cost of holding capital, see Feldblum and Thandi, "Target Return on Capital" and "Federal 
Income Taxes and the Cost of Holding Capital." 

26 Adjustments must be made for the tax refund and the admitted portion of the deferred tax asset 
stemming from IRS loss reserve discounting. 

27 The risk-based capital requirements for the long-tailed lines of business (except workers' 
compensation) are higher than 15%, and companies hold surplus about twice the risk-based capital 
requirements. The covariance adjustment in the risk-based capital formula reduces the effective risk charge 
by about 50%. The 15% factor understates the capital requirements for the long-tailed casualty lines of 
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The effects of the reserve valuation rate on the NPV and I RR calculations are examined in a 
separate paper (Feldblum and Thandi [2002], "Reserve Valuation Rates"). The loss reserve 
valuation rate is an accounting item; it does not affect the loss cash flows. However, it affects 
the loss reserve, the capital requirements, the tax payments, and the deferred tax asset, all of 
which affect the implied equity flows and the internal rate of return. For this paper, we assume 
that loss reserves are held at full value (undiscounted value). 

Computations 

On June 30, 20XX+I, the statutory loss reserves are $400 and the required capital is $400 
x 15% = $60.00. On December 31,20XX+I, the statutory loss reserves increase to $800 
and the required capital increases to $800 x 15% = $120.00. 

The federal income tax liability on December 31,20XX+I, resulting from the incurred losses 
is-$240.80, computed as-35% x 86% x $800. The total deferred tax asset (DTA) is $5.60 
+ $33.60 = $39.20. This is the deferred tax asset on a GAAP balance sheet, as well as the 
deferred tax asset in column 1 of the statutory balance sheet (line 15 of page 2 in 2001). Of 
the $39.20 DTA, only $5.60 reverses within 12 months. This is the admitted portion on the 
12/31/XX+1 statutory balance sheet. 

We assume that the tax on underwriting income is paid (or the offset to taxable income is 
received) evenly over the year. For simplicity, we assume that half the deferred tax asset is 
accrued on June 30, 20XX+I, and the other half is accrued on December 31,20XX+I. 

To fund the incurred losses at June 30, 20XX+I, the policyholders and equityholders must 
provide assets equal to 

the held reserves + the capital requirement - the tax refund - the deferred tax asset, or 

$400  + $60  - $120.40 - $2.80 = $336.80. 

The policyholder funds are provided by the policy premium. At policy inception, the money is 
transferred to the unearned premium reserves. Over the course of the year, the money in the 

business an d somewhat overstates the capital requirements for workers' compensation. The pricing model in 
the appendix uses actual factors or best estimates by line of business. 

The illustration does not explicitly distinguish between the reserving risk charge applied to held reserves (Rs) 
and the asset risk charges applied to the assets backing the held reserves (R~ and R2). Because the marginal 
effect of a risk charge varies directly with the magnitude of the charges in its dsk category, the marginal effect 
of the asset risk charges is only about 10% to 20% of the marginal effect of the reserving risk charges for the 
long-tailed lines of business; see Feldblum [1996: RBC]. One may conceive of the 15% capital requirement 
as a 13% to 14% reserving risk charge and a 1% to 2% asset risk charge. 
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unearned premium reserves is transferred to the loss reserves. The equityholder funded 
capital is a capital infusion at the time of the loss occurrence. 

If the policy is adequately priced, the policyholder funds the fair value of the losses plus an 
amount to cover the cost of holding capital and the associated taxes. The equityholders 
provide the capital embedded in the reserves and the capital explicitly held in statutory 
surplus, minus the capital provided by the policyholders. 

The assets needed to support the incurred losses at December 31,20XX+l, are: 

$800 + $120 - $240.80 - $5.60 = $673.60. 

We have separated the premium transactions from the loss transactions in this illustration to 
highlight the relationships among the company cash flows and the implied equity flows. 

�9 The premium transactions show the funds supplied at time t=0 by both policyholders and 
equityholders to support the unearned premium reserve and the initial underwriting loss. 
At times t=V2 and t=l, the funds are distributed to the equityholders. 

�9 The loss transactions show equityholder supplied funds used at times t=V2 and t=l to 
support the loss reserves. At time t=3, the remaining funds are returned to the 
equityholders. 

In practice, loss reserves and paid losses gradually replace the unearned premium reserves. 
The policyholder supplied funds collected at time t=0 to support the unearned premium 
reserve are transferred to support the loss reserves as the premium is earned and the losses 
are incurred. The profit in the policyholder premium is transferred gradually to the 
equityholders over the same time period to provide the required return on the invested capital. 

In the illustration, there is no change in the undiscounted reserves between December 31, 
20XX+I, and December 31,20XX+3. We use this simplistic scenario to clarify the cash flows 
and implied equity flows, without having to deal with changing loss reserves and paid losses 
at each valuation date. In practice, reserves run off gradually. 

DEFERRED TAX ASSET: IRS LOSS RESERVE DISCOUNTING 

The deferred tax assets are computed at year-end dates. To clarify the exposition, we begin 
this sub-section with annual valuation periods, not semi-annual periods. We then turn to semi- 
annual valuation periods to explain the calculation of the deferred tax assets at the mid-year 
valuation dates. 

On December 31,20XX+I, the offset to statutory income stemming from the incurred losses 
is $800. The federal income tax offset that would result from an offset to taxable income of 
$800 is 35% x $800 = $280.00. 
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�9 The actual offset to taxable income on December 31,20XX+I, is 86% x $800 = $688.00. 
�9 The offset to the federal income tax liability is 35% x 86% x $800 = $240.80. 

The actual federal income tax liability is greater than the federal income tax liability that is 
implied by the statutory balance sheet. The difference is $280.00 - $240.80 = $39.20. 

The difference of $39.20 is recouped by tax refunds in subsequent years. Since statutory 
accounting recognizes the full value loss reserve on the occurrence date, it should recognize 
the full tax offset on that date as well. Tax accounting defers the last $39.20 of the offset over 
the period during which the interest discount unwinds. Both GAAP and statutory accounting 
treat this as a receivable. It is shown as a deferred tax asset on the balance sheet. 

GAAP financial statements recognize the full receivable if the firm expects to collect it. 
Statutory accounting admits only the portion of the deferred tax asset that is expected to 
reverse within 12 months of the statement date. To calculate the admitted portion of the 
deferred tax asset on the December 31,20XX+I, statutory balance sheet, we estimate the 
portion of this deferred tax asset that remains on December 31,20XX+2. 

�9 On December 31,20XX+2, the offset to taxable income is 88% x $800 = $704.00. 
�9 The offset to the federal income tax liability is 35% x 88% x $800 = $246.40. 
�9 The change in the federal income tax between December31,20XX+I, and December 

31,20XX+2, is $246.40 - $240.80 = $5.60. 

Date Statutory Tax Difference Change 

12/31/20XX+1 $800 $688 $112 - -  

12/31/20XX+2 $800 $704 $96 $16 

35% x $16 = $5.60. 

The expected change in the deferred tax asset from the current valuation date to the valuation 
date one year hence is the portion of the deferred tax asset that is recognized on the statutory 
balance sheet. 

The appendix explains the calculation of the deferred tax asset when there are multiple loss 
payments during the year. 

INVESTABLE ASSETS 

We calculate the investable assets to determine the expected investment income. We show 
first the procedure for annual valuation periods, and we then extend the computations to semi- 
annual valuation periods. 
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Investable Assets, with annual valuation periods: The investable assets equal the total 
assets minus the admitted portions of any non-investable assets on the statutory balance 
sheet. The non-investable assets include agents' balances, earned but unbilled premiums, 
accrued retrospective premiums, and deferred tax assets. 

The admitted portion of the DTA is $5.60 at December 31,20XX+l, and $33.60 at December 
31,20XX+2. The investable assets are 

�9 $ 9 2 0 . 0 0  - $5.60 = $914.40 during 20XX+2 and 
�9 $920.00 - $33.60 = $886.40 during 20XX+3. 2s 

Investable Assets, with semi-annual valuation periods: The deferred tax asset at December 
31 of year X is set up evenly over the course of year X and declines linearly to zero over the 
course of year X+I. During year X+I, a new deferred tax asset is set up, which declines 
linearly to zero over the course of year X+2. ~ Each deferred tax asset follows an accrual and 
amortization pattern shaped like a carot ("/V'). Each carot is two years long. 

The rationale for the two year up-down pattem is the assumption that losses are paid evenly 
during the calendar year. Before a loss is paid, there is a gross (GAAP) deferred tax asset 
associated with its reserve. The deferred tax asset is admitted on the statutory balance sheet 
only during the 12 month period immediately prior to its payment. 

Illustration: The $5.60 deferred tax asset at December 31,20XX+I, is accrued evenly over 
20XX+I : $2.80 on June 30, 20XX+I, and the remainder on December 31,20XX+I. 
declines to $2.80 at June 30, 20XX+2, and to $0 by December 31,20XX+2. 

A new deferred tax asset of $33.60 is shown at the December 31,20XX+2 valuation dat~ 
It accrues evenly over 20XX+2 ($16.80 on June 30, 20XX+2, and $16.80 on December 31, 
20XX+2). It declines to $16.80 at June 30, 20XX+3, and to $0 on December 31,20XX+3. 

The total deferred tax asset on June 30 r 20XX+2 t is $2.80 + $16.80 = $19.60. 

ze The implication of this reasoning seems to be that if more of the DTA is not admitted, the investable 
assets increase. This raises the investment income, which lowers the need for underwriting income, thereby 
causing a smaller rate indication. 

In fact, the investable assets increase only because the non-admitted DTA is replaced by equityholder supplied 
funds, which are investable. This raises the invested capital, and it more than offsets the higher investment 
income. The net result is to raise the rate indication, not to lower it. 

29 Since we are using discrete (semi-annual) functions, not continuous functions, =evenly over the course 
of the year" means one half on June 30 and the other half on December 31. 
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This modeling procedure interpolates between the deferred tax assets at December 31 of 
year X and December 31 of year X+I to derive the deferred tax asset at June 30 of year )(+1. 

�9 The deferred tax asset at June 30, 20XX+I, is ($0.00 + $5.60)/2 = $2.80. 
�9 The deferred tax asset at June 30, 20XX+2, is ($5.60 + $33.60)/2 = $19.60. 
�9 The deferred tax asset at June 30, 20XX+3, is ($33.60 + $0)/2 = $16.80. 

The change in the deferred tax asset is not itself a cash flow. However, the recognized portion 
of the deferred tax asset is an admitted statutory asset. A change in the admitted portion of 
the deferred tax asset causes an implied equity flow. Since the deferred tax asset is not 
investable but the capital contribution from the equityholders is investable, the change in the 
deferred tax asset also affects the investment income during the year. A decrease in the 
deferred tax asset causes an increase in the capital contributed by equityholders. This 
causes an increase in the expected investment income and an associated increase in the 
federal income taxes on this investment income. 

The total assets held by the company are $920 throughout the two years 20XX+2 and 
20XX+3. The investable assets are $914.40 at December 31,20XX+I, $917.20 at June 30, 
20XX+2, $886.40 at December 31, 20XX+2, and $903.20 at June 30, 20XX+2. 

Period Total Assets Deferred Tax Asset Investable Assets 

1/1-- 6/30/XX+2 $920.00 $5.60 $914.40 

7/1 - 12/31/XX+2 $920.00 $19.60 $900.40 

1/1 - 6/30/XX+3 $920.00 $33.60 $886.40 

7/1 - 1 2/31/XX+3 $920.00 $16.80 $903.20 

The investment income during the first half of 20XX+2 equals the investable assets times the 
investment yield, or $914.40 x 4% = $36.58. We use the same computation for each semi- 
annual valuation period in 20XX+2 and 20XX+3: 

period Investable Assets Investment Yield Investment Income 

1/1- 6/30/XX+2 $914.40 4% (half year) $36.58 

7/1 - 12/31/XX+2 $900.40 4% (half year) $36.02 

1/1- 6/30/XX+3 $886.40 4% (half year) $35.46 

7 /1 -  12/31/XX§ $903.20 4% (half year) $36.13 

The implied equity flow at each valuation date equals the statutory income during the 
preceding period minus the change in capital requirements from the beginning to the end of 
the period. The components of statutory income during the first half of 20XX+2 are as follows: 
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�9 Investment income is $36.58. 
�9 The tax on the investment income is 35% x $36.58 = $12.80. 
�9 The change in the deferred tax asset is $19.60 - $5.60 = $14.00. 
�9 The tax refund for the 20XX+2 amortization of the loss reserve is $5.60. We split the 

tax refund evenly over the year, giving atax refund of $2.80 forthe first half of 20XX+2. 

The total statutory income is $36.58- $12.80 + $14.00 + 2.80 = $40.58. There is no change 
in the required capital, so the implied equity flow is +$40.58. 

Investment Tax on Inv Change in Tax on Reserve Statutory 
Period Income Income DTA Amortization Income 

1/XX+2 $36.58 $12.80 $14.00 -$2.80 $40.58 
2/XX+2 $36.02 $12.61 $14.00 -$2.80 $40.21 

1/XX+3 $35.46 $12.41 -$16.60 -$16.80 $23.05 

2/XX+3 $36,13 $12,65 -$16,60 -$16.80 $23.46 

For the first three half years in the table above, the implied equity flows equal the statutory 
income. On December 31,20XX+3, the loss is paid, the loss reserve decreases to $0, and 
the required capital decreases from $120 to $0. The implied equity flow on December 31, 
20XX+3 is 

$23.48 - ( -  $120.00) = $143.48. 

CASH FLOWS AND EQUITY FLOWS: LOSS TRANSACTIONS 

The exposition above traces the cash flows and equations by type of transaction. We put the 
pieces together to show the cash flows and equity flows by valuation date. The five 
accompanying schematics show the cash flows and equity flows for Illustration B: Premium, 
Expense, and Loss Transactions. 

The first schematic shows a summary of the cash flows and equity flows at all seven valuation 
dates from t--K) through t=3. The subsequent four schematics show more detailed information 
about the cash flows and equity flows at four of these valuation dates: 

�9 t = 0.5, or June 30, 20XX 
�9 t = 1.0, or December 31,20XX 
�9 t = 2.5, or June 30, 20XX+2 
�9 t = 3.0, or December 31,20XX+2 
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At times t=0.5 and t=1.0, the losses are incurred. The schematics show the relevant cash 
flows and equity flows for setting up case reserves, added the reserving risk charge to the 
risk-based capital requirements, obtaining the tax offset for incurred losses, and setting up the 
deferred tax asset stemming from IRS loss reserve discounting. 

At time t=1.5, 2.0, and 2.5, there are no accidents or loss payments. The cash flows and 
equity flows stem from changes in the I RS discounted reserves, leading to tax payments and 
changes in the deferred tax asset. In addition, there are investment income flows stemming 
from the investment return on the assets backing the loss reserves and the reserving risk 
charge of the risk-based capital requirements. 

At time t=3.0, the losses are paid and the assets supporting the reserving risk charge are 
retumed to the equityholders. 

The schematics show transactions among the same seven nodes as used for the premium 
and expense transactions. 
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I L L U S T R A T I O N  B (Case:  Losses Incurred)  C A S H  F L O W S  
Exhibit 2A 

Time 
UW TRANSACTIONS 

0) Premium 
~2) Expense - Acquisition 
(~) Expense - General 
(.I LOSS 

OTHER 
DTA 

(= Due to Revenue Offset 
(e~ Due to Loss Reserve Discountin 
~,~ TOTAL 

RESERVES 
~e~ UEPR 
~) Stat Loss Reserve 

(,0~ IRS Discount Factors 
~.> Tax Basis Loss Reserve 
(12) Surplus 
(.~ Total Assets 
o,~ Investable Assets 

TAXES 
(,s) Tax Basis UW Revenue 
<,~ Tax Basis Expenses 
(~n Tax Basis Inc Loss 
~ Tax Basis Inv Income 

Valuation of Taxes 
~ Tax on UW Income (~r 

0.0 0.._..55 1..._00 1..._.55 2.0 2.._.55 3.0 

0.00 0.00 0.00 0.00 0.00 0.00 
250.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 150.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 800.00 

70.00 35.00 0.00 0.00 0.00 0.00 0.00 
0.00 2.80 5.60 19.60 33.60 16.80 0.00 

70.00 37.80 5.60 19.60 33.60 16.80 0.00 

1,000.00 500.00 0.00 
400.00 800.00 800.00 800.00 800.00 0.00 

0.86 0.88 0.90 
688.00 704.00 0.00 

250.00 310.00 120.00 120.00 120.00 120.00 0.00 
1,250.00 1,210.00 920.00 920.00 920.00 920.00 0.00 
1,180.00 1,172.20 914.40 900.40 886.40 903.20 0.00 

200.00 800.00 0.00 0.00 0.00 0.00 
250.00 150.00 0.00 0.00 

0.00 688.00 16.00 96.00 
0.00 47.20 46.89 36.58 36.02 35.46 36.13 

-17.50 -13.30 -5.60 -33.60 
(~o~ Tax on UW Income (Serni-Annuel Pa -17.50 
~2~1 Tax on Invest Income 
,==) Total Semi-Annual Payment 

CASH FLOWS 
(~ Asset Flow 
,=,~ UW Flow 
(=s~ tnv tnc Flow 
r Tax Flow 
,~ DTA ROW 
(=s) Equityflow 

-6.65 -6.65 -2.80 -2.80 -16.80 -16.80 
~t 6.52 1 6 . 4 1  12.80 1 2 . 6 1  1 2 . 4 1  12.64 

-17.50 9.87 9.76 10.00 9.81 . -4 .39 -4.16 

1,250.00 -40.00 -290.00 0.00 0.00 0.00 -920.00 
750.00 -150.00 0.00 0.00 0.00 0.00 -800.00 

47.20 46.89 36.58 36.02 35.46 36.13 
17.50 -9.87 -9.76 -10.00 -9.81 4.39 4.16 
70.00 -32.20 -32.20 14.00 14.00 -1~.80 -16.80 

-412.50 -104.87 294.93 40.57 40.21 23.05 143.48 

U/W AssumDtions 

Target Return on Capital = 12.0% 

Invest Rate of Return = 8.0% 

Premium = $1,000 

Dollars of Ultimate Loss = $800 

Combined Ratio = 120.0% 

Loss Ratio = 80% 

Sumlus Assumotions 

Premium Leverage Ratio = 25% 

Reserve Leverage Ratio = 15% 

Results 

IRR on Equityflows (annual rate) = 3.0% 

Economic Value Added = -$62.49 
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F o r m u l a e  For  E x h i b i t  1 B  

CASE: Losses Incurred 

(5)= = 0.35 * 0.2 * (8), 

(6)t = 0.35 * { [(9)t - (11)t] - [(9)t.1 - (11)t.1] } 

(7)t = (5) t+  (6)t 

(11 ) t  = (9) t  * (10) ,  

(12)t = J '0 .25"  W P  + 0.15 * (9)t fo r  t = 0,0.5 
/ 

10.15 * (9)1 fo r  t >=  1.0 

(13)t = (8)t + (9)t + (12)t 

(14), = (13), - (7)t 

(15)t = (1) t "  [ (8) t "  (8)t.1 ] 

(16)t = (2)t + (2)t-o.s + (3)t + (3)t.o.5 

(17), = (4), + (4)t-o 5+ [ (11),- (11),., ] 
(18)t = (14)t-o.s * interest  rate 

(19)t = [ (15) , -  (16)t - (17)t ] * 0 .35 

(20)t = (19)t fo r  t = 1 ,2 ,  3 

(20)t-o.s = (19)t fo r  t = 0.5, 1.5, 2.5 

(21)t = (18)t * 0 .35 

(23)t = (13)t - (13)t-o.5 

(24)t = (1) t -  (2) t "  (3) t "  (4)t 

(25)t = (14)t.o.s * interest ra te  

(26), = (22)t 

(27)t = (7 ) t -  (7)t-o.s 

(28) t = -(23)t+(24)t+(25)t+(26)t 

E x h i b i t  2 B  
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ILLUSTRATION B (Case: Losses Incurred) Summary of  Cash Flows 
Exhibit 2C 

4~ 

[ t=0 ] 

�9 $ 1 , 2 5 0  

$1.teo 

~12.5  

[ t : ~ . s  ] 

ASSETS I $92o 

I t = o.s I I t = l o  I 

I DTA ASSETS DTA ASSETS 
�9 $1 ,210 $92O 

I t : 2 . o  I I t = 2 . 5  I { t = 3 . 0  ] 



I L L U S T R A T I O N  B ( c a s e  L o s s e s  I n c u r r e d )  E x h i b i t  2 D  

f DTA Due to Re,~nue Offset - 
= amortization of $70 DTA at t=O 

= 1/2" $70 = $35 . I 
DTA Due to IRS OiscounUng I t  yem" end: I 

----~. [(H,,~ R~= , -~ -  ,Rs ~=,~,) , ,  ,-,.0 / 
-(Held Reserves - IRS Reserves~ to_o] I 
-~%1(t-.~)~ - (I-.~)'~] I I �9 -- 

- -~ -=  / I . - 0 . 5  
DTA Due to tRS Discounting at ndd-yea~ I 

=interpolation between value at t=O and t=l.0 ~ .  
=1/2"{$0 + $5.6) = $2.80 ~ I 

Total DTA = DTA Due to Revenue Offset + DTA Due to ~,  r ~ - " ~ ~ ~ ' ~ ' 1  I 
,RS~=oundr~ / I  ."?_ ~ ASSETS 

=$35+$2.80=$37.80 / I  ~ =  l ~ . 2  I $1,210 
With DTA at t=O equal to $70 this Imp~!es a DTA flow of - J ' - I 

~UI~ Assets = 
. ( UEPR § LOSS Re~rv~ l  + Surplus 

I ~fin~0.5: UEPR= 1/2~/P=$500, 
I ~ Reserves = 1/2"$800, 
I Suq01us = 25%(WP) + 15%(Loss Resarves) 
I --$250+$60=$310 

. J = $50o +$400 § $5m 
= $1,210 

I / .Of these assets, $37,8 are deferred tax assets 
" n d  

I ~  is Inve~table. ~ /  

I J 
~ ' ~  Insurer pay~ general expe ~ { U / W  ) $150 ~ I ~ " ~ -  
I $150. The U/W flow to the Insurer at ~ /  I ~ ' ' - -  J ~ 'rTue C~ Cash Fl~ f~ this ped~ ~ ' ~  
| t=O is I ~' "/ ~ ~ I consists of $47.2 investment income, m;nus l 
J .t150 I ~ ~  I $9.87attaxe~.minus$150ofgeneralexpenses. I 

. . . . . . . . .  tedat arenclis / I I / ~ J  dralned $112,67 from these funds. The decrease in I ne U/VV ~ax cazcu~ ye r 
~- ~ u~w ,.come = / t ~ T ~ . . . ~ ,  fun ~, a . . ~ ,  
- -  35%*$6505650 == -$-s13.30 $32.2 for a t o~.al $144.87 decrease and a fund . . . .  ond / \ \  l nd 

. . . . . .  I ~ p a y ~  is O year \ ~  ~ leqZA~ a ~ 1 2 1 0 ,  The r e . n d e r  

I /2 "  year end UAN tax \ ~ ~ $12"I0- $1~I05,!3 = $104,87. 

inco~.  I 1 ~ ~ 1  - ~  Row * Compa.y Cash Row * DTA 
I m ~  is 4%sern'Hu'inu~dly, Thus the I I . o .  

The tot~ FIT is t h =  I Inv~tment Inc~ earned ~ the I I 
�9 ~ = + = m s 2 = s g . e 7  . I P ' ~  I ~ . 

J " ~"~" --$1180 " 4% = $47:2 J " ~ 



I L L U S T R A T I O N  B (case Losses Incurred) Exhibit 2D 

4 ~  

b ~  

| / At time 1.0: UEPR =$0, 
DTA Due to IRS Discounting at year efld: I l Lses Rseen/es : $800, 

--35%* [(Held Reserves - IRS Reserves) at t=l.O I I Su~us = 25%*(6) + 15%'(I.o~ Reserves) ---$0 
-(Held Reserves - IRS Re@styes) at t=2.0] l l + $120= $120 

----.~%'[(1-.es)*$9oo - (1-.ee)*$9oo / t - 1 0 / _ . 
=$5.6o l I - " I I so, ~.,qui,~ ~ e =  are 

J J = Ss00+$120 + $920 
Total DTA : DTA Due to Revenue Offset + DTA Due I~ / 

to IRS Discounting ~ r - -  / Of these assets, $5.60 are deferred tax assets 
--$0 + $5.60 = $ 5 . 6 0  ~ I ' ~ - ~ ' Z - - ' - - I  I ~ that are non-invsetabie, and hence 

~ I  .".'.':_ ~ ASSETS ~ ~'~-$5.s0=~14.40 
With OTA at t--0.5 equal to $57.80 this implies a DTA / I .T@ -~ I $32.2 J $920 ~ is Inveltable. 

u .  1 I ' ' ' ~  
I / / The Company Caldl Row for this period '~i 

~ . ~ .  M H~J .~.~...* *--, n ~, J ~ ,  J COnSlsts of $46.89 investment income, minus / 
f . . . . . . . . . . . . . . . . . . . . . . .  ~ [ , R S ~  I" 4 '"~u""" ~ ' ~ ~ ~  I $9.76 of taxes, f o r a t .  $37.13 inflow. J 

r The 'RS taxable U/W inooflle computed ~ [ J ~ 
at year end (at t=l) is equal to: ~ - 7 ~ ~ 

WP-80%&UEPR-expenses-IRSbasis I ~u:.89 / $294.93 J / The startJng aseeie at t--O.S are $1210. Overthe 
Incurred Losses ~ ~ . w  ~ I [ period from t--0.5 to t=l.0 company operations 

--$o-ao%(~1000)-$150-(0.e6*$9oo) =- ~ - / J "  F INMKTS I ~  / ~ J  have added $57.13 from these funds. The 
$38 ~ J ,  J - ~  J / decrease in DTA has diminished the asset fund by 

The U/W tax calcuietnd at year end is / �9 ~ ~  $32.20 for a total $4~3 increase and a fund 
35%* taxabie U/W Incorne ~ J ~  j . . . .  J 4 , ~ /  baience of $1214.93. The amount of assets 

35%*(~38) : 413.30 ~ J ~ ~. ) ~  required st t=l.0 Is only $920. The baience of 
The sefld-lmnual payment of this year end J ~ �9 $294.93 

U/W tax is J \ i is ~ . - . ~ . o w  (.qdi~ ~.). 
year end U/W tax - paid to date I ~ l 

= -$13.3-(-$6.65)= -$6.65 ( ~ h e  investabie assets at t=0.5 am~'~ / EqldlyFlow = 
J equal to $1172.2 The invsetment rale J J StartlngRisqulmdAseete+CompanyCa~ 

IRS taxable investment income is J of return is 4% semi-ennuaJly. The J J Row + DTA Flow - Ending Required Aseets 
$46.89Withataxratoof35%thismeansa J Investment lnconte eamed over the J J ~AsletFIow+CompanyCalhRow+DTA 
tax of 35%*$46.89 = $16.41 on investment J period Is J J Flow 

income. ~ =$1172.2 * 4% = $46,89 J 

The total FIT is thus ~ .  j 
-$6.65 + $16.41 : $9.76 ~ 

J 



I L L U S T R A T I O N  B (Case Losses Incurred) Exhib i t  2 D  

t ~  

DTA Due to IRS Discounting at year end: I | At~ne2.5: UEPR =$0, 
--so ! / Lo .F~ , - -  o =oo, 

OTA Oue to fRS O~=,muntang at ~ :  I / $120- C20 
=interpolation between value at t--2.0 and t=3.0 I I t 2 S I / 

=1/2"(133.e + =o) = sis.so / i = " I | sm Rmw~/.mem am 
I / =$800+$120+$920 

Totld DTA = DTA Due to Revenue Off,let + DTA Due I / 
to IRS (~scountil~l ~ f J ~ Of these assets, $16.80 m deferred tax slmets 

--$0+$16.80=$16.80 ~ i A ~'r L~'f~ I ~ that am non4nvestable, and 
�9 / I  .T, ,; ~ ~ ~ . ~  I ,~ I ~  $920516.80=$803.20 

WJ~hDTAatt=2.0equaJto$33.60thisimpliesaDTA ~ . . . .  .~e 1516.80 I S020 I ' ~ ' ~  IslnveMibie. 
, .  of -s,e.eo / i , ~  j 

} l -  ~ ' U~ 

~ . / < Z ~ , - . . _ _ _ - ~  I " ~ ' ~ ' ~  f o , , ~  ~ . ~ , .  I 

at r,=r . ,~  (= t=+)* = ~  to: ~ L J ~ 
WP - 80"/,~UEPR - expenses - IRS basis ~ 7 '  | 

=$0 - 80%(0) - $0 - (8(X) + (0 - 0,88"$800)) ~ ' ~ r  . - - ' - -  ~ I [ pedod from t=2.0 to t=2.5 compeny operations 
=-$96 ~ 1  F I N M K T S  ~ / ~ J  have added S~.eS to the4m funds. Thede~use 

U/W tax cak:ulated at year end is ~ I I ~  / ~ In DTA h ~  ~ the aNet lurid by S16.80 for 
35%* taxable U/W Income / " " ( ~ O H R  ~1 / / a total t23 06 Incmam and a fund ol 

The send-snnual payment of this year end I ~ ~. ) ~ _ _ _ ~  ~ l l  ~20. The balrance ot $23.05 
UN+tax ~ I \ ~ m "f~" c=h m)w ( ~  P~+~. 

+,'++- ~.,,+ ~ u~w ~ I \ ~ " " 

ThemS ., r _'"?L*"+~+----a~'.==~ '+'am. ~ I s t , ~ , , m m = , ~ , , , ~ . = . , ~ . + ~ e . = m  
l a x a b l e ~ m . t ,  c o m e i =  I e q u a = m + ~ m m + A u .  = n e m v e e a m m l r a t e  I I F l o ' ~ + O 1 " A F l o w - ~ m . ~ ' . a ~ , ~ . ~ m ~ t =  

" -  4 6  W l t l t  . . . . . . . . .  ' . . . . . . . . . . . . . .  ' ~ - - - - "  - - - ~ - ' - - -  ~ .  a t a x  t a m  o f  3 ~ x ~  U l ~  t n e a l ~  8 ~ B r m M m  m 4 - ~  ~ m m p ~ n n L m W  ~ ~ I = ' A ~ t  ~ - - -  + ^ - - - - - ' -  -~  - - -  
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I L L U S T R A T I O N  B (Case Losses Incurred) Exhibit 2D 

~D 

f DTA Due to Revenue Offset 
= amortization of $70 DTA set up at t=0 / 

= 0 " $ 7 0 =  $0 | 

DTA Due to IRS Discounting = $0 / I t = 3.0 
/ 

With DTA at t=0.5 equal to $35 this implies a DTA flow I 

of - S 3 s .  ~ ' ~ ' ~ _ ~  ASSETS 

So 

w that all losses have been paid, the required~'~ 
assets are equal to $0  | 

J 

I ~ Company Cash Flow for th~s period 
I I consists of $36.13 investment income, plus a tax I 
J r I refund of $9.76 of taxes, minus $800 of paid J 

r �9 $800 I " J ~  10ssesforatotal $759.71oufflow. | 
. . . . .  

~,.S=..~W,n=.~,u~ f ,RS I ~ J \  
at,~r  e ~  (at t=~) is equat to: ' ~  L ) ~ 

WP - 80%z~UEPR - expenses - IRS basis 
- ~ "  s ~s  ~ _ / S14.3 48 t / ~ .  start,ng assets at t=2.5 are $920. Over t h e ~  mcurruu LOSSe 13 " ' 

-On Rm/.t~r,n'J r IC, R ~  tP,~Q*CRC~'J'J ~ ,$36.13 j . . . . . . .  / / parindfromt--2,5tot--3.Ocompanyoperatisnshave 
= " - - - ' " - " " . - ' ~  . . . . . . . . . . . . .  ~ F I N M K T S  ] ~ / ~ ' J  draineq$759"71fr~ 

The U/W tax ca/cu~tsd at . . . .  d s / / ~ / / DTAhasdiminishedtheaseatfundby$16.80fora 
. . . . . . . . . . . .  In~m - / ~, J ~ / ~ f  total $776.51 decrease and a fund balance of 

$143.48. assets are required at t=3.0. The balance 
The semi.en35~:~l~ntSt33oo; t6Ois year of ,143.48 

u~ tax is f \ "1 is ~ . , .  o=~  ~ .  (equ,y.ow). 
year end U/W tax - paid to date I ~ | I=n.ttv~ 

= -$33.6-(-$16.8)= -$16 80 -~- - - i "  .OW = invosta~a ==;. at t ~ . ~ ' ~  / S,=~, ~ . , u . . . . . . .  ~ . ,  ~..h . o .  
The IRS tsxab~e investment income is I equal to $903.2 The invsetmeot rate I | + DTA Row - Ending Required Aseets 

$36.13 With a tax rate of 35% this means a I of retum is 4% semi-annuatly. The I | ~Asset  IRow § Company Clmh Flow + DTA Row 
tax of 35%*$36.13 = $12.64 on investment I Investment inc~ ? amed ~ the I | 

income. / period is I / 
=$903.2 * 4% = $36.13 ,) 

The total FIT is thus ~ ~ "  \ 
-$1680 + $12.64 : -$4,16 (a refund) ~ 
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Premiums and Losses 

To complete the modeling of the implied equity flows, we overlay the premium transactions 
with the loss transactions. On June 30, 20XX+I, and December 31,20XX+I, there are 
implied equity flows stemming from both premium and loss transactions. 

JUNE 30, 20XX+I : The implied equity flow stemming from the earning of the premiums is 
+$231.91. This includes the effects of premium earnings, expense payments, federal income 
taxes, the takedown of one half of the deferred tax asset from revenue offset, and investment 
income. There is no change during the year in the capital requirements stemming from the 
written premium RBC charge. 

The implied equity flow stemming from the occurrence of the first loss is -$336.80. This 
includes the effects of loss accrual, federal income taxes, the deferred tax asset stemming 
from IRS loss reserve discounting, and capital requirements for held loss reserves. The net 
implied equity flow on June 30, 20XX+I, is +$231.93 - $336.80 = $-104.87. 

DECEMBER31,20XX+l : The implied equity flow stemming from the earning of the premiums 
is +$619.84. The implied equity flow stemming from the occurrence of the second loss is 
-$336.80. 

This includes the same items as the implied equity flow on June 30, 20XX+l; it does not 
include the effect of investment income on the assets held to support the first loss, which was 
incurred on June 30, 20XX+I. The investable assets supporting the first loss are $400 of loss 
reserve plus 15% x $400 = $60 of supporting surplus minus $2.80 of deferred tax asset = 
$457.60. The after-tax investment income on these investable assets is $467.20 x 4% x 
(1-35%) = $11.89. The net implied equity flow on December 31, 20XX+I, is +$619.84 - 
$336.80 + $11.89 = $294.93 (premium flows, loss flows, and after-tax investment income on 
the assets supporting the loss reserves). 

Internal Rate of Return and Net Present Value 

The internal rate of return is the interest rate that sets the present value of the implied equity 
flows to zero. The table at the end of this paper shows the cash flows, statutory accounting 
entries, and implied equity flows for the illustration discussed above. The internal rate of return 
on the implied equity flows is the solution to the following equation: 

0 = - 4 1 2 . 5 0  - 104. 87/(1+x)  1 + 294.  9 3 / ( I + x )  2 
+ 40.57/ (1+x)  3 + 40.21/ (1+x)  4 + 23.05/ (1+x)  5 + 143.48/(1+x)  6. 
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This solution is x = 1.485%, which is a 3.0% effective annual rate (1.014852 = 1.030). 3~ 

RATE FILINGS 

Since the internal rate of return is less than the cost of capital, the policy generates a loss for 
the company, not a gain. We have not discussed the cost of capital, but it is at least equal to 
the investment yield of 8% per annum. 

Some regulators presume that a positive internal rate of return implies a profit, even if the 
profit is not as great as the company desires. The National Council on Compensation 
Insurance (NCCI) was discomfited by this perception among some state rate regulators in the 
1980's, when it filed advisory premium indications for its members. 

Net present value models cimumvent this misinterpretation. The NPV model shows a dollar 
gain or loss. An indicated I RR less than the cost of equity capital produces a dollar loss, and 
an indicated IRR greater than the cost of equity capital produces a dollar gain. 

For performance measurement purposes, we use an EVA yardstick in addition to the I RR; see 
Feldblum and Thandi, "Income Recognition and Performance Measurement." Applying a net 
present value analysis to the implied equity flows (not to the company cash flows) is similar 
to an economic value added analysis. Both net present value and economic value added 
translate the implied return into a dollar amount, so that the gain or loss to the company is 
more readily understood. 

Assumptions and Precision 

These illustrations cover the major equity flows that affect financial pricing models for property- 
casualty insurance. Realistic pricing models have more entries, but they are not conceptually 
different. 

Some readers might dismiss the analysis in the previous sections as needless precision. 
They presume that the modeling of tax cash flows and deferred tax assets and liabilities 
imposes excessive costs for little benefit. 

This may have been true in past years, when computations were done with pencil and paper 
or with desk calculators. There is much arithmetic manipulation, but the principles are straight- 
forward. The task of the pricing actuary is to construct the pricing model and to provide 
reasonable assumptions for the cash flows; the arithmetic is done by computer. Once the 
model is in place, the computation rules remain the same from year to year. 

30 By Descartes' rule, the maximum number of real solutions to this polynomial equation is equal to the 
number of sign reversals. Since there is only 1 sign reversal, the 1.485% solution is unique. 
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Time demands on casualty actuaries have hindered some companies from developing 
financially appropriate return on capital pricing models. There is a temptation to use rules of 
thumb or expedient short-cuts, such as 

�9 traditional combined ratio targets with discounted loss ratios, 
�9 after-tax investment yields instead of explicit modeling of federal income taxes, 
�9 fair values of insurance costs instead of the cost of holding capital. 

These short-cuts often lead to severe pdcing errors in long-tailed lines of business. 

Consumers' Perspective and Suppliers' Costs 

We conclude this paper by comparing two perspectives on insurance pricing: the consumers' 
value perspective and the supplier's cost perspective. 

Suppliers: The equityholder's cost mode/described in this paper determines the minimum 
price that investors demand to fund the insurance product. To optimize shareholders' retum 
on invested capital, an insurer must focus on the amount of invested capital and the return on 
that capital. 

Consumers: The consumers value mode/focuses on the value received by the consumer 
from the insurance product. The rational consumer looks at the expected cash flows to and 
from the insurance company. Pdcing an insurance product from the consumer's perspective 
focuses on expected loss payments for casualty products or expected benefit payments for 
life insurance products. 

The expected loss costs gives the pure premium. By adding underwriting expenses and 
income taxes on the policy cash flows, and discounting at an appropriate interest rate, one 
determines the present value of benefits. This is the value of the product to the consumer. 
The consumer does not include the insurer's cost of capital in the value of the product. 

In theory, the consumer's cost of capital should be included in the consumer's value 
perspective; see the following illustration. In practice, few consumers would set aside the 
requisite capital to fund the insurance risks. 

Illustration: An employer might self-insure its workers' compensation exposures. The self- 
insured employer faces substantial process risk caused by random loss fluctuations. In theory, 
it should hold capital to guard against adverse loss fluctuations and to ensure payment of 
benefits to injured employees. In practice, the employer would pay benefits out of current cash 
flow, since it has no reserve requirements and no risk-based capital requirements. 

The additional capital costs imposed by state regulation cause a discrepancy between the 
value to the consumer and the cost to the insurer. Even if the rational insurer and the rational 
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consumer have the same expectations for the insurance cash flows, they calculate different 
prices for the insurance product. A common solution to this problem in many jurisdictions is 
an economically inefficient battle of wits among pricing actuaries, regulators, and consumer 
representatives at state rate hearings. 

The magnitude of the discrepancy between the consumer's value perspective and the 
insurer's cost perspective is not always appreciated by regulatory authorities. This 
discrepancy was low at the beginning of the 20 th century, when property-casualty products 
covered primarily the short-tailed property lines of business and capital requirements were 
low. The discrepancy has risen steadily through the 20 t" century, as casualty lines have 
increased, payment patterns have lengthened, and more stringent capital requirements have 
been imposed. The capital to assets ratio for property-casualty insurers is now many times 
higher than for life insurers, commercial banks, or other financial institutions. The costs of this 
high capital to asset ratio should be understood and properly weighed by state regulators. 

498 



CASH FLOWS AND EQUITY FLOWS 

The leitmotif of this paper is that the company cash flows for property-casualty insurance 
operations are not a suitable proxy for implied equity flows. The accompanying chart shows 
the cash flows and the associated equity flows for "Illustration A: Premium and Expenses." 

Valuation Date 0.0 0.5 1.0 

cash flow $767.50 ($233.07) ($95.16) 

equity flow ($412.50) $231.93 $619.94 

The premium collection at time t=0 glustration A: Cash Flows and Equity Flows 
causes a large cash inflow to the $8o0.0O i ~ - - - - - -  
company. The unearned premium $ 8 0 o . 0 O - ~ - i i - - - - - - - - - - ~ s ~ - -  
reserves and risk-based capital ~'o0~-I i ~ t m i  
requirements cause a large equity 
outflow at time t=0. $2o0.o0 ~ - - - - ~  

Expenses and tax payments cause $0.o0 ~ F  ~ ,  m ~ ~ 
cash outflows at times t=V2 and t=l. ($200.00) 
As the premium is earned and the ($400.00) 
unearned premium reserve is taken 
down, there are equity inflows. ($800.0O) ~- ~ - -  ~ - -  ~ -  

0.0 0.5 1.0 

�9 cash flow [ ]  equity flow 
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LOSS TRANSACTIONS 

The loss transaction show a similar pattern: company cash inflows are associated with implied 
equity outflows, and company cash outflows are associated with implied equity inflows. The 
loss transactions begin at time t=�89 and extend through time t=3. 

Date 0.5 1.0 1.5 2.0 2.5 3.0 

cash flow $123.20 $135.09 $ 4 0 . 5 7  $ 4 0 . 2 1  $ 2 3 . 0 5  ($776.52) 

equity flow ($336.80) ($324.91) $ 4 0 . 7 6  $ 4 0 . 2 1  $ 2 3 . 0 5  $143.48 

Losses are incurred at times t=�89 and t=l. The cash inflows at these dates stem from the 
federal income tax contra-liabilities, which are 35% of the present value of the incurred losses. 
The equity outflows stem from the case reserves and the risk-based capital requirements. 

The cash flows and equity flows at times t = 1.5, 2.0, and 2.5, stem from investment income, 
tax payments, and changes in the deferred tax asset. The equity flows equal the cash flows. 

At time t=3, the loss is paid, resulting in a large cash outflow. There is an equity inflow 
stemming from the takedown of the risk-based capital requirements. 

$800.00 - 
Ulustration B: Cash Flows and Equity Flows 

$4OO.0O- 

$200.00 - 

$0.0o - 

($20O.00) 

($400.00) j 

($60o.0o) -j 

ii!i!i!~i!ii 

=P 11 
0.0 0.5 1.0 

cash fJow ~ equity t~ow 

Financial Pricing Models - Modeling the Equity Flows 
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Exhibit 3 

Company Cash Flows and Equity Flows - Case No Losses 

Company Cash F low - NO Looses 
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Company Cash Flows and Equity Flows - Case Losses Incurred 
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Appendix A: Federal Income Taxes and Deferred Tax Assets 

INTRODUCTION 

For prospective pricing, the actuary must estimate future I RS loss reserve discount factors and 
future deferred tax assets stemming from revenue offset and from loss reserve discounting. 
The post-codification changes to statutory accounting furthercomplicate the consideration of 
tax effects in actuarial pricing models. 

Thisappendixprovide atutorialthrough the relevant tax laws and regulations. It provides clear 
documentat ion of the IRS provisions concerning loss reserve discounting and the post- 
codification statutory accounting rules regarding deferred tax assets and liabilities, z~ To avoid 
repetition, this appendix covers the tax laws and regulations for the series of pricing model 
papers by S. Feldblum, N. Thandi, E. Schirmacher, and D. Schirmacher. 32 

DATA SOURCES 

The equity flows in the pricing model are based on statutory accounting. For non-insurance 
companies, taxable income depends on general accounting [GAAP] statements. For 
property-casualty insurance companies, taxable income depends on statutory accounting 
statements. The exposition in the text of this paper determines taxable income from statutory 
income with several adjustments. 

A. The tax computation begins with statutory pre-tax income from the Underwriting and 
Investment Exhibit of the Annual Statement: Part 1 for investment income and Parts 2, 2A, 
and 3 for underwriting income. ~ 

3~ For a general treatment of federal income taxes relating to property-casualty insurance companies, with 
emphasis on items of particular concern to casualty actuaries, see Samson, eta/. [2003]. 

For more extensive coverage of the tax aspects of insurance pricing, see Feldblum and Thandi, =Federal 
Income Taxes and the Cost of Holding Capital," Feldblum and D. Schirmacher, "Reinsurance Pricing and Capital 
Management," and Feldblum, "The Pricing of Commutations." 

See the Treasury regulations, 2001FED 26,153, w "Gross income means the gross 
amount of income earned during the taxable year from interest, dividends, rents, and premium income, 
computed on the basis of the underwriting and investment exhibit of the annual statement." 

The Internal Revenue Code lists numerous adjustments, of which the following are the most important for the 
pricing actuary: 

1. The earlier incurral of the tax liability resulting from revenue offset and loss reserve discounting. 
2. The effects of anticipated salvage and subrogation and the discounting provisions relating thereto. 
3. The reduction of the tax liability resulting from municipal bond income and the dividends received deduction. 
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B. The additional tax liability resulting from the revenue offset provision is calculated from Part 
2 of the Underwriting and Investment Exhibit. ~ 

C. Schedule P, Part 1, is used to calculate the additional tax liability resulting from the IRS 
loss reserve discounting provision. Schedule P, Part 3, may be used to determine the 
non-admitted portion of the deferred tax asset stemming from the loss reserve discounting. 

This appendix focuses on IRS loss reserve discounting and the admitted portion of the 
resulting statutory deferred tax asset. 

Loss Reserve Discounting 

For statutory financial statements, calendaryear incurred losses equal the losses paid during 
the year plus the change in the full value loss reserves from the beginning of the year to the end 
of the year. Forfederal income tax purposes, theincurredlossesduringthetaxyearequalthe 
losses paid during the year plus the change in the discounted loss reserves from the 
beginning of the year to the end of the year. 

The determination of discounted loss reserves relies on Schedule P. For a prospective 
pricing model, the actuary must estimate (i) the discounted loss reserves, (ii) the amount of 
the discount, and (iii) the deferred tax assets stemming from loss reserve discounting and 
revenue offset. For retrospective analysis of product profitability, the actuary must consider 
also the effects of reserve changes on taxable income. ~ 

The cost of capital is a major factor for the pricing of insurance contracts, and the double 
taxation of the investment income on capital funds is a significant component of this cost. The 
I RS loss reserve discounting provisions and the statutory deferred tax asset affect the cost of 
holding capital for insurers. ~ 

The altemative minimum income tax provisions may also cause earlier incurral of the tax liability. Changes in 
the incurral dates of the tax liabilities lead to deferred tax assets and liabilities on the statutory balance sheet. 

The recognition of taxable revenue from eamed but unbilled premiums and accrued retrospective 
premiums are affected by the January 2000 tax regulations and the statutory accounting codification changes 
effective on January 1, 2001. The illustration in the text of the paper does not consider earned but unbilled 
premiums or accrued retrospective premiums. The workers' compensation illustration in Appendix B considers 
the billing and collection pattem of the policy premiums. 

3s See E. Schirmacher and S. Feldblum, "Retrospective Analysis and Performance Measurement." 

See Feldblum and Thandi, [2002], "Federal Income Taxes and the Cost of Holding Capital." 
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INVESTMENT INCOME AND AMORTIZATION 

For long-tailed lines of business, the statutory accounting rules cause an underwriting loss 
during the policy term when losses occur. After policy expiration, the investment income on 
the assets backing the loss reserves provide steady and positive net income. For tax 
accounting, the expected investment income on the assets backing the loss reserves offsets 
the expected amortization of the interest discount in the reserves. The underwriting gain or 
loss is realized during the policy term, with no expected net gain or loss in subsequent years. 37 

Complete (exact) offsetting depends on the following conditions: 

�9 There are no implicit (undisclosed) discounts in the statutory loss reserves. 
�9 The IRS discount rate equals the investment yield of the company. 
�9 The IRS loss payment pattern equals the actual liquidation pattern for the block of 

business. 
�9 The company holds fully discounted reserves, with disclosure of the amount of discount. 

These conditions are not consistent with current statutory requirements, so complete offsetting 
is not expected. Nonetheless, they clarify the heuristic illustration below. = 

Illustration: Offsetting 

A one day policy is written on December 31,20XX, for a net premium of $10,000. One loss 
occurs on December 31,20XX, which is paid for $12,100 on December 31,20XX+2. The 
term structure of interest rates is flat at 10% per annum. To simplify the illustration, we assume 
that the IRS loss payment pattern is the same as the actual loss payment pattern here. 

In 20XX, statutory accounting shows an underwriting loss of $10,000 - $12,100 = $2,100. 
The $10,000 net premium is invested at 10% per annum. The investment income is $10,000 
x 10% = $1,000 in 20XX+I and $11,000 x 10% = $1,100 in 20XX+2. There is no 
underwriting gain or loss in 20XX+I or 20XX+2, so these are the statutory income amounts. 

If we assume a two year I RS loss payment pattern and a discount rate of 10% per annum, the 
discounted loss reserves are $12,100 / 1.1002 = $10,000 at December 31, 20XX. Tax 
accounting shows no underwriting gain or loss in 20XX and a tax liability of $0 for 20XX. 

In 20XX+I, investment income is $10,000 x 10% = $1,000. The discounted loss reserve on 
December 31,20XX+I, is $12,100 / 1.100 = $11,000. The underwriting loss (or the offset 

3r Statutory, GAAP, and tax accounting are discussed in detail in Feldbium and Thandi [2002], "income 
Recognition and Performance Measurement." 

For complete discussion of this subject, see Feldblum and Thandi, [2002], =Reserve Valuation Rates." 
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to underwriting income) for tax year 20XX+I equals amortization of the interest discount on 
the loss reserves, or $11,000 - $10,000 = $1,000. The underwriting loss just offsets the 
investment income. The net taxable income is $0, and the tax liability is $0. 

In 20XX+2, investment income is $11,000 x 10% = $1,100. The incurred loss offset to taxable 
underwriting income in 20XX+2 is the paid loss plus the change in the discounted loss 
reserve, or $12,100 (paid on December 31,20XX+2) + $0 - $11,000 = -$1,100. 

This is the amortization of the interest discount on the 12/31/20XX+1 reserve of $11,000. It 
offsets the investment income in 20XX+2. Taxable income is $0, and the tax liability is $0. 39 

DISCOUNTING PRINCIPLES 

The discounted loss reserves are determined from three components: 

�9 The undiscounted loss reserves, as shown in Schedule P, Part 1. 
�9 The loss reserve discount rate, which is promulgated each year by the Treasury. 
�9 The loss payment pattern by line of business, which is determined from Schedule P data. 

The illustration below shows the concepts, though the details differ from the IRS computation. 

Illustration: The December 31,20XX, undiscounted loss reserves are $100 million. The loss 
reserve discount rate is 8% per annum. The $100 million of reserves will be paid in three 
parts: 50% on December 31, 20XX+I, 30% on December 31, 20XX+2, and 20% on 
December 31,20XX+3. 4~ The discounted loss reserves equal 

$100 million x (50%/1.08 + 30%/1.082 + 20%/1.083) = $100 million x 0.879 = $87.9 million. 

Undlscounted Loss Reserves 

The Treasury assumes that the loss reserves in Schedule P, Part 1, are undiscounted values. 
If discounted values are shown, the losses may be "grossed up" to undiscounted amounts 
before application of the I RS loss reserve discounting procedure. The"gross-up" is permitted 
only if the amount of the discount is disclosed in (or with) the Annual Statement. 41 

Some insurance personnel speak of the post-1986 federal income tax incurral pattern as a "prepayment 
of taxes by the insurance industry." This is correct from a statutory or GAAP perspective. The IRS would take 
the opposite view; before 1986 the Treasury helped fund the conservative insurance accounting practices. 

40 This illustration is simplified. The actual tax procedure assumes mid-year payments and a longer loss 
payment pattem. 

4~ See section 846(b)(2) of the Internal Revenue Code: "Adjustment If Losses Discounted on Annual 
Statement: If the amount of unpaid losses shown in the annual statement is determined on a discounted basis, 

505 



I l lustrat ion: Schedule P, Part 1, is gross of non-tabular discount and net of tabular discount. 

�9 A company incurs $10,000,000 of accident year 20XX workers' compensation losses, 
including lifetime pension claim reserves with a tabular discount of $1,000,000. 

�9 The IRS loss reserve discount factor for workers' compensation accident year 20XX 
reserves is 85%. 

If the company does not disclose the tabular discount in the Annual Statement, the offset to 
taxable income is $10 million x 85% = $8.5 million. If the company does disclose the tabular 
discount in the Annual Statement, the offset to taxable income is ($10 million + $1 million) x 
85% = $9.35 million. The difference in taxable income is $9.35 mil l ion- $8.5 million = $0.85 
million, and the difference in the tax liability is $0.85 million x 35% = $297,500. 

DISCLOSURE AND TIMING COSTS 

Reserve discounting is a timing difference; it reverses in subsequent years. The cost to the 
company is the present value of the expected after-tax investment yield on this money. 

I l lustrat ion: Suppose the pension reserves are paid (on average) twelve years after policy 
expiration, and the after-tax investment yield is 6% per annum. The cost to the company is 

$ 2 9 7 , 5 0 0  X [ (1.0612 - 1)/1.0612]= $297 ,500  X 0 .503 = $149,651.61.  42 

RESERVE VALUATION RATES 

Several of the pricing papers focus on the inter-relationships among the reserve valuation rate, 
the cost of holding capital, the federal income tax liability, and the indicated premium. We 
expand the comments above for the application to these papers. 

The pricing model separates the undiscounted loss reserves into two pieces: 

�9 the true undiscounted loss reserves, and 
�9 the valuation rate at which the company's reserves are booked. 

and the extent to which the losses were discounted can be determined on the basis of information disclosed 
on or with the annual statement, the amount of the unpaid losses shall be determined without regard to any 
reduction attributable to such discounting." The required disclosure of non-tabulardiscounts by accident year 
and by line of business is provided in columns 34 (losses) and 35 (loss adjustment expenses) of Schedule P, 
Part 1. The required disclosure of tabulardiscounts is shown in note 28 (in the 2001 Annual Statement) to the 
financial statements, "Discounting of Liabilities for Unpaid Losses or Unpaid Loss Adjustment Expenses." 

42 Because of the statutory deferred tax asset and the capital requirements imposed on insurance 
companies, the actual cost to equityholders is somewhat different; see Feldblum and Thandi [2002], "Federal 
Income Taxes and the Cost of Holding Capital," for a full discussion. 
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If the company holds full value loss reserves, the valuation rate is 0%. A pricing model used 
by a regulatory agencywould use full value loss reserves. Similarly, a pricing model used for 
a rate filing would use full value loss reserves. A pricing model used for competitive pricing 
purposes should use the valuation rate implicit in the reserves held by the company. 

///ustration: The December 31,20XX, undiscounted loss reserves are $100 million. The loss 
reserve discount rate is 8% per annum. The $100 million of reserves will be paid in three 
parts: 50% on December 31, 20XX+I, 30% on December 31, 20XX+2, and 20% on 
December 31,20XX+3. The company values its held reserves at an implicit 5% discount rate. 

The reserves on the company's balance sheet are 

$100 million x (50%/1.05 + 30%/1.052 + 20%/1.053) = $100 million x 0.921 = $92.1 million. 

If the company's implicit loss reserve discount is not disclosed in its Annual Statement, the IRS 
treats the held reserves as undiscounted loss reserves. The discounted loss reserves for tax 
purposes equal 

$92.1 million x (50%/1.08 + 30%o/1.082 + 20"/,/1.083) = $92.1 million x 0.879 = $80.96 million. 

The implicit discounting lowers the lowers the tax basis loss reserves. This is a timing effect, 
not a permanent effect, since the losses actually paid do not depend on the valuation rate 
used by the company. The company loses the investment income on the early incidence of 
the federal income tax liability. This loss may be offset by the capital management benefits 
of having less equityholder supplied funds tied up in full value loss reserves. The capital 
management benefit depends on the cost of holding capital and on possible rating agency 
revaluations of the indicated reserves. For a complete treatment of these items, see Feldblum 
and Thandi, =Reserve Valuation Rates" and Feldblum and Schirmacher,"Reinsurance Pricing 
and Capital Management." 
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L/M/TAT/ON 

The IRS is concerned that a company might claim such a large discount for its statutory loss 
reserves that the discounted tax-basis loss reserves would be greater than the Annual 
Statement loss reserves, thereby reducing the tax liability by means of discounting instead of 
increasing the tax liability. To prevent this, the discounted IRS loss reserves may not be 
greater than the loss reserves shown in the Annual Statement. '~ 

Statutory accounting allows only limited discounting: tabular discounts and exceptional cases 
of non-tabular discounts. For tabular discounts, most companies use conservative interest 
rates, such as 3.5% or 4% per annum. For non-tabular discounts, the permissible discount 
rate for statutory accounting is rarely greater than the discount rate used for I RS loss reserve 
discounting; see SSAP No. 65 on uProperty and Casualty Contracts," paragraph 12. 

In most cases, the statutory loss reserves are lower than the IRS discounted loss reserves. 
The workers' compensation "pdor years" row (Part 1 D) is an exception. These reserves are 
primarily indemnity reserves for lifetime pension cases, and many companies use tabular 
discounts. For this row, the Ucomposite discount factor" used in the IRS discounting 
calculations assumes (on average) three more years of payment, whereas the pension cases 
in these reserves may have (on average) a future expected lifetime of 10 to 20 years. 

ILLUS'/RAT/ON: THE LIMITATION 

The workers' compensation prior years row shows unpaid losses and loss adjustment 
expenses of $30 million. In the Notes to the Financial Statements, the company reports a 
$10 million tabulardiscount for these claims. The IRS composite discount factorapplicable 
to these reserves is 90%. 

Without the limitation discussed above, the gross loss reserves are $30 million + $10 million 
= $40 million. The IRS discounted loss reserves are 90% x $40 million = $36 million. Since 
this exceeds the $30 million of statutory loss reserves, the IRS discounted loss reserves are 
capped at $30 million. 

This rule has a significant effect on the pricing of workers' compensation commutations for 
permanent total disability cases; see Feldblum [2002], The Pricing of Commutations," for a 
full discussion. The rule also affects the pricing of workers' compensation large dollar 

See the Internal Revenue Code ~846(a)(3): "In no event shall the amount of the discounted unpaid 
losses with respect to any line of business attributable to any accident year exceed the aggregate amount of 
unpaid losses with respect to such line of business for such accident year included on the annual statement." 

508 



deductible business and workers' compensation excess coverage, since these two types of 
contract cover primarily long term disability cases. 

D i s c o u n t  R a t e  

The discount rate varies by accident year. For each accident year, the discount rate is the 60 
month moving average of the federal mid-term rates ending on the December 1 preceding the 
accident year. This rate is frozen and applies to that accident year's losses in all future 
calendar years. In tax parlance, the discount rate is"vintaged." The federal mid-term rate is 
the average rate on Treasury securities with 3 to 9 years remaining maturi ty." 

The federal mid-term rate is promulgated by the Treasury each month. ~ The 60 month 
moving average for an accident year can be determined once the last federal mid-term rate 
has been announced. 

Illustration: The loss reserve discounting rate for accident year 20X9 is the 60 month average 
of the federalmid-term rates from January 1,20X4, through December 1,20X8. It can be 
computed in December 20X8, before the inception of accident year 20X9, so that companies 
can effectively determine their tax strategies during 20X9. 

Yie ld  P r o j e c t i o n s  

The market values of future cash flows are based on the current term structure of interest rates. 
The date that the liability was incurred is not relevant. In contrast, the IRS bases the discount 
rate on the incurral year of the liability. The rationale is that the insurance company uses the 
premium cash flows from the policy to purchase fixed-income securities to fund the future loss 
payments. The yield on the f ixed-income securities is determined at the date of purchase. 

See section 846(c)(2) of the Intemal Revenue Code: "Determination of Annual Rate: The annual rate 
determined by the Secretary under this paragraph for any calendar year shall be a rate equal to the average of 
the applicable Federal mid-term rates (as defined in section 1274(d) but based on annual compounding) effective 
as of the beginning of each of the calendar months in the test period. The test pariod is the most recent 
60-calendar-month period ending before the beginning of the calendar year for which the determination is made." 

The federal mid-term rates are expressed as bond equivalent yields, since bond coupons are paid semi-annually 
in the United States. (A bond equivalent yield is a yield with semi-annual compounding.) The IRS loss reserve 
discounting procedure uses annual compounding, since it assumes that losses are paid in mid-year (i.e., once 
a year). The bond equivalent ~elds are converted to effective annual yields before averaging, using the formula 
r a = (1 + r=/2) = - 1, where r. is the effective annual yield and r, is the bond equivalent yield with semi-annual 
compounding. If the bond equivalent yield is 8% per annum, the equivalent effective annual rate is (1 + 0.08/2) ~ 
- 1 = 8.16%. 

4s The yield among mid-term securities varies with the remaining maturity, in accordance with the term 
structure of interest rates. More recently issued securities tend to have slightly lower yields, since they are 
more marketable. The Secretary of the Treasury selects an appropriate average rate. 
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If the duration of the assets backing the reserves matches the duration of the loss liabilities, 
the losses will be paid from the coupon income and the principal repayment from these 
securities. The yield during the accident year is the relevant investment yield throughout the 
life of the policies. ~ 

For prospective pricing, the actuary must project about two years of future yields. The pricing 
requirements are most easily seen by illustration. 

I l lustration-Projected Yields: The pricing actuary is setting rates for policies effective from 
July 1,20XX, through June 30, 20XX+I. The losses on these policies extend from July 1, 
20XX, through June 30, 20XX+2, since the last policy written under the new rates is effective 
on June 30, 20XX+I, and remains in effect through June 30, 20XX+2. The losses stemming 
from policies written under the new rates relate to accident years 20XX, 20XX+I, and 
20XX+2. 

To project loss reserve discount factors, the pricing actuary must estimate federal mid-term 
rates through December 1,20XX+I. If the rate analysis is done in the last quarter of 20XX-1, 
the actuary must project rates from the last quarter of 20XX-1 through the end of 20XX+I. 

The rate projection is generally done in one of two ways: 

�9 The most recent monthly mid-term rate may be repeated for all future months. 
Alternatively, the average of the most recent three or six monthly mid-term rate may be 
repeated for all future months. 

�9 Theprojectedratesmaybesetequaltothecurrentforwardratesforthecorresponding 
time period. 

The second method is favored by many investment analysts. We explain by means of an 
illustration. 

Illustration: Projecting Treasury Rates: The term structure of interest rates on January 1, 
20XX, is upward sloping, as shown in the table below. 

4s Whether a moving average rate or the current rate is a better predictor for future rates is an open 
question. Accountants often prefer average rates, on the assumption that the most recent monthly figure may 
be abnormally high or low. Some financial analysts presume that interest rates revert towards a long-term 
mean, and a 60 month moving average may be a better reflection of this mean. Other analysts presume that 
interest rates form a random walk, and the present term structure of interest rates is the best reflection of 
expected future rates. The dominant view is that the current rate is a better estimator of the rate during the next 
12 months than the 60 month moving average is; see Dr Jonathan Benjamini and S. Feldblum, Dynamic 
Financial Analysis: a Primer for the Practicing Actuary [2002]. 
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Table AppA.I: Term Structure of Interest Rates 

Term Spot Rate Term Spot Rate 

I year 5.00% 5 years 6.90% 
2 years 6.00% 6 years 7.00% 

3 years 6.40% 7 years 7.10% 
4 years 6.70% 8 years 7.10% 

To project the five year spot rates for 20XX, 20XX+I, 20XX+2, and 20XX+3, we use one of 
two methods. The first method assumes that the five year spot rate remains unchanged at 
6.9%. The second method determines the forward rates for the appropriate pedods. 

�9 The five year spot rate on Jan 1,20XX+I, is estimated as (1.0708 / 1.05) l~s- 1 = 7.40%. 
�9 The five year spot rate on Jan 1,20XX+2, is estimated as (1.0717/1.06~) vS- 1 = 7.54%. 
�9 The five year spot rate on Jan 1,20XX+3, is estimated as (1.0718/ 1.0643) ~s- 1 = 7.52%. 

This method of using forward rates to project future spot rates relies on the pure expectations 
hypothesis for the term structure of interest rates. Most financial analysts do not subscribe to 
a pure expectations hypothesis. 

Loss Payment Pattern 

The IRS determines the expected loss payment pattern by line of business from Schedule P, 
Part 1. To compute the tax liabUity, the accountant may use the loss reserve discount factors 
promulgated by the Treasury. For a financial pricing model, the actuary must estimate the 
future loss reserve discount factors a yearor two in advance. The actuary should understand 
the relationship of the I RS loss reserve discount factors to actuarially determined loss reserve 
discount factors to estimate the tax effects on policy pricing; see the discussion below. 

Illustration: An actuary is pricing a claim commutation. For a permanent total disability case, 
the actuarially determined loss reserve discount factors over the next twenty years rise from 
70% to 100%, and the IRS loss reserve discount factors are level at about 92%. The IRS 
discounted reserves are greater than the fair value reserves, leading to a tax credit and a 
lower commutation price than if actuarial loss reserve discount factors were used; see 
Feldblum, 'q'he Pricing of Commutations." 

Illustration: After a period of falling interest rates, the IRS loss reserve discount factors 
provide a larger discount than is financially warranted. After a period of rising interest rates, 
the IRS loss reserve discount factors provide a smaller discount is financially warranted. 

Data Grouping 
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The IRS loss reserve discount factors are determined by Schedule P line of business. The 
actual loss payment pattern for the business being priced, which is used in the pricing model 
to determine the implied equity flows, is not relevant for the IRS loss reserve discount factors. 
The illustrations in this appendix all use Schedule P loss triangles. 

Illustration: The average lag between premium collection and loss payment for large dollar 
deductible workers' compensation business with a $500,000 deduclJble may be twenty years. 
The average lag for first dollar workers' compensation business in a state with limited duration 
permanent total disability cases and no cost of living adjustments may be four years. The I RS 
loss reserve discount factors are the same for the two sets of business, since both use the 
Schedule P, Part 1D (workers' compensation) factors. 

Deriving Payment Patterns 

We determine two sets of loss payment patterns: one for IRS loss reserve discount factors 
and one for statutory accounting deferred tax assets. Both loss payment patterns are derived 
from historical loss liquidation patterns. If there were no random fluctuations in the loss 
payment pattern for any accident year and no systematic changes in the payment pattern over 
the past ten years, the observed liquidation pattern of the oldest accident year recorded in 
Schedule P would be sufficient, as illustrated below. 

Illustration: We are computing the loss payment pattern for the 20X9 accident year reserves. 
Suppose that Schedule P, Part 3, shows the following pattern for accident year 20X0: 

Exhibit AppA.2: 20X9 Schedule P, Part 3 ($000,000) 

I Part 3 20X0 20Xl 20X2 20X3 20X4 20X5 20X6 20X7 20X8 20X9 I 
I 

I 20X0 103 226 294 334 363 384 398 412 422 433 

In addition, suppose the ultimate incurred losses for accident year 20X0 are $486 million. 
This estimate may be taken from Schedule P, Part 2, or it may be derived from an actuarial 
loss reserve projection; see Feldblum [2002: SchP] for estimation procedures. 

Schedule P, Part 3, shows cumulative paid losses. The first differences between each 
adjoining set of figures is the incurred loss paid losses in each 12 month period. The ratio of 
these incurred loss paid loss figures to the estimated ultimate incurred losses is the 
percentage of ultimate losses paid in each 12 month period, as shown below. 
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Exhibit AppA.3: Incremental Loss Payment Pattern from Accident Year 20XO ($000,000) 

Part 3 2OX0 20X1 20x2 20X3 20X4 20x5 20X6 20X7 20X8 20X9 

1.20XO $103 $22S $294 $334 $363 $384 $398 $412 $422 $433 

2. percent 0.212 0.465 0.605 0,687 0.747 0.790 0.819 0.848 0,868 0.891 

3. incremental 0.212 0.253 0,140 0.082 0.060 0.043 0.029 0.029 0,021 0.023 

�9 Row 1: The row labeled =20X0" shows the cumulative dollars (in millions) of accident year 
20X0 losses paid by December 31 of each calendar year from 20X0 through 20X9. 

�9 Row 2: The row labeled "pement" shows the cumulative percentages of accident year 
20X0 ultimate losses paid by December 31 of the calendar year in each Column. 

�9 Row3:Therowlabeled"incremental"showstheincrementalpementagesofaccidentyear 
20X0 ultimate losses paid in each calendar year. 

The final row in the table above tells us that 21.2% of an accident year's incurred losses are 
paid during the accident year, another 25.3% are paid in the 12 months following the accident 
year, 14.0% are paid in the subsequent 12 months, and so forth. The remaining 10.9% [= 
100% ~- 89.1%] are paid more than 10 years after the inception of the accident year. 

The illustration above shows the logic underlying the estimated loss payment pattern. 
�9 Because of the volatility of loss payments and possible systematic changes over the years, 
as noted below, we make several adjustments. 

�9 Settlement of large losses may distort the payment pattern in any one accident year. 
�9 The loss payment pattem does not reflect any changes in the intervening nine years. 
�9 This method ignores the information embedded in the observed liquidation of accident 

years 20X1 through 20X8. 
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RECENTDATA 

To use the most recent data, we examine the dollars paid in calendar year 20X9 divided by 
the total incurred losses for each accident year. Assume that the paid loss development 
illustration shows the following associated figures from Schedule P, Parts 2 and 3. 47 

Exhibit AppA.4: Loss Payment Pattern from Successive Accident Years ($000,000) 
(Data from Schedule P, Parts 2 and 3, from the 20X9 Annual Statement) 

Accident Cum Paid Cum Paid Pa~ ~ Ultima~ Percen~ge 
Year (1) by 20X8 (2) by 20X9 (3) 20X9 (4) Losses (5) Paid (6) 

20XO $422 $433 $11 $486 2.26% 

20Xl $442 $454 $12 $520 2.31% 

20X2 $391 $403 $12 $475 2.53% 
20X3 $416 $434 $18 $522 3.45% 

20X4 $504 $534 $30 $667 4.50% 

20X5 $490 $542 $52 $707 7.36% 
20X6 $463 $546 $83 $787 10.55% 

20X7 $353 $485 $132 $802 16.46% 

20X8 $152 $406 $254 $866 29.33% 

20X9 $156 $156 $898 17.37% 

The columns show the following figures: 

Column (2): Cumulative dollars of loss paid through December 31,20X8 (from Part 3), 
Column (3): Cumulative dollars of loss paid through December 31,20X9 (from Part 3). 
Column (4): Incremental dollars of loss paid in 20X9 (= column (2) minus column (1)). 
Column (5): Incurred losses (from Part 2). 
Column (6): Incremental dollars of loss paid as a percentage of incurred losses (row 3 / row 4). 

Consider the row for accident year 20X4: 

Column 2: $504,000 has been paid by 12/31/20X8, or 60 months since inception of the 
accident year. 

47 The accident years are shown along the horizontal axis of the table. In the exhibits used for the paid 
loss chain ladder development method, the accident years are shown along the vertical axis. 
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Column 3: 

Column 4: 
Column 5: 
Column 6: 

$534,000 has been paid by 12/31/20X9, or 72 months since inception of the 
accident year. 
$30,000 has been paid between 60 months and 72 months. 
The total accident year 20X4 incurred losses are $667,000. 
4.5% (or $30,000 / $667,000) of the incurred losses are paid between 60 
months and 72 months since inception of the accident year. 

The loss payment pattern in the table above is theoretically sound, though both the I RS and 
common actuarial practice use slightly different methods. 

�9 This procedure uses figures from Schedule P, Part 3, which shows cumulative paid losses 
at the current valuation date and the previous valuation date. The IRS used figures from 
Part 1, perhaps because Part 1 is an audited exhibit whereas Part 3 is not. 

�9 This procedure uses incurred loss losses from a single accident year for each payment 
period. Common actuarial practice is to use averages from three or more years. 

Incremental Percentages and Cumulative Differences 

For the lines of business with ten year exhibits, the IRS makes one additional change. The 
procedure outlined above uses the incremental paid loss percentages in each accident year 
to estimate the percentage of losses paid in each time interval. The IRS uses the difference 
in the cumulative paid loss percentages between successive accident years. 

Exhibit AppA.5: Loss Payment Pattem Between Accident Years ($000,000) 
(Data from Schedule P, Parts 2 and 3, from the 20X9 Annual Statement) 

AccYr 20X0 120X1 20X2 20X3 20X4 20X5 20X6 20X7 20X8 20X9 

Row1 $433 $454 $403 $434 $534 $542 $546 $485 $406 $156 

Row2 $486 $520 $475 $522 $667 $707 $787 $802 $866 $898 

Row3 89.1% 87.3% 84.8% 83.1% 80.1% 76.7% 69.4% 60.5% 46.9% 17.4% 

Row 4 1.8% 2.5% 1.7% 3.1% 3.4% 7.3% 8.9% 13.6=/o 29.5% 17.4% 

�9 Row (1) shows the cumulative paid losses at December 31,20X9, for each accident year. 
�9 Row (2) shows the incurred losses at December 31,20X9, for each accident year. 
�9 Row (3) shows the ratio of cumulative paid losses to incurred losses. 
�9 Row (4) shows the differences in successive ratios. For accident year 20X9, nothing is 

paid before calendar year 20X9, so 17.4% of incurred losses are paid in the first 12 
months. For losses paid between 12 months and 24 months, we reason as follows. 
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, /  From the 20X8 accident year, we infer that 46.9% of incurred losses are paid by 24 
months since inception of the accident year. 

,/" From the 20X9 accident year, we infer that 17.4% of incurred losses are paid by 12 
months since inception of the accident year. 

, /  This implies that 46.9% - 17.4% = 29.5% of incurred losses are paid between 12 
months and 24 months since inception of the accident year. 

The figures in row (4) sum to 89.1%. This is the ratio of cumulative paid losses to incurred 
losses for accident year 20XO. 

The illustration above uses figures from Schedule P, Parts 2 and 3. The IRS actually uses 
figures from Schedule P, Part 1, which include more loss adjustment expenses. 

�9 The Part 1 figures used by the IRS include all loss adjustment expenses. '~ 
�9 The Part 3 figures include only defense and cost containment expenses. 

IRS RATIONALE 

We summarize the computations as follows: 

1. For each accident year in Schedule P, Part 1, we calculate the cumulative paid losses at 
the current valuation date as a percentage of the incurred losses for that accident year. 

2. We take the difference between successive accident years to determine the expected 
percentage of incurred losses paid in each 12 month interval. 

3. We use this procedure for the ten accident years shown in Part 1. If the cumulative paid 
losses for the oldest year equal 100% of the incurred losses, we stop here. If the 
cumulative paid losses for the oldest year are less than 100% of the incurred losses, we 
extend the loss payment pattern for additional years, as described below. 

The cumulative paid losses as of the current valuation date are shown in Part 1, column 11, 
"total net paid." The incurred losses at the current valuation date are shown in column 28, 
"total losses and loss expense incurred." 

4a See section 846(f)(2) of the Internal Revenue Code: The term "unpaid losses" includes any unpaid loss 
adjustment expenses shown on the annual statement. 

516 



ILLUSTRATION A: NO EXTENSION OF PAYMENTS 

Although the concepts are straight-forward, the implementation is complex. We explain the 
details in this appendix with three illustrations. To understandthe text of this paper, the reader 
need not know all the material in this appendix, To implementthe pricing model described 
in this paper, the reader must be familiar with the tax rules and regulations. 

We proceed incrementally in this appendix. Formostcasualtylinesofbusiness, the IRS loss 
payment pattern extend up to a maximum of 16 years. We show first the procedure for a line 
of business with no extension, so the loss payment pattern ceases in the eleventh year. The 
next illustration shows the extension through the sixteenth year. 

The pdcing actuary will normally estimate loss reserve discount factors for two or three future 
accident years. The loss payment pattern can be derived only for the first of these accident 
years if the company uses its own pattern. If the company uses the industry pattem, the 
estimation procedure depends on the particular accident years in relation to the 
redeterminatlon year. For certain items, there is no good way to estimate the required figures. 
We explain the choices available to the pricing actuary after the illustrations. 

The ABC* Insurance Company elected to use its own loss payment pattern in the 2007 
determination year. This election applies to accident years 2009 through 2013. 

It is now July 1,2010, and the pricing actuary is estimating premium rates for policy year 2011. 
Losses from policies written in policy year 2011 fall into accident years 2011 and 2012. We 
estimate IRS loss reserve discount factors for accident year 2011. After completing this 
illustration, we explain the possible methods of estimating loss reserve discount factors for 
accident year 2012. 

The following figures are taken from ABC's 2009 Annual Statement, Schedule P, Part 1. The 
procedure shown here is applicable to any ten year line of business. These include all the 
casualty lines for which financial pricing models are commonly used. 
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Exhibff AppA.6: Casualty Line of Business Paid and Incurred Losses 
Accident Losses + LAE Losses + LAE 

Year Paid Incurred 
Prior 250,000 250,000 
2000 270,000 275,500 
2001 300,000 316,000 
2002 320,000 348,000 
2003 340,000 386,500 
2004 350,000 421,500 
2005 370,000 480,500 
2006 380,000 550,500 
2007 360,000 610,000 
2008 330,000 687,500 
2009 200,000 571~500 

Discount Rate 

The discount rate used for the loss reserve discounting procedure is the 60 month rolling 
average of the federal mid-term rate, from January 2006 through December 2010. Since it 
is now July 1,2010, only 54 months are available; the last six months must be estimated. 

The actuary has two altematives for estimating future interest rates, as discussed above. 

�9 Repeat the most recent federal mid-term rate for the remaining months, or use an average 
of recent federal mid-term rates for the remaining months. 

�9 Determine the federal mid-term rates implied by the current term structure of interest rates. 

For this illustration, we assume that the estimated 60 month moving average of the federal 
mid-term rates is 7% per annum. 

Determination Year and Company Election 

If the company uses its own data to determine the loss payment pattern, the data are updated 
each year. If the company uses industry data- that is, if the company uses Treasury factors 
determined from industry-wide data reported in Best's Aggregates and Averages, the data 
are updated in determination years (or re-determination years). 

Determination years end in a"2" or a"7," and they use aggregate industry data for statement 
dates ending in a "0" or a =5." 

�9 For determination year 20X2, data as of December 31,20X0 are used. 

518 



�9 For determination year 20X7, data as of December 31, 20X5 are used. 

Once every five years (determination years), the company makes an election to use either the 
loss reserve discount factors developed by the Treasury, which are based on industry 
aggregate data or its own loss reserve discount factors, which are based on its own data 

The election is made with the company's tax filing for the determination year. It appliesto that 
year and to the succeeding four years. If the company elects to use its own payment patterns, 
it uses data that are available before the beginning of each tax year. These are the data from 
two years earlier. 

In this illustration, the company made an election with its 2007 tax filing to use its own data. 
The election applies to the 2007 through 2011 accident years. 

PROJECTIONS 

If the company uses the industry factors, the loss payment pattern is known until the next 
determination year. The pdcing actuary must estimate only future federal mid-term rates, as 
discussed earlier. 

At determination years, the loss payment pattern changes significantly. There is no simple 
method of projecting the future Schedule P data. The pricing actuary should use a loss 
payment pattern based on the actuarial projection, not the IRS projection. 

If the company uses its own Schedule P data, the loss reserve discount factors can generally 
be estimated for one additional accident year only. The factors for the subsequent years 
should be based on actuadal projection techniques, not the IRS projection technique. 

I/lustrationA: In July 2008, the pricing actuary is estimating loss reserve discount factors for 
accident years 2009, 2010, and 2011. The industry loss payment pattems were determined 
in 2007 for accident years 2007 through 2011. No future estimates are needed. 

If the company uses its own loss payment patterns, the accuracy of the projection differs by 
accident year. 

�9 Accident year 2009 uses loss payment patterns based on the 2007 Schedule P, which is 
available by July 2008. The only projection needed is for federal mid-term rates from July 
2008 through December 2008. 

�9 Accident year 2010 uses loss payment patterns based on the 2008 Schedule P entdes, 
which the company's reserving actuary may be able to estimate. 

�9 Accident year 2011 uses loss payment patterns based on the 2009 Schedule P. A 
projection of Schedule P entries 18 months in advance is unlikely to yield usable figures. 
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Illustration B: In July 2010, the pricing actuary is estimating loss reserve discount factors for 
accident years 2011,2012, and 2013. The industry loss payment patterns are determined 
in 2012 for accident years 2012 through 2016. 

Accident year 2011 loss payment patterns are based on industry-wide 2005 Schedule P 
figures, which are available by the summer of 2006. 
Accident year 2012 and 2013 loss payment pattems are based on industry-wide 2010 
Schedule P figures, which are not available until the summer of 2011. The IRS loss 
reserve discount factors are highly sensitive to random loss fluctuations. Attempting to 
project industry-wide Schedule P figures would not yield accurate discount factors. 
Instead, the actuary should estimate actuarial loss payment pattems through the tenth year 
based on the projection techniques discussed below. For years 11 through 16, the actuary 
should use the I RS procedure for extending the loss payment pattern, using the actuarial 
estimate for the percentage of losses paid in the tenth year. 

One might presume that continuing the industry-wide loss payment patterns for accident years 
2007 through 2011 for accident years 2012 and 2013 is a reasonable solution when the loss 
payment patterns for accident years 2012 and 2013 can not be readily estimated. This is not 
correct, since the loss payment patterns for accident years 2007 through 2011 are highly 
sensitive to the random loss fluctuations embedded in the 2005 Schedule P entries. The 
correct approach is to estimate an actuarial loss payment pattem for the line of business, not 
to repeat the previous IRS loss payment patterns. 49 

PROSPECTIVE PRICING AND RETROSPECTIVE ANALYSIS 

The sensitivity of the IRS loss reserve discount factors to random loss fluctuations means that 
the actual discount factors may be quite different from the projected discount factors. In these 
situations, the actual discount factors should be used for retrospective analysis, and the 
variance should be ascribed to estimation error; see Feldblum [2002: Source of Earnings]. 

Illustration: In July 2010, the pricing actuary is estimating loss reserve discount factors for 
accident years 2011,2012, and 2013. The company uses the industry-wide loss payment 
patterns. The actuary used actuarial projections for the accident year 2012 and 2013 loss 
payment patterns, as recommended above. 

4~ The pricing actuary may be tempted to rely on the tax department's projections of future loss reserve 
discount factors, particularly if the tax department says that they can estimate future loss reserve discount 
factors. The tax department generally means that they can estimate the factors for accident year 20XX in 
December 20XX-1 instead of waiting for the official promulgation of the factors by the Secretary of the Treasury 
in the latter half of 20XX. This is not a "projection"; this is simply an independent computation of the factors. 
The tax department has no need to project loss reserve discount factors for future years. Many tax accountants 
would consider the actuary's request for future accident year factors as a misunderstanding of the vintaging 
previsions in the tax law. 
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For the retrospective analysis of policy profitability performed in calendar years 2012 and 
subsequent, the actuary should use the actual factors promulgated by the Treasury, not the 
original projections. The change from projected to actual is no different for loss reserve 
discount factors than it is for the loss trend factors in Feldblum [2002: SOE]. 

V/NTAG/NG 

The computed loss reserve discount factors are used for accident year 2011 only. The 
discount factors for previous accident years at every future valuation date have already been 
determined and frozen. In tax parlance, they are vintaged. They are not subsequently revised. 

Illustration: We determine between 11 and 15 discount factors for accident year 2011. The 
first ten discount factors are used at valuation dates December 31, 2011, December 31, 
2012, December 31,2013, through December 31,2020. The final one to five development 
factors are used at subsequent valuation dates. The development factors are combined into 
a composite development factor for the prior years row for valuation dates 2021,2022, and 
subsequent. The discount factors all use the same discount rate and loss payment pattem. 
The chart below shows the discount factors and the applicable valuation dates. 

Exhibit ApDA.7: Valuation Dates for Loss Reserve Discount Factors 
Discount Factor Accident Year Individual / Tax Year 

Composite (Valuation Date) 

12 mos 2011 individual 2011 
24 mos 2011 individual 2012 

120 mos 2011 individual 2020 
132 mos prior composite 2021 
144 mos prior composite 2022 

The first ten discount factors apply to accident year 2011 only. They are used at valuation 
dates between 12 months and 120 months from inception of the accident year, corresponding 
to tax years 2011 through 2020. For subsequent valuation dates, the discount factor for 
accident year 2011 is combined with discount factors for other accident years to form a 
composite discount factor. 

Discounting Sequence 

The loss reserve discount factor computation can be divided into three steps. 
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A. Calculate the nominal (undiscounted) amounts for cumulative percentages paid, 
incremental percentages paid, and percentages unpaid. 

B. Calculatetheadjustmentsforlong-tailedlinesofbusinessshowingadjustedincremental 
percentages paid, long-tail extension of payments, and adjusted percentages unpaid. 

C. Apply the appropriate discount rate to obtain the discounted percentages unpaid, and loss 
reserve discount factors. 

UNDISCOUNTED PERCENTAGES 

The loss reserve discount factors for this illustration are calculated in Exhibit AppA.l. Column 
2 shows the cumulative net paid losses and loss adjustment expenses by accident year at the 
current statement date. Column 3 shows the incurred net losses and loss adjustment 
expenses by accident year at the current statement date. These entries include paid losses 
and loss adjustment expenses, case reserves, and bulk reserves. 

Column 4 shows the cumulative percentage paid from inception of the accident year to the 
current statement date, or column 2 divided by column 3. For accident year 2009, the 
percentage is $200,000 / $571,500 = 35.00%. For accident year 2008, the percentage is 
$330,000 / $687,500 = 48.00%. 

Assumed incremental Percentage Paid 

Column 5 shows the expected incremental percentage paid in each 12 month period. These 
entries are the first differences of the series in the previous column: 

�9 For accident year 2009, the cumulative percentage paid at 12 months since inception of 
the accident year is 35.00%. For the most recent accident year, the incremental 
percentage paid equals the cumulative pementage paid. 

�9 Foraccidentyear2008,thecumulativepercentagepaidat12monthssinceinceptionof 
the accident year is 48.00%. This implies that 48.00% - 35.00% = 13.00% of incurred 
losses are paid between 12 months and 24 months since inception of the accident year. 

Schedule P shows 10 accident years of data, from which we estimate 10 twelve-month 
intervals of expected loss payments. If any losses remain unpaid at the end of 10 years- that 
is, if the cumulative paid losses for the oldest accident year does not equal the incurred losses 
for that accident year - we assume that all these losses are paid in the eleventh year, with the 
following limitation. 

The amount assumed to be paid in the eleventh year is capped by the amount assumed to be 
paid in the tenth year. The excess amount is assumed to be paid in the twelfth year, but it is 
also capped at the same limit. The remaining excess is assumed to be paid in the thirteenth 
year, and so forth. We continue in this fashion through the fifteenth year. The remaining 
excess is assumed to be paid in the sixteenth year, with no limit. The next illustration (other 
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liability) shows the computation of an extended loss payment pattern. We defer further 
explanation of the procedure for that illustration. 

The Schedule P entries for the "prior years" row are not used in the computation of the loss 
reserve discount factors. The reserves and payments in this row relate to various accident 
years. A "composite" discount factor is used to determine the discounted loss reserves for 
the prior rows in Schedule P; see the discussion below. 

In this illustration, the cumulative percentage paid for the ninth year (2001) is 94.94%, and the 
cumulative percentage paid for the tenth year (2000)is 98.00%. (The "n~" year here means 
the "n th" year working backwards from the current valuation date.) s~ The amount assumed to 
be paid from the end of the ninth year to the end of the tenth year is 98.00% - 94.94% = 

3o06%. The amount still unpaid after 10 years is 100.00%- 98.00% = 2.00%. Since 2.00% 
is less than 3.06%, the full 2.00% is assumed to be paid in the eleventh year. No losses a r e  

assumed to be paid after 11 years. 

Several of the commercial casualty lines of business have loss payment patterns extending 
beyond ten years; this is especially true for workers' compensation, other liability, products 
liability, and medical malpractice. For these lines of business, we don't expect the cumulative 
paid losses at the end of the tenth year to equal the incurred losses for that year. sl The next 
illustration shows the adjustments used for these long-tailed lines of business. 

DISCOUNTING COMPUTATIONS 

Column 6 shows the percentage of losses unpaid at the end of the accident year, which 
equals the complement of the cumulative percentage of losses paid. For accident year 2009 
in the illustration, the cumulative percentage of losses paid is 35.00%, and the pementage of 
losses unpaid at the end of the accident year is 100% - 35.00% = 65.00%. 

so We estimate the amounts to be paid in future calendar years by looking at old accident years. The 
difference in the cumulative parcentages paid between the r l  th p a s t  accident year and the (n+l)'= past accident 
year is the percentage assumed to be paid between the end of the n th calendar year from inception of the 
accident year to the end of the (n+l)" calendar year from inception of the accident year. The n ~ accident year 
working backwards from the most recent accident year corresponds to the n th calendar year working forewards 
from the current statement date. 

sl The IRS computation of the loss reserve discount factors for all years is heavily influenced by the 
Schedule P entries for the ninth oldest accident year and the tenth oldest accident year. By random loss 
fluctuations, any long-tailed line of business may have an 11 year loss payment pattern one year and a 16 year 
loss payment pattern the next year. 
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Column 7 shows the discounted percentage of losses unpaid at the end of the accident year. 
To compute these figures, we assume that all losses are paid at mid-year. We may use either 
an iteretive method, working backwards from the oldest accident year, or a formula method.~ 

Iterative Method 

Two percent of the incurred losses are assumed to be paid in the eleventh year, labeled "AY 
+ 10" in the exhibit. We assume that they are paid in mid-year. With a 7.0% discount rate, 
the discounted value of these losses at the preceding December 31 is 2%/(1.070)~ = 1.93%. 

Going backwards in accident years corresponds to going forwards in calendar years. The 
"current accident year" in this Schedule P exhibit is 2009, though the computed loss payment 
pattern is used for accident year 2011, not accident year 2009. The current valuation date for 
accident year 2011 for which this discount factor applies is December 31,2011. Accident 
year AY+I corresponds to calendar year 2011 +1 = 2012. Accident year AY+I 0 corresponds 
to calendar year 2011 + 10 = 2021 .~ 

To determine the discounted percentage of losses unpaid at the end of the ninth year, we 
combine two pieces: 

i. The percentage of losses assumed to be paid in the tenth year-which are assumed 
to be paid at mid-year - discounted for half a year to the end of the ninth year. 

ii. The discounted percentage of losses unpaid at the end of the tenth year, discounted 
for an additional year to the end of the ninth year. 

In the illustration, the two pieces are as follows. 

i. 3.07% of accident year 2011 losses are assumed to be paid in the middle of the tenth 
year, or July 1,2020. They are discounted for half a year to December 31,2019: 
3.07%/1.0700.5 = 2.97%. 

ii. Thediscountedpercentageofaccidentyear20111ossesunpaidattheendofthetenth 
year (December 31,2020) is discounted for a full year: 1.93%/1.070 = 1.80%. 

The sum of 2.97% and 1.80% is 4.77%. We continue in this fashion for all accident years. 
This is the iterative method. 

The assumption that all losses are paid at mid-year is a proxy for an even distribution of paid losses 
during the year. In truth, losses are paid (on average) earlier than the middle of the year, particularly for losses 
paid in the 2 or 3 years following the inception of the accident year. The IRS procedure provides a slightly 
longer discount period than is warranted. This reduces the offset to taxable income and increases the income 
tax liability. This bias is offset by the shorter payment patterns implicit in the IRS extension past ten years. 

53 For an excellent explanation of this technique, see Salzmann [1984], who uses a similar version to 
develop a reserving method for allocated loss adjustment expenses. 
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Formula Method 

Altematively, formulas maybe used foreach year. The formula forthe 2009 accident yearin 
the Schedule P exhibit, which corresponds to accident year 2011 valued at December 31, 
2011, is 

(13.00"/. + 1.07 ~ + (11.02% + 1.0715) +. . .  + (3.07% + 1.07 e'5) + (2.00*/. + 1.07 g's) = 52.26%. 

LOSS RESERVE DISCOUNT FACTORS 

Column 8 shows the loss reserve discount factors used in the tax calculation. These factors 
are the discounted percentage of unpaid losses at the end of each year divided by the 
undiscounted percentage of unpaid losses at the end of that year. For accident year 2009, 
the loss reserve discount factor is 52.26% / 65.00% = 80.3944%. This corresponds to the 
loss reserve discount factor for accident year 2011 valued at December 31, 2011. If the 
accident year 2011 undiscounted reserves at December 31, 2011, are $450,000, the 
corresponding discounted reserves are $450,000 x 80.3944% = $361,775. 

The loss reserve discount factor in the preceding row, 81.6659%, is applied to the accident 
year 2011 reserves on December 31,2012, not to the reserves of any other accident year. 
If the 2012 Schedule P reserves for accident year 2011 are $350,000, the 2012 discounted 
reserves for accident year 2011 are $350,000 x 81.6659% = $281,380. 
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ILLUSTRATION B - LONG-TAILED EXTENSION OF PAYMENTS 

In actual practice, the lines of business for which financial pricing models are appropriate will 
probably have extended loss payment patterns. The illustration below shows the procedure 
for extending the loss payment pattern beyond the eleventh year. 

The following figures are taken from the 2009 Annual Statement, Schedule P, Part 1 H (other 
liability), of a company that has elected to use its own loss payment pattern for computing 
discounted reserves for accident year 2011. 

Exhibit AppA.8: Paid and Incurred Losses 
Accident Losses + LAE Losses + LAE 

Year Paid Incurred 
Prior 235,000 250,000 
2000 50,000 55,500 
2001 55,000 62,000 
2002 60,000 70,000 
2003 65,000 80,000 
2004 70,000 96,000 
2005 65,000 103,000 
2006 60,000 115,000 
2007 50,000 125,000 
2008 35,000 140,000 
2009 15,000 180r000 

The 60 month rolling average of the federal mid-term rate, from January 2006 through 
December 2010, is 7.0% per annum. 

Extension of Payments 

The loss reserve discount factors are used for accident year 2011 only. In this illustration, we 
determine 15 separate loss reserve discount factors. The first ten discount factors are used 
for valuation dates December 31,2011, through December 31,2020. The 1 lth through the 
15 ~ discount factors are used at valuation dates December 31,2021, through December 31, 
2025 as part of the composite discount factor for accident years more than 10 years old. 

CAPPING 

The amount assumed to be paid in the eleventh year is capped by the amount assumed to be 
paid in the tenth year. In this illustration, 90.09% - 88.71% = 1.38% of incurred losses are 
assumed to be paid in the tenth year. The amount remaining unpaid after 10 years is 
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100.00%-  90.09% = 9.91% of the incurred losses. Only 1.38% is assumed to be paid in the 
eleventh year. The remaining 9.91% - 1.38% = 8.53% is assumed to be unpaid at the end 
of the eleventh year. 

The 1.38% cap affects the subsequent years as well. The amount assumed to be paid in each 
of the five years immediately following the tenth year is the lesser of (i) the amount unpaid at 
the end of the previous year and (ii) the 1.38% cap. We show first an illustration with a loss 
payment pattem that does not extend through the 16 th year before returning to the other liability 
illustration here. 

Illustration: Suppose that the IRS loss reserve discounting procedure indicates that 90.90% I 
l is paid within 10 years and 88.10% is paid within nine years. This implies that 90.90% - 
188.10% = 2.80% is paid in the tenth year. The amounts assu mad to be paid in the 11 th, 12 th, 
land 13 'h years are also 2.80%. Only 9.10% - 3 x 2.8% = 0.70% remains unpaid after 
Ithirteen years. This is the amount assumed to be paid in the 14 t" year. 

Whatever remains after 15 years is assumed to be paid in the 16 t" year, even if it exceeds the 
1.38% cap. 

Illustration: For illustration B, 9 . 91%-  5 x 1.38% = 3.01% remains unpaid after 15 years, 
so 3.01% is assumed to be paid in the sixteenth year. ~ 

EXTENDED DEVELOPMENT 

We begin the computation of the discounted percentages unpaid at the December 31 
preceding the final loss payment. For this (other liability) illustration, the loss paymentpattem 
extends through 16 years, so we begin the computation of the discounted percentage unpaid 
with the end of the fifteenth year. 

3.01% of the accident year 2011 incurred losses are assumed to be paid in the middle of 
the 16 th year, or July 1,2026. The discounted loss reserve at the end of the 15 th year (or 
December 31,2025) is 3.01% / 1.070 ~ = 2.91%. 

See the Internal Revenue Code w167 846(d)(3)(C) and (D), =Special rule for certain long-tail lines": In the 
case of any long-tail line of business, the period taken into account shall be extended (but not by more than 
5 years), and the amount of losses which would have been treated as paid in the 10th year after the accident 
year shall be treated as paid in such 10th year and each subsequent year in an amount equal to the amount 
of the losses treated as paid in the 9th year after the accident year (or, if lesser, the portion of the unpaid losses 
not theretofore taken into account). To the extent such unpaid losses have not been treated as paid before the 
last year of the extension, they shall be treated as paid in such last year. The term "long-tail line of business" 
means any line of business if the amount of losses which would be treated as paid in the 10th year after the 
accident year exceeds the losses treated as paid in the 9th year after the accident year. 
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The discounted percentage unpaid at the end of the 14 ~ year equals the sum of (i) the 2.91% 
discounted percentage unpaid at the end of the 15 th year discounted for an additional full 
year and (ii) the 1.38% of the incurred losses assumed to be paid on July 1 of the 15 th year 
discounted for half a year. This is 2.91% / 1.070 + 1.38% / 1.0700.5 = 4.05%. (The 0.01 
percentage point difference from the figure in the exhibit is a rounding discrepancy.) 

Altematively, we calculate each discounted percentage unpaid by formula. For the 2011 
valuation date for the 2011 accident year, the discounted percentage unpaid equals 

(16.67% + 1.07 ~ + (15.00% + 1.07 ~'5) +. . .  + (1.38% + 1.0713"s) + (3.01% + 1.0714s) = 70.87%. 
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Patterns 

The pricing model discussed in this paper and its companion papers serves two functions: 

�9 It determines the premium rates needed to provide a target return on capital, and 
�9 It shows the pattern of income recognition under alternative accounting systems. 

The unwinding of the interest discount on the loss reserves affects the pattern of income 
recognition. The income recognition pattern is compared for six accounting systems in 
Feldblum and Thandi [2002], "Income Recognition and Performance Measurement." The 
discussion here shows the expected pattern of IRS loss reserve discount factors. 

In Illustration B, the loss reserve discount factors are similar for the ten accident years that 
are separately reported in Schedule P, ranging from 77% to 80%. Some actuaries presume 
that loss reserve discount factors should be lowest (i.e., furthest below unity) at inception and 
should increase towards unity as the reserves become more mature. This presumption is 
that the amount of the discount as a percentage of the remaining reserves is greatest at early 
maturities and dec l ines to zero at later maturities. 

This presumption is correct for the true discount factor for an individual loss. Suppose a loss 
occurs on July 1,20X1, and it will be paid on July 1,20X9. The amount of the discount is 
greatest on December 31,20X1, and it declines steadily thereafter. 

This presumption is not correct for an accident year. If loss payments follow an exponential 
decay, as modeled by McClenahan [1975] and Butsic [1981], the loss reserve discount 
factor remains relatively constant as long as some claims remain unpaid. The expected 
discount factor depends on the rate of decay and the discount rate, not on the development 
period. As Butsic [1981] shows, if the loss payments follow an exponential decay, the 
average remaining time to settlement is constant over the lifetime of the reserves.  ~ 

The loss reserve discount factors in Illustration B increase steadily in the final six years, from 
80% to about 97%. This is caused by the IRS assumption of a constant percentage of 
incurred losses paid in each development period during the extended part of the loss 
payment pattern, instead of the declining percentage of incurred losses assumed by an 
exponential decay pattern. ~ For instance, Illustration B uses a 1.38% figure for each 

For workers' compensation, the decay is slower than exponential. Temporary total claims dominate 
the early payments; most of these claims are settled within a year or two. Permanent partial disability and 
permanent total disability claims dominate the reserves for mature years. These claims may remain open for 
30 or 40 years. The loss payment pattern is rapid initially but it is very slow by ten years of maturity. 

56 The exponential decay assumes that a constant percentage of the remaining reserves (not of the total 
incurred losses) is paid in each development period. 
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development period. The assumption of a final lump sum payment in the last year, whether 
or not the payment pattern is extended, augments the upward trend in the loss reserve 
discount factors for mature periods. 

COMPOSITE DISCOUNT FACTORS 

The loss reserve discount factors calculated above are applied to the unpaid losses for the 
appropriate accident year. Schedule P shows loss reserves by accident year only for the ten 
most recent years, to which ten separate loss reserve discount factors are applied. The 11th 
through 15 t" lOSS reserve discount factors are applied to the reserves in the Schedule P prior 
years row, which is not divided into the component accident years. 

The IRS loss reserve discounting procedure assumes that all losses are paid no later than 
the 16 th year. The prior years row in Schedule P contain losses that will be paid in the 12 th 
through the 16 th year, which use the loss reserve discount factors for years AY+11 through 
AY+15. A composite discount factor is formed from the five individual discount factors for 
application to the prior years row. 

Each discount factor is the ratio of discounted reserves to undiscounted reserves for a given 
accident year at a given valuation date. For instance, the "tenth" accident year 2010 
discount factor for AY+10 represents the discounted reserves for accident year 2010 at 
December 31, 2020, divided by the undiscounted reserves for accident year 2101 at 
December 31,2020. This discount factor is computed in tax year 2010, not in tax year 2020. 

We explain the calculation of the composite discount factor by illustration. 

ILLUSTRATION: COMPOSITE DISCOUNT FACTORS 

For tax year 2019, Schedule P shows ten individual accident years: 2010 through 2019. 
Previous accident years - 2009 and prior- are grouped in the prior years row. Since the 
IRS loss reserve discounting procedure assumes that all losses are paid by the 16 th year, 
we assume that the loss reserves in the prior years row represent losses from accident year 
2005 through 2009. 

We form a composite discount factor based on the following discount factors: 

�9 Accident year 2005 discount factor for a valuation date 15 years after inception of year. 
�9 Accident year 2006 discount factor for a valuation date 14 years after inception of year. 
�9 Accident year 2007 discount factor for a valuation date 13 years after inception of year. 
�9 Accident year 2008 discount factor for a valuation date 12 years after inception of year. 
�9 Accident year 2009 discount factor for a valuation date 11 years after inception of year. 
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Some of these loss reserve discount factors use the same loss payment pattern. However, 
they all use different discount rates, and they are computed in separate years. 

Suppose these five loss reserve discount factors are as shown below: 

Exhibit AppA. 11: Composite Discount Factor 

Accident Valuation Date (2) Undiscounted D iscounted  Discount Factor 
Year (1) Reserve (3) Reserve (4) (5) 

2005 AY + 15 5.0% 4.8% 96.9% 

2006 AY + 14 7.2% 6.8% 93.9% 

2007 AY + 13 9.1% 8.3% 91.0% 

2008 AY + 12 11.7% 10.3% 88.2% 

2009 AY + 11 13.3% 11.4% 85.4% 

Total prior years row 46.3% 41.6% 89.8% 

The calculaUon of the individual discount factors is explained earlier. Each discount factor 
in column 5 is the ratio of the discounted reserves in column 4 to the undiscounted reserves 
in column 3. The reserve figures in columns 3 and 4 are expressed as percentages of the 
corresponding year's incurred losses. We compute the total of the five percentages for the 
discounted reserves and the undiscounted reserves. We divided these totals to obtain the 
composite discount factor for the prior years row. s7 

PROSPECTIVE PRICING 

For the financial pdcing model, we must project loss reserve discount factors until all the 
reserves run off. This time frame is the actual run-off date of the reserves, not the sixteen 
years assumed by the IRS. We explain the projection process by means of an illustration. 

Illustration: The actuary is setting premium rates for policies written in 2005. For this block 
of business, reserves remaining 20 years after inception of the policy year are not material. 

The losses on this blockof business fall into accident years 2005 and 2006, Separate loss 
reserve discount factors are determined for each accident year. We examine here the 
factors for accident year 2005. The procedure for accident year 2006 is analogous, though 
it requires more estimation. 

s7 Using a simple average to obtain the "total" row assumes that each year has the same volume of 
incurred losses. It might seem better to weight the discount factors by the actual percentage of incurred losses 
by accident year in the prior years row. However, the IRS bases the loss reserve discounting procedure on 
information contained in the Annual Statement. The distribution of the prior years row reserves by accident year 
is not found in the Annual Statement. 
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For valuation dates 12/31, 2005 through 2014, the discount factors are the factors for 
accident year 2005. For valuation date 12/31/2015, the remaining accident year 2005 
reserves appear in the prior years row in the 2015 Schedule P. The discount factor applied 
to this row is the composite factor determined from the following individual factors: 

�9 accident year 2005 at 11 years 
�9 accident year 2004 at 12 years 
�9 accident year 2003 at 13 years 
�9 accident year 2002 at 14 years 
�9 accident year 2001 at 15 years 

The factors for accident years 2001 through 2004 factors are available to the pricing actuary. 
No additional estimation is required for the composite factor beyond what is required for 
other accident year 2005 loss reserve discount factors. 

For valuation date December 31,2016, the remaining accident year 2005 reserves appear 
in the policy years row in the 2016 Schedule P. The loss reserve discount factor applied to 
this row is the composite factor determined from the following individual factors: 

�9 accident year 2006 at 11 years 
�9 accident year 2005 at 12 years 
�9 accident year 2004 at 13 years 
�9 accident year 2003 at 14 years 
�9 accident year 2002 at 15 years 

The pricing actuary has not calculated any accident year 2006 loss reserve discount factors. 
The random component of the discount factors for the eleventh through the fifteenth years is 
so great that the projection of these discount factors for future accident years is not feasible. 

Instead, the pricing actuary should compile average discount factors for the eleventh through 
the fifteenth years. Since the random component of these factors is so great, a long-term 
average should be used. We assume here that the actuary uses ten year averages. 

The average loss reserve discount factor for the eleventh year is the average of the eleventh 
year factors for the ten accident years 1996 through 2005. (If the 2005 factor is only a 
projection, the actuary may use a ten year average for accident years 1995 through 2004.) 
This average loss reserve discount factor would be combined with the actual factors for 
accident years 2002 through 2005 to form the composite factor for accident year 2005 at 
December 31,2016. 

We continue this process for all subsequent valuation dates. By the December 31,2020, 
all five loss reserve discount factors used for the composite discount factor are averages. 
This same composite factor is used for all subsequent valuation dates. 
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REVENUE OFFSET 

Proper treatment of the tax liability and the deferred tax asset stemming from revenue offset 
has a material effect on the indicated premiums. This section explains the revenue offset 
provision in the 1986 Tax Reform Act. 

Forotherindustries, sales constitute revenues for income tax purposes. Similarly, premium 
due is the taxable revenue (as well as the statutory and GAAP revenue) for life insurance 
companies. For property-casualty insurance companies, eamed premium is the revenue 
for both statutory and taxable income, not written premium or collected premium. 

For the statutory income statement, eamed premium equals written premium minus the 
change in the unearned premium reserves. For taxable income, eamed premium equals 
written premium minus 80% of the change in the unearned premium reserves. ~ ~ 

�9 A change in written premium with no change in earned premium does not affect statutory 
income. 

�9 A change in written premium with no change in earned premium affects the unearned 
premium reserve and changes the tax liability by means of the revenue offset provision. 

Statutory and taxable income also differ in the treatment of accrued retrospective premiums. 
The statutory vs tax treatment of accrued retrospective premiums is important for the pricing 
of commercial casualty lines of business, such as workers' compensation and general 
liability. The pricing model must incorporate the both the statutory and the tax accounting 
treatment for this asset, as well as the resulting deferred tax asset. This subject is discussed 
in Feldblum [2002: Schedule P], and it is not repeated here. 

The statutory (full expensing) vs GAAP (deferred policy acquisition cost) vs tax (revenue 
offset) treatment of policy acquisition costs is an important component of the financial pricing 
model discussed in this paper; see especially Feldblum and Thandi, "Income Recognition 
and Performance Measurement." 

se See the Treasury regulations, 2001 FED 26,153, w The determination of premiums earned 
on insurance contracts during the taxable year begins with the insurance company's gross premiums written 
on insurance contracts during the taxable year, reduced by return premiums and premiums paid for reinsurance. 
This amount is increased by 80 percent of the uneamed premiums on insurance contracts at the end of the 
preceding taxable year, and is decreased by 80 percent of the uneamed premiums on insurance contracts at 
the end of the current taxable year." 

" Life insurance companies and annuity writers are subject to a DAC-tax that is identical in concept 
though more complex than the property-casuaity tax provision explained here; see Atkinson and Dallas [2000], 
chapter 9. 
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ILLUSTRATION: SINGLE POLICY 

An insurer writes a policy with a $10,000 written premium on December 31,20XX, and it 
pays $2,000 in agents' commissions on that day. Losses of $8,000 are incurred and paid 
evenly through the policy term. There are no other expenses or losses on this policy. We 
assume that losses are paid when they are incurred so that we need not deal with IRS loss 
reserve discounting. 

The unearned premium reserve for this policy is $0 on January 1,20XX, and $10,000 on 
December 31,20XX. The change in the uneamed premium reserve during the year is 
$10,000. The earned premium in 20XX is $10,000 of written premium minus the $10,000 
change in the unearned premium reserve, or $0. Expenses during 20XX are $2,000, and 
statutory income during 20XX is-$2,000. Without revenue offset, the federal income tax 
liability would be 35% x -$2,000 = -$700, or a $700 tax refund. 

The unearned premium reserve on December 31, 20XX+l, is $0. The change in the 
unearned premium reserve during 20XX+I is-S10,000. The earned premium in 20XX+I 
is $0 of written premium minus the-S10,000 change in the unearned premium reserve, or 
$0 - (-$10,000) = +$10,000. Losses of $8,000 are incurred and paid in 20XX+I. The 
statutory income is $10,000 - $8,000 = $2,000. The tax liability (ignoring revenue offset) 
would be 35% x $2,000 = $700. 

Statutory accounting recognizes a loss at policy inception and a gradual profit during the 
remainder of the policy lifetime, thereby preventing companies from recognizing income until 
it has been fully earned. 6~ 

Were there no revenue offset provision in the tax code, the U.S. Treasury would fund part of 
the initial underwriting loss at policy inception. The illustration above shows a tax refund of 
$700 in 20XX and a tax liability of $700 in 20XX+I. Before 1987, statutory accounting 
helped the insurance industry defer its tax liabilities. Steady growth (in nominal dollar terms) 
led to persistent deferral of tax liabilities. 

Direct and Indirect Methods 

60 Some analysts see a conservative bend in statutory accounting's write-off of pre-paid acquisition costs 
when they are incurred, particularly in comparison with GAAP's capitalization and amortization of the deferred 
policy acquisition cost asset. This is not quite correct. Statutory accounting is correct from e tangible asset 
perspective, since the prepaid acquisition costs may be incurred whether or not the company retains the policy. 
International accounting standards follow statutory accounting on this issue. GAAP capitalizes an "imaginary" 
asset called DPAC to match revenues and expenses and show a better portrayal of the company's profitability. 
However, statutory accounting is unduly conservative in its double treatment of underwriting expanses: once 
when they are incurred and a second time in the gross unearned premium reserves. See Yohevcd and Sarason 
[2003] for further discussion of GAAP and statutory accounting of property-casualty insurance companies. 
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The Tax Reform Act of 1986 introduced the revenue offset provision of the Internal Revenue 
Code. The provision may be stated in two equivalent ways. These two perspectives are 
used in the two fashions of computing taxable income and the federal income tax liability, 
which are termed here the "direct method" and the "indirect method." The direct method is 
easier to understand; the indirect method is the method actually used in the Internal Revenue 
Code for computing taxable income. 

1. Direct method: The taxable earned premium equals the taxable wdtten premium minus 
80% of the change in the uneamed premium reserve. This may be stated as"only 80% 
of the change in the uneamed premium reserve is an offset to taxable income." 

2. Indirect method: Twenty percent of the change in the unearned premium reserve is an 
addition to statutory income for computing taxable income. 

We can use either method for the illustration. 

Direct method: The taxable earned premium in 20XX equals the taxable written premium 
minus 80% of the change in the unearned premium reserve, or $10,000- 80% x ($10,000 
- $0) = $2,000 in 20XX. Agents' commissions are $2,000 on December 31, 20XX. 
Taxable income is $2,000 - $2,000 = $0, and the tax liability is $0. 

In 20XX+I, the taxable earned premium equals $ 0 -  80% x ($0-  $10,000) = $8,000. The 
losses incurred and paid in 20XX+I are $8,000. The taxable income is $8,000 - $8,000 
= $0, and the tax liability is $0. 

Indirect method: Twenty percent of the change in the unearned premium reserve in 20XX 
is 20% x ($10,000 - $0) = $2,000. The statutory income in 20XX is -$2,000." Taxable 
income is -$2,000 + $2,000 = $0, and the tax liability is $0. 

In 20XX+l, twenty percent of the change in the unearned premium reserve is 20% x ($0-  
$10,000) =-$2,000. The statutory income in 20XX+I is +$2,000. The taxable income is 
+2,000 - $2,000 = $0, and the tax liability is $0. 

ILLUSTRATION B: TWO YEARS 

An insurer writes a policy with a $10,000 written premium on July 1,20XX, and it pays 
$2,000 in agents' commissions on that day. Losses of $8,000 are incurred evenly over the 
policy term, and they are paid when they are incurred. On July 1,20XX+I,  the insurer 
renews the policy for a written premium of $15,000, and it pays $3,000 in agents' 
commissions on that day. Losses of $12,000 are incurred evenly over the policy term, and 
they are paid when they are incurred. There are no other expenses on these policies. 

Illustration B shows the importance of computing the change in the unearned premium 
reserve during the year. The statutory unearned premium reserve equals $0 on December 
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31,20XX-1, $5,000 on December 31,20XX, $7,500 on December 31,20XX+I, and $0 
on December 31,20XX+2. 

CALENDAR YEAR 20XX 

Statutory earned premium is $10,000 written premium minus the ($5,000 - $0) = $5,000 
change in the unearned premium reserve; the earned premium is $5,000. Expenses are 
$2,000, and incurred losses are $4,000. The statutory income in 20XX is $5,000- $1,000 
- $4,000 = -$1,000. There are two methods to calculate the taxable income. 

i. Direct method: The taxable eamed premium is taxable written premium minus 80% of 
the change in the uneamed premium reserve, or $10,000 - 80% x ($5,000 - $0) = 
$6,000. The taxable income is $6,000- $2,000- $4,000 = $0, and the tax liability is $0. 

ii. Indirect method: Twenty percent of the change in the unearned premium reserve is 20% 
x ($5,000 - $0) = $1,000. The statutory income in 20XX is -$1,000. The taxable 
income is -$1,000 + $1,000 = $0, and the tax liability is $0. 

CALENDAR YEAR 20XX+ 1 

Statutory eamed premium is $15,000 written premium minus the ($7,500- $5,000) = $2,500 
change in the unearned premium reserve; the earned premium is $12,500. Expenses 
incurred and paid on January 1,20XX+I, are $3,000, and incurred losses during the year 
are $4,000 (first six months) + $6,000 (latter six months) = $10,000. The statutory income 
is $12,500 - $3,000 - $10,000 = -$500. There are two methods to calculate taxable 
income. 

i. Directmethod:The taxable earned premium is the taxable written premium minus 80% 
of the change in the unearned premium reserve, or $15,000- 80% x ($7,500- $5,000) 
= $13,000. Expenses and losses are the same as for statutory income. The taxable 
income is $13,000 - $3,000 - $10,000 = $0, and the tax liability is $0. 

ii. Indirect method: Twenty percent of the change in the unearned premium reserve is 20% 
x ($7,500 - $5,000) = $500. The statutory income in 20XX+I is -$500. The taxable 
income is -$500 + $500 = $0, and the tax liability is $0. 

CALENDAR YEAR 20XX+2 

Statutory earned premium is $0 written premium minus the ($0- $7,500) =-$7,500 change 
in the unearned premium reserve, or $7,500. Expenses incurred in 20XX+2 are $0, and 
incurred losses during the year are $6,000. Statutory income is $7,500- $6,000 = $ 1 , 5 0 0 .  

There are two methods to calculate the taxable income. 
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i. Directmethod: The taxable eamed premium is $ 0 -  80% x ($0-  $7,500) = $6,000. The 
taxable income is $6,000 - $6,000 = $0, and the tax liability is $0. 

ii. Indirectmethod:Twentypercentofthechangeintheuneamedpremiumreserveis20% 
x ($0 - $7,500) = -$1,500. The statutory income in 20XX+2 is $1,500. The taxable 
income is $1,500 + -$500 = $0, and the tax liability is $0. 
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Deferred Tax Assets 

The computation of the admitted portion of the deferred tax asset stemming from I RS loss 
reserve discounting is based on two items: 

�9 the toss reserve discount factors by accident year and by line of business for the 
current valuation date and for the valuation date 12 months hence, and 

�9 the company's loss payment pattern by line of business. 

The Ins  loss payment pattern is used to compute the loss reserve discount factors. The 
actuary's estimated loss payment pattern is used to compute the admitted portion of the 
deferred tax asset. 

Of all the changes in the NAIC's codification project, the deferred tax asset stemming from 
IRS loss reserve discounting has the greatest effect on policy pricing and companyvaluation. 
The deferred tax assets stemming from revenue offset and loss reserve discounting are 
used extensively in this paper and in all its companion papers. We present first the requisite 
background explanations of deferred tax assets and liabilities, and we illustrate the 
computation of the deferred tax assets relevant for policy pricing. 

CURRENT TAXES VS DEFERRED TAXES 

There are two ways of accounting for federal income taxes: 

�9 The incurred tax liabUity is the tax liability actually incurred bythe taxpayer, based on 
the provisions of the Internal Revenue Code, or 

�9 The accrued tax liability is the tax liability implied by the company's balance sheet, 
whether GAAP or statutory. 

Current taxes are the incurred tax liability. The current year's change to the deferred tax 
asset or liability is the difference between the incurred tax liability and the accrued tax 
liabUity. 61 The change to the deferred tax asset or liability is a direct charge or credit to 
surplus shown on line 24 of the NAIC Annual Statement. As a direct charge and credit to 
surplus, it has the same effect on the implied equity flows as though it flowed through the 
income statement. 62 

61 This definition uses a retrospective computation. SFAS 109 requires a prospective computation, which 
may be different if the tax rate changes or if there are other changes in tax regulations. For simplicity, we use 
the retrospective viewpoint at first. We explain the prospective viewpoint further below. 

Direct charge and credit to surplus are not included in after-tax net income for standard accounting 
statements, both statutory and GAAP. The implied equity flows depend on the statutory balance sheet entries, 
not the income statement entries. 
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Before 2001, insurers could not admit any deferred tax asset or liabilities on the statutory 
balance sheet. In contrast, GAAP recognizes deferred tax assets and liabilities if they are 
expected to be realized; see SFAS 109. With the implementation of codification in 2001, 
statutory accounting recognizes deferred tax liabilities and a portion of deferred tax assets. 

Permanent Differences and Timing Differences 

Tax accounting differentiates between permanent differences and timing differences, as 
defined below. 

�9 Pennanentdifferencesaredifferencesthatdonotreverseinlateraccountingperiods. 
The tax exemption for municipal bond interest is a permanent difference. 

�9 Timingdifferencesare differences that reverse in lateraccounting periods. The revenue 
offset provision creates a timing difference between statutory income and taxable 
income. 

An alternative perspective is to view permanent differences as differences in the tax rates 
applicable to different sources of income; see Feldblum and Thandi, "Income Recognition 
and Performance Measurement." For property-casualty insurers, both corporate bond 
income and municipal bond income are taxable income, but the former has a 35% tax rate 
and the latter has a 5.25% tax rate; see Feldblum and Thandi, "Investment Yields." 

Income Statement vs Balance Sheet 

It is tempting to define timing differences as differences in the timing of income between the 
book income statement (i.e., GAAP or statutory) and the tax income statement. This is not 
correct. 

Timing differences are differences between the tax income statement and the income 
statement implied by the GAAP or statutory balance sheeL ~ 

UNREALIZED CAPITAL GAINS AND LOSSES 

For each accounting year, we compute the difference between the book value and the cost 
of the financial asset. The change in this difference from the previous year to the current year 
is the unrealized capital gain or loss. For common stocks, the book value is the market 
value. 

e~ This definition is particularly relevant to the deferred tax liabilities and assets stemming from unrealized 
capital gains and losses. For the deferred tax assets stemming from revenue offset and loss reserve 
discounting, we could use the difference between statutory income and taxable income. 
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Unrealized capital gains and losses are admitted on the statutory (as well as GAAP) balance 
sheet, though they do not flow through the income statement. They are direct charges and 
credits to surplus, not a portion of net income. 

For tax purposes, capital gains and losses are not part of income until they are realized. 

a Unrealized capital gains increase the book value of common stocks on the statutory 
balance sheet. There is no incurred tax liability in the current tax year. Instead, the 
reporting company shows a deferred tax liability. 

a Similarly, unrealized capital losses decrease the book value of common stocks on 
the statutory balance sheet. There is no tax refund in the current tax year. Instead, the 
reporting company shows a deferred tax asset. 

Illustration 

ABC Insurance Co buys common stock for $50 million on December 31, 20XX. 

a On December 31,20XX+I, the cOmmon stock are worth $40 million; 
a On December 31,20XX+2, the common stock are worth $60 million; and 
a On December 31,20XX+3, the common stock are worth $80 million. 

The federal income tax rate is 35%. On December 31, 20XX+3, the ABC Insurance 
Company sells the common stock. We calculate the following accounting entries: 

a The unrealized capital gains and losses in years 20XX+I, 20XX+2, and 20XX+3. 
a The realized capital gains and losses in years 20XX+I, 20XX+2, and 20XX+3. 
a The deferred tax assets and liabilities in years 20XX+I, 20XX+2, and 20XX+3. 

Tax year 20XX+ 1 

The market value of the stock has decreased by $10 million. The stock has not been sold 
yet, so the capital loss is unrealized. There are no realized capital gains and losses. 

a On December 31, 20XX, book value - cost = $50 million - $50 million = $0. 
a On Dec 31,20XX+I, book value - cost = $40 million - $50 million = -$10 million. 
a The unrealized capital gain or loss = -$10 million - $0 million = -$10 million. 

The current balance sheet shows a decline of $10 million. When the stocks are sold, ABC 
Insurance Company will have an income loss of only $6.5 million, since the capital loss can 
offset other capital gains, and the company's tax liability will be reduced by $3.5 million. 
There is a $3.5 million deferred tax asset on the 20XX+I balance sheet. 
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Tax year 20XX+2 

The stock prices have increased. The unrealized capital gain is the change in the difference 
between book value and cost of the stocks. The unrealized capital gain for 20XX+2 is $20 
million. The realized capital gain is again zero, since the stocks have not been sold. 

�9 On December 31,20XX+I,  book value - cost = $40 million - $50 million = -$10  million. 
�9 OnDecember  31,20XX+2, book va lue -cos t  = $60 mi l l ion-S50 million = +$10 million. 
�9 The unrealized capital gain or loss = + $ 1 0  million - (-$10 million) = +$20 million. 

The company's balance sheet is $20 million stronger than it was a year ago. However, ifthe 
stocks were sold now, the company would realize a gain of only $13 million, since $7 million 
would go to taxes. The change in the deferred tax assets and liabilities is a credit of $7 
million. Since we began with a deferred tax asset (a debit) of $3.5 million, we now have a 
deferred tax liability (a credit) of $3.5 million. 

Tax year 20XX+3 

The company sells the stock. The difference between market value and cost of the stocks 
is now $0~since there are no more stocks on the balance sheet), so the unrealized capital 
gain is -$10  million. 

�9 On December 31,20XX+2, bookva lue -cos t  = $60 mi l l ion-S50 million = +$10 million. 
�9 On December 31,20XX+3, book value - cost = $0 million - $0 million = $0 million. 
�9 The unrealized capital gain or loss = $0 million - ($10 million) = -$10  million. 

The realized capital gain, which is defined as the sale price minus the purchase price, is 
+$30 million. The deferred tax assets and liabilities are now zero. ~ 

P r o s p e c t i v e  P r i c i n g  

TO see the effects of deferred tax assets and liabilities on determining a benchmark 
investment yield for policy pricing, we consider an illustration of bond and stock returns. 

Unrealized capital gains and losses give rise to deferred tax liabilities and assets, respectively. 
Realized capital gains and losses affect current taxes; they do not give rise to deferred tax assets and 
liabilities. An exception stems from the rule that capital losses can offset capital gains but not operating gains. 

If capital losses exceed capital gains, the company may carry forward the unused capital losses. The tax rate 
times the unused capital loss is a deferred tax asset, not e deduction in current tax liabilities. 

Capital losses can be carded forward a limited number of years. If during these years the company has not 
realized sufficient capital gains to offset all the capital losses, the remaining capital losses expire unused, and 
the deferred tax asset is removed. 
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Illustration: An insurer invests in bonds yielding 10% per annum and in common stocks that 
pay no dividends but that are expected to increase in market value by 10% per annum. We 
examine the effects of each on the benchmark investment yield for a financial pricing model. 
To keep the illustration clear, we assume that the insurer begins with $100 million of each 
type of security. 

Single Year'. During the first year, the bonds yield $10 million. The federal income tax 
liability is $3.5 million, and the increase in statutory surplus is $6.5 million. The after-tax 
investment yield for the purposes of the pricing model is 6.5% per annum. 

During the first year, the expected change in the common stock value is +$10 million. The 
expected deferred tax liability is $3.5 million, so the expected change in the statutory balance 
sheet is a $6.5 million increase in surplus. For the single year scenario, the after-tax 
investment yield is 6.5% for the common stocks. 

For a multi-period scenario, the yields on the bonds and the common stocks are not 
identical, even when deferred tax assets and liabilities are considered. We show this with 
a two year scenario. We assume that the investment income in reinvested in the same 
securities. 

Two Years: The bond portfolio yields investment income of $10 million the first year. Of this 
amount, $3.5 million is paid to the U.S. Treasury, and $6.5 million is reinvested in the bond 
portfolio. During the second year, the bond portfolio yields investment income of $106.5 
million x 10% = $10.65 million. Of this amount, $10.65 million x 35% = $3.7275 million is 
paid to the U.S. Treasury, and $10.65 million x 65% = $6.9225 million is reinvested in the 
bond portfolio. The total in the bond portfolio after two years is $106.5 million + $6.9225 = 
$113.4225. This is a 6.5% annual yield, since 1.0652 = 1.134225. 

The common stock portfolio appreciates to $110 million the first year. Nothing is paid tothe 
U.S. Treasury, and the company sets up a $3.5 million deferred tax liability on its balance 
sheet. During the second year, the common stock portfolio appreciates to $121 million. 
Nothing is yet paid to the U.S. Treasury, and the company increases the deferred tax liability 
to $21 million x 35% = $7.35 million. The net common stock asset is $121 million - $7.35 
million = $113.65 million. This is a 6.607% annual yield, since 1.066072 = 1.1365. 

The effect of the tax deferral on the effective investment yield is small for a short holding 
period. The effect is material for longer holding periods. ~ Formulas for calculating the 
effective investment yield for different securities are shown in Feldblum and Thandi, 
"Investment Yields." 

The effective holding period is generally estimated as the reciprocal of the turnover rate. If 5% of the 
common stocks are sold each year, the effective holding period is 1 + 5% = 20 years. This approximation is 
not exact, but the difference from the exact result is insignificant. 
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We sum up the gist of this discussion as follows: 

�9 For calculating after-tax net income, a deferred tax liability is not the same as an 
actual tax liability. 

�9 For calculating implied equity flows, a deferred tax liability is the same as an actual 
tax liability. 

�9 Forcalculatingtheinvestmentyield, adeferredtaxliabilityisslightlydifferentfroman 
actual tax liability. The magnitude of the difference depends on the effective holding 
period of the securities. 

Statutory Recognition of Deferred Tax Assets 

All deferred tax liabilities are recognized on the statutory balance sheet. For most deferred 
tax assets, the admitted statutory portion equals the entire asset, and statutory accounting 
is the same as GAAP. = In certain instances, only a portion of the deferred tax assets are 
recognized on the statutory balance sheet. This applies particularly to the deferred tax asset 
stemming from I RS loss reserve discounting for medium- and long-tailed lines of business. 

SSAP No. 10, "Income Taxes," paragraph 10, says: 

Gross DTAs shall be admitted in an amount equal to the sum of." 

a Federal income taxes paid in prior years that can be recovered through loss 
carrybacks for existing temporary differences that reverse by the end of the subsequent 
calendar year," 

b Thelesserof: 

The amount of gross DTAs, after the application of paragraph 10 a., expected to 
be realized within one year of the balance sheet date; or 
Ten percent of statutory capital and surplus as required to be shown on the 
statutory balance sheet of the reporting entity for its most recently filed statement 
with the domiciliary state commissioner adjusted to exclude any net DTAs, EDP 
equipment and operating system software and any net positive goodwill; and 

There are two potential differences between GAAP and statutory accounting even when the full deferred 
tax asset passes the 12 month test: 

�9 Some companies use a valuation allowance on the GAAP balance sheet for deferred tax assets and 
liabilities that may not reverse. 

�9 Some companies use fair values, or discounted values, for deferred tax assets and liabilities that may 
not reverse for many years. 
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c. The amount of gross DTAs, after app/ication of paragraphs lO a. and 10 b., that can 
be offset against existing gross DTLs. 

A gross deferred tax asset is admissible if it will reverse within one year, as required by 
paragraph (a) and by paragraph (b.i). 

The limitation of 10% of surplus in paragraph (b.ii) is applicable for some companies, 
depending on the circumstances of the company's business and capital. Actuaries 
estimating the admitted portion of the deferred tax asset for these companies must take this 
limitation into account. 

This is one of the rare instances where the implied equity flows depend not just on the book 
of business being priced but on all operations of the company. It would be rare for the 
deferred tax asset stemming from a single policy year to exceed 10% of statutory surplus, 
but is may occur that the total deferred tax asset of the company exceeds 10% of its surplus. 

Illustration: The ABC Insurance Companywdtes annual policies with effective dates spread 
evenly through the year. Its premium to surplus ratio is 2 to 1, and its reserves to surplus ratio 
is 4 to 1. Its average loss reserve discount factor is 80%, and 30% of its deferred tax asset 
from loss reserve discount will reverse within 12 months. We work out its gross deferred tax 
asset and the portion admitted on the statutory balance sheet. 

To simplify the computations, we use numbers instead of algebraic variables. We assume 
that statutory surplus is $100 million. Any other figure would work just as well. 

The premium to surplus ratio is 2 to 1, so annual premium is $200 million. Since it uses 
annual policies with effective dates spread evenly through the year, the unearned premium 
reserves are $200 million x 50% = $100 million. The deferred tax asset stemming from 
revenue offset is $100 million x 20% x 35% = $7 million. 

The reserves to surplus ratio is 4 to 1, so the undiscounted loss reserves are $400 million. 
The average loss reserve discount factor is 80%, so the discounted reserves are $400 
million x 80% = $320 million. The gross deferred tax asset stemming from IRS loss reserve 
discounting is ($400 million - $320 million) x 35% = $28 million. The portion admitted on 
the statutory balance sheet is $28 million x 30% = $8.4 million. 

The total statutory deferred tax asset is $7 million + $8.4 million = $15.4 million. This is 
limited to 10% of statutory surplus. Ten percent of statutory surplus is $10 million, so an 
additional $5.4 million is not admitted. 

This illustration is reasonable, but it does not reflect the average company. Various changes 
in the scenario would reduce or eliminate the effect of the "10% of surplus" restriction. 
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�9 A lower premium to surplus ratio would reduce the effect of this restriction. The U.S. 
insurance industry as a whole has a premium to surplus ratio of about 1 to 1. With a 
1 to 1 premium to surplus ratio in the illustration above, the 10% of surplus restriction 
has no effect on the admitted portion of the deferred tax asset. 

�9 A shorter policy term would reduce the deferred tax asset stemming from revenue 
offset. With six month policies, the unearned premium reserve would be only half the 
size and the deferred tax asset stemming from revenue offset would be only half the 
size. 

�9 The property lines of business do not have slowly liquidating reserves that would 
generate a significant deferred tax asset from loss reserve discounting. 

�9 Companies with effective dates clustered around January 1 have much lower 
uneamed premium reserves at the end of the year, and therefore have lower deferred 
tax assets stemming from revenue offset. 

Most companies do not have deferred tax assets that will reverse in the coming year and that 
exceed 10% of policyholders' surplus. The deferred tax asset stemming from revenue offset 
is usually about 1%to 5%of statutorysurplus. The deferred taxassetstemming from IRS 
loss reserve discounting is larger for companies that predominate in the long-tailed casualty 
lines of business, but most of this deferred tax asset does not reverse within one year. For 
companies with low surplus, this restriction is important. 

The offsetting against existing gross deferred tax liabilities mentioned in paragraph (c) is 
relevant for companies with large unrealized capital gains from common stock holdings. The 
actuary should take this provision into account when quantifying the admitted portion of the 
deferred tax asset. 

Common stock that has suffered an unrealized capital loss may be sold within the next 12 
months to realize the tax benefits. A literal reading of the SSAP would permit the recognition 
of the deferred tax asset only if the company expects to realize the capital loss during the 
coming calendar year. In practice, most auditors do not require an explicit company 
expectation to realize the loss in order to admit the deferred tax asset. 

Revenue Offset 

The deferred tax asset stemming from revenue offset is similar to the deferred tax asset 
stemming from loss reserve discounting. For annual policies, the entire deferred tax asset 
will reverse during the coming year, and it is fully admitted on the statutory balance sheet. 

BACKGROUND 

All acquisition expenses flow through the statutory income statement when they are incurred. 
No deferred policy acquisition cost (DPAC) asset is entered on the statutory balance sheet. 
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On GAAP financial statements, acquisition expenses are capitalized on the balance sheet 
and amortized through the income statement over the term of the policy. The DPAC asset 
depends on the actual expenses incurred by the company. 

For tax purposes, 20% of the written premium is treated as acquisition expenses that are 
capitalized and amortized over the term of the policy. 67 More precisely, the revenue offset 
provision defines the taxable earned premium. 

�9 Statutory earned premium equals written premium minus the change in the unearned 
premium reserves. 

�9 Taxable earned premium equals written premium minus 80% of the change in the 
unearned premium reserves. 

ILLUSTRATION'. DPAC 0F20% 

An annual policy with a premium of $1,000 and acquisition expenses of $200 is written on 
December 31,20XX. 

�9 The statutory balance sheet shows a loss of $200. The written premium of $1,000 
is offset by the unearned premium reserve of $1,000, and the incurred acquisition 
cost of $200 flows through the income statement. 

�9 For tax purposes, the $1,000 written premium is offset by only $800 of uneamed 
premium reserves, leaving a $200 gain. This $200 gain combined with the $200 
acquisition cost yields a $0 net gain or loss. 

The income implied by the statutory balance sheet- taxable income =-$200-  $0 =-$200. 

In 20XX+I, statutory earned premium is $1000, since the entire uneamed premium reserve 
is taken down over the course of the year. The taxable income is $800, since only 80% of 
the change in the unearned premium reserve is considered. For 20XX+I, the income 
implied by the statutory balance sheet - taxable income equals $1000 - $800 = $200. 

At the end of 20XX+l, the statutory balance sheet equals the implied tax balance sheet. 
Both show net cash received of $1000- $200, or the written premium minus the acquisition 
expense. The temporary balance sheet difference at December 31,20XX fully reverses by 
December 31,20XX+I. 

At December 31,20XX, taxable income is $200 greater than the income implied by the 
statutory balance sheet. The tax liability for 20XX is 35% x $200 = $70 greater than the tax 
liability that would be determined from the statutory balance sheet. Since the $70 difference 

6~ Life and health insurers and annuity writers have a similar "DAC-tax." 
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will reverse over the coming 12 months, it is recognized as a deferred tax asset on the 
statutory balance sheet. 

The deferred tax asset on the statutory balance sheet does not depend on the amount of 
actual acquisition expenses. In contrast, the deferred tax asset on the GAAP balance sheet 
depends on the size of the GAAP deferred policy acquisition cost asset relative to the 20% 
assumption in the revenue offset provision. 

ILLUSTRATION: DPAC OTHER THAN 20~ 

A company writes and collects a $1000 annual premium on December 31, 20XX. 
Acquisition expenses of $250 are incurred (and paid) on December 31, 20XX. The 
marginal tax rate on underwriting income is 35%. All acquisition costs are deferrable under 
GAAP. 

Taxable underwriting income for 20XX is $200 (taxable premium income from revenue 
offset)- $250 (acquisition expenses) =-$50. The tax outflow is a negative $17.50 (or a tax 
refund of $17.50). ss 

The taxable premium income may be evaluated in either of two ways. 

�9 Taxable eamed premium = written premium minus 80% of the change in the 
unearned premium reserves = $1000 - 80% x $1000 = $200. 

�9 Taxable earned premium = statutoryeamed premium plus 20% of the change in the 
uneamed premium reserves = $0 + 20% x $1000 = $200. 

The tax liability is 35% times the taxable income: 35% x ($200 - $250) = -$17.50. 

Taxable underwriting income for 20XX+I equals $800 of taxable premium income. The tax 
outflow is $800 x 35% = $280.00. Written premium during the year is $0 and the uneamed 
premium reserve declines from $1000 to $0. We use the same two computation methods: 
(i) $0 - 80% x (-$1000) = $800, or (ii) $1000 + 20% x (-$1000) = $800. 

A deferred tax asset of $70 stemming from the revenue offset provision is entered on the 
balance sheet on December 31,20XX, and it is amortized over the course of the policy term. 
The full deferred tax asset from revenue offset is recognized on the statutory balance sheet, 
since it reverses within 12 months of the balance sheet date (for annual policies). 

On GAAP financial statements, the book income for 20XX is $1000- $0 = $1000, since all 
acquisition expenses are capitalized. The taxable income is -$50 (as above), and the tax 

The tax refund stemming from negative taxable income offsets tax liabilities stemming from positive 
taxable income on other insurance contracts. There is no need to presume tax carrybacks or carryforwards. 
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liability is -$17.50 (i.e., a refund). GAAP shows a deferred tax liability (not an asset) of 
$17.50, exactly offsetting the tax refund. 

The text of this paper uses an acquisition expense greater than 20% of premium in order to 
show the differing treatments under GAAP and statutory accounting. The same illustration 
is carried through to the companion papers. 

LOSS RESERVE DISCOUNTING 

The deferred tax asset stemming from loss reserve discounting is the most difficult 
component of the financial pricing model for some readers. The cause of this difficulty lies 
in the training and experience of many North American actuaries. The actuarial aspects of 
the pricing model are covered in the examination syllabus, and many actuaries have 
experience with cash flow analysis at work. Tax accounting is not emphasized on the 
actuarial syllabus, and few actuaries deal with deferred tax assets in their jobs. 

This situation is unfortunate. The concepts involved in tax accounting are not difficult, and 
they significantly affect policy pricing. There is perhaps no better example than the deferred 
tax asset stemming from loss reserve discounting. There is no good documentation of the 
procedures (other than here), and many actuaries never have the opportunity to master the 
calculations. In truth, the procedure is straight-forward; it takes no more than fifteen or twenty 
minutes to learn how it is done. 

The statutory incurred losses are the paid losses plus the change in the undiscounted loss 
reserves. The taxable incurred losses are the paid losses plus the change in the discounted 
loss reserves. The difference between statutory and taxable incurred losses is a timing 
difference. The change in the deferred tax asset is 35% of this difference. 

Illustration: A policy is issued on January 1,20XX, for a premium of $1000 and expenses 
of $200. Losses of $800 are incurred in 20XX, of which half are paid in 20XX and half are 
paid in 20XX+I. The IRS loss reserve discount factor at the 12 month valuation is 90%. For 
simplicity, we assume that the companies earns no investment income. 

�9 The statutory incurred losses in 20XX are $400 of paid losses plus $400 of loss 
reserve change = $800. Statutory income is $1000 - $200 - $800 = $0. The 
accrued taxes on income of $0 is $0. 

�9 The taxable incurred losses in 20XX are $400 of paid losses plus $360 of change 
in discounted loss reserves = $760. Taxable income is $1000- $200-  $760 = $40. 
The tax liability on $40 is $14. 

The difference between the income implied by the statutory balance sheet and taxable 
income is $0 - $14 = -$14. The gross deferred tax asset is $14. 
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Only the portion of the deferred tax asset that reverse within 12 months is admitted on the 
statutory balance sheet. We examine the statutory income and taxable income for 20XX+I. 

�9 The statutory incurred losses in 20XX+ 1 are $400 of paid losses plus-S400 of loss 
reserve change = $0. There is no premium or expense in 20XX+I, so statutory 
income is $0. The accrued taxes on income of $0 is $0. 

�9 The taxable incurred losses in 20XX+I are $400 of paid losses plus -$360 of 
change in discounted loss reserves = $40. There is no premium or expense in 
20XX+I, so taxable income is $ 0 -  $40 =-$40. The tax liability is 35% x (-$40) = 
-$14. 

The full difference between statutory and taxable income reverses in 20XX+I, so the full 
deferred tax asset of $14 is admitted on the statutory balance sheet. 

Twelve Month Reversal 

We present the formula for computing the admitted portion of the deferred tax asset 
stemming from loss reserve discounting. The computations are done separately by line of 
business and by accident year. 

Illustration: For accident year 20XX in a given line of business, the loss reserve discount 
factors are Zl at December 31,20YY, and Z2 at December 31,20YY+I. Let "R" bethe held 
loss reserves at December 31,20YY. Let "P" be the percentage of accident year 20XX 
reserves that will be paid during calendar year 20XX. 

�9 At December 31,20YY, the difference between statutory and taxable income for accident 
year 20XX is R x (1 - Z1). The gross deferred tax asset is 35% x R x (1 - Zl). 

�9 At December 31, 20YY+I, the difference between statutory and taxable income for 
accident year 20XX is R x (1 - P) x (1 - Z2). The gross deferred tax asset is 35% x R 
x (1 - P) x (1 - Z2). 

�9 The admitted portion of the deferred tax asset on the statutory balance sheet at 
December 31 r 20YY is 35% x R x [(1 - Zl) - (1 - P) x (1 - Z~)]. 

The value of"P" depends on the actuary's best estimate of the loss payment pattern. It is not 
the same as the IRS loss payment pattern. To estimate the pattern, we must derive 
actuarially justified discount factors. 

Actuarial Discount Factors 
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The percentage of losses expected to be paid by each valuation date is the reciprocal of the 
paid loss development factor. = This is a standard actuarial procedure, not peculiar to tax 
accounting. We show an illustration here for the benefit of readers who have not dealt with 
reserve liquidation patterns. The illustration uses the same data as the previous illustrations 
of the IRS loss payment pattems. 7~ 

The illustration assumes the actuary is determining the deferred tax asset stemming from 
loss reserve discounting for accident year 20X9 workers' compensation business. Since 
the amount of the loss reserve discount depends on Schedule P data and the discount is 
based on Schedule P lines of business, it makes sense to determine the loss liquidation 
pattern from Schedule P data for Schedule P lines of business. 71 

If the characteristics of the book of business are changing, or if the book of business can be 
separated into components with different loss liquidation patterns, the pricing actuary should 
use separate analyses for each component. This is important for accurate policy pricing. 

Illustration: An insurer writes two types of workers' compensation coverage: 

�9 First dollar coverage for small and medium size insureds. 
�9 Large dollar deductible policies for large accounts. 

Both blocks of business are included in the company's workers' compensation line of 
business for Schedule P purposes. Both blocks of business have the same loss reserve 
discount factors for tax purposes. The two blocks of business have different deferred tax 
assets stemming from the IRS loss reserve discounting, since the actual loss liquidation 
pattem differs by type of policy. First dollar coverage pays out rapidly. Large dollar 
deductible (also termed "high deductible") coverage pays out very slowly, since the insurer's 
payments begin after a large deductible has been pierced. With a deductible of $500,000, 
which is common for large ("national") accounts, the insurer's payments may begin years 
after the accident date. 

One may be tempted to think that the loss liquidation pattern for calculating the deferred tax 
asset should be the same as the loss payment pattern for calculating the loss reserve 
discount factors. This is not correct. The loss reserve discount factors are tax factors. The 
deferred tax assets are statutory accounting figures. In this illustration, we use the same raw 
data for the deferred tax assets as we used for the loss reserve discount factors, but the loss 

6~ See Feldblum [2002: SB] for a full discussion of this topic. 

70 A more comprehensive discussion of this illustration may be found in Feldblum [2002: Schedule P]. 
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liquidation pattern for the deferred tax assets is not the same as the loss payment pattem 
for the loss reserve discount factors. 

Exhibit AppA.12 shows the Schedule P, Part 3D entries as they would appear in the 20X9 
Schedule P for accident years 20X0 through 20X9 for the loss reserve discount factors 
estimated above. TM 

Exhibit AppA. 12:20X9 Schedu/e P~ Part 3D ($000) 

Pad3 20X0 20X1 20X2. 20X3 20X4 20X5 20X6 20X7 20X8 20X9 

20X0 103 226 294 334 363 384 398 412 422 433 

20Xl 111 238 309 356 387 409 428 442 454 

20X2. 108 221 286 328 354 375 391 403 

20X3 111 238 311 357 392 416 434 

20X4 135 299 394 458 504 534 

20X5 146 314 418 490 542 

20X6 159 343 463 546 

20X7 146 353 485 

20X8 152 406 

20X9 156 

Paid Loss Link Ratios 

We determine the paid loss link ratios from these data. We use these link ratios to calculate 
the loss liquidation pattern, not to calculate the indicated reserves. Even if the company 
determines its reserve indications by another reserving method, it would use the procedure 
described here to determine the loss liquidation pattern. 

Paid loss link ratios are the ratios of 

i cumulative paid losses for a specific accident year at a given valuation date to 
ii cumulative paid losses for the same accident year at a valuation date one year earlier. 

For instance, the paid loss link ratio from two years to three years of development for 
accident year 20X6 is $463,000 divided by $343,000, or 1.350. The complete set of link 
ratios is shown in the table below. 

These data are based on actual Schedule P entries for a large commercial lines insurer that was 
acquired by a peer company in the mid-1990's. The figures have been disguised, and the accident years have 
been changed. 
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Exhibit AppA. 13:20X9 Schedule Per Paid Loss Link Ratios 

l t o 2  2 t o 3  3 t o 4  4 t o 5  

20)(0 2.194 1.301 1.136 1.087 

20Xl 2.144 1.298 1.152 1.087 

20X2. 2.046 1.294 1.147 1.079 

20X3 2.153 1.301 1.148 1.098 

20X4 2.215 1.318 1.162 1.100 
20X5 2.151 1.331 1.172 1.105 

20X6 2.157 1.350 1.179 

20X7 2.418 1.374 

20X8 2.671 

5 t o 6  6 t o 7  

1.058 1.036 
1.057 1.046 

1.059 1.043 

1.061 1.043 

1.060 

7 t o 8  8 t o 9  9 - 1 0  

1.035 1.024 1.026 
1.033 1.027 

1.031 

The row labels are accident years; the column captions are development intervals. The 
caption "2 to 3" means from two years of development to three years of development. We 
have rotated the triangle, turning the diagonals in Exhibit 3.4 into the columns in Exhibit 3.5. 

No link ratio is calculated for the 20X9 accident year, since there is only one valuation. No 
link ratios are shown :for the prior row, since the claims in this row stem from different 
accident years. For the prior years row, the time since inception of the accident yearvaries 
by claim. 

We determine averages of the most recent three and the most recent five link ratios, and we 
select prospective factors from the historical figures and expectations about future 
conditions. In this illustration, the selected link ratios lie between the three and five year 
averages. ~ 

r3 For the averaging procedures most suitable to reserving analyses, see Feldblum [2002: Schedule P] 
and Feldblum [2002: Stanard-BOhlmann reserving method]. 
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Averages 

3 year 

5 year 
Select 

Exhibit AppA. 14: Paid Loss Development (do#am in thousands~ 

l t o 2  2to3  3 to4  4to5  5 to6  6 to7  7 to8  8 to9  9-10 

2.415 1.352 1.171 1.102 1.060 1.044 1.033 

2.322 1.335 1.162 1.094 1.059 

2.350 1.340 1.170 1.100 1.060 1.040 1.030 1.030 1.020 

Cumulative 4.835 2.057 1.535 1.312 1.193 1.125 1.082 1.051 1.020 

Pdto Date $156 $406 $485 $546 $542 $534 $434 $403 $454 

Developed $754 $835 $746 $716 $647 $601 $470 $423 $463 
Ultimate $830 $919 $819 $788 $711 $661  $517 $466 $509 

Reserve $674 $513 $334 $242 $169 $127 $83 $63 $55 

PAID LOSS DEVELOPMENT FACTORS 

The cumulativelink ratios, or paid loss development factors, are the cumulative products of 
the appropriate link ratios (age-to-age factors) in adjacent columns. For instance, the 
cumulative link ratio from seven to ten years, or 1.082, is the product of 1.030, 1.030, and 
1.020, which are the link ratios from seven to eight, eight to nine, and nine to ten years. 

We incorporate a paid loss tail factor of +10%, which is not derived from the Schedule P 
data. 

Illustration: The 1 year to 10 years cumulative paid loss development factor is 4.835. The 
1 year to ultimate paid loss development factor is 4.835 x 1.100 = 5.319. 

Exhibit AppA. 15: Paid Loss Development Test of Reserve Adequacy 

1 yr 2yrs 3yrs 4yrs 5yrs 6yrs 7yrs 8yrs 9yrs 

Pd LDF's 4.835 2.057 1.535 1.312 1.193 1.125 1.082 1.051 1.020 

LDF w/taU 5.319 2.263 1.689 1.443 1.312 1.238 1.190 1.156 1.122 
Reciprocal 18.8% 44,2% 59.2% 69.3% 76.2% 80.8% 84.0% 86.5% 89.1% 

Incr'tl Pd % 18.8% 25.4% 15.0% 10.1% 6,9% 4,6% 3.2% 2.5% 2.6% 

The rows in the table are described below. 
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�9 The "Pd LDF's" are the paid loss development factors from each development date to 
10 years of maturity, derived from Schedule P, Part 3, data. The paid loss development 
factor from 1 year to 10 years of maturity is 4.835. 

�9 The"LDFw/ ta i l " i s thepa id lossdeve lopment fac to rs f romeachdeve lopmentda te to  
ultimate, using a tail factor of +10%. The paid loss development factor from 1 year to 
ultimate is 5.319. 

�9 The "Reciprocal" of the paid loss development factor to ultimate shows the percentage 
of losses paid bythe development date. The cumulative losses paid by 1 year after the 
inception of the accident year is 1/5.319 = 18.8% of ultimate paid losses. 

�9 The "lncr'tl Pd %" is the incremental paid losses during each development period as a 
percentage of ultimate paid losses. The losses paid between 1 year and 2 years after 
inception of the accident year are 44.2% - 18.8% = 25.4% of ultimate paid losses. 

Loss Reserve Discounting 

For GAAP financial statements, the deferred tax asset from loss reserve discounting is 
treated in the same fashion as the deferred tax asset from revenue offset. Both are fully 
recognized on the balance sheet. 

/LLUSTRATION 

In the other liability loss reserve discounting illustration in this paper, the accident year 2009 
loss reserves for statutory and GAAP balance sheets on December 31,2009 are $180,000 
- $15,000 = $165,000. The corresponding discounted tax basis loss reserves are 

$165,000 x 77.8022% = $128,373.63. 

The difference between the GAAP loss reserves and the tax basis loss reserves is 

$165,000.00 - $128,373.63 = $36,626.37. 

The addition to taxable income stemming from loss reserve discounting for accident year 
2009 at December 31,2009 is $36,626.27 x 35% = $12,819.23. This is the deferred tax 
asset on the GAAP balance sheet. 

The admitted portion of the deferred tax asset on the statutory balance sheet depends on 
the portion of the loss reserve that will still be unpaid in one year's time. This is an actuarial 
estimate; it is not the IRS provision used in the loss reserve discounting calculation. We may 
estimate this amount from Schedule P, Part 3, as discussed earlier. 

Suppose the projected paid loss link ratios for other liability are 8.000 at 12 months of 
development and 5.000 at 24 months of development. 
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�9 At 12 months of development, 1/8.000 = 12.5% of incurred losses have been paid 
and 1 - 1/8.000 = 87.5% of incurred losses are still unpaid. 

�9 At 24 months of development, 1/5.000 = 20.0% of incurred losses have been paid 
and 1 - 1/5.000 = 80.0% of incurred losses are still unpaid. 

We expect 80.0% / 87.5% = 91.428571% of the December 31,2009, accident year 2009 
loss reserves to remain unpaid at December 31, 2010. This amount is $165,000 x 
91.4285714% = $150,857.14. The expected IRS discounted reserves at December 31, 
2010 equal this amount times the IRS loss reserve discount factor for accident year 2009 
at 24 months of development, or 78.7611% in the other liability illustration: 

$150,857.14 x 78.7611% = $118,816.75. 

Implicit Discounting 

Some companies implicitly discount reserves for long-tailed lines of business. Implicit 
discounting means that the company consciously holds less than full value loss reserves (for 
capital management purposes), not that the company mis-estimates the reserve indication. 

One might be tempted to think that the amount of the implicit reserve discount should be 
taken into consideration when calculating the deferred tax asset. This is not correct. The 
deferred tax asset must be calculated as if the company held full value loss reserves. TM 

I l lustration: An insurer expects to pay a loss for $100,000 in three years. The IRS loss 
reserve discount factor for this line of business and accident year is 80% for the current 
valuation date and 85% for the valuation date 12 months hence. 

�9 The (gross) deferred tax asset on the GAAP financial statements is 35% x $100,000 
x (1 - 80%) = $7,000. 

�9 The(ne tadmi t ted)de fe r red taxasse ton thes ta tu to ry f inanc ia ls ta tements is35%x 
$100,000 x (85% - 80%) = $1,750. 

If the insurer implicitly discounts reserves at 5% per annum, its held reserves are $100,000 
/ 1.053 = $86,383.76, and its tax basis reserves are 80% x $100,000 / 1.053 = $69,107.01. 
Its expected held reserves one year hence are $100,000 / 1.052 = $90,702.95, and its 
expected tax basis reserves at that time are 85% x $100,000 / 1.052 = $77,097.51. 

One might think that the gross (GAAP) and net admitted (statutory) deferred tax assets 
should be computed as follows: 

�9 Gross (GAAP): 35% x ($100,000- $69,107.01) = $10,812.55. 

r4  For more complete discussion of this topic, see Feldblum and Thandi, "Reserve Valuation Rates." 
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�9 Net admitted (statutory): 35% x ($77,097.51 - $69,107.01) = $2,796.68. 

This is not correct. If the company shows a reserve of $86,383.76 on its statutory financial 
statements, it musttreatthat reserve atthough itwere afull value loss reserve for calculating 
the deferred tax asset. The appropriate calculations are as follows: 

�9 The (gross) deferred tax asset on the GAAP financial statements is 35% x 
$86,383.76 x (1 - 80%) = $6,046.86. 

�9 The(netadmitted)deferredtaxassetonthestatutoryfinancialstatementsis35%x 
$86,383.76 x ( 8 5 %  - 80%) = $1,511.72. 
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FEDERAL INCOME TAXES 

The previous sections of this appendix explain the federal income tax regulations that are 
most relevant for property-casualty insurance pricing. This section reviews the tax effects 
of the accounting transactions in the two illustrations in this paper. 

Tables Tx.1 and Tx.2 show the components of the federal income tax liability and the 
deferred tax assets at each valuation date. 

Table Tx. 1, Wax Decomposition," shows the two components of the current tax liability: the 
tax on underwriting income and the tax on investment income. Each component is divided 
into two parts: the part stemming from premium revenue and the part stemming from losses 
and expenses. 

Tax Basis 

The set of rows under the caption ' lax basis" shows the tax basis eamed premium, incurred 
expenses, and incurred losses. The tax basis earned premium is the statutory earned 
premium adjusted for the revenue offset provision. It is defined either as 

wr#ten premium - 80% x the change in the uneamed premium reserves 
or as 

statutory earned premium + 20% x the change in the unearned premium reserves 

Illustration: For t--0, the written premium is $1000, the statutory earned premium is zero and 
the uneamed premium reserves are $1000. The tax basis earned premium is computed 
either as $1000 - 80% x ($1000 - $0) = $200 or as $0 + 20% x ($1000 - $0) = $200. 

For t=l ,  the written premium is zero, the statutory eamed premium is $1000 and the 
unearned premium reserves are zero. The tax basis earned premium is computed either 
as $0 - 80% x ($0 - $1000) = $800 or as $1000 + 20% x ($0 - $1000) = $800. 

The tax basis expenses are the same as the statutory expenses. The tax basis incurred loss 
is the statutory incurred loss adjusted for loss reserve discounting. It is defined either as 

or as 
paid loss + the change in the discounted reserves 

statutory incurred loss - the change in the reserve discount 

Illustration: The paid losses are $800 at time t=3.0 and zero before then. The assumed IRS 
discount factors are 86% at time t=1.0, 88% at time t=2.0, and 90% at time t=3.0. The 
statutory incurred loss is $800 at time t=1.0 and zero at other valuation dates. 
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�9 At time t=1.0, the tax basis incurred loss is computed either as $0 + ($800 x 86%-  $0) 
= $688 or as $800 - [ $800 x (1 - 86%) - $0] = $688. 

�9 At time t=2.0, the tax basis i ncu rred loss is corn puted either as $0 + ($800 x 88%-$800 
x 86% ) = $16 or as $0 - [ $800 x (1 - 8 8 % )  - $800  x (1 - 86%)]  = $16.  

�9 At time t=3.0, the tax basis incurred loss is computed either as $800 + ($0 x 90%-  $800 
x 88% ) = $96 or as $0 - [ $0 x (1 - 90%) - $800 x (1 - 88%)] = $96. 

Tax  Bas is  I n v e s t m e n t  I n c o m e  

The illustration in the text assumes that all investable assets are fully taxable. If the company 
holds municipal bonds or common stocks, the yield on the security is adjusted to a pre-tax 
equivalent yield; see Feldblum and Thandi, "Investment Yields." 

The investment income at any valuation date equals investable assets at the previous 
valuation date times the benchmark investment yield. In the illustration, the benchmark 
investment yield is an 8% per annum bond equivalent yield, or 4% each half-year. 

The investable assets at any valuation date equal the required assets at that date minus the 
non-cash assets. The only non-cash asset in this illustration is the deferred tax asset. 

The tax on underwriting income uses the tax basis earned premium and incurred loss. The 
tax on investment income stemming from premiums and losses uses the statutory earned 
premium and incurred loss, with adjustments for the deferred tax asset admitted on the 
statutory balance sheet. 

I l lustrat ion: At valuation date t=2.0, or December 31,20XX+2, the statutory incurred loss 
is zero and the tax basis incurred loss is $16.00 (see above). The investment income is 
based on the statutory loss reserves of $800, the statutory capital requirements of $120, and 
the deferred tax asset of V2 x ($5.60 + $33.60) = $19.60 admitted on the statutory balance 
sheet. The investment income for the second half of 20XX+2 is 

8% x �89 x ($800  + $120  - $19 .60)  = $36.02.  

TAX LIABILITY 

The rows under the caption "Tax on" show the current tax liability by valuation date. The 
company is in the regular tax environment, with a 35% marginal tax rate. The current tax 
liability for each cell is 35% of the corresponding figures in the rows under the "Tax Basis" 
caption. 

I l lustrat ion: The tax on "underwriting revenue minus expenses" for valuation date t=1.0 is 

35% x ($800  - $150)  = $227.50.  
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The rows under the caption "Tax Due to" combine the underwriting income and the 
investment income for the premium and loss components of the tax. The tax on underwriting 
income is spread equally across the two halves of each year. 

I l lustration: The "tax due to writing of policy" on valuation date t=V2 is computed as 

(�89 x $227.50) + $16.52 = $130.27. 

DEFERRED TAX ASSETS 

Table Tx.2 calculates the deferred tax assets on both a statutory and a GAAP basis. The 
statutory basis deferred tax assets are used for calculating the implied equity flows. The 
GAAP basis deferred tax assets are used for calculating the GAAP income recognition 
pattem in Feldblum and Thandi, "Income Recognition and Performance Measurement." 

The deferred tax assets for the illustration are computed on December 31 of each year. The 
deferred tax assets at the June 30 valuation dates in the illustrations are computed by 
interpolation between the surrounding December 31 dates; see the text of this paper. 

The rows under the caption "Tax Basis" show the tax basis premium, expenses, and losses 
and the federal income tax liability on each. The entries in this table are the same as the 
entries in Table Tx.l. 

The rows under the caption "Statutory Basis" show the corresponding statutory basis 
premium, expenses, and losses. 

�9 The tax basis premiums are adjusted for revenue offset; the statutory basis premiums 
are not. 

�9 The expenses are the same for statutory and tax basis entries. 
�9 The statutory incurred losses use full value loss reserves; the tax basis incurred 

losses use discounted loss reserves. 

The rows under the caption"GAAP Basis" show the corresponding GAAP basis premiums, 
expense, and losses. 

�9 The GAAP premiums equal the statutory premiums. 
�9 The GAAP expenses are adjusted for deferred policy acquisition costs. 
�9 The GAAP losses equal the statutory losses. 

The exhibit assumes that all $250 of acquisition expenses are deferrable under GAAP. 
These expenses are capitalized at time t=0 and amortized over the policy term. Since the 
exhibit shows only the December 31 valuation dates, it shows a-$250 DPAC expense at 
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time t=0 and a +$250 DPAC expenses at time t=l. The $250 DPAC expenses is spread 
evenly over the two halves of the year. 

The rows under the caption "Statutory DTA Flow" show the deferred tax assets on the 
statutory balance sheet. The change in the grossdeferred tax asset is the tax rate times the 
difference between taxable income and the income implied by the statutory balance sheet. 

Illustration: At time t=0, the taxable income is +$200 from revenue offset and -$250 from 
incurred expenses, for a total of-$50. The income implied by the statutory balance sheet 
is $0 from premium and -$250 from incurred expenses. The difference is -$50-  (-$250) 
= +$200. The deferred tax asset is 35% x $200 = $70. 

At time t=2, the taxable income from unwinding of the loss reserve discount is-$16.00. The 
income implied by the statutory balance sheet is zero. The difference is -$16.00 - $0 = 
-$16.00. The negative difference implies a reduction in the deferred tax asset of 35% x 
$16.00 = $5.60, from $39.20 at time t=l to $33.60 at time t=2. 

The net admitted deferred tax asset on the statutory balance sheet is the amount of the gross 
deferred tax asset that will reverse within 12 months. 

Illustration: The entire $70 DTA at time t=0 stemming from revenue offset reverses over the 
policy term, so all $70 is admitted on the statutory balance sheet. 

Illustration: The gross DTA stemming from IRS loss reserve discounting are $39.20 at time 
t=l and $33.60attimet=2. Since only$5.60ofthis DTA reversesduringyear2,only$5.60 
is admitted on the statutory balance sheet at time t=l. 

GAAP DEFERRED TAX ASSET 

The year to year change in the GAAP deferred tax asset is the tax rate times the difference 
between taxable income and the income implied bythe GAAP balance sheet. There are no 
admissibility constraints for the GAAP DTA. 

Illustration: At time t=0, the taxable income is -$50. Since no premium has been earned 
or expenses incurred on the GAAP balance sheet at time t=0, the GAAP income is zero. 
The difference is -$50-  $0 =-$50. The change in the GAAP deferred tax asset is 35% x 
-$50 = -$17.50. This is shown as a deferred tax liability on the GAAP balance sheet. 
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E x h i b i t  4 

T A X  D E C O M P O S I T I O N  

t = 0  t=0.5 t = l . 0  t=1.5 t=2.0 t=2.5 t=3.0 

Tax Basis 
(1) UW Revenue 200.00 800.00 0.00 0.00 
(2) Expenses 250.00 150.00 0.00 0.00 
(3) Inc Loss 0.00 688.00 16.00 96.00 
(4) Inv Income 
(4a) on funds due to (Rev - Exp) 0.00 47.20 28.60 0.00 0.00 0.00 0.00 
(4b) on funds due to Incurral of L~ O.O.~qO 0.00 18.29 36.58 ~(~.02 35.46 36.13 
(4c) Total Inv Income 0.00 47.20 46.89 36.58 36,02 35.46 36.13 

Tax on 
(5) U/W Revenue - Expenses -17.50 227.50 0.00 0.00 
(6) Inc Loss 0.00 -240.80 -5.60 -33.60 
(7) Inv Inc 
(7a) on funds due to (Rev - F_xp) 0.00 16.52 10.01 0.00 0.00 0.00 0.00 
(7b) on funds due to Incurral of L, 0.00 0.00 6.40 12.80 12.61 12.41 12.64 

Tax D u e  t o  
(8) Writing of Policy (semi*ann paym -17.50 
(9) Incurral of Loss (semi-ann payment) 
(10) Total Tax (semi-ann payment) -17.50 

130.27 123.76 0.00 0.00 0.00 0.00 
-120.40 -114.00 10.00 9.8"1 -4.39 -4.16 

9.87 9.76 10.00 9.81 -4.39 -4.16 

FORMULAS 

(5) = 0.35 * [ (1)-  (2) ] 
(6) = -0.36 * (3) 
(7a) = 0.35 * (4a) 
(7b) = 0.35 * (4b) 

(8) t = (7a) t + 0.5 ~ [ (5) t+ o.s ], for t = 0.5, 1.5, 2.5 
(8) t = (7a) t + 0.5 * [ (5) t ], for t = 0.0, 1.0, 2.0, 3.0 

(9) t = (7b) t + 0 , 5  * [ (6)t+o.s ], for t  = 0.5, 1.5, 2.5 
(9) t = (7b)t + 0.5 * [ (6) t ], for t = 0.0, 1.0, 2.0, 3.0 

( 1 O) t = (7a) t + (7b) t + 0.5 * [ (5) t.o.s + (6) t+o,s ], for t = 0.5, 1.5, 2.5 
(10) t = (7a) t + (7b) t + 0.5 * [ (5) t +  (6) t], for t = 0.0, 1.0, 2.0, 3.0 
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Deferred Tax Asset 

Exhibit 5 

t=O t = l . 0  t=2.0 t=3.0 
(1) Tax Basis 
a. Revenue 200.00 800.00 0.00 0.00 
b. Expense 250.00 150.00 0.00 0.00 
c. Incurred Loss 0.0...._~0 688.00 16.00 96.00 
d. Tax due to Revenue 70.00 280.00 0.00 0.00 
e. Tax due to Expense -87.50 -52.50 0.00 0.00 
f. Tax due to Losses 0.00 -240.80 -5.60 -33.60 
g. Tax on U/W Total -17.50 -13.30 -5.60 -33.60 

(2) Statutory Basis 
a. Revenue 0.00 1,000.00 0.00 0.00 
b. Expense 250.00 150.00 0.00 0.00 
c. Incurred Loss 0.0.__Q 800.00 0.0_~0 0.00 
d. Tax due to Revenue 0.00 350.00 0.00 0.00 
a. Tax due to Expense -87.50 -52.50 0.00 0.00 
f. Tax due to Losses 0.0___.00 -280.00 0.00 0.00 
g. Tax on U/W Total -87.50 17.50 0.00 0.00 

(3) GAAP Basis IFORMULAE 
a. Revenue 0.00 1,000.00 0.00 0.00 I(4a) t = (2d) t - (ld) t 

b. Expense 250.00 1 5 0 . o o  o . o o  o . o o  1(4b) t = (2 f )  t " ( l f )  t 

b' DPAC 250.00 0.00 0.00 0.00 1(4c) = (4a) + (4b) 
c. Incurred Loss 0.00 800.00 0.0.~0 0.00 I(4d) t.~ = (4d) t + (4c) t+l 

d. Tax due to Revenue 0.00 350.00 0.00 0.00 I(4e) o = (4d) o 
Tax due to (Expense - A DPA~ 0.00 -140.00 0.00 0 . 0 0  I(4G) t = -(4b) t.l for t>0 e. 

m 

f. Tax due to Losses 0.00 -280.00 0.0.~.0.0 0.0_.~_0 
g. Tax on U/W Total 0.00 -70.00 0.00 0.00 

(4) Statutory DTA Flow 
a. due to Revenue Offset 70.00 0 0 
b. due to Loss Reserve Discounl 0 / 39.20 
c. DTA Flow w/out Reversal 7 0 . 0 0 /  -30.80 / - 5 . 6 0 /  -33.60 

d. DTA w/out Reversal 70.00V,, 39.201~. 33 .60~ ,  0.00 
e. DTA w/Reversal ~ ~ ~ 0.00 

(5) GAAP DTA Flow 
a. due to Revenue Offset 
b. due to Loss Reserve Discounting 
c. DTA Flow -17.50 66.70 -5.60 -33.60 

d. DTA -17.50 39.20 33.60 0.00 

Statutory DTA w/Reversal is that portion of the DTA that reverses in the year. Hence. it is 
by definition the negative of the DTA flow w/out reversal that occurs in the subsequent period. 
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Accident Year 
(1) 

AY+15 
AY+14 
AY+13 

AY+12 
AY+11 
AY+10 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 

Paid Loss + 
LAE (2) 

$270,000 

$300,000 
$320,000 

Exhibit AppA. 16: illustration A Loss Reserve Discount Factors 
Cumulative Incremental Undiscounted Discounted Loss Reserve 

Incurred Loss Paid/Incurred Paid/Incurred Percentage Percentage Discount 
+ LAE (3) Ratio (4) Ratio (5) Unpaid (6) Unpaid (7) Factor (8) 

$275,500 
$316,000 

$348,000 
$34O 
$350 
$370 
$380 
$360 
$330 
$200 

000 $386,500 
000 $421,500 
000 $480,500 
000 $550,500 
000 $610,000 
000 $687,500 
000 $571,500 

2.00% 100.00% 0.00% 
98.00% 3.07% 2.00% 1.93% 96.6735% 
94.94% 2.98% 5.06% 4.77% 94.1800% 
91.95% 3.99% 8.05% 7.34% 91.2271% 
87.97% 4.93% 12.03% 10.71% 89.0399% 
83.04% 6.03% 16.96% 14.78% 87.1281% 
77.00% 7.98% 23.00% 19.65% 85.4281% 
69.03% 10.01% 30.97% 26.07% 84.1740% 
59.02% 11.02% 40.98% 34.04% 83.0660% 
48.00% 13.00% 52.00% 42.47% 81.6659% 
35.00% 35.00% 65.00% 52.26% 80.3944% 



L~h 

4~ 

Exhibit AppA. 17: Illustration B Loss Reserve Discount Factors 
Cumulative Incremental Undiscounted Discounted Loss Reserve 

Accident Year Paid Loss + Incurred Loss + Paid/Incurred Paid/Incurred Percentage Percentage Discount 
(1) LAE (2) LAE (3) Ratio (4) Ratio (5) Unpaid (6) Unpaid (7) Factor (8) 

AY + 15 100.00% 3.01% 0.00% 0.00% 

AY + 14 96.99% 1.38% 3.01% 2.91% 96.6736% 

AY + 13 95.61% 1.38% 4.39% 4.05% 92.3385% 

AY + 12 94.23% 1.38% 5.77% 5.12% 88.7803% 

AY + 11 92.85% 1.38% 7.15% 6.12% 85.6177% 

AY + 10 $235,000 $250,000 91.47% 1.38% 8.53% 7.06% 82.7122% 

2000 $50,000 $55,500 90.09% 1.38% 9.91% 7.93% 79.9988% 

2001 $55,000 $62,000 88.71% 3.00% 11.29% 8.74% 77.4439% 

2002 $60,000 $70,000 85.71% 4.46% 14.29% 11.07% 77.4718% 

2003 $65,000 $80,000 81.25% 8.33% 18.75% 14.66% 78.1822% 

2004 $70,000 $96,000 72.92% 9.81% 27.08% 21.76% 80.3309% 

2005 $65,000 $103,000 63.11% 10.93% 36.89% 29.82% 80.8185% 

2006 $60,000 $115,000 52.17% 12.17% 47.83% 38.44% 80.3644% 

2007 $50,000 $125,000 40.00% 15.00% 60.00% 47.69% 79.4828% 

2008 $35,000 $140,000 25.00% 16.67% 75.00% 59.07% 78.7611% 

2009 $15,000 $180,000 8.33% 8.33% 91.67% 71.32% 77.8022% 



Appendix B: Workers' Compensation Pricing Exhibits 

This appendix describes the implementation of an Excel@ based version of the Equity 
Flow Pricing Model by tracing the steps required to price a fully insured workers' 
compensation policy (the details of which are descdbed below). The model generates 
the equity flows associated with the policy being priced. The indicated premium is 
determined by setting the IRR on the equity flows equal to the target cost of capital. The 
solution is found by running the goal seek algorithm in Excel@. 

To generated the implied equity flows, the model first calculates the company cash 
flows in the following three categories: 

�9 U/W cash flows 
�9 Investment income cash flows 
�9 Federal income tax flows (%" denotes a refund; "-" denotes a payment) 

The required assets are prescribed by statutory reserve requirements and capital 
requirements. The asset flow is defined as the change in required assets. The inplied 
equity flow is calculated by the equation below: 

Equity Flow = U/W Flow + Investment Income Flow + Tax Flow - Asset Flow 

A positive equity flow denotes a distribution of earnings, or a flow of cash from the 
insurer to the equityholders, and a negative equity flow denotes a capital contribution, or 
a payment by the equityholders to the insurer. 

Illustration 

The illustrative workers' compensation policy is effective on July 1, 20XX. The model 
assumes effective dates at the inception of a quarter. The July 1 effective date serves 
as a proxy for a policy year 20XX book of business. The effective date affects the 
federal income tax calculations and the capital requirements. 

The following policy costs serve as inputs to the model: 

�9 The ultimate loss & ALAE, 
�9 The acquisition expenses as a percentage of written premium, 
�9 The general expenses as a percentage of written premium, 
�9 The ULAE as a percentage of ultimate loss & ALAE, 
�9 The policyholder dividends as a percentage of written premium, 

The following collection/payment patterns are additional inputs to the model: 
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�9 The premium collection pattern, 
�9 The loss & ALAE accident quarter payment pattern, 
�9 The ULAE accident quarter payment pattern, 
�9 The policyholder dividend payment pattern. 

The model uses quarterly valuations and assumes all accounting and cash flow activity 
occur at quarter end. 

The model requires the following parameter inputs: 

�9 The benchmark investment yield on invested assets, 
�9 The effective tax rate for both investments and U/W income, which is set at 35% 

(unless otherwise indicated), 
�9 The surplus leverage ratios (which determine the capital requirements), 
�9 The IRS loss & LAE reserve discount factors. 
�9 The target return on capital. 

The effective tax rate and the IRS loss reserve discount factors are either known figures 
or they are estimated by the pricing actuary. The target return on capital is a 
discretionary figure that is chosen by company management. The surplus leverage 
ratios and the benchmark investment yield are a mix of empirical data (such as actual 
investment yields, risk-based capital requirements, and rating agency capital formulas) 
and discretionary management choice. 

Both the policy characteristics and the parameters are described in more detail in the 
section on pricing assumptions. 

Exhibits 
The accompanying exhibits show the quarterly valuation of the various items in the 
model. Only the first 10 years of valuations are shown. The model which produced 
these exhibits shows 50 years of quarterly valuations. 

Exhibit 1 summarizes the pricing assumptions and shows the pricing results. 

Exhibit 2 shows the assumed cash flow patterns (pattern of loss payment, premium 
collection, policyholder dividend payment, IRS loss reserve discount factors, and tabular 
discount factors applicable to pension indemnity cases). 

Exhibit 3 shows the cash flows and balance sheet items needed to generate the implied 
equity flow associated with the workers' compensation policy. 

Exhibit 4 shows the determination of paid losses and loss adjustment expenses. 

Exhibit 5 summarizes the held assets and resulting investment income. 
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Exhibit 6 shows the Federal Income Tax calculation. 

Exhibit 7 summarizes the relevant cash flows and calculates the equity flow. 

The exhibits use two conventions for expressing time. The first expresses time in 
absolute terms: time 0 stands for Jan. 1,20XX and time 3.50 stands for July 1,20XX+3. 
The second convention marks time relative to the policy inception date. 

In exhibits 3 through 7 the time column represents absolute time. In exhibit 2 the 
payment and collection patterns are expressed relative to the age of the policy. The 
time column for the cash flow pattems is labeled "Age". An age of zero refers to the 
policy inception date of July 1,20XX. An age of 1.25 refers to April 1, 20XX+I, which is 
1�88 years after policy inception. The exception to this dating convention in exhibit 2 is 
the IRS discount factors. The discount factors are applicable to specific calendar 
periods and the time column for these factors represents absolute time (i.e. calendar 
date). See Appendix A for explanation of the IRS loss reserve discount factors. 

Pricing Assumptions 

Policy Characteristics 

The policy is a fully insured workers' compensation policy effective on July 1. 

Premium is collected in the pattern specified in Exhibit 2. The indicated premium, 
denoted as WP (written premium), is determined by setting the internal rate of retum 
(IRR) of the implied equity flows equal to the target return on capital (TROC) of 12%. 
The premium of $1,374 shown in all the exhibits is determined by the goal seek 
algorithm in ExcelO. The dollars of premium collected shown in column (4) of Exhibit 3 
are calculated as WP x Premium Collection Pattem. 

Illustration: From exhibit 2, 18% of the charged premium is collected at policy 
inception (time 0.5), 17.1% is collected one quarter later (time 0.75), 21.8% is collected 
two quarters later (time 1.0), 25.3% is collected three quarters later (time 1.25), 7.2% is 
collected four quarters later (time 1.5), 6.9% is collected five quarters later (time 1.75), 
etc. 

Since the written premium is $1,374, the collection pattern implies that the dollars of 
premium collected (column (4) exhibit 3) are equal to 

1,374 x 18.0% = $247 
1,374 x 17.1% = $235 
1,374 x 21.8% = $300 
1,374 x 25.3% = $348 

at time 0.50 (0 years after policy inception) 
at time 0.75 
at time 1.00 
at time 1.25 
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1,374 x 7.2% = $ 99 at time 1.50 
1,374 x 6.9% = $ 95 at time 1.75 

The Premium Receivable (column (5) of Exhibit 3) is defined to be 
Written Premium - Cumulative Premium Collected. 

Illustration: The premium receivable is 
$1,374 - $247 = $1,127 at time 0.50 
$1,374 - ($247+$235) = $ 892 at time 0.75 
$1,374 - ($247+$235+$300) = $ 892 at time 1.0 

Ultimate Loss & ALAE is $1000, with the Accident Quarter (AQR) loss payment pattem 
as shown in Exhibit 2. The determination of the dollars of loss payments, given the AQR 
pattern, as well as the calculation of loss reserves, is described below. 

ULAE is 7.2% of Ultimate Loss & ALAE, with a payment pattern as shown in Exhibit 2. 
The determination of the ULAE payments and reserves is discussed below. 

Acquisition expenses are 17.9% of written premium and are paid at policy inception. For 
the illustration, the acquisition expenses are $1,374 x 17.9% = $246 as shown in 
column (6) of Exhibit 3. 

General expenses are 7.7% of written premium and are assumed to be paid at policy 
inception. In the illustration, general expenses are $1,374 x 7.7% = $105. Some general 
expenses actually occur both before and after policy inception. For this illustration we 
make the simplifying assumption that we can approximate this payment pattern with a 
single payment at policy inception. 

Other Assumptions 

We assume an effective annual rate of return on investments of 8% (or (1+0.08) ~ - 1 
= 1.94277% per quarter). Investment income is earned on all investable assets, which 
exclude, in particular, the premium receivable asset. 

The Federal Income Tax Rate of 35% applies to both underwriting income and 
investment income. 

Surplus is allocated as 43.7% of written premium and is held only for the policy term. 
Surplus could also be allocated in proportion to loss reserves and held until all losses 
are paid, if this deemed a more appropriate allocation method. 

Loss & A L A E  Payments  

Because the model uses quarterly cash flows, it requires a quarterly valuation of 
accident quarter losses. If we needed to determine just the payment of losses on a 
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single policy we could use the loss payment pattern for the accident year as a whole. 
This would reproduce the payment pattern for an individual policy. It would not suffice 
modeling the equity flows in the model, since paid and unpaid losses segregated by 
accident year are needed to estimate the federal income tax liabilities. 

The tax basis discounted loss reserves are the product of the IRS toss reserve discount 
factor and the held loss & LAE reserves. The discount factor varies by line of business, 
accident year, and age of the accident year. 1 The appropriate discount factor depends 
on the year in which the losses occurred. A segregation of losses into the years in which 
they occur is necessary to determine taxable incurred losses. A description of the 
segregation procedure follows below. 

The policy term spans two accident years, which we term AYR1 and AYR2. For a 
policy with an effective date during year 20XX, AYR1 extends from January 1, 20XX to 
December 31, 20XX, and AYR2 extends from January 1, 20XX+I to December 31, 
20XX+I. The portion of the policy term that spans each accident year is given in the 
table below: 

Policy 
Effective Date AYR1 AYR2 
Jan 1,20XX 
Apr 1.20XX 
July 1,20XX 
Oct 1,20XX 

Jan 1, 20XX --> Dec. 31, 20XX - - -  
Apr 1, 20XX --> Dec. 31, 20XX Jan 1, 20XX+I ..> May 31, 20XX+I 
July 1, 20XX -> Dec. 31, 20XX Jan 1,20XX+I -.> June 30, 20XX+I 
Oct 1, 20XX -> Dec. 31,20XX Jan 1, 20XX+I -> Sept 30, 20XX+I 

We assume that losses are incurred evenly over the policy term. We use accident 
quarter loss and LAE payment patterns to segregate losses into AYR1 and AYR2. The 
illustration uses an annual workers' compensation policy with an effective date at the 
beginning of a calendar quarter, so the policy term spans four accident quarters. We 
assume that one quarter of ultimate losses are incurred each quarter, and that the loss 
& ALAE payment pattern is the same for each accident quarter. 

Given the paid losses by accident quarter, we calculate the accident year losses. The 
terms accident year 1 and accident year 2 refer to accident years measured from 
January 1 to December 31. The term AQR1 (or accident quarter 1) refers to the first 
accident quarter in a given policy. 

AYR1 (or AYR2) paid losses consist of the sum of the losses paid in each accident 
quarter that falls into AYR1 (or AYR2). The classification of accident quarter losses into 
accident years depends on the policy effective date. The chart below shows the 
classification of accident quarter losses into accident years: 

Policy 
Effective Date AYR1 AYR2 

1 The age of the accident year is the valuation date and the inception of the accident year. Accident year 
20XX valued at December 31,20XX+2, is accident year 20XX aged 36 months. 
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Jan 1, 20XX (AQR1 + AQR2 + AQR3 + AQR4) - - -  

April 1, 20XX (AQR1 + AQR2 + AQR3) (AQR4) 

July 1, 20XX (AQR1 + AQR2) (AQR3 + AQR4) 

Oct 1,20XX (AQR1) (AQR2 + AQR3 + AQR4) 

Illustration: A portion of the accident quarter loss & ALAE pattem is reproduced below. 
The pattern is from inception of the policy. For example, accident quarter 3 means the 
third quarter of the policy term, and accident quarter 5 means the first quarter after 
expiration of the policy. 

AQR 

Time (from Payment 

Policy Inception) Pattern 

0.00 0.0000 

0.25 0.0480 

0.50 0.1210 

0.75 0.0819 

1.00 0.0622 

1.25 0.0543 

This pattern and the assumption that $250 (�88 of ultimate losses of $1,000) are incurred 
in each accident quarter implies the following payment pattern by accident year for a 
policy inception date of July 1,20XX: 

Policy Effective July 1, 20XX 

Time 

o.oo 

0.25 

0.50 

0.75 

1 .oo 

1.25 

1.5o 

1.75 

I Aym I AYR2 I' 1AYR1 I AYR2 
A Q R 1  A Q R 2  A Q R 3  A Q R 4  

150 * 0.0000 = 0 

250" 0.0480 = 12 

250" 0.1210 = 30 

250* 0.0819 = 20 

250" 0.0622 = 16 

250* 0.0543 = 13 

250 * 0.0000 = 0 

250* 0.0480 = 12 

250* 0.1210 = 30 

250* 0.0819 = 20 

250" 0.0622 = 16 

50 * 0.0000 = 0 

-~50" 0.0480 = 12 

250* 0.1210 = 30 

250* 0.0819 = 20 

50 * 0.0000 = 0 

250* 0.0480 = 12 

250" 0.1210=30 

) + 0 = 0  

1 2 + 0 = 1 2  

3 0 + 1 2 = 4 2  ) + 0 = 0  

2 0 + 3 0 = 5 1  t 2 + 0 = 1 2  

1 6 + 2 0 = 3 6  3 0 + 1 2 = 4 2  

1 3 + 1 6 = 2 9  : ' 0 + 3 0 = 5 1  

(time 0 refers to Jan 1, 2 0 X X )  Figure 4 

A policy with a September 1,20XX inception date would have the following loss & ALAE 
payment by accident year: 

Policy Effective Sept 1, 20XX 

IAYR1 I AYR = I-'1AYR1 I AYR2 I 
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T i m e  

o.oo 

0.25 

0.50 

0.75 

1.oo 

1.25 

1.5o 

1.75 

A Q R 1  A Q R 2  A Q R 3  A Q R 4  

250"  0.0000 = 0 

250" 0.0480 = 12 

250" 0.1210 = 30 

250* 0,0819 = 20 

250" 0.0622 = 16 

5 0 * 0 . 0 0 0 0 = 0  

3 0  ~ 0.0480 = 12 

.~50" 0.1210 = 30 

.)50* 0.0819 = 20 

5 0 "  0.0000 = 0 

250" 0.0480 = 12 

250" 0.1210 = 30 

5 0 "  0.0000 = 0 

Z50* 0,0480 = 12 

) + 0 + 0 = 0  

1 2 + 0 + 0 = 1 2  

3 0 + 1 2 + 0 = 4 2  

. ) 0 + 3 0 + 1 2 = 6 3  

(time 0 refers to Jan 1,20XX) Figure 5 

Loss & ALAE Reserves (Nominal) 

Nominal reserves are statutorily mandated reserves in the absence of discounts. Held 
reserves and tabular discount are defined in terms of Nominal Reserves. 

Once the policy is fully earned the nominal reserves of each accident year are the sum 
of the unpaid losses of the component accident quarters. 

Illustration: For a policy effective at time 0.5 (July 1,20XX), the AYR1 nominal reserve 
at time 1.75 (Sept. 1, 20XX+I) equal the unpaid losses on AYR1. The unpaid losses 
are the AYR1 ultimate losses minus the AYR1 losses paid to date. 

�9 The AYR1 ultimate loss equals V2 x $1,000 = $500. 
�9 The cumulative losses paid by time 1.75 is $(12+42+51+36+29) = $170; see 

column (5) of exhibit 4 or Figure 4 above. 
�9 The AYR1 unpaid loss at time 1.75 is $500 - $170 = $330; see column (15) of 

exhibt 4. 

�9 The AYR2 nominal reserve at time 1.75 is the AYR2 ultimate loss minus the 
AYR2 losses paid to date. 

�9 The AYR2 ultimate loss is 1/2 x $1,000 = $500. 
�9 The cumulative losses paid by time 1.75 are $(12+42+51) = $105; see column 

(5) of exhibit 4 or Figure 4 above. 
�9 The AYR2 unpaid loss at time 1.75 is $500 - $105 = $395; see column (15) of 

exhibt 4. 

If a policy is not fully earned at a given valuation date, the recognition of nominal 
reserves by accident year depends on the policy effective date and the eaming of the 
policy. 

Illustration: If the policy effective date is time 0, all losses attributable to AQR1 have 
occurred by time 0.25. AQR1 losses represent �88 of all losses attributable to AYR1. 
The AYR1 nominal reserves at time 0.25 are equal to 1/~ of ultimate AYR 1 Losses 
minus AYR1 Losses Paid to Date. 
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If the policy effective date is time 0.5, then at time 0.75, all losses attributable to AQR1 
have occurred. AQR1 losses represent 1/2 of all losses attributable to AYR1 -) V2 of all 
losses attributable to AYR1 have occurred. Thus the AYR1 nominal reserves at time 
0.75 is equal to 1/2 of ultimate AYR 1 Losses minus AYR1 Losses Paid to Date). 

The AYR1 ultimate losses that are recognized at time T equal the AYR1 ultimate losses 
times a factor that represents the proportion of the total AYR1 losses that have 
occurred, less the cumulative amount of losses that have been paid to date. Figure 1 
below presents a schematic of the determination of the AYR1 factor. AYR2 is handled in 
the same fashion. Figure 2 presents the determination of the corresponding AYR2 
reserve recognition pattern. 

The total amount of losses attributable to AYR1 is equal to the total ultimate losses 
times the proportion of the policy term that falls in AYRI. The amount of losses 
attributable to AYR2 is equal to the total ultimate losses times the proportion of the 
policy terms that falls in AYR2. 

R e c o g n l t l o n  of  A Y R  1 R e s e r v e s  

0 . 0  0 . 2 5  0 . 5 0  0 . 7 5  1 .0  1 . 2 5  1 . 6 0  1 . 7 5  2 .0  
I I I I I I I I I ) 

l i = �9 T i m e  ( in  y e a r s )  

114 2 / 4  3 /4  4 /4  

X 1 /3  213 3 /3  
~-~ I ~ A Y R  1 f a c t o r  = ( ' r  _ =*,, n=*=,~ 

a t  t ime  T ( 1 -  El f  D a t e )  
X t / 2  2 / 2  

X t i t  

X m a r k s  p o l i c y  e f f e c t i v e  d a t e  

A,'R f , , .  tim. T J' l mex,O o i n , t  , , , , ,  f.otor at time T], O'" l 

Y 
- A Y R  1 L o s s e s  P a i d  to D a t e  J 

P o r t i o n  of  U l t i m a t e  L o s s e s  
a t t r i b u t a b l e  to A Y R  I 

Figure 6 

Illustration: We determine the AYR1 nominal reserve valued at time 0.75 for a policy 
effective at time 0.5. 
The AYR1 ultimate loss is V2 x $1,000 = $500. 
The AYR1 earnings factor at time 0.75 is the portion of AYR1 losses that have occurred 
by time 0.75, which equals 
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0 . 7 5 - 0 . 5  0.25 
. . . .  0.5 

1 - 0 . 5  0.5 

The cumulative losses paid by time 0.75 is $0 + $12 = $12; see column (5) of exhibit 4 
or Figure 4 above. 
The AYR1 nominal reserve at time 0.75 is equal to 

AYR1 factor x AYR1 ultimate loss - AYR1 paid to date 
0.5 x ($500) - $12 = $238 

(See column (15) of exhibit 4). 

The more complicated formula for the AYR1 reserves at time T, as shown in Figure 6, 
applies whether or not the policy is fully earned. 

R e c o g n i t i o n  of AYR 2 Reserves  

0.0 0.25 0.50 0.75 1.0 1,25 1.50 1.75 2.0 
I I I I I I I I I ~> 

Time (in years) 
X = "~ 

1/1 

X ~ ~ 

t /2 2/2 

X ~ ~ ~ r 
1/3 2/3 3/3 

X marks policy effective date AYR 2 earning factor = (T -1) / Eff Date 
(at time T) 

AYR2Rattme . . . . . .  T s J F ' ~ I  l max { 0 , rain [ 1, AYR 2 earning factor at tim e T ] }  J I'~1 ~ r;'-j I (Eff Date)...)l 

I - AYR 2 Losses Paid to Date I 

Figure 7 

Portion of Ultimata Losses 
attributable to AYR 2 

Illustration: We determine the AYR2 nominal reserve valued at time 1.5 for a policy 
effective at time 0.5. 
The AYR2 ultimate lose is �89 x $1,000 = $500. 
The AYR2 earnings factor at time 1.5 is the portion of AYR2 losses that have occurred 
by time 1.25, or 

1 . 5 - 1  0.5 
= - -  = 1.0 

0.5 0.5 
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The cumulative losses paid by time 1.5 are $0+$12+$42 = $54; see column (6) of 
exhibit 4 or Figure 4 above. 
The AYR2 nominal reserve at time 1.5 is equal to 

AYR2 factor x AYR2 ultimate loss - AYR2 paid to date 
1.0 x ($500) - $54 = $446 

(See column (16) of exhibit 4). 

Nominal ULAE Reserves 

The consideration of nominal ULAE reserves is analogous to nominal loss & ALAE 
reserves, Instead of using accident quarter loss & ALAE payment pattems we use 
accident quarter ULAE payment patterns. The ultimate ULAE is estimated as ultimate 
loss & ALAE x the ULAE ratio. With these modifications, the exposition in the preceding 
section applies to ULAE as well. 

Tabular Discount 

Statutory accounting rules allow insurers to discount WC pension indemnity cases. The 
tabular discounts by line of business and by accident year are disclosed in the notes to 
the financial statements. 2 To evaluate the tax basis reserves, we need the dollar 
amount of tabular discount on a given accident year's loss reserves. This dollar amount 
will vary by age of the accident year. 

The dollar amount of tabular discount is calculated by applying the ratio 

tabular discount 

nominal reserves 

to the nominal reserves calculated by the model. This ratio can be based on an analysis 
of 

actual tabular discount 

actual nominal reserves 

by accident year, using company data. 

2 The tabular discount may also be derived from a comparison of Schedule P, Part 1, which is net of 
tabular discount, with Schedule P, Part 2, which is gross of tabular discount; see Feldblum [2002: 
Schedule P]. 
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Held Loss & ALAE Reserves 

Held reserves are the sum of nominal loss & ALAE reserves and nominal ULAE 
reserves, times the level of reserve adequacy, minus the amount of tabular discount? 

AYR X Held = Res Adeq * ( AYR X Nominal Loss & ALAE + AYR X Nominal ULAE ) 

Loss + LAE - Tabular Discount 

illustration: For our WC policy we assume that the level of reserve adequacy is 100%. 
We confirm that the AYR1 held reserve is $246 at time 0.75 (as shown in column (25) of 
Exhibit 4). From column (15) the nominal loss & ALAE nominal reserve at t=0.75 is 
$238; the nominal ULAE reserve from column (18) is $18; from column (22) the tabular 
discount is $10. Thus the AYR1 Held Reserves = 1.0 * ($238 + $18) - $10 = $246. 
The AYR1 held reserve at time 1.75 is $337: the nominal loss & ALAE reserve is $330; 
the nominal ULAE reserve is $26; the tabular discount is $20. 
The AYR2 held reserve at time 1.75 is $411: the nominal loss & ALAE reserve is $395; 
the nominal ULAE reserve is $32; the tabular discount is $16. 

Assets 

Required Surplus 

Surplus is held only for the policy term in our illustration. Surplus is held to cover 
unforeseen contingencies and to maintain an acceptable level of risk. 

Most pricing model use either a premium to surplus leverage ratio or a reserves to 
surplus leverage ratio or both. The pricing model described here supports not just 
prospective pricing but also an economic value added performance measurement 
system. Using a premium to surplus leverage ratio for the surplus assumptions allows a 
more responsive performance measurement system, which is more likely to be 
accepted by company personnel. See Kelly [2002] for further discussion. 

Il lustration: The premium leverage ratio is 43.7%, and he written premium is $1,374. 
The required surplus for the full policy term (time 0.5 until time 1.5) is 43.7% x $1374 = 
$601. For time 1.5 and subsequent (once the policy is fully eamed) the required surplus 
is zero. 

Total Reserve 
The total reserve is the sum of the unearned premium reserve and the held loss & LAE 
reserves. 

3 The level of reserve adequacy is discussed in Feldblum and Thandi [2002], "Reserve Valuation Rates." 
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Illustration: At time 0.5 (policy inception) the UEPR is equal to the written premium 
which is equal to $1,374. Held loss & LAE reserves are equal to 0 --) Total Reserves = 
$1,374 
At time 0.75 the UEPR = 3A * (1,374) = $1,031. The held loss & LAE reserves = $246 -) 
Total Reserves = $1,031 + $246 = $1,277. 
At time 1.75 the UEPR = $0. The held loss & LAE reserves = $748 --) Total Reserves = 
$0 + $748 = $748 

Required Assets 

The assets needed to support the policy (the Required Assets in column (1) of Exhibit 5) 
equal the total reserves (sum of columns (2) and (3) of Exhibit 5) plus the required 
surplus (column (4) of Exhibit 5): 

Required Assets = Total Reserves + Required Surplus 

Illustration: At time 0.5, Required Assets = $601 + $1,374= $1,975 
At time 0.75, Required Assets = $601 + $1,277= $1,878 
At time 1.5, Required Assets = $0 + $833 = $ 833 
At time 1.75, Required Assets = $0 + $748 = $ 748 

Income Producing Assets 

Not all of the assets held by the company to support the policy generate investment 
income. The premium receivable (column (5) of Exhibit 3) and the deferred tax asset 
(column (34) of Exhibit 3) are non-income producing assets: 

Income Producing Assets = Required Assets - Premium Receivable- DTA 

Illustration: At time 0.5 required assets = $1,975, premium receivable = $1,127, and 
the DTA = $96. Thus Income Producing Assets (column (18) Exhibit 3) = $1,975-$1,127 
- $96 = $752. 
At time 0.75 the required assets = $1,877, premium receivable = $892, and the DTA = 
$96. Thus Income Producing Assets = $1,975-$1,127 - $96 = $752. 
At time 1.5 the required assets = $833, premium receivable = $145, and the DTA = $9. 
Thus Income Producing Assets = $833-$145- $9 = $679. 
At time 1.75 the required assets = $748, premium receivable = $50, and the DTA = $96. 
Thus Income Producing Assets (column (18) Exhibit 3) = $1,975-$1,127 - $96 = $752. 

Investment Income 

The Investment Income earned over a quarter is the product of the quarterly effective 
investment rate of return times the amount of income producing assets held at the 
beginning of the quarter: 

Invest Inc a a,.e T = Qtlry Invest ROR * Investible A s s e t s ~  T-1 
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Illustration: Invest Income at time 0.75 = 1.9427% * (Investable Assets at time 0.5) = 
1.9427% * $752 = $15 (Investable Assets shown in column (18) of Exhibit 3, 
Investment Income shown in column (20) of Exhibit 3). 
Invest Income at time 1.75 = 1.9427% * (Investable Assets at time 1.5) = 1.9427% * 
$679 = $13. 

Taxes 

IRS Discounted Reserves 

The tax basis (discounted) reserves are the produce of the held reserves, gross of any 
tabular discount, and the IRS loss reserve discount factor. The discount factor varies by 
line of business, by accident year, and by age of the accident year. 

The calculation of the loss reserve discount factors is described in Appendix A, along 
with explanation of the estimation procedures required of the pricing actuary. For this 
appendix, we take the IRS discount factors as given. We use the accident year 2000 
discount factors as the factors for "AYR1" and the accident year 2001 factors for AYR2. 
The formula for IRS discounted reserves is 

IRS Discounted Reserves = IRS Discount Factor * (Held Reserves + Tabular Discount) 

Illustration: For the accounting year ending at time 1.0, the AYR1 Held Reserves are 
$460, the AYR1 tabular discount is $20, and the IRS discount factor is 0.8194 (from 
columns (25), (22) and (28), respectively, of Exhibit 4). Thus the IRS Discounted Loss & 
LAE reserves at time 1.0 is equal to 0.8194 * ($460 + $20) = $393. 

For the accounting year ending at time 2.0, the AYR1 Held Reserves are $308, the 
AYR1 tabular discount is $19, and the IRS discount factor is 0.8027 (from columns (25), 
(22) and (28), respectively, of Exhibit 4). Thus the IRS Discounted Loss & LAE reserves 
at time 2.0 is equal to 0.8027 * ($308 + $19) = $263. 
For AYR2 at time 2.0 the Held reserves are $372, the tabular discount is $16, and the 
discount factor is 0.8214 (columns (26), (23), and (29) respectively of Exhibit 4). Thus 
the AYR2 IRS Discounted Reserve is 0.8214"(372+16)=$319. 
Thus the total IRS Discounted Reserve at time 2.0 is $263 + $319 = $582. 

Taxable U/W Income 

The taxable UAN income over an accounting year is 

Written Premium- 0.8 * AUEPR - Paid Expenses - [ Paid Losses + AIRS Disc Reserves] 

where all activity is over the relevant accounting year. 
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Illustration: For the accounting year ending at time 1.0 the written premium is $1374 
(column (1) Exhibit 3), the change in the UEPR is $687 (column (2) Exhibit 3), the 
expenses paid are $351 (column (9) Exhibit 3), the paid loss & ALAE is $(42+12)=$64 
(column (10) Exhibit 3), the paid ULAE is $1 (column (11) Exhibit 3), and the change in 
the IRS discounted reserves is $393-$0 =$393 (column (16) Exhibit 3). Thus the 
Taxable U/W income is 1374-0.8"(687)-351-(42+12+1 +393) = $24. 
For the accounting year ending at time 2.0 the written premium is $0, the change in the 
UEPR is -$687, the expenses paid are $12, the paid loss & ALAE is 
$(63+78+80+62)=$282, the paid ULAE is $(2+4+5+6)= $16, and the change in the IRS 
discounted reserves is $582-$393= $289. Thus the Taxable UAN income is 0-0.8*(- 
687)-12-(282+17 +289) = $49. 

The paragraph above determines the annual federal income taxes on U/W income. In 
practice, taxes are paid quarterly. The taxpayer (the insurance company) projects its 
annual UAN accounting income and pays one quarter of that amount in each calendar 
quarter. We estimate the taxes for the two accident years for a given policy, and we 
spread the tax payments over the quarters in which the policy is effective. 

Illustration: UAN Tax at t=0.75 = Y2 x (24) x (35%) = $4.20 
U/W Tax at t=1.0 = ~/2 x (24) x (35%) = $4.20 
U/W Tax at t=1.25 = Y2 x (49) x (35%) = $8.58 
U/W Tax at t=1.50 = Y2 x (49) x (35%) = $8.58 

(See columns (30) and (31) of Exhibit 3.) 

Tax on Investment Income 

The tax on investment income is paid quarterly as investment income is earned. 

Illustration: 

Qtrly Tax  on Qtrly Inv  Inc 

Inv  I n c a t  t = 0.75 = at t = 0.75 * 3 5 %  

= 1 5  * 35% = $5 

Qtrly Tax  on Qtrly Inv  Inc 

Inv  I n c a t  t = 1.75 = at t = 1.75 * 3 5 %  

= 1 3  * 35% = $5 

Column (36) of Exhibit 3. 

Total Tax 

The total federal income tax paid each quarter is equal to the sum of the quarterly tax 
on UNV income and the quarterly tax on investment income. 

Illustration: At t=0.75 the total FIT = $4 + $5 = $9 
At t=1.75 the total FIT = $4 + $5 = $9 

5 7 8  



See column (37) of exhibit 3. 

Deferred Tax Asset 

The calculation of the deferred tax asset is described in Appendix A. We trace the 
calculation of the deferred tax asset for the workers' compensation policy. 

There are two components to the DTA: the portion due to the Revenue Offset; and the 
portion due to IRS Discounting of Loss&LAE Reserves. 

The DTA due to the Revenue Offset is equal to 

35% * 20% * AUEPR 

Illustration: The DTA due to Revenue Offset at t=0.5 is equal to 35% * 20% * $1,374 
= $96. 
The DTA due to Revenue Offset at t=0.75 = 35% * 20% * ($1,031) = $72 
The DTA due to Revenue Offset at t=1.75 = 35% * 20% * ($0) = $0. 

(See column (32) of exhibit 3). 

The DTA due to IRS Discounting at the end of Accounting Year X is equal to 

35% * [(AYR1 Held Loss Reserve =t~ex - AYR1 IRS Loss Reserve =t~ex) - 
(AYR1 Held Loss Reserve at urne x*l -AYR1 I RS LOSS Reserve at ~e x.1)] 

+ 35% * [(AYR2 Held Loss Reserve =umex - AYR2 IRS Loss Reserve =timex) - 
(AYR2 Held Loss Reserve = ume x.1 -AYR2 IRS Loss Reserve at t~e x.1)] 

The amount in each square bracket is the amount that reverses over the next twelve 
months, following statutory accounting rules; see Appendix A. 

Illustration: At time 2.0 the Held Loss&LAE Reserve for AYR1 is $308, for AYR2 is 
$372 (columns (25), (26) of Exhibit 4); the IRS Loss Reserves for AYR1 are $263, for 
AYR2 are $319 (columns (30), (31) of Exhibit 4). At time 3.0 the Held Loss&LAE 
Reserve for AYR1 is $223, for AYR2 is $262; the IRS Loss Reserves for AYR1 are 
$191, for AYR2 are $225.Thus the DTA due to IRS Discounting at time 2.0 is 

35% * [(308-263) - (223-191 )] + 35% * [(372-319)-(262-225)] = $10 

The DTA due to IRS Discounting for any time other than and Accounting Year end is an 
interpolation year end DTAs (due to IRS discounting). 

Illustration: At time 1.0 the DTA due to IRS Discounting is $7, at time 2.0 the DTA due 
to IRS Discounting is $10, at time 3.0 it is $5. Hence the DTA due to IRS Discounting is 

$4 at time 0.75 (interpolation between $0 and $7) 
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$10 at time 1.75 (interpolation between $7 and $10) 
(rounded to nearest whole dollar). See column (33) of exhibit 3. 

Cash F lows 

The relevant cash flows for determining the Equity Flow are described below. 

U/W Cash Flow 

The underwriting cash flow is defined as 

UNV Cash Flow = WP - Paid Expenses - Paid Loss & LAE 
Column (38) exhibit 3 = column (1) - column (9) - [column (10) + column (11 )] 

Illustration: At t=0.5 U/W CF = 1374 - 351 - 0 = $1023 
At t=0.75 U/W CF = 0 - 0 - 12 = -$12 
At t=1.75 U/W CF = 0 - 12 - 85 = -$97 

(See column (38) Exhibit 3). 

Investment Income Flow 

The investment income cash flow is defined at the quarterly investment income earned 
each quarter. The calculation is described above 

Illustration: At t=0.5 the investment income is $0 
At t=0.75 the investment income is $15. 
At t=1.75 the investment income is $13. 

(See column (39) of Exhibit 3). 

Tax Flow 

The Tax Cash Flow is defined at the negative (to denote a flow from the company) of 
the federal income taxes paid that quarter. The calculation of this flow item is descdbed 
above. 

Illustration: At time t=0.5 FIT = 0 --) Tax Flow = 0 
At time 0.75 FIT = $9 --) Tax Flow = -$9 
At time 1.75 FIT = $9 --) Tax Flow = -$9 

(See column (40) Exhibit 3). 

DTA Flow 

The DTA Flow is defined as the change in the DTA asset over a calendar quarter. 
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Illustration: At t=0.5, DTA Flow = DTAt=0.5 = $96 
At t=0.76, DTA Flow = DTAt=o.75- DTA~.s = $76 - $96 = -$20 
At t=1.75, DTA Flow = DTAt=I .rs- DTAt=I.s = $10 - $9 = $1 

(See column (41) Exhibit 3) 

Asset Flow 

The asset flow is defined as the change in the required assets. The composition and 
calculation of the required assets are described above. 

Illustration: At t=0.5 Asset Flow = Assetst=o.5 = $1975 
At t=0.75 Asset Flow = Assetst=o.Ts- Assetst=o.s = $1877 - $1975 = -$98 
At t=1.75 Asset Flow = Assetst=l.Ts- Assetst=l.s = $748 - $833 = -$85 

(See column (42) of Exhbit 3). 

Equity Flow 

To compute the Equity Flow at each quarter we use the cash flow definition: 

Equity Flow = - Asset Flow + U/W Flow + Investment Income Flow + FIT Flow 
+ DTA Flow 

Recall that we use the convention that a positive equity flow denotes a flow of cash from 
the insurer to the equityholders, and a negative a payment by the equityholders to the 
insurer. 

Illustration: At t=0.5 Equity Flow = -$1,975 + $1,023 + $0 + $96 = -$856 
At t=0.75 Equity Flow = -(-$98) - $12 + $15 - $9 - $20 = $70 
At t=1.75 Equity Flow = -(-$85) - $97 + $13 - $9 + $1 = -$7. 
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c~ 
to  

S U M M A R Y  O F  A S S U M P T I O N S  A N D  R E S U L T S  F O R  W C  F u l l y  I n s u r e d  P o l i c y  

I. UNDERWRITING ASSUMPTIONS ] l IV. PRICING RESULTS 

A) Policy Costs A) Premium 
Expense Ratio (as % WP) 25.6% Nominal Premium 
Dividend Ratio (as % WP) 5.7% Discounted Premium 
ULAE Ratio (as % of Loss&ALAE) 7.2% 
Ultimate Loss & ALAE 1,000 

B) Cash Flow Patterns 
Disc Loss&ALAE to Undisc 73.0% 
Duration of Losses (in yrs) 4.3 
Disc Premium to Undisc 95.3% 

C) Average Effective Date 0.5 

D) Level of Reserve Adequacy 
Held to Nominal Reserves 100.0% 

II. FINANCE ASSUMPTIONS I 

A) Investment Rate of Return 
On all Invcstable Assets 8.0% 

B) Federal Income Taxes 
Tax Rate on U/W Income 35.0% 
Tax on Investment Income 35.0% 

B) Summary of Costs 
Disc Loss & LAE 
Disc Expense (incl PHR Dividends) 
Disc Taxes 

C) Ratios 
Loss & ALAE Ratio 
ULAE Ratio 
Expense Ratio (incl PHR Dividends 
Combined Ratio [ 

1,374 
1,309 

784 
416 

67 
1,267 

Nominal 
(% of Nominal hem) 

72.8% 
5.2% 

31.3% 
109.2%1 

Discounted 
(o/0 of Disc ere~) 

55.8% 
4.1% 

31.8% 
91.6% 

V. PROFITABILITY 

A) Equity Charge 

B) IRR on Equity Flows 

Nominal 
107.48 

12.0%[ 

Discounted 
42.56 

C) Target Return on Capital 
Post-Tax Return I 12.0%[ 

[ i n .  r uSK (SURPLUS) ASSUMPTIONS ] 

Reserve Leverage Ratio 0.0% 
P~mium Leverage Ratio 43.7% 
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UI 
O0 
k.O 

AGE 

0.00 
0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1,75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 
9.50 
9.75 
10.00 

Accident Quar ter  

Loss & ALAE Payout 

Pattern 

0.000/0 

4.80% 

12.10% 

8.19% 

6.22% 

5.43% 

5.05% 

4.40% 

4.09% 

3.54% 

3.21% 

2.77% 

2,58% 

2.18% 

1.90% 
1.77% 

1.58% 

1.42% 

1.31% 

1.15% 

1.10% 

0.95% 

1.01% 

0.81% 

0.82% 

0.65% 

0.56% 

0.57% 

0,54% 

0.51% 

0.51% 

0.45% 

0.44% 
0.40% 

0.35% 

0.39% 

0.34% 

0,33% 

0.26% 

0.29% 

0.26% 

ULAE Payout 

Pattern 

0.00% 
1+36~ 
4.89% 
7.09% 

8.62% 

8.46% 

6.78% 

5.43% 

5.02% 

4.33% 

4.07% 

3.65% 

3.17% 

2.80% 

2.56% 

2.19% 

2.12% 

1,77o/o 

1.59% 

1.51% 

1.28% 

1.30% 

1.04% 

0.99% 

0.92% 

0.91% 

0.84% 

0.66% 

0.65% 
0.60% 
0.62% 
0.53% 
0.51% 

0.50% 

0,45% 

0.40% 

0.41% 

0.36% 

0.36% 

0.34% 

0.37~ 

Dividend Payout 

Pattern 

o. oo% 
0.00% 
0.00% 
0.000/~ 
0.00% 
15.00% 

0.00% 

28.33% 

0.000/~ 

0.00% 

0.00% 

28.33% 

0.00% 

0.00% 

0.00% 

28.33% 

0.00% 

0.000/0 

0.00% 

0.000/0 

0,000/o 

0.00% 

0.000/o 

0.00% 

0.00% 

0.00% 

0.000/0 

0,000/0 

0.00% 

0.000/0 

0.00~ 

0,00% 

0.000/0 

0,00% 

0.00% 

0.00~ 

0.000/0 

0.000/o 

0,00% 

0.00% 

0,00% 

Premium Collectio~ 

Pattern 

18.o% 
17.1% 

21.8% 

25.3% 

7.2% 

6.9% 

0.3% 

0.3% 

0.3% 

0.2% 

0.2% 

0.2% 

0.2% 
0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.1% 

0.0% 

0.0% 

0,0% 
0.0% 

0.0% 

0.0% 

0.0% 

0.001o 

0.00/~ 

0.0% 

0.0% 

0.0% 

0.0% 

0.0% 

0.0% 

0.0% 

tabular 

~iscount 

3.6% 

4.1% 

4.5% 

5.0% 

5.5% 

5.9% 

6.4% 

6.6% 

6.8% 

7.0% 
7.2% 
7.9% 

8.5% 

9.2% 

9.8% 

10.5% 

11.1% 

11.7% 

12.3% 

12.5% 

12,7% 

12.9% 

13.1% 

13.7~ 

14.3% 

14.9% 

15.5% 
15.7% 
15.9% 
16.1% 

16.3% 

16.9% 

17.6% 

18.3% 
19.6% 
20,0% 
21.0% 

22.0% 

23.0% 

23.0% 

22.9% 

Exhibit 2 

IRS 

CYR Discount Factors 

0.0o 
0.25 
0.50 
0.75 
1.00 0.819398 0.819398 

1.25 

1.50 

1.75 

2.00 0.802722 0.809786 

2.25 

2.50 

2.75 

3.00 0.797466 0.804824 

3.25 

3.50 

3.75 

4.00 0.754828 0.764156 

4.25 

4.50 

4.75 

5.00 0.733432 0.714034 

5.25 

5.50 

5.75 

6.00 0.706716 0.678684 

6.Z5 

6.50 

6.75 

7.00 0.693485 0.66572~ 

7.25 

7.50 

7.75 

8.00 0.666403 0.67400( 

8.25 

8.50 

8.75 

9.00 0.697093 0.7068,~ 

9.25 

9.50 

9.75 

10.00 0.693861 0.74261," 



OO 

Year 

Endi~ 

0.~ 
o,2~ 
o ~  
0175 

1.25 
1.50 
1.75 

Z ~  
2 . ~  
2.75 
3 . ~  
3.25 
3.50 
3 7 5  
4 . ~  
4.25 
4.50 
4,75 
5 . ~  
5 . ~  
5 . ~  
5.75 
6 . ~  
6.25 
6 . ~  
6.75 
7 . ~  
7 . ~  
7 . ~  
7.75 
8 . ~  
8 . ~  
8 . ~  
8.75 
9 . ~  
9.25 
9 , ~  
9,75 
1 0 . ~  

PREMrUM 

Collected Premium 
WP UEPR EP Premium Receivable 
(1) (2) (3) (4) (5) 

0 0 0 0 0 

1,374 1,374 0 247 1,127 
0 1,031 344 235 892 
0 6 8 7  344 300 592 

-5 " ~  344 348 "T~ 
0 0 344 99 145 
0 0 0 95 50 
0 0 0 5 45 
-5 -5 -5 s ~"  
0 0 0 5 36 
0 0 0 3 33 
0 0 0 3 3 0  
o -5 -5 T 
0 0 0 3 25 
0 0 0 2 23 
0 0 0 2 21 
-5 -5 -5 Y 
0 0 0 2 18 
0 0 0 1 17 
0 0 0 1 16 
-5 o -5 ~ 77 
0 0 0 1 13 

13 0 0 0 1 
0 0 0 1 12 
o o -5 T 
0 0 0 1 10 

0 0 10 0 0 
0 0 0 0 9 
o o -5 "ff 
0 0 0 0 8 
0 0 0 0 8 
0 0 0 0 8 
o -5 -6 T 3" 
0 0 0 0 7 

0 0 0 7 0 
0 0 0 0 6 
o -5 -5 T -5 
0 0 0 0 6 
0 0 0 0 6 
0 0 0 0 6 

E X P E N S E s  

PHR 
Acq Maint. Dividends Total 
@ CO (8) (9) 

0 0 0 0 
~" -5 -5 -6" 

246 105 0 351 
0 0 0 0 
0 0 0 0 
o -5 -6 "5 
0 0 0 0 
0 0 12 12 
0 0 0 0 

-5 -5 ~ Y; 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 -5 22 ~. 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-5 o ~. 22 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-5 o -5 o 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
o o -5 b- 
0 0 0 0 
0 0 0 0 
0 0 0 0 
o -5 -5 o 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-5 -5 -5 ~" 
0 0 0 0 
0 0 0 0 
0 0 0 0 

LOSS & LOSS ADJUSTMENT EXPENSES 

Paid Loss P a i d  Nominal Nominal Tabular Held IRS 
& ALAE ULAE Loss&ALAE U L / ~ E  Discount Reserve Disounted 

(~1 ~ . r ~ )  (1~ ~s,,r~) Reserve 
(10) (11) (12) (13) (14) (15) (16) 

0 0 0 0 0 0 
b" -6 ~" ; ;  -5 ~- 
o o o ; o o 
12 0 238 246 
42 1 446 34 20 46O 393 
' ~  "2 633 ~ ~ "  ~ "  
78 4 805 64 36 833 

6~ 5 725 59 36 748 
6 663 53 36 680 582 

53 '~ 610 ~ 35 623 
47 5 562 43 34 572 
43 4 520 39 33 526 
38 3 482 36 33 485 416 
34 3 448 33 32 448 
3O 3 417 30 32 416 
27 2 391 28 31 387 
24 2 367 26 31 362 307 
21 ~ 346 " ~  " ~  338 
19 2 327 22 32 317 
17 2 311 20 32 299 
15 1 295 19 33 282 236 

T ~ q~ "~ 267 
12 1 269 17 32 254 
11 1 258 16 32 242 
11 1 248 15 31 231 186 
Tff T 238 14 "~ "~ 
9 1 229 13 31 21 l  
8 1 221 13 31 205 

7 1 214 12 30 195 155 
7 1 2o7 11 "~ tss 
6 1 201 11 30 182 
5 0 196 10 30 176 
5 0 190 10 3O 170 133 
g ~ "~g 9 "~ 163 
5 0 181 9 3O 159 
4 0 176 9 30 155 
4 0 172 8 3 0  150 124 

T ~ T'~ T "~ 143 
4 0 164 8 32 140 

4 0 161 7 32 136 
3 0 158 7 33 132 115 
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U I  
O0 
U'I 

Yem' 
Ending 

0.00 
0.25 

0.75 
LO0 
1.25 
1.50 
1175 
2.00 
2.25 

2 7 5  
3.00 
3.25 
3.50 
3 3 5  
4.00 
4.25 
4.50 
4.75 
8.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 
9.5O 
9.75 
10.00 

A s . . ~ r s  

P e e - T o x  

Non- Investment 
T o t a l  Investible Invc~tible Income 
(1"0 ( lS) 0 9 )  (2o) 

0 0 0 0 

1,975 752 1,223 0 
1,877 910 967 15 
11748 ItlO1 647 18 
1,608 1,332 276 21 
, 8 3 3  679 154 26 

13 748 689 59 
680 625 55 13 
623 573 49 ]'2 
572 528 43 11 
526 487 39 10 

9 485 450 35 
448 417 32 9 
416 387 29 8 
~7 361 26 8 
362 337 24 7 
338 316 ~ 7 
317 298 20 6 

281 18 6 
5 

299 
282 266 16 
267 252 15 5 
254 240 14 5 
242 228 14 5 
231 218 13 4 
221 208 13 4 
211 200 12 4 
2O3 192 11 4 
195 184 11 4 

182 171 11 3 
176 163 11 3 
170 159 11 3 

i ' ff  Ti" 7 
159 149 11 3 
155 144 10 3 
150 140 10 3 
1 " ~  135 " ~  3 
140 130 10 3 
136 126 10 3 
132 121 10 2 

CAPITAL 

Surplus PHR EQHR Contributed Net Value 
Capital Funded Capitol Funded Capital TOTAL Copital Income Added 

(21) (22) (23) (24) (25) (26) (27) 

0 0 0 0 0 0 0 

601 107 856 963 856 0 0 
601 80 810 890 -46 25 0 
601 5 6  76O 817 -50 23 0 

0 28 60 88  -661 21 0 
0 25 68 94 9 2 0 
0 24  65 89 -3 2 0 

-6 23 ~ i~'2 "E T "d 
0 22 71 93 8 2 0 
0 21 64 85 -7 2 0 
0 20 57 77 -7 2 0 

"0 ~ 72 92 " ~  T 0 
0 19 67 86 -6 2 0 
0 18 61 80 -5 0 
0 18 5 6  74  -5 0 
o ~ "~" -~ ~7 g 
0 16 69 85 -4 0 
0 16 65 80 -4 0 
0 15 61 76 -4 0 

-6 "~ ~ 3~ +2 
0 14 58 71 -2 0 
0 13 56 69 -2 0 
0 13 53 67 -1 0 
-6 T~ ~ ~ ~ o 
0 12 52 64  1 0 
0 11 51 62 -1 0 
0 11 50 61 -I 0 
o ~ ~ 68 ~ o 

0 10 46 56 -2 0 
0 10 44 54 -2 0 
0 9 43 52 -2 0 
-6 9 41 "~ ~ ~" 
0 9 39 48 -2 0 
0 8 38 46 ~2 0 
0 8 36 44 -2 0 

-6 8 ~ 41 ~ ~" 
0 7 31 39 -2 0 
0 7 29 36 -2 0 
0 7 27 34 -2 0 
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~J~ 
o~ 

year 

Ending 

0.00 

0125 

050 
0175 
1.00 

1 25  
1150 

I 75 
2.OO 

225 

2 l ~  
2.75 
3.00 

325 
35O 

3.75 
4.00 

4.25 

4.50 
475 
5.OO 

5.25 

5.50 
575 
6.OO 

6.25 
650 

6 75 
7.OO 

7.25 

7.50 
7.75 
8.O0 

825 

8.50 
875 
9.00 
9.25 
9.50 

975 
10.00 

INCOME TAX 

UW Income Deferred Tax Asset 
V,~'End Qtrlv 

Statutory Taxable Tax on Tax on 

UW Inc UW Inc UW Inc UW Inc 

DTA DTA DTA 
due to due to 

~ n e e  Offset ]CRS Disc 
(28) (29) (30) (31) (32) (33) (34) 

0 0 0 0 0 0 
0 0 96 0 96 0 

0 4 72 4 76 15 

180 24 9 4 48 7 56 18 
0 4 24 8 32 21 

0 4 0 9 9 26 
0 4 0 lO 10 13 

155 49 17 4 10 lO 13 
12 0 5 9 9 

0 -5 8 8 11 

0 5 6 6 lO 

25 -55 19 5 5 5 9 
0 -3 4 4 9 
0 3 4 4 8 

0 3 3 3 8 

-24 -38 13 3 3 3 7 

0 -3 
3 0 

0 3 
-21 -29 l0  3 

2 2 
2 2 
1 1 

1 1 
l 1 
1 1 
1 1 

1 1 
1 

0 0 

0 0 
0 0 
I 3 l 0 

Investment Income 

Qtr ly Qtrly 
Invest Tax on Tax 

Income Total I I  Total 
(35) (36) 0 7 ) 

5 
5 
4 

0 0 l 4 
0 0 1 1 4 
0 0 l 1 4 

l 5 -2 0 1 l 4 
0 0 2 2 4 
0 0 2 2 3 

0 0 3 3 3 

0 4 -1 0 4 4 3 
4 0 1 4 3 

0 l 4 4 3 
0 -1 4 4 3 

0 10 -4 -1 4 4 3 
0 l 4 4 3 
0 I 4 4 3 

0 -I 4 4 3 

3 7 -3 -1 5 5 2 

0 0 
0 0 

5 ;o 
6 
7 12 

9 1~ 
5 

5 9 
4 -, 
4 -I 

4 l 
3 -1 
3 0 

3 0 
3 , 
2 -1 

2 0 
2 0 
2 -1 
2 -1 
2 2 

2 1 
2 l 
2 1 

1 1 
I 1 
, 1 
1 1 

I 1 
I 1 
1 1 
1 1 

l 0 
1 0 
1 0 

1 0 
1 0 
1 0 
1 0 

I 0 

CASH FLOW 

Invest Deferred Post-tax 
UW Income FIT Assets Asset Equity 
(38) (39) (40) (41) (42) (44) 

0 0 0 0 0 0 

1,023 0 0 96 1,975 856 
-12 15 9 20 98 70 

-43 18 -10 -20 -130 73 
--E ~ T  "-~ 23 ,4o 
82 26 ,3 23 775 682 

-97 ,3 9 ' -85 7 

08 ,3 ~ ._11 08 5 
-'~ "~" - -57 -T2 
-52 11 1 l 51 10 
47 10 1 -1 -46 9 

-41 1 -1 -41 9 

33 0 0 33 
29 1 0 -29 

, 0 25 
-6 23 16 

20 0 -I -21 
18 l -I -19 

-17 1 -1 -17 
-'E -~ -6 S T  
14 l 0 13 
12 -1 0 -12 

-11 -1 0 - l l  

l0  -I 0 -9 
9 -1 0 -9 

-8 l 0 -8 
7 -/ T 

6 -1 l 6 
6 -1 1 -6 

-6 -1 1 -6 

5 0 0 -5 
5 0 0 -5 

-4 0 0 -5 
--T -6 -~ s 

4 0 0 -5 
-4 0 0 -4 

-4 0 0 4 
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OO 

Ye,4z'* 
Ending 

0.00 
0.25 
0.50 
0.75 
l.O0 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 

4.50 
4.75 
S . ~  
5.25 
5.5O 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.2-5 
~50 
9.75 
!0.00 

L O S S  & L A E  P A Y M E N T S  

Poid Loss & AI,~,E I Paid ULAE 

A Q t r  ! A Q t r  2 " A Q t r  3 AQt r  4 AYR [ AYR 2 TOTAL I A Q t r  I A Q t r  2 A Q t r  3 A Q t r  4 AYR ! AYR 2 TOT/  
O) (2) (3) (4) ~ (6) (7) ~ (~ 00) (11) (12) 03) 04) 

0 0 0 0 0 0 0 0 0 

102 0 0 0 102 0 102 
0 0 0 0 

30 12 0 0 42 O 42 
20 30 12 0 51 12 63 
16 20 30 12 36 42 78 
14 16 20 30 29 51 80 
15 14 16 20 26 36 62 
11 13 14 16 24 29 55 
I0 | |  13 14 21 26 47 

10 11 15 19 24 43 
10 II  17 21 38 
9 10 ~'5 19 54 
8 13 ~7 50 
7 12 15 27 
6 10 13 24 
5 9 12 21 0 
5 8 10 19 0 
4 7 9 17 0 
4 7 8 15 0 

6 7 12 
5 6 I I  
5 6 11 
5 5 10 
4 5 9 
4 5 8 
3 4 7 
3 4 7 
3 3 6 
3 3 5 
3 3 5 
2 T 5 o o 
2 3 5 0 0 
2 2 4 0 0 

0 0 2 2 4 
"~ 2 T o o 
2 2 4 0 0 0 
2 2 4 0 0 0 
I 2 3 0 0 0 

TOTAL 

F . ~ b a  4 



LOSS & LAE RESERVES 
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OO 
OO 

Ye.,O~ 

Ending 

0.00 

0.50 

0.75 

I.OQ 
1.25 
1.50 

1.75 
2.00 
2.25 

2.50 

2.75 
3.00 
3.25 
3.50 

3.75 
4.00 
4.25 

4.50 

4.75 
5.00 

5.25 
5.50 

5.75 
6.00 
6.25 
6.50 

6.75 
7.00 
7.25 

7.50 

7.75 
8.00 
8.25 
8.50 

8.75 
9.00 
9.25 
9.50 

9.75 
10.0( 

dorninal Loss & ALAE Reserves Nornir~l ULAE Reserve Tobulor Discount Held Reserves ZR5 Discounted Resern~s 
I~RS Disc IRS Disc 

Discount Factor Factor 
AYR 1 AYR 2 TOTAL AYR 1 AYR 2 TOTAL Factor AYR 1 AYR 2 Total AYR 1 AYR 2 TOTAL AYR 1 AYR 2 AYR I AYR 2 TOTAL 
(15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) 02) 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0.056 0 0 0 0 
238 238 18 18 0.041 10 10 246 246 
446 446 34 34 0.045 20 20 460 460 0,8194 393 393 

395 238 633 32 18 50 0.050 20 0 20 408 256 663 

359 446 805 29 34 64 0.055 20 16 36 369 464 833 
330 395 725 26 32 59 0.059 20 16 36 337 411 748 

304 559 663 24 29 55 0.064 19 16 36 308 372 680 0.8027 0,8214 263 319 582 
280 330 610 21 26 48 0.066 18 16 35 283 340 623 

259 304 562 20 24 43 0.068 18 17 34 261 311 572 
240 280 520 18 21 39 0.070 17 17 33 241 285 526 
223 259 482 16 20 36 0.072 16 17 33 223 262 485 0.7975 0.8098 191 225 416 

208 240 448 15 18 33 0.079 16 16 32 207 242 448 
195 223 417 14 16 30 0.085 17 15 32 192 224 416 
183 208 391 13 15 28 0.092 17 15 31 179 208 587 

172 195 367 12 14 26 0.098 17 14 31 167 194 362 0.7548 0.8048 159 168 307 
165 185 346 11 13 24 0.105 17 14 31 157 181 338 
155 172 327 10 12 22 0.111 17 15 32 148 170 317 

147 163 311 10 11 20 0.117 17 15 52 140 159 299 
141 155 295 9 10 19 0.123 17 15 33 132 150 282 0.7334 0.7642 110 126 236 
134 147 282 8 10 18 0.125 17 15 32 126 141 267 

129 141 269 8 9 17 0.127 16 16 32 120 134 254 
124 134 258 7 8 16 0.129 16 16 32 115 127 242 
119 129 248 7 8 15 0.131 16 16 31 110 121 231 0.7067 0.7140 89 98 186 

114 124 238 7 7 14 0.137 16 15 31 105 116 221 
110 119 229 6 7 13 0.143 16 15 31 101 111 211 
106 114 221 6 7 13 0.149 16 15 31 97 106 203 

103 110 214 6 6 12 0.155 16 14 30 93 102 195 0.6935 0.6787 76 79 155 
101 106 207 5 6 11 0A57 16 15 30 90 98 188 
98 105 201 5 6 11 0.159 16 15 30 87 94 182 

5 10 0.161 15 15 30 85 91 176 95 101 196 5 
93 98 190 5 5 10 0.163 15 15 30 82 88 170 0.6664 0.6657 65 69 133 

90 95 185 4 5 9 0.169 15 15 30 79 85 165 
88 93 181 4 5 9 0.176 16 15 30 77 83 159 
86 90 176 4 4 9 0.183 16 14 30 74 80 155 
84 88 172 4 4 8 0.190 16 14 30 72 78 150 0.6971 0.6740 61 62 124 

82 86 168 4 4 8 0.200 16 15 31 70 75 145 
80 84 164 4 4 8 0.210 17 15 32 67 73 140 

79 82 161 4 4 7 0.220 17 15 32 65 71 156 
77 80 158 3 4 7 0.230 18 15 33 63 69 132 0.6939 0.7069 56 59 115 
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Exhibit 5 

L ~  
O0 

Held 
Year Total Loss & LAE Required 

Ending Assets UEPR Reserves Surplus 
O) (2) (3) (4) 

0.00 0 0 0 0 
0.25 0 0 0 0 
0.50 1,975 1,374 0 601 
0.75 1,877 l~31  246 601 
L00  11748 687 460 601 
1.25 1,608 344 663 601 

1.50 833 0 833 0 
1.75 748 0 748 0 
2.00 680 0 680 0 
2.25 623 0 623 0 
2.50 572 0 572 0 
2.75 526 0 526 0 
3.00 485 0 485 0 
3.25 448 0 448 0 
3.50 416 0 416 0 
3.75 387 0 387 0 
4.00 362 0 362 0 
4.25 338 0 338 0 
4.50 317 0 317 0 
4.75 299 0 299 0 
5.00 282 0 282 0 
5.25 267 0 267 0 
5.50 254 0 254 0 
5.75 242 0 242 0 
6.00 231 0 231 0 
6.25 221 0 221 0 
6.50 211 0 211 0 
6.75 203 0 203 0 
7.00 195 0 195 0 
7.25 188 0 188 0 
7.50 182 0 182 0 
7.75 176 0 176 0 
8.00 170 0 170 0 
8.25 165 0 165 0 
8.50 159 0 159 0 
8.75 155 0 155 0 
9.00 150 0 150 0 
9.25 145 0 145 0 
9.50 140 0 140 0 
9.75 136 0 136 0 

10.00 132 0 132 0 

I I  on 

Income Non-Income Total 
Producing Producing Assets 

(5) (6) CO 

0 0 0 
0 0 0 

752 1,223 0 
910 967 15 

1,101 647 18 
1,332 276 21 
679 154 26 
689 59 13 
625 55 13 
573 49 12 
528 43 11 
487 39 10 
450 35 9 
417 32 9 
387 29 8 
361 26 8 
337 24 7 
316 22 7 
298 20 6 
281 18 6 
266 16 5 
252 15 5 
240 14 5 
228 14 5 
218 13 4 
208 13 4 
200 12 4 
192 11 4 
184 11 4 
177 11 4 
171 11 3 
165 11 3 
159 11 3 
154 11 3 
149 11 3 
144 10 3 
140 10 3 
135 10 3 
130 10 3 
126 10 3 
121 10 2 
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INCOME TAX 

UW Income 
Year End Qtrly 

Statutory Taxable Tax on Tax on 
UW Income UW Income UW Income UW Income 

(i) (2) (3) (4) 

Deferred Tax Asset Investment Income FIT 
DTA: DTA: DTP,: Qtrly Qtrly 

Rever~Je IRS TOTAL Investment Tax on 
Offer ~iscounting Income Inv Inc Total 

(5) (6) (7) (8) (9) (1o) 

0 0 0 0 0 0 0 
0 96 0 96 0 0 0 
4 72 4 76 15 5 9 

-180 24 9 4 48 7 56 18 6 10 
4 24 8 32 21 7 12 
4 0 9 9 26 9 13 
4 0 10 10 13 5 9 

155 49 17 4 10 10 13 5 9 
-5 9 9 12 4 -1 
-5 8 8 11 4 -I 
-5 6 6 10 4 -I 

-25 -55 -19 -5 5 5 9 3 -1 
-3 4 4 9 3 0 
-3 4 4 8 3 0 

-3 3 3 8 3 -I 

-24 -38 -13 -3 3 3 7 2 -I 
-3 2 2 7 2 0 

-3 2 2 6 2 0 
-3 1 1 6 2 -1 

-21 -29 10 -3 1 1 5 2 -1 
0 1 1 5 2 2 
0 1 1 5 2 1 

0 1 1 5 2 1 

-1 -3 -1 0 1 1 4 2 1 
0 1 1 4 I 1 
0 1 1 4 | 1 
0 I l 4 | 1 

-1 -5 -2 0 1 1 4 I 1 
0 2 2 4 1 1 

0 2 2 3 1 1 
0 3 3 3 1 1 

0 -4 -I 0 4 4 3 1 1 
-1 4 4 3 1 0 
-1 4 4 3 1 0 
-I 4 4 3 I 0 

0 -10 4 -I 4 4 3 1 0 
-I 4 4 3 I 0 
-1 4 4 3 1 0 
-I 4 4 3 I 0 

3 -7 3 -1 5 5 2 1 0 

Exhibit 6 



Financial Pricing Models for Property-Casualty 
Insurance Products." The Target Return on 

Capital 

Sholom Feldblum, FCAS, FSA, MAAA, 
and Neeza Thandi, FCAS, MAAA 

591 



Financial Pricing Models for Property-Casualty Insurance Products: 
The Target Return on Capital 

by Sholom Feldblum and Neeza Thandl ~ 

INTRODUC~ON 

The target return on capital is the cost of capital for the insurance enterprise, or the return 
demanded by suppliers of capital. This paper describes the major considerations in selecting 
the target return on capital. 

A financial pricing model determines the premium rate such that the insurer achieves a target 
return on capital. The pricing model may take either of two forms: 

�9 A net present value model discounts the projected equity flows at the cost of capital. 
�9 An I RR model compares the internal rate of return implied by the project's equity flows 

with the cost of capital. 

The structure of the pricing model and most of the pricing assumptions are based on the 
characteristics of the insurance environment and of the line of business. In contrast, the cost 
of capital is not easily quantified. It is often selected by the insurer's management, based on 
recommendations by the financial, actuarial, and underwriting departments. 

Profitability in the property-casualty insurance industry cycle between hard markets, when 
returns are high, and soft markets, when returns are low. 1 The target retum on capital selected 
by the company's management may vary with the phases of the underwriting cycle. 

Illustration: The selected long-term target return on capital may be 700 basis points above 
the risk-free interest rate on 90-day Treasury bills. The company may add up to 300 basis 
points during the profitable phases of the underwriting cycle, and it may subtract up to 300 
basis points during the unprofitable phases of the underwriting cycle. 

DEBT AND EQUITY CAPITAL 

Pricing models for other industries use a weighted average cost of equity capital and of debt 
capital. The weights depend on the company's intended capital structure. 

We are indebted to Karl Goring for helpful review of this paper. 
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Illustration: A firm can issue long-term debt at an 8% yield. Its common stock is priced in the 
market to yield 13% per annum. We determine the cost of capital. 

Suppose the company's target capital structure is 40% debt and 60% equity. The coupon 
payments on long-term debt are tax deductible. If the marginal tax rate is 35%, the after-tax 
interest payments are 8 %  x (1 - 35%) = 5.20%. Stockholder dividends are paid with after-tax 
funds. The weighted average cost of capital is 

40% x 5.20% + 60% x 13% = 9.88%. 

Neither the market yield on the company's common stock nor the market yield on its long-term 
debt are choices of the company. They depend on investors' perceptions of the risk of the 
company and the volatility of its securities. This paper does not deal with the reasons for the 
different returns on equity capital and debt capital; this is a financial issue, not a pricing issue. 

T h e  N e e d  for  C a s h  

Long-term debt provides the cash needed to fund research and development, build plants, 
and purchase equipment. Accounting equity is not necessarily an operating requirement. A 
firm may operate with low or even negative capital. A high debt to equity ratio may raise the 
cost of debt capital, but it is not an absolute impediment to corporate operations. 

Insurers- both property-casualty insurance companies and life insurance companies- have 
little or no long-term debt. Insurers have more than sufficient cash for their operations, since 
they receive premiums well before they pay losses and other benefits. Insurers need statutory 
surplusto operate. Long-term debt provides cash, but it does not enhance statutory surplus 
and it can not satisfy capital requirements. 

Illustration: Leveraged buy-outs (LBO's) illustrate the workings of a firm financed primarily 
with debt and with little accounting equity. LBO's often provide strong management 
incentives, and they have succeeded in several industries. 

There is no such thing as an insurance company LBO. The low invested capital in the LBO 
would trigger failure of the risk-based capital requirements and possible liquidation or 
rehabilitation of the company by state solvency regulators. 

For insurance pricing models, we must quantify the cost of equity capital. We need not 
quantify the cost of debt capital, and we need not deal with capital structure. The following 
sections of this paper consider several methods which are commonly used to quantify the cost 
of equity capital. 2 
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MARKET BENCHMARK 

The standard benchmark for the cost of equity capital is the average rate of return for publicly 
traded stock companies. The S&P 500 and the Russell 2000 are commonly used benchmarks 
for the rate of return in the U.S. for large companies and small companies, respectively. 

The nominal rate of return varies with interest rates and inflation rates. Common practice is 
to treat the cost of equity capital as the risk-free interest rate plus a market risk premium. The 
risk-free interest rate is the yield on Treasury securities. The market risk premium is often 
assumed to remain fairly constant from year to year. 

Illustration: The market risk premium may be estimated from historical experience to be 
about 7 percentage points above the risk-free yields on 90 day Treasury bills. If the current 
yield on short term Treasury bills is 5% per annum, the benchmark cost of equity capital is 
12% per annum. 

For the benchmark cost of equity capital, we use the average market risk premium for publicly 
traded companies. Even this simple benchmark involves subjective judgment in several 
areas. We mention three topics: (i) duration of the risk-free interest rate, (ii) multiplicative vs 
additive models, and (iii) stability of the market risk premium. 

1. Duration:The market risk premium depends on the duration of the risk-free interest rate. 
If the average spread between 90 day Treasury bills and 30 year Treasury bonds is 250 
basis points, a 90 day Treasury bill rate might have a market risk premium of 800 basis 
points and a long-term Treasury bond rate might have a market risk premium of 550 basis 
points. The cost of equity capital at any time depends on the shape of the yield curve. 

Illustration:The benchmark cost of equity capital might be estimated either as (i) the 90- 
day Treasury bill rate plus 800 basis points or as (ii) the 30-year Treasury bond rate plus 
550 basis points. When the term structure of interest rates is upward sloping with a 
spread of 250 basis points between the high and low ends, the two formulas give the 
same cost of equity capital. If the yield curve is inverted one year, with an 8.5% Treasury 
bill rate and an 8% long bond rate, method (i) gives a cost of equity capital of 16.5% and " 
method (ii) gives a cost of equity capital of 13.5%. 

2. Model: It is unclear whether a multiplicative model or an additive model should be used. 
A multiplicative model uses the risk-free interest rate times a constant, whereas an 
additive model uses the risk-free interest rate plus a constant. 

Illustration: An additive model may estimate the cost of equity capital as the Treasury bill 
rate + 800 basis points. A m ultiplicative model may estimate the cost of equity capital as 
(1 + the Treasury bill rate) x (1.075) -1. 
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When the Treasury bill rate is 7% per annum, the two methods give the same cost of equity 
capital, since 0.07 + 0.08 = 15% and (1.07 x 1.075)- 1 = 15%. When the Treasury bill 
rate is 10% per annum, the second method gives a slightly higher cost of equity capital. 

3. Stability: It is not clear whether the market risk premium is stable over the years. In the 
late 1990's, some analysts argued for a lower market risk premium, as more investors 
become comfortable with stock market volatility. 

These are financial issues, not insurance pricing issues. They are hotly debated and 
unresolved; we do not address them further. To use the market benchmark, the pricing 
actuary selects a duration for the risk-free interest rate, a market risk premium, and the type 
of model (additive or multiplicative). Reasonableness of assumptions and consistency of 
application are the key attributes of good pricing. 

Illustration:A common benchmark is the yield on shortterm Treasury bills plus a 7 percentage 
point market risk premium. With a 5% yield on short term Treasury securities, the cost of 
equity capital is 12% per annum. These figures reflect the investment environment in 2002. 

RISK 

The risk of the project affects the required return. Investors seek to maximize their returns for 
a given level of risk, or to minimize their risk for a given retum. 

There is no consensus on the level of insurance riskversus the level of risk in other industries. 
We review several common perspectives on this issue. 

Finance: Some financial analysts consider insurance enterprises to be less risky than the 
average company, implying that a lower cost of capital may be used in the pricing analysis. 
This view is generally based on a CAPM analysis (see below), which shows an average beta 
for property-casualty insurance companies of 85% to 90%. The economic rationale for the 
low beta value is that insurers have little up-front capital expenditures and most of their 
expenses are variable costs, thereby lessening their business risk. 

Illustration: Pharmaceutical companies invest billions of dollars in extensive research to 
development new medications. Automobile manufacturers invest billions of dollars in plants 
and equipment to development new automobiles. Insurers do not have these up-front capital 
requirements. 

Actuaries: Some actuaries perceive property-casualty insurance companies as more risky 
than other enterprises, for two reasons. 

�9 Insurers don't know their costs until after the policy has been sold. 
�9 The loss severity distribution in some lines of business is highly dispersed. 
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These two types of risk are of questionable relevance for selecting a target return on capital 
For most lines of insurance, such as private passenger automobile or workers' compensation, 
these characteristics have little effect on business risk or eamings volatility. Even for lines of 
business where these two characteristics are significant, such as general liability, the risk is 
diversifiable for shareholders. Modern portfolio theory assumes that diversiflable riskdoes 
not receive any additional return. 

Underwriting cycles: The property-casualty insurance industry has distinct profitability cycles, 
generally called underwriting cycles. Some past studies, such as the Arthur D. Little studies 
in the 1960's and the early 1970's, examined the standard deviation ofthe insurance industry's 
profitability versus that of other industries to justify a higher rate of return for insurers. 

The effect of profitability cycles on the target return on capital depends on their severity, 
regularity, and correlation with general business cycles. 3 The property-casualty underwriting 
cycles may be stronger than the cycles in some other industries, but they are also more 
regular, mitigating the risk to investors. Financial analysts often presume that the market 
takes into account expected profitability cycle. If the underwriting cycles in the property- 
casualty insurance industry are not correlated with profitability cycles in other industries, a 
CAPM analysis would not imply a higher capitalization rate for the insurance industry. 

Catastrophes: Some insurance industry personnel speak of the above average risks that they 
face from natural catastrophes (hurricanes, earthquakes) and from man-made catastrophic 
exposures (terrorism, asbestos, and environmental liabilities). These are indeed unusual risks, 
though the relative size of the risks in the insurance industry versus those in other industries 
is hard to judge." 

Longevity: Some analysts see the longevity of the insurance industry and the persistency of 
many companies as evidence that the level of risk in this industry is low. The slow rate of 
innovation in the insurance industry and the high customer loyalty reduces the business risk 
for insurers. 

We do not attempt to resolve these issues. We discuss below the most common methods of 
quantifying the target retum on capital, without claiming that any method is necessarily correct. 
We do not assume that the insurance industry faces higher or lower risk than other industries. 

RETURN FACTOR MODELS 

Several mathematical models have been developed to quantity the cost of equity capital for 
particular industries or firms. Generally, a return factor model is used, such as the Capital 
Asset Pricing Model or Arbitrage Pricing Theory. 

A return factor model with Nfactors says that the expected return for security s in period tis 
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E(rs) = B1s x Fit + B2s x F2t +. �9 �9 BNs x FNt 

The factors {Fit, F2t . . . .  FN0 depend on the time period tbut not on the particular security. The 
beta coefficients {B~s, 13z, . . . . .  BN,} depend on the security s but not on the time period. 

We explain this formula by the CAPM, which is a two factor model. 

�9 Fit is the risk-free interest rate in period t, and 131, is unity for all securities. 
�9 Fz is the market risk premium, and 13~ is the market beta for security s. 

THE CAPM 

In the 1960's and 1970's, the CAPM was commonly accepted among many financial analysts, 
and theCAPM perspective on the costof equitycapital remains a predominantview. Recent 
studies of market anomalies have cast doubt on the empirical validity of the CAPM. 5 The 
CAPM is still widely used for its simplicity, but it has lost some of its former luster. 

The acceptance of the CAPM by pricing actuaries and insurance company managers varies. 
Other retum factor models used in securities valuation, such as Arbitrage Pricing Theory, have 
had negligible effect on actuarial pricing models. 6 

The CAPM says that a security's expected retum depends on its systematic risk. Systematic 
risk is risk that cannot be eliminated by diversification; diversifiable risk is not compensated 
by additional return. Algebraically, the CAPM says that the expected return on a security 
equals 

where 
E[rs] = rf + Ps x (E[rm] - rf) 

rs is the return on the security 
rf is the risk-free interest rate 
E[rs] is the expected return on the security 
E[rm] is the expected overall return on the market of risky securities 
E[rm] - rf is the market risk premium 

~3s = cov(rm,rs)/var(rm) = corr(rm,r,) x standard deviation (r,) / standard deviation (r,,). 

In this equation, r, and fm are random variables. E[rs] and E[rm] are scalars; they are the 
expectations of these random variables. 

The rationale for the consideration of systematic risk but not diversifiable risk is compelling. 
Suppose that the expected return of a security were based on total risk, not on systematic risk 
only. An arbitrageur might purchase securities with high specific (diversifiable) risk, combine 
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them in a mutual fund with low specific risk, and sell these low risk shares of the mutual fund 
to other investors. 

Illustration: Suppose securities {sl, s2 . . . . .  SN} have high but uncorrelated risks. The price 
of each security is the present value of its future cash flows at the capitalization rate for that 
security. If the marketwere to base the capitalization rate on the total risk of the secudty, each 
security would have a high price to earnings ratio. A mutual fund composed of these 
securities would have a similarly high price to earnings ratio, even though its total risk is 
reduced by the addition of uncorrelated random vadables. Based on its lower capitalization 
rate, the mutual fund could be sold at a higher price. This would lead to arbitrage profits. 

Market Returns and Security Returns 

The CAPM derives the expected return on specific securities from the risk-frae interest rate 
and the expected overall market retum. Most applications of the CAPM consider the market 
risk premium, orthe expected market return minus the risk free interest rate, as a known value. 

The expected excess return on a specific security, or the expected return on that security 
minus the risk-free interest rate, is a function of its beta. Since the beta equals corr(rr,,rs) x 
standard deviation (r.) / standard deviation (rr,), this excess return is proportional to 

i. the standard deviation of the security's returns, and 
ii. the correlation of the security's returns with the overall market return. 

Intuitively, these two relationships imply that 

i. The greater the specific security's standard deviation, the more uncertainty is inherent in 
that security and the greater must be the return to the investor. 

ii. The stronger the correlation of a specific security with the overall market, the less risk- 
reduction is available from diversification and the greater must be the retum to the investor. 

CAPM and Insurance Returns 

If three conditions are true, the CAPM enables us to derive an estimate of the cost of equity 
capital for insurance companies. Specifically 

�9 If the CAPM formula is valid, 
�9 if betas for property-casualty insurance enterprises can be reasonably estimated, and 
�9 if these betas are stable from year to year, 

we can derive the expected return for insurance companies. The expected return, or the 
capitalization rate, is the cost of equity capital. 
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Betas for individual securities in any industry are not easy to determine, since the random 
fluctuation of common stock returns provides unstable estimates for the standard deviations 
and for the correlations with the market. 7 The common practice in the investment community 
is to assume that the betas for firms in the same industry are similar, and to use the industry's 
beta as a proxy for the betas of individual securities. The assumptions that firms within an 
industry have similar betas is questionable in any industry. For the property-casualty 
insurance industry, there are two reasons why the assumption of a common beta is dubious. 

Asset risks: Firms have different investment portfolios. A firm with a more aggressive 
investment portfolio should have a higher beta for its own equity. 

An insurer that invests only in high grade corporate bonds and in Treasury securities might 
have an investment portfolio with an overall beta close to zero. An insurer that invests half of 
its assets in common stocks and venture capital might have an overall beta closer to unity. 
The systematic risk in the investment portfolio translates into a leveraged systematic risk for 
the insurer's own equity. 

Illustration: Suppose an insurer has a four to one assets to capital ratio; assets are $400 
million and capital is $100 million. The insurer's investment portfolio has a beta of unity. We 
assume that the liabilities of the insurer, which equal $400 million - $100 million = $300 
million, are not correlated with overall market returns. 

If the overall stock market return increases by 1 percentage point, the insurer's assets 
increase by $4 million. Since the liabilities are uncorrelated with the overall market returns, 
the insurer's capital increases by $4 million as well, for a 4% increase. 

In sum, the composition of the investment portfolio has a leveraged effect on the systematic 
risk of the insurer's equity. An industry-wide beta for individual firms gives biased results. 

Underwriting risks: Many actuaries assume that risk and expected return vary significantly by 
line of business. Empirical estimation of betas by line of business requires data from publicly 
traded monoline insurers; such data are not available. There have been sporadic studies of 
the systematic risk for certain lines of business, such as workers' compensation and private 
passenger automobile, but there are no conclusions that are broadly accepted. 

Insurance Betas 

Betas for the property-casualty insurance industry as a whole are estimated by investment 
firms. Values between 85% and 95% have been used. With a risk-free interest rate between 
5% and 6% and a market risk premium of 7 to 8 percentage points, the CAPM estimate for 
the cost of equity capital is between 5% + 90% x 7% = 11.3% and 6% + 95% x 8% = 13.6%. 
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We have limited our comments on the CAPM to general statements. Our objective is not to 
advocate or to criticize the CAPM. In our own work, we examine the cost of capital implied 
by the CAPM as well as other financial valuation models, in combination with our judgment on 
the competitiveness of the insurance market in each state and line of business. We may 
summarize the implications of the CAPM as "the cost of capital for the property-casualty 
insurance industry maybe a percentage point or so below the overall market average." More 
specific conclusions are hard to justify. 

HISTORICAL EXPERIENCE 

Historical returns are sometimes used to estimate the cost of capital. If there are no 
impediments to capital flows or to marketplace competition, the long-run observed return on 
capital should not deviate much from the required return on capital. 

�9 If the actual return on capital exceedsthe retum required by investors, additional capital 
should flow into the industry and the actual return should decline. 

�9 If the actual return is less than the return required by investors, capital should leave the 
industry and the actual retum on the remaining capital should rise. 8 

In practice, capital flows in the insurance industry are not frictionless: 

�9 Much capital is held by mutual insurance companies, who have less incentive to retum 
excess capital to their owners. 

�9 Much capital is tied up in full value loss reserves. 
�9 Managers of insurance companies may seek to hold more capital than is economically 

efficient to avoid surplus drains during adverse scenarios. 

Historical returns on statutory surplus are available from industry publications, such as Best's 
Aggregates and Averages. They have been used at times by state regulators to set 
ratemaking targets, but they are rarely used by market analysts? Neither GAAP nor statutory 
book values reflect the invested capital for property-casualty insurance companies. 1~ 

Illustration: Suppose an insurer writes a $100 million block of workers' compensation large 
dollar deductible business on January 1,20XX. Expenses equalto 30%of premium are paid 
at policy inception. Loss reserves with a nominal value of $150 million and a present value 
of $70 million are held on December 31,20XX. No losses are paid during the year. The 
investment yield is 8% per annum and capital requirements are 15% of written premium and 
10% of held reserves. 

�9 The required statutory surplus on December 31,20XX, is 15% x $100 million + 10% x 
$150 million = $30 million. 11 

�9 The invested capital on December 31,20XX, is the statutory surplus plus the capital 
embedded in the undiscounted loss reserves, or $30 million + $80 million = $110 million.12 
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The pricing model bases the premium rate on the target return on capital. The return on 
surplus and the return on equity are not suitable proxies for the return on capital. 

The nominal rate of return varies with inflation. If inflation is 4% perannum, investors might be 
satisfied with a 12% annual return. If inflation is 15% per annum, the 12% annual return would 
be inadequate. Historical averages may be converted into real dollar terms by subtracting an 
adjustment for monetary inflation. ~3 

We note several problems with basing the cost of capital on historical returns. 

�9 Invested capital versus statutory surplus 
�9 Calendar year investment income 
�9 Portfolio yields versus new money yields 
�9 Allocation of surplus by line of business 
�9 Stock market fluctuations 
�9 Possible over-capitalization of the insurance industry 

INVESTED CAPITAL 

Invested capital equals statutory surplus plus the capital embedded in the gross unearned 
premium reserves and the full value loss reserves to statutory surplus. The returns on statutory 
surplus are biased proxies for the retum on capital. For a company holding full value loss 
reserves in the long-tailed lines of business, statutory surplus may be only half of invested 
capital. A 12% return on statutory surplus may be equal to a 6% return on invested capital. 

The observed retums on surplus are not comparable across lines of business. Homeowners 
has little capital embedded in loss reserves, and the return on surplus is similar to the return 
on invested capital. For workers' compensation, the return on surplus may be twice as great 
as the return on invested capital. 

Inter-company differences further hinder the interpretation of industry results. Expense raUos 
differ between direct writers and independent agency companies; industry results may not be 
appropriate for a specific insurer. Differing reserve adequacy levels by company are hard to 
measure, and they distort inter-company comparisons. TM 

CALENDAR YEAR INVESTMENT INCOME 

The return on surplus calculated from Best's Aggregates andAverages uses the investment 
income from current calendar year reserves, not the expected investment income from future 
reserves on the current year's writings. The figures are distorted by growth or decline in the 
volume of business. 
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Illustration:Suppose losses in a block of business are 75% of gross premium, the losses are 
paid (on average) four years after they occur, and the investment yield is 10% per annum. In 
a steady-state,S1 million of premium would generate about $3 million in loss reserves. 

�9 If policies are written evenly during the year, the average policy effective date is July 
1 and the average date of loss is December 31. 

�9 Total losses are three quarters of gross written premium. 
�9 Since losses are paid four years after they occur (on average), loss reserves are four 

times annual incurred losses or three times annual written premium. 

The pre-tax investment income on the assets backing the loss reserves is 10% x $3 million 
= $0.3 million, or 30% of the gross written premium. 

Even if the investment income does not grown in exposure counts, it grows with monetary 
inflation. If inflation is 10% per annum and the company's book of business is growing with 
inflation, the reserves are $0.75 million x (1 + 1.100 -~ + 1.100 -2 + 1.100 -3) = $2,615,139. 

The expected investment income from the current year's book of business is $0.75 million for 
four years. The present value at a 10% discount rate is $0.75 million x (1 + 1.100 -~ + 1.100 -2 
+ 1.100 -3) = $2,615,139. We summarize the steady state illustration as follows. 

If the company's book of business grows with monetary inflation but there is no change 
in the overall exposures, and if the inflation rate equals the discount rate, then the 
present value of the investment income expected on the current year's book of business 
equals the calendar year investment income. 15 

If the insurer has been growing, it holds less reserves than it would hold in a steady state. The 
investment income in the current calendar year is less than the present value of the investment 
income on the future reserves. The operating profit, or 1 minus the operating ratio, understates 
the true profitability. 

The effects of this distortion are clearest when an insurer enters a new line of long-tailed 
business. There are no existing reserves, so there is no investment income on the assets 
backing previous years' reserves. The statutory operating ratio may be low or negative even 
for adequately priced business. 
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Illustration: Suppose an insurer commences operations by writing a $100 million block of 
workers' compensation large dollar deductible business on January 1,20XX. Expenses 
equal to 30% of premium are paid at policy inception. Loss reserves with a nominal value 
of $150 million and a present value of $70 million are held on December 31,20XX. 

Were there no surplus requirements and no need to hold undiscounted loss reserves, the 
block of business would be profitable. The statutory operating gain, however, is the premium 
minus losses and expense plus the calendar year investment income. Since the investment 
income received during the calendar year is small, the statutory operating gain is negative. 

The opposite distortion occurs when business volume is declining, as would be the case when 
a company switches from first dollar workers' compensation policies to large dollar deductible 
policies. The statutory operating ratio may overstate the true profitability of the company. 

PORTFOLIO YIELDS 

The operating income figures in statutory exhibits, such as the Insurance Expense Exhibit, and 
in most rating agency reports, such as Best's Aggregates and Averages, use portfolio yields, 
not market yields. If interest rates have been declining, the statutory exhibits overstate the 
present value of the investment income expected in the future and overstate the return. 

Illustration: Suppose the insurer holds 10% coupon bonds valued at paron January 1,20XX. 
On that day, interest rates on comparable bonds rise to 11% per annum. The bonds have a 
duration of four years on December 31,20XX. We contrast the statutory yield, the GAAP 
yield, and the market yield. 

�9 The statutory asset yield in 20XX is 10% per annum. The bonds are held at amortized 
cost. Neither the current market interest rates nor the change in the market value of the 
bonds affect the statutory investment yield. 

�9 The GAAP asset yield in 20XX is the 10% coupon rate plus the change in the market value 
during the year. The market value change is about -1 x 4 x 1% = -4% of the bond's 
market value before the change. The GAAP asset yield in 20XX is 10% - 4% = 6%. TM 

�9 The new money rate in 20XX is 11% per annum. The coupon rate of the bonds held by the 
insurer are not relevant to a financial pricing model. 

The new money interest rate may vary considerably over the bond's life. The book yield from 
trade industry reports is a biased proxy for the new money interest rate. 

SURPLUS BY LINE 
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The surplus figures in published reports are for all lines of business combined. Rates of 
return by line of business can not be observed. Best's does not allocate surplus by line of 
business, so it does not compute a return on surplus by line of business. 

Return on statutory surplus by line of business can not be estimated indirectly. A. M. Best's 
Aggregates and Averages groups companies by category, such as personal lines 
predominating companies or commercial lines predominating companies. The company 
category is sometimes used as a proxy for the line of business, though this proxy is too crude 
for a financial pricing model. 

EQUITY RETURNS 

Property-casualty insurers hold considerable amounts of equity in their investment portfolios 
- common stocks, venture capital, and real estate. Fluctuations in equity markets affect the 
observed returns for property-casualty insurers. During the 1990's, the long bull market in 
common stocks raised the observed returns for insurance companies, and the stock market 
decline in 2000-2002 reduced the observed returns for insurance companies. 

Random loss fluctuations can have a similar effect. The favorable weather during the latter half 
of the 1990's and the sparsity of natural catastrophes raised observed returns. The damages 
from the World Trade Center incident in 2001 reduced observed returns. The magnitude of 
these fluctuations offsets the value that might be gleaned from historical experience. 

ADEQUACY OF RETURNS 

The cost of capital reflects the retum needed to induce investors to supply capital to insurance 
enterprises. For industries that are over- or under-capitalized, observed returns are not good 
proxies for required returns. 

Returns for property-casualty insurance companies have been lower than the returns in other 
financial industries. Two perspectives are often heard: 

�9 The property-casualty insurance industry has less systematic risk than the average 
industry, and the returns are proper. 

�9 The lower than average returns stem from the competitive nature of the property-casualty 
insurance industry, not from the level of systematic risk. 

The latter perspective is corn monly associated with Michael Porter's writings on competitive 
strategy. The ease of entry into the insurance market, the hundreds of insurance companies, 
and the possible overcapitalization of the industry account for the lower than average retums, 
regardless of systematic risk. 17 

F l e x i b l e  P r i c i n g  
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The target retum on capital is not a rigid figure. Some insurers select both a desired retum 
on capital and a minimum retum on capital. Management incentives and marketplace 
structure affect the target retum on capital used in a financial pricing model. 

Illustration: Suppose the average cost of equity capital for publicly traded stock companies 
is 14% per annum. Based on a CAPM analysis, the current state of the underwriting cycle, 
and a perceived over-capitalization of the industry, management believes that the expected 
return for property-casualty insurance companies is 12% per annum. The investment yield 
on a conservative investment grade fixed income portfolio is 8% per annum. 

The company may price its policies with a 14% target retum on capital, and allow its 
underwriters to give premium credits if necessary. It may use a 12% cost of capital to 
measure management performance. If the expected return on the business is less than 8% 
per annum, the company may curtail its writings in that market. 

RISK ADJUSTED RETURNS 

Actuaria! standards relentlessly advise the actuary to use risk adjusted retums, risk adjusted 
discount rates, or risk adjusted yields. Rarely is there a coherent explanation of the risk 
adjustment to be used. is 

Some actuaries assume that the I RR target retum, orthe NPV discount rate, should vary by 
line of business, depending on the risk inherent in the book of business. This inherent risk is 
sometimes assumed to exist without being rigorouslyquantified. Sometimes the riskof a line 
of business is assumed to be proportional to the duration of the liabilities. This is not 
consistent with the low risk of long-tailed fixed annuities orthe high risk of short-tailed property 
insurance. 19 

Much of the actuarial literature on risk loads measures the process risk of individual policies, 
not the pricing risk in the book of business. More recently, some actuaries have tried to 
measure the expected process risk of an insurer's portfolio of risks. Although this is more 
meaningful than the process risk of an individual policy, there is little reason to assume that 
the expected process risk of an insurer's portfolio of risks is a proxy for the risk that is relevant 
to the target return on capital. 2~ 

Several consulting firms provide risk measures that purport to quantify correlations and 
covariances among lines of business. In many cases, these correlations and covariances 
reflect the white noise of random loss fluctuations. 
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Illustration: The ABC Consulting Firm quantifies the covariances of loss ratios by line from 
industry-wide Schedule P figures. These covariances stem primarily from random statistical 
correlations generated by the white noise of loss fluctuations. 

Meaningful estimates of systematic risk by line of business have been impossible to attain. 
Even the CAPM adherents who propose risk adjustments based on modern portfolio theory 
have been forced to rely on round-about estimates. Underwriting betas and betas of losses 
are derived from asset betas and equity betas, using data for all lines of business combined. 
Sampling error and white noise obscure any information these derivations might have. 21 

RATES OF RETURN AND CAPITAL REQUIREMENTS 

In theory, for any two lines of business, the line with the greater systematic risk should have a 
higher profit margin in competitive markets. There are two ways to conceive of this. 

1. Both lines have the same capital requirements per dollar of written premium, but the 
riskier line requires a higher return on the invested capital. 

2. The riskier line requires more capital per dollarof written premium, but neither line has 
a higher required return on the invested capital. 

The first view was dominant before the advent of risk-based capital requirements in the early 
1990's; the latter view is more common since then. We review the history of actuarial thinking 
on this topic, along with the related issues of capital structure. 

Before 1992, capital requirements were based on rules of thumb, which were not related to 
the risk in each line of business. The capital requirements were based on overall leverage 
ratios, which were the same for most lines of business. 

�9 State regulators often used a two to one premium to surplus leverage ratio (the revised 
"Kenny rule"). 

�9 The NCCI has used a three to one reserves to surplus leverage ratio in its I RR pricing 
model, reflecting the average leverage ratio for workers' compensation insurers, zz 

If the capital requirements per dollar of written premium do not differ by line of business, the 
target return on capital should depend on the risk in each line. The actuarial analysis of 
leverage ratios is similar to the financial analysis of capital structure, to which we now turn. 

CAPITAL STRUCTURE 

Some analysts have proposed viewing insurance reserves as debt capital and statutory 
surplus as equity capital; see Ferrari [1968], Bailey [1969], and Balcarek [1969]. The optimal 
leverage ratio for a property-casualty insurer is analogous to the optimal capital structure for 
a manufacturing concern. 
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Illustration: A bank receives money from depositors, which it lends to borrowers. The 
depositors are creditors of the bank (like bond-holders), and the interest paid on deposits 
times (1 - the corporate tax rate) is the after-tax cost of debt capital. The shareholders of 
the bank also contribute capital; their expected return is the cost of equity capital. 

Bywriting policies, an insurer receive funds from policyholders. The underwriting loss of an 
insurer as a percentage of loss and uneamed premium reserves is the implicit interest rate 
paid to policyholders for the use of their funds. This is the implicit cost of debt capital. 

Beyond the Miller and Modigliani propositions, modem finance lacks an accepted theory for 
capital structure. The dominant interpretation of the Miller and Modigliani propositions has two 
implications. 

�9 Capital structure does not matter in a tax-free world. 
�9 Under the U.S. tax system, debt is often preferable to equity, since bond interest 

payments are tax deductible whereas stockholder dividends are not. 

Illustration: A manufacturing concern needs $15 million in fixed assets and $5 million in net 
working capital. Corporate bonds can be issued at an 8% coupon rate. Equityholders expect 
a 12% per annum after-tax return. 

�9 Ifthecompanyisfinancedwithdebtonly, itneedsa$4OO,OOOpre-taxretumtomeet 
its coupon payments. 

�9 If the company is financed with equity only, it needs a $600,000 after-tax return, or a 
$600,000 / (1 - 35%) = $923,077 pre-tax retum. 

The implication for insurance is that equityholders should prefer higher leverage ratios 
wherever permitted by regulation. ~ This conclusion is belied by the one to one premium to 
surplus leverage ratio that now prevails in the property-casualty industry, despite the high cost 
of holding capital and the lack of regulation mandating this level. Property-casualty insurers 
have the highest capital to asset ratios for any financial intermediary: about 40% for property- 
casualty insurers, but less than 10% for life insurers. Modern financial theory has not been of 
much aid in explaining empirical leverage ratios for insurance or in recommending optimal 
leverage ratios for policy pricing. 24 

ACTUARIAL ANALYSES OF REQUIRED CAPITAL 

Some actuaries have used to probability of ruin analyses to determine capital requirements. ~ 
The required capital was the capital needed so that the probability of ruin was below a given 
threshold. Butsic [1994] and Hodes, eta/. [1999] extend the theory by looking at the expected 
policyholder deficit instead of the probability of ruin. ~ 
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These analyses, which often use financial analysis (DFA) models of an insurer's operations, 
suffer from two detriments. 

1. Many actuaries contend that financial modeling using the probability of ruin or the expected 
policyholder deficit can suggest relative capital requirements among blocks of business. 
They are less useful for determining the absolute dollars of capitalY 

2. A common perception is that DFA analyses can determine capital requirements if one first 
selects a probability of ruin or an expected policyholder deficit ratio. For example, if one 
selects a 1% probability of ruin or a 2% expected policyholder deficit, a DFA analysis can 
determine the capital needed to meet these requirements. 

This ascribes too much predictive power to DFA analysis. Solvency risks depend on 
variables that actuaries have not succeeding in quantifying, such as underwriting cycles, 
marketplace competition, regulatory actions, and unexpected catastrophes. The standard 
probability of ruin analyses, which focus on loss frequency and loss severity distributions, 
are of little relevance to these solvency risks. The events that have lead to most property- 
casualty insolvencies in recent years, such as Hurricane Andrew, asbestos claims, 
environmental exposures, or the September 2001 World Trade Center incident, are not 
amenable to standard loss frequency and loss severity analyses. 

RISK-BASED CAPITAL 

With the advent of risk-based capital requirements, the focus of actuarial work has shifted. 
Instead of improvising theoretical capital requirements, actuaries now address the actual 
capital requirements imposed by the NAIC or the rating agencies. The hypothesized relation 
between the required return on capital and various actuarial or financial measures-such as 
probability of ruin, expected policyholder deficit, process risk, or tail value at risk - are of 
limited relevance for policy pricing. 

To determine the capital requirements for the financial pricing model, we use the actual capital 
requirements from the NAIC risk-based capital requirements and from the similar rating 
agency formulas. These requirements affect the capital that companies must hold to avoid 
regulatory intervention in their operations and to maintain their desired ratings. ~ 

COST OF HOLDING CAPITAL 

The cost of holding capital connects the target retum on capital and the indicated premium 
rate. Yet a problem with terminology has plagued many discussions of this topic. To clarify 
the terms, we differentiate between the cost of capita/and the cost of holding capita/. 

�9 The cost of capita/is the return on capital demanded by the equity-holders or other 
suppliers of capital to the firm. For a manufacturing enterprise, the cost of capital may be 
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8% for long-term debt, 13% for retained eamings, and somewhat higher for a new stock 
issue. ;s Insuranceenterpdsesrarelyhavelong-termdebt. The costof capitalforinsurers 
is the cost of intemal equity (retained eamings). To highlight this attribute of insurance 
enterprises, we use the term =cost of equity capital" in our papers on financial pricing 
models. 

The cost of holding capita/is the amount that equity-holders would lose by providing 
capital to the insurance enterprise were they not compensated by a profit margin in the 
policyholder premium. At a minimum, the cost of holding capital is the cost of double 
taxation. Investors supplying capital to an insurance enterprise are taxed twice on the 
investment income on capital funds. 

Il lustration- Double Taxation: Suppose insurance regulation requires investors to contribute 
$100 million to support the writing of insurance policies. The opportunity cost of this capital 
is the amount that the equity-holders would receive if they invested the $100 million elsewhere; 
this is the cost of capital. The cost of holding capital is the difference between this cost and 
the retum received by investment through the insurance company. 

Suppose the equity-holders would otherwise invest this $100 million in bonds with an 
investment yield of 10%. The insurance enterprise could invest the $100 million in the same 
bonds and receive the same investment yield. 

If the equity-holders invest the $100 million in 10% coupon taxable bonds, they pay personal 
income taxes on the $10 mUlion return. If the insurer makes the same investment, it pays $3.5 
million of corporate income taxes before retuming the remaining investment income to the 
equity-holders. The equity-holders pay personal income taxes on the $6.5 million that they 
receive from the insurance company. 

The cost of holding this capital stemming from double taxation is the difference in the taxes 
incurred between (i) direct investment of capital and (ii) investment of capital through an 
insurance company. 

�9 The taxes paid on direct investment of capital = investment yield x personal tax rate. 

�9 The taxes paid on investment of capital through an insurance company = 

investment yield x [corporate tax rate + (1 - corporate tax rate) x personal tax rate] 

�9 The difference between these two is 

investment yield x 
[corporate tax rate + (1 - corporate tax rate) x personal tax rate - personal tax rate] 

= investmentyield x corporate tax rate x (1 - personal tax rate) 
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This is the after-tax difference to the equityholder. The difference before personal income 
taxes is the investment yield x the corporate tax rate. 

I l lustration: If the investment yield is 10% per annum, the corporate tax rate is 35%, and the 
average personal tax rate is 30%, the cost of holding capital is 

10% x [35% + (1 - 35%) x 30% - 30%]  = 
10% x 3 5 %  x (1 - 3 0 % )  = 0.0245, or2 .45%. 

The equityholders pay an additional 2.45% of the yield on their capital to the taxing authorities. 
This is the after-tax loss to the equityholders. The loss before personal income taxes is 10% 
x 35% = 3.5%. 3~ To induce investors to fund the insurance enterprise, the 3.5% of lost yield 
must be paid by the policyholders, not the equityholders. 

If the policyholders paid this money directly to the equityholders, this would be the full cost of 
holding capital. In practice, there are no direct transactions between the policyholders and the 
equityholders. Instead, the policyholders pay this money as part of the policy premium, and 
the insurance company remits the money to the equityholders. This introduces another layer 
of taxation, since the policy premium is pre-tax and the compensation to the equityholders is 
post-tax. The additional margin in the policy premium, as a percentage of the investment yield 
on equityholder supplied capital, is 

investment y ie ld • corporate tax ra te / ( 1  - corporate tax rate) = 
investment y ie ld x 35% / (1 - 35%) = investment y ie ld x 53.85% 

The double taxation affect invested capital, whereas the money paid by policyholders is a 
margin on premium. This margin is cap i ta /x  investment y ie ld x 5 3 . 8 5 % / p r e m i u m  

There are other potential costs to holding capital, which are subject to considerable debate 
in the financial community. 31 A common actuarial argument is that the cost of holding capital 
is the difference between the cost of equity capital and the after-tax investment yield of the 
insurance company. This perspective underlies the pricing model in Atkinson and Dallas 
[2000] as well as the pricing model in this paper. 

IllustraUon: Suppose the cost of equity capital is 12% per annum, but the insurance enterprise 
invests in 8% Treasury securities. The cost of double taxation is 35% x 8% = 2.8%. The 
additional cost of holding capital stemming from the conservative investments of the insurance 
company is 12%- 8% = 4%. The total cost of holding capital is 2.8% + 4% = 6.8%. This is 
the amount that policyholders must pay to the equityholders to induce them to fund the 
insurance operations. Since the policyholders pay this money indirectly through the profit 
margin in the premium, which is taxed as underwriting income, the additional premium is 6.8% 
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/ (1-35%) = 10.46%. ~ Since the premium is paid at policy inception, the profit margin is 
10.46% / 1.08 = 9.69%. 

This implies that with an 8% investment yield and a 400 basis point spread between the target 
return on capital and the investment yield, the policyholders pay 9.69% of equityholder 
supplied capital to compensate for the indirect investment of their funds. ~ 

CONCLUSION 

The target retum on capital is a somewhat discretionary assumption that drives any financial 
pricing model. There are diverse views on selecting the target return on capital, and we do 
not pretend to declare any of them correct. This paper reviews the considerations that the 
pricing actuary should take into account when selecting the target retum. 

Appendix: Investment Tax Rates end Double Taxation 

The discussion of double taxation in the text of this paper does not fully reflect some 
adjustments that Miller and other have made to the theory. This appendix provides a brief 
synopsis for the interested reader. 

MILLER'S TAX ADJUSTMENT 

In 1963, Merton Miller qualified the tax advantage of debt financing; see also Myers (1999) 
and Miller (1997). Millersurmisedthatthedoubletaxa'donofequityfinancingmaybepartially 
offset by the higher personal tax rates on interest income than on long-term capital gains. The 
following illustration explains this offset. 

Illustration: Investors can receive 10% per annum interest on Treasury bonds, on which they 
pay personal income taxes. Assume that the investors have high personal income tax rates 
of 36%, so they receive $64 in after-tax income from $1,000 of invested capital. Altematively, 
they can invest their capital in a property-casualty insurance company, which purchases 
Treasury bonds. The insurance company pays $35 in corporate income taxes on the interest 
income from the Treasury bonds. The investors receive the remainder as long-term capital 
gains (not as dividends), on which they pay a 20% marginal tax rate. ~ With a 10% average 
stock turnover rate, the effective tax rate on long-term capital gains is about 18%. The net 
retum to the investors from the insurance company is $65 x (1 - 18%) = $53.30. The cost of 
double taxation is $64.00 - $53.30 = $10.70. 

Miller deals with the gain to the company from debt financing, which is analogous to double 
taxation but viewed from the company's perspective, ss He expresses the gain as 

GL = (1 - [(1 -- tc)(1 - tps)]/(1 -- tpB)] X B, 
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where tc 
tps 

is the corporate tax rate 
is the personal tax rate on stock capital gains 
is the personal tax rate on bond coupon interest? 

If the personal tax rate on capital gains is low enough and the personal tax rate on coupon 
interest is high enough, the gain from debt financing disappears and the cost of double 
taxation is zero. 

The exact cost of double taxation is unclear. Even if Miller's adjustment is correct, the current 
tax structure in the U.S. causes only a small reduction in the cost of double taxation. The cost 
is probably substantial, but there is disagreement on its exact size. It may depend on the tax 
brackets of individual investors and the form in which the investors receive income from the 
insurance company. 
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4 The efficiency of the reinsurance marketplace further reduces the severity of catastrophic exposures. Well 
managed companies with sound reinsurance arrangements have weathered most natural catastrophes. 
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8 The relationship between the return on capital and the premium rate is similar. The price of a product 
depends on its supply, and its supply depends (in part) on the amount of capital available for its production. 
An increase in the available capital enlarges supply and lowers product pdces. For property-casualty 
insurance, the relationship between the amount of capital and the supply of coverage is more tenuous. Prices 
fluctuate with the phases of the underwriting cycle, despite an ample supply of capital. 

9 California, Texas, New Jersey, and several other states use return on surplus measures in their rate 
approval process. See Roth [1992] for one regulator's perspective on this issue. 

~o The differences among statutory surplus, GAAP equity, and invested capital are discussed in Feldblum and 
Thandi, [2003A; 200313]; see also Feldblum [1985]. 

~1 GAAP equity is larger by the amount of the deferred tax asset stemming from loss reserve discounting that 
is not recognized on the statutory balance sheet; see Feldblum and Thandi [2003D; 2003A, Appendix A]. 

~= Federal income taxes paid increases invested capital, and the statutorily admitted portion of the deferred 
tax asset lowers it; for simplicity, we don't model the tax liability or the deferred tax asset in this paper. 

~3 This is similar to the CAPM decomposition into the risk-free interest rate and a market risk premium. The 
use of the inflation rate versus the risk-free interest rats is not material; either adjustment may be used. 

14 Random loss fluctuations and the vicissitudes of the underwriting cycle render most published conclusions 
highly suspect. Some authors have used long time intervals to estimate the historical relationship between 
insurance industry retums and the risk-frae interest rate. Even over long time intervals, this relationship has 
not been stable. 

15 This is the rationale for using calendar year investment income as s proxy for discounted reserves; see 
Feldblum [1997: lEE]. 
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page 2, Definition 2.7, says: "Risk-Adjusted Rate of Return - An expected or target annual return to the investor 
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actuarial practice. 
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22 See Cummins [1990], Feldblum [1992], and Kahley and Halliwell [1992]. 

23 Ferrari [1967] concluded that the optimal capital structure for insurance companies was as little capital as 
possible. 

24 For further discussion of capital structure, see especially Modigliani and Miller [1958; 1963], Miller [1963; 
1977; 1999], Stiglitz [1969]; DeAngelo and Masulis [1980], Myers [1984; 1999], Titman and Wessels [1988], 
Harris and Raviv [1991], and Meggison [1997], chapter 7, "Capital Structure Theory," pages 305-352. For an 
analysis of capital structure for property-casualty insurers, see Meyers [1989]. 

2s See Daykin et al. [1987], Daykin and Hey [1991, Pentik&inen, et al., [1989], Pentik&inen and Rantala 
[1982], and Daykin, Pentik&inen, and Pesonen [1994]) 

26 See also Kreps [1990] and Butsic [2000 on reinsurance] for additional actuarial approaches. 

27 See Feldblum and Thandi [2003J], who use an expected policyholder deficit analyses to allocate company 
capital to lines of business, not to determine the required capital for the company itself. 

2s See Feldblum and Thandi [2002J] for a complete treatment of this subject. 

29 Financial analysts sometimes differentiate between the cost of intemal equity (retained earnings) and the 
cost of external equity (new stock floatation). The difference is the floatation costs of a new stock issue. For 
simplicity, we consider only the cost of internal equity. 

3o The effect of double taxation is mitigated if the implied equity flow from the insurance company is in the 
form of capital gains instead of stockholder dividends from the insurance company. This topic is treated in the 
general finance literature. 
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31 In addition to the cost discussed in the text, some analysts argue that corporate managers with 
discretionary control over excess capital may not invest it solely in the interests of equityholders. They cite 
examples from various industries, such as the oil industry in the 1970's, to show that managers often use 
excess capital to increase market share at the expanse of profitability. Investors may be reluctant to provide 
more capital than is essential for the company's operations. This is particularly relevant to those analysts who 
believe the insurance industry is over-capitalized. 

Some financial analysts retort that the lower risk of the Treasury securities increases the present value of 
their returns to a level approximately equal to the return on other securities. This assumes that equityholders 
consider the risk of placing their capital in an insurance enterprise that invests in risk-free securities similar to 
the risk of investing in those risk-free securities themselves. The alternative perspective is that the risk of 
placing capital in an insurance enterprise, regardless of its investment policy, is an equity risk. There are sound 
arguments on both sides, and we do not judge the issue here; see Miccolis [1987]. 

There are additional taxes paid for the double discounting of loss reserves if held reserves are less than full 
value reserves and for personal income taxes paid by the equityholders; see Feldblum and Thandi [2003D]. 

The deferral of the tax on capital gains until the gains are realized lowers the effective tax rate; see Jeffrey 
[1995] or Feldblum and Thandi [2003G] 

s s  Debt financing has one layer of federal income taxes (only personal); equity financing has two layers 
(corporate and personal). 
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CREDIBILITY THEORY FOR DUMMIES 

Gary G Venter 

Guy Carpenter Instrat 
Least squares credibility is usually derived from some fairly compficated looking assumptions 

about risk across a collective. I t  turns out, however, that the basic results can be developed from 

some standard statistical operations with weighted regression. This is outlined, and some more 

advanced models are tied to the same approach, in this note. 
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CREDIBILITY THEORY FOR DUMMIES 

Credibility theory is usually presented as a mathematically dense body of  formulas. Here is some- 

thing a little different: a short, simple approach. "Dummies" is of  course a relative term. Algebra, 

differential calculus, and some background in statistics are all assumed. 

What is credibility? 
Credibility theory is all about weighted averages. Different estimates of  a quantity are to be 

weighted together. The more credible estimates get more weight. 

In the context of  esrimating expected losses for a member of  a class, there are two natural esti- 

mates: the experience of  the member itsdf, and the average of  the entire class. The former is 

more relevant but also more volatile than the latter. Two general approaches have been taken to 

calculating weights in this case. The limited fluctuation approach is willing to accept the member 

experience at face value if it meets a pre-defined standard of  stability (full credibility) and if not 

reduces the weight enough for the weighted average to meet the stability requirement. The 

greatest accuracy approach measures relevance as well as stability and looks for the weights that 

will minimize an error measure. The average of  the entire dass could be a very stable quantity, 

but if the members of  the class tend to be quite different from each other, it could be of  less 

relevance for any particular class. So the relevance of  a wider class average to any member's 

mean is inversely related to the variability among the members of  the class. 

The error measure used in the greatest accuracy approach is almost always expected squared er- 

ror, so this method is often called "least squares credibility." In Europe it is sometimes called 

"classical credibility." The limited fluctuation approach is called classical in North America. Thus 

"classical" is a term worth avoiding, not only because of  its geographic ambiguity, but also be- 

cause it is a historical rather than a methodological description. 

Least squares credibility 
Suppose you have two independent estimates x and y of  a quantity, with respective expected 

squared errors u and v. Take a weighted average a = zx + (1-z)y. The expected squared error of  
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a is w = zZu + ( l-z)%. What  z minimizes w? Here  is where the calculus comes in. The deriva- 

tive d w / d z  is 2zu + 2(z-1)v. I f  you set that to zero you get: zu+zv = v, or  z = v / (u+v) .  Then 

1-z  is u / (u+v) .  This makes it look like each estimate gets a weight proport ional  to the expected 

squared error o f  the other. To  express the weights as properties o f  the estimates themselves, 

note that  ( 1 / u ) / [ 1 / u  + l / v ]  = 1 / [1+u /v ]  = v / (u+v)  = z. This shows that each estimate gets a 

weight proport ional  to the reciprocal o f  its expected squared error 1. Least squares credibility is 

an application o f  this principle. 

As an example, consider a class o f  risks. Suppose the losses I~i in year j for the ith member  o f  the 

class are randomly distributed as follows: 

LIj ~- C + M i "4" •ij (1) 

where C is the class mean loss, C+ M i is the mean loss for the ith member,  and ~i is the random 

componen t  for the jth period for this member.  It is not  much o f  a restriction to assume that the 

Mi's average to zero as do the I~,i's. Suppose the variance o f  the ivy's is t z and the variance o f  the 

r andom components  I~ii all are si 2. Denote  their average E(si 2) by s 2. 

Somerimes t 2 is called the variance o f  the hypothetical means and s 2 the expected process vari- 

ance. "Hypothet ica l"  refers to the fact that the means C + M~ are not  observed. 

With this setup, consider two estimates o f  member  i mean losses: x, the average losses o f  the 

member  for n periods, and y, the class mean loss C, which for now we will assume to know or at 

least be  able to estimate well enough to ignore the error. To  apply the inverse variance weight- 

ings, we needed to know the expected squared errors o f  x and y f rom the true value o f  C + M i. 

By the definitions, y's expected squared error is just t z. The expected squared error o f x  is the 

expected value o f  its variance siZ/n, i.e., s2/n. Then  applying the inverse expected squared error 

principle gives a weight to x o f  z = (n / sZ) / [n / s  z + 1 / t  z] = n / [ n  + s2/tz]. This is the original 

Biihtmann credibility formula. 

1 This assumes the expected squared error is minimized rather than maximized at this z. The second derivative of w 

is 2u + 2v which is positive, so this assumption is valid. 
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The above would be an appropriate set of assumptions for a class where all members had 

roughly the same exposure, such as single cars. I f  the exposure varies much across members, like 

in territory ratemaking or commercial experience radng, the variances of  the random compo- 

nents could not  reasonably be assumed to be constant over time. To address this case, in t roduce  

an exposure measure Pii for the ith member in period j, and assume that the variance of  its ran- 

dom loss component  is Piisi 2, so each unit of  exposure has a variance of  sl 2. In this case it would 

not be right to assume that M~ has mean zero, in that different members of  the dass would de- 

part from the class mean loss in differing amounts depending on exposure. However, i f  in equa- 

tion (1) L is reinterpreted as losses per unit of  exposure, i.e., pure premium, this assumption 

could be reasonable. In  that case, the variance of~, i would be si2/P~. So here, x is the average loss 

per exposure for the ith member for n periods, and y is the mean pure premium for the class. 

Thus the expected squared error o f y  from C + M i would s~ll be t;. Assume further that x is cal- 

culated as the sum of  the n period losses divided by the sum of  the exposures. Use a " ~ "  in a 

subscript to denote summation, so the total exposures for the ith class over the n periods is Pi~- 

Then the variance o f x  is just Pi_si2/Pi_ 2 = si2/Pi~, with expected value s2/Pi_. So what is the 

credibility of  the pure premium? The inverse expected squared error weighting gives z i = 

(PJ s2 ) / [  P~~/s 2 + t -z] = P~_/[ P,_ + s2/t;]. This is often expressed more simply as z = P/[P+K],  

which is the B/ihlmann-Straub credibility formula. 

C can be estimated by a weighted average of the x's, the member means. The expected squared 

error o f x  from C is t 2 + s2/Pi_, so x should get a weight inversely proportional to that, so pro- 

portional to t-ZPi~/[ P~_ + s2/ta], which is proportional to zj. Thus C can be estimated as a 

weighted average of  the x's where the weights for each member are proportional to the mem- 

ber's credibility. 

What has been lost by the simplified approach? First, instead of  (1), L~j is often considered to be 

a conditional process with a parameter, say q .and a conditional mean and variance given the 

parameter. The conditional means are assumed to average to the class mean C with a variance t 2 

and the conditional variances average to s 2. Then defining M i as the conditional mean less C is 

equivalent to the additive formulation (1). However the full usual derivation gets an additional 
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result: a weighted average of  member means is the best linear combination of any sort of  the 

individual member observations by time period. However, this is a fairly general statement itself, 

and it might be true in general separate from the credibility formulation. 

Both this formulation and the usual credibility derivation ignore the estimation error for C in the 

credibility formula. Empirical Bayes theory addresses this issue, which does make a difference in 

small samples. It  might be possible to get the empirical Bayes results from the inverse squared 

error principle as well. 

Beyond BGhlmann-Straub: Large vs. small risk differences 

The assumption that each unit of  exposure generates the same amount of loss variance is some- 

times described as assuming that a large risk behaves like an independent combination of  small 

risks. Hewitt in his 1967 paper presented some data showing this was not the case 2. Actually 

large risks have more variance than would be expected from treating them as independent com- 

binations of  smaller risks. One thing that contributes to this is that risk conditions change over 

time. Size of exposure does not provide much stability against changing economic and business 

sector changes. A way to model this would be to assume that the variance of the observed loss 

for each risk for each period has the usual component that increases with risk size plus another 

component that increases with risk size squared, i.e., assume that the loss variance is Pii2u 2 + Piis 2. 

Then the variance of  the pure premium would be u z + sZ/Pii. 

The credibility formula now gets more compficated, but is not too bad in the special case where 

there is just one time period. With the inverse expected squared error formula, z = 

[P,-/(P,-u2+s~)l/[ P,-/(P,-u2+s2) + t-~] = P,-/[ V,. + V~_u21t 2 + sa le .  This could be written as z 

= P/[P + AP + K]. For larger values of  P this makes the denominator larger, so decreases the 

credibility compared to P/[P+K]. 

In this case risk stability is a more complicated function of exposure than in the original model. 

In experience rating workers compensation another phenomenon has sometimes been observed: 

2 Loss Ratio Distributions- A Model, PCAS LIV. 
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the large risks' mean loss exposures are less different from the overall mean than are the small 

risks'. This could be a matter of  regulation, where large risks must follow more safety precau- 

tions, but other reasons are possible. Whatever causes this phenomenon, the result is that the 

variance of  Mi (i.e., the variance among risk means) also becomes a function of  exposure. Since 

it is the smaller risks that have more potential for large departures from the overall average pure 

premium, this average becomes less relevant for the small risks, which increases the credibility of  

their own experience. A reasonable formula for the variance among risk means in this situation 

might be t2+v2/P~_ in the single time period case for member i. Suppressing the subscripts on P, 

z becomes z = [P/( PuZ+s2)]/[ P/(Pu2+s2)+ P/(PtZ+v2)] = (Pt 2+v2)/[Pu2+s 2 + Pt 2+v2]. This 

can be simpLified to z = (P + B)/(P + AP + K + B). The extra B in the numerator and denomi- 

nator increases z, especially for smaller risks where P is smaller, which is what was anticipated. 

W h e n  linear estimates don't  work 

So far this discussion has been non-parametric. That is, the forms of  the distributions have not 

entered in. That is the advantage of  linear estimates with squared error penalties. I f  you have 

some information about the type of  distribution available, you can give up the restriction to lin- 

ear functions. In a Bayesian framework the class experience becomes the prior distribution for 

the member experience, and then the Bayesian conditional expected value of  the member mean 

given the data is the least squares estimator of  the member mean of  any sort, linear or not. In 

some cases the conditional mean is a linear function of  the data (e.g., normal and gamma distri- 

butions) so the linear restriction of  credibility theory does not reduce the accuracy. However in 

highly skewed distributions, like some lognormal cases, the Bayes estimate is highly non-linear, 

and credibility weighting can give large errors for classes with small means. 

I f  the distribution type is fairly well understood, Bayesian methods would be preferable in such 

cases. However, an alternative when the member means can be very different from each other is 

to do the usual credibility estimation in the logs of  the data, then exponentiate the results. This 

introduces a downward bias, however, which has to be adjusted multiplicatively to balance to the 

overall data. 
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The transformed beta distribution was introduced to the insurance literature in Venter(1983) and 

independently to the economics literature in McDonald (1984). The parameterizafion discussed 

here was introduced by Rodney Kreps in order to make the parameters more independent of  

each other in the estimation process. The resulting paxameters have somewhat separate roles in 

determining the shape of the distribution, and this note examines those effects. 
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Effects of Parameters of  Transformed Beta Distributions 

The transformed beta is considered parametetized so that  f(x) ~ (x/d) s-1(1 +(x/d)c)-(a+b)/c . Each 

of  the parameters will be considered in alphabetical order. In  general terms, a determines the 

heaviness of  the tail, b the shape of  the distribution and the behavior near zero, c moves the 

middle around, and d is a scale parameter. 

All positive moments E(X k) exist for k < a, but not othe~vise. Thus a determines the heaviness 

of  the tail. One way to measure tail heaviness is to look at the ratio Of a high percentile to the 

median. For a large company, say with 50,000 expected claims, a pretty large da im would be one 

of  the five largest - say the 1/10,000 probability claim. 

The ballasted Paxeto F(x) = 1 - (1 + x/d) -a will be used to illustrate tail heaviness, as it is easy to 

deal with and has essentially the same tail heaviness as the general case. I f B  is a (big) number, 

the 1 - 1 /Bth  percentile is d(B 1/a - 1). For the example with B=10,000, this is d(104/* - 1). The 

ratio of  this to the median (B=2) is thus (104/* - 1)/(21/* - 1). This is very sensitive to a, 

especially for a between I and 2, where it often is. The ratio of  pretty large claim to median in 

this case is 9254 at a=1.01 down to 788 for a=1.5. Thus the estimate of  a could have a big 

impact on excess losses. 

h 

Negative moments E((1/X) k) exist for k<b  and not otherwise. This parameter governs the 

behavior of  the distribution near 0. In that region, the density is close to constant*(x/d)~-lso the 

derivative of  the density is proportional to (b-1)x b-z. This can be used to ascertain the shape of  

the density for smaller claims, which really determines the overall shape of  the distribution. 

I f b  < 1, the slope of  the density at zero is negative infinity, so the density is asymptotic to the 

vertical axis. For b = l ,  the other factor in the density becomes significant, and the slope is a 

negative number. The mode of the distribution is at zero in both of  these cases. For 1 < b < 2, 

the slope at zero is positive infinity, so the density is rising and tangent to the vertical axis. For 

b=2, the slope is a positive number, and for b > 2, the slope is zero, so the density is tangent to 

the horizontal axis. For b > 1, then, there is a positive mode. 
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This graph show the 
Density Behavior near Ze ro  
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behavior near zero and - - b  < I 

how that depends on b. 2.5 - - b  = 1 
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behavior near zero 
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look of  the distribution. 

The case b > 2 gives the 1 ~ , , ~  
usual shape of  a density 

function people think of, 0.s 

which rises gradually then " - - - - - - "  
0 

more steeply before falling 0 0.02 0.04 0.06 0.0B 0.1 

offwith the inverse power 

relationship. The transformed beta in this case looks like a heavy tailed lognormal. The case b = 

1 is also seen a lot, for instance in the exponential and ballasted Pareto distributions. 

_c 

Transform ad Beta M ode to Mean as Function of c - a = 1.4,  b = 2 

0 . 4 S  

The c parameter 

introduces a 

power 

transform x - >  

x c into the 

transformed 

beta. This tends 

to move the 

middle of  the 

distribution 

around. A 

0.4 
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r 

useful measure of  where the middle is is the mode, as related to the mean. The ratio of mode to 

mean, when the mean exists (a > 1) and the mode is positive (b > 1), is for the most part an 
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increasing function o f c  for fixed a and b. The graph above shows the case a=l.4, b=2, and the 

graph below shows the same a for the inverse transformed gamma, which is the limit of  the 

transformed beta as b goes to infinity. This is a high enough a to have some cases with a 

reasonably high 
I n v e m e  T r a n s f o r m e d  G a m m a  M o d e  to  M e a n  a s  F u n c t i o n  o f  c - a �9 1 .4  

8.2 0,4 (I.r 1.1 2.8 3.2 e.2 11.2 20.0 3S.|  83.2 112.5 2~0,8 
r 

mode, say 40% of  

the mean, but a is 

still small enough 

to be of  potential 

use in US liability 

insurance. For b=2, 

the ratio is a strictly 

increasing function 

ofc. For the 

limiting case, the 

ratio reaches a peak 

and then declines slightly after that. This will also be the behavior for large values of  b. 

Thus something near the 

1.9 highest value of  the mode- 

1 to-mean ratio for a given a 

! and b is provided by the 

0.8 limit of  the transformed 

beta when c goes to infinity, 

~" which is in fact the split 
0.6 

0.4 simple Pareto distribution. 

Its density f(x) is 

0.2 proportional to (x/d) sq  for 

0 x<d and to (x/d) "~'1 for x>d. 

The density is continuous 

but not differentiable at d, which is the mode when b > 1. The 

mean is dab/[(b+l)(a-1)]. Thus the ratio of  mode to mean is (a-1)(b+l)/ab = (1-1/a)( l+l /b) .  

This is increasing in a and decreasing in b. The graph above shows this ratio for a from 1.05 to 

633 



0.6- 

i 0.5" 

0.4- 
0.3- 
0.2- 

0.1" 

O- 

2.5 and b-1 from 0.01 to 40 on a geometric scale. 

For low values of  a, the ratio cannot get very high, as the mean is increased by the heavy tail. 

The ratio for this distribution is close to the upper limit for the transformed beta with the same 

a and b, so for low values of  a, the c parameter is not going to be able to have much effect on 

the mode for any transformed beta distribution. 

The ratio declines for increasing b, but rather slowly. I t  is interesting that for this limiting 

distribution, the maximum mode-to-mean ratio is as b approaches 1, while for the transformed 

beta the mode is zero at b = l .  The split simple Pareto at b = l  is the uniform Pareto, which is 

uniform up to d and Pareto after that. Thus its mode is undefined, or it could be considered to 

be the whole interval [0,b]. 

The split simple Pareto shows the maximum, and thus the range of  mode-to-mean ratios for any 

a and b. How is this ratio affected by c? The transformed beta mean is: 

dF(b/c+l/c)F(a/c-1/c)/[F(a/c)F(b/c)], for a > 1, and the mode is: 

d[(b-1)/(a+l)] 1/c, for b > l  

This makes the mode to mean ratio: 

[(b-1)/(a+l)]'/CF(a/c)Fqo/c)/[F(b/c+l/c)F(a/c-1/c)] for a, b >1. 

~ .0.6 

" - - ,  .0.5 

.0.4 

l , , .  
" - - , ,  . 0 .2  

.~ .0 .1 

- - i x  

b 

The graph below shows the 

ratio for a=l .4  and a 

1 0 . 6  range of  b's. The 

0.5 high values o r b  can 

be seen to have a 

! 0 4 relationship to c 

! similar to that for 

0 .3  the inverse trans- 

formed gamma, 

0 .2  with a decrease in 

the rado for higher 

0.1 values of  c. The 
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lower values o r b  have a stricdy increasing function of  c, like the case b=2 above. The contours 

of  this surface are shown below for a wider range of  values. 

M o d e / M e a n  

1 0 5 5 ~  6 

D0.5-0.55 

1110.45-0.5 

I I  0.4.-0.45 

r l  0,35-0.4 

==0.3-0.35 

110.25-0.3 

m0.2-0.25 

1"10,15-0.2 

[10.1-0.15 

110.05-0.1 

BO-O,05 

a=1.4 
Mode Over Mean 

. . . . . .  N ~ N  

b-1 

1 to 1000 
~ornetric 

The vertical lines are the contours of  the function for fixed values of  b, like what was graphed 

for b=2 above. The horizontal lines are the contours of  the function for fixed values of  c. For 

the smaller c's the ratio is an increasing function of  b, but very slowly increasing, so b has litde 

impact. For larger c's the function increases then decreases. The maximum seems to hit fairly 

early, like around 1.01 to 1.25. This is somewhat surprising, in that for b = l ,  the mode is zero. 

Thus the mode increases rapidly for b just above 1, especially for higher values ofc .  

The graph above starts at b - l =  10 -15, which is the smallest value for which Excel can do this 

calculation. Even at this level, higher values of  c give modes substantially above zero. The mode 

is above 1% of  the mean for c as low as 9 for b-1 = 10-15. 

To illustrate the effect of  the c parameter, and thus the mode, on the density function, several 

cases are illustrated on the graph below. All the distributions have a=2, b=3, and mean=l .  
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so the density 
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the x-axis for a 

while, and then rise 

steeply, the mode c 

relatively high but F coma De u 

low at that point. This is generally the case for high b and c. The graph above shows F(mode) 

for a wide range o f b  and c values for a=1.4. The contours are shown below. 
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F(mode) 

This has a very similar shape to the mode-to-mean ratio. Dividing that by this gives an indication 

of  how steep is the distribution just below the mode. A graph of  the steepness is below. 
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The steepness measure is between zero and two for  mos t  o f  the range o f  b and c values. It is 

only in the upper  right, with high values o f b  and c, that the steepness gets very high. The 

limiting distribution where both  b and c go  to infinity is the simple Pareto: F(x) = 1 - (d/x) ". 

This is both  the limit o f  the inverse t ransformed g a m m a  as c goes to infinity and the split simple 

Pareto as b goes to inf'mity. 

Spl i t  Simple Pamto and Inverse Transformed Gamma, Mean 1, a:1.4, b or c �9 20 

~ P m  

T m ~ d  
C~mma 
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Examples o f  both  that goes towards the simple Pareto limit are graphed above. Both show a 

steep rise to the mode. For  the split simple Pareto,  the mode  is at 0.30, and F(mode) = 0.065. 

This is closer to the limiting case o f  0.3 and 0 than is the inverse t ransformed gamma,  with mode  

Transformed Beta with a=lA,  b=1.25, c=5, Mean .. 1 of 0.31 and 

. . . . . .  F(mode) = 0.11. 
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c=5, which also has a mode of  0.31 but a higher F(mode) of  0.32. It is clear from the graph that 

a lot more of  the distribution is below the mode in this case. 

Another effect of low values of c can be to increase the tails, even though this might not show 

up in moments. An interesting example is the Weibull distribution, for which a is infinite so all 

positive moments exist, and b=c. Taking b=c=0.2 gives a fairly heavy-tailed distribution for 

which all positive moments exist. This has been traditionally used in the US workers 

compensation line. As an example, take d=100, with a mean of  12,000. In this case, the pretty 

large loss - 1-in-10,000 claim - is 6.6M, or 550 times the mean. This is heavier-tailed by this 

measure than most Pareto distributions. For instance, with a=1.4, this ratio is 287. The cv 2 for 

this Weibull distribution is 251, so the cv itself is almost 16. For contrast, a lognormal with the 

same mean and car would have the 1-in-10,000 loss about 4,750,000. The Weibull has another 

strange feature, however. As b is so small, negative moments do not exist except for powers 

closer to zero than -0.2. This means that a lot of  the distribution is packed in towards zero. In 

fact, about 33% of the claims are less than 1, and the median claim is 16. The comparable 

lognormal, which can be given in the limit of  a and b both going to infinity, has only 0.2% of its 

claims less than 1, even though the mode is 3. The median claim is 756 for this distribution. 

A small c can pump up the tail of  the transformed beta as well. For instance, taking a=l.4, and 

b=c=0.2 gives a Burr distribution where the 1-in-10,000 dalm is 910 times the mean, and over 

50% of the claims are below 1/12,000 ~ of  the mean. Keeping this value of  c, but letting b get 

larger, can allow the pretty large claim to be a high multiple of  the mean without so many small 

claims. For instance, taking b = l  (which gives the Pareto T), the pretty large loss is 795 times the 

mean, and only 7% of claims are below $1 when the mean is $12,000. Taking b up to 5, keeping 

a=l.4 and c=0.2, these numbers come down to 673 times and 0.1%, which is still very heavy 

tailed without pushing so many claims to unrealistically small sizes. Although this distribution 

has a positive mode, it is at 0.065% of the mean, or 7.8 for a mean of  12,000, so is close to zero. 

To get an idea of  bow b and c influence the tail heaviness, the probability that a loss is greater 

than twice the mean is shown by b and c for a=l.4 below. The graph after that shows the 

probability of  being greater than 10% of the mean. 
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The parameter d is a scaling factor. It's effect is just like re-scaling the x-axis. For instance, to 

convert a distribution expressed in pounds to Canadian dollars, just multiply the scale parameter 

by 3 (typically). Then a probability for an amount expressed in Canadian dollars would be the 

same as for the equivalent amount expressed in pounds. 

Where  did b and c go? 

Several two-parameter cases of the transformed beta have just the a and d parameters. To 

understand what they are doing, it is helpful to know how b and c were disposed of. Some 

examples: 

Ballasted Pareto: b=c=l, so moments in (-1,a), mode zero. Closed form and invertible. 

Loglogistic: a=b=c, so moments in (-a,a), and thus the mode is positive if the mean exists, but 

is probably pretty small with a low steepness. Closed form and invertible. 

Inverse Weibull: b infinite, c=a, also dosed form and invertible for simulation. Mode is always 

positive. 

Inverse Gamma: b infinite, c=l, so mode positive but usually less than for inverse Weibull. Not 

dosed form. 

Simple Pareto: b=c=infinity, so positive mode, infinite steepness, F(mode) = 0. The opposite 

extreme from the ballasted Pareto for b and c. Invertible. 

Uniform Pareto: c infinite, b=l. Mode ambiguous - whole range from 0 to d is uniform. 

Intermediate between ballasted and simple Paretos and mirror image of inverse gamma in 

parameters. Inve~ble. 
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MLE for Claims with Several Retentions 

Gary G Venter, Guy Carpenter Instrat 

In the Loss Models readings, CAS students learn how to fit severity distributions by MLE, includ- 

ing the case of fitting a ground-up distribution where only losses above a deductible are available. 

In that case the MLE looks for the ground-up distribution parameters that provide the best fit to 

the known excess losses. This procedure falls apart, however, when different deductibles are 

used and there are different degrees of exposure to each. This note derives the likelihood func- 

tion for that situation. 

Acknowledgment 
This problem was posed by Claude Yoder, who recognized the shortcomings of the usual 

method. The likelihood function was worked out one day after lunch by Rodney Kreps, Paul 

Silberbush, John Pagliaccio and the author. The usual caveat applies. 
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MLE for Claims with Several Retentions 

A not atypical fitting problem for reinsurance losses is trying to find the severity distribution that 

is generating claims, where the data is provided for groups of  excess policies, each with its own 

retention and limit. The case considered here is where information is also presented about how 

much exposure is induded in each group. Losses are of  course truncated from below at their 

retentions and censored from above at their limits. 

What is the likelihood function for severity in this situation? It  turns out that that question is 

intrinsically linked with the likelihood function for frequency, as the exposure information 

comes in through frequency. First some notation. To simplify the typing and also to increase the 

visibility of  the sub-variables, subscripts will not be used. 

So suppose you have k groups of  claims, and the jth group has retention Rj, upper limit or pla- 

fond (i.e., retention plus policy limit) Uj, and Ej exposures. The data for the group consists of  Mj 

claims at the policy limit, (some of which are probably censored by the limit, so would have been 

larger without the limit) and Nj claims less than the limit. All the grotmd-up claim sizes are as- 

sumed to come from the same distribution, with severity distribution function F and density f. 

The exposures for all the groups are assumed to have the same ground-up Poisson loss fre- 

quency h per unit of  exposure, so the observed frequency for the jth group is hEj(1-FCRj)), 

which will be denoted by hi, and is still Poisson. Estimating h is part of  the problem to be ad- 

dressed. 

With this setup, what is the likelihood function for the set of  losses observed in the jth group? 

This is the product of the frequency and severity probabilities of observing that many claims of 

those sizes. Let a denote the severity parameters, considered to be a vector, and Xji the ground- 

up amount of  the ith loss in the jth group. Then the likelihood function at h and a for the jth 

group is: 

Lj(h,a) = hjNj+MJexp(-hj)[FIi=lNif(Xji[ a)][1-F(Uj [ a)] Mi 

The log-likelihood for all the groups combined is the log of  the product of  these: 

(1) LL(h,a) = 32j=~k {in(hj)(Nj+Mj) - hj + 32i=lNJ ha[f(Xji[ a)] + Mjln[1-F(Uj [ a)] } 

Since hj is a function of  F, this cannot be separated into frequency and severity sections. 
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Formula (1) is the answer, in the sense that this is the function that has to be maximized to esti- 

mate h and a. Some insight can be gained by considering its partials, however. First, wrt h: 

0LL/3h = Zi=lk{(Nj+Mj)/h - Ej(1-F(Rj I a))}, which setting to zero gives: 

h = Y'-j=lk(Nj+Mj) / Zj=lk(Ej(1-F(Rj l a)) 

This gives the ground up frequency in terms of  the severity parameters. 

The partial of  the LL wrt a can be seen to have two components - the partial of  the first two 

terms is a frequency component, and the partial of  the second two is the usual severity compo- 

nent that does not consider exposures. I f  these separately become zero at the maximum, then 

the exposure information is not affecting the parameters. But it can be shown that for this to 

happen, a different value of  h would result. Thus the exposure information does make a differ- 

ence. 

A large number o f  exposures with high retentions would be expected to produce several large 

ground-up claims, but no small ones. But if retentions are small, the same sample would suggest 

that the severity distribution tends to produce larger claims. Thus including the exposure infor- 

mation should make a difference of  this kind. Some practical testing of  NILE with this LL could 

discern if this is the case. 
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Testing Stochastic Interest Rate Generators for Insurer Risk and Capital Models 

Gary G Venter, Guy Carpenter Instrat 

Stochastic models for interest rates are reviewed and fitting methods are discussed. Tests for the 

dynamics o f  short- term rates are based on  model fits. A method of  testing yield curve distribu- 

tions for  use in insurer asset scenario generators is introduced. This uses historical relationships 

in the conditional distributions o f  yield spreads given the short-term rate. As an illustration, this 

method  is used to test a few selected models. 

Acknowledgement 
I would like to acknowledge the invaluable assistance of  Andrei Salomatov in both preparing the exhibits 

and helping to develop the methodology for this paper. 
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Testing Stochastic Interest Rate Generators for Insurer Risk and Capital Models 

P&C insurers are looking to financial modeling to address how risk is diversified among assets, 

liabilities and current underwriting results. Before fast computer models, actuaries measured as- 

set risk by a few simple constants, like duration and convexity. Asset managers have their own 

collection of  risk measurement constants for hedging issues, identified by Greek letters, and so 

often referred to as "the Greeks." Appendix 1 summarizes these measures. 

These asset risk scalars typically measure the sensitivity of  the asset portfolio to changes in some 

particular risk event, such as a change in the average interest rate, or a change in the volatility of 

interest rates. With stochastic generators, however, two degrees of  specificity are added. First the 

dimension of  probability of  ilsk events is incorporated. Risk scalars show the sensitivity to a 

change but  not  the probability of that change. Second is the response to a much broader range 

of  possible risks. Complex combinations of  risk situations can occur, and stochastic modeling 

can quantify the combined risk picture. 

These added dimensions come from representing the distribution of  possible outcomes for an 

asset portfolio. Models can then combine asset outcomes with liability development and under- 

writing return outcomes to give a more comprehensive risk profile. Asset models generate a 

large variety of asset scenarios, ideally each showing up by the probability of its occurrence, and 

apply them to the asset portfolio to measure the distilbudon of  asset risk. 

Although useful and general in theory, the possible weakness of  this approach is that in practice 

the model might not capture the full range of  economic outcomes, or it could over-weight the 

chances of  some occurrences that are in fact not all that likely to happen. Thus a significant risk 

to this methodology is generating the wrong distribution of  financial events. 

This paper looks at evaluating interest rate generators by testing the distribution of yield curves. 

Empirical research on the dynamics of  the short-term rate is reviewed, then tests of  the gener- 

ated distribution of  yield curves are introduced and applied to a few models. Interest rate models 

in other areas of  finance tend to be used to price options, so they are evaluated on how well they 

can match option prices. Insurer models are more focused on the risks inherent in holding vail- 
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ous asset mixtures for  a period o f  rime, and sometimes on  trading strategies, and so realistic dis- 

tributions o f  ending yield curves and probabilities for  movements  in yields are o f  more  direct 

concerns than are opt ion prices. 

I. Models of  Interest Rates 

The primary focus here is o n  arbitrage-free models o f  interest rates. There is still some debate 

among  actuaries on  whether  this is the best approach,  and some of  this debate is summarized in 

Appendix 2, but  it is such models which will be emphasized here. The tests on  the yield curve 

distributions introduced below, however, can be used on any model that generates yield curve 

scenarios. Interest rates are further assumed to be default free. Modeling default probabilities 

adds a degree o f  complexity that is not  addressed here. 

There are a few ways to generate arbitrage-free interest rate scenarios. The method illustrated 

below models the short- term interest rate, denoted by r, directly, and uses the impfied behavior 

o f t ,  along with market  considerations, to infer the behavior  o f  longer-term rates. For  these 

models, r is usually treated as a continuously fluctuating process. This is somewhat  o f  an ap- 

proximation as actual trades occur  at discrete times, but  at scales longer than a few minutes it 

seems appropriate,  at least during trading hours. 

The most  c o m m o n  financial models for continuous processes are based on Brownian motion. A 

Brownian mot ion has a simple definition in terms o f  the probahilides o f  outcomes over time: 

the change in r f rom the current  position between time zero and time t is normally distributed 

with mean zero and variance oat for some (L In differenrial no ta t ion ,  the instantaneous change 

in r is expressed as dr  = odz.  Here  z represents a Brownian mot ion with ~=1,  and so its vari- 

ance after a time period o f  length t is just t. I f  r also has a drift (i.e., a trend) o f  bt  during time t, 

the process could be expressed as dr = bdt  + ~dz. 

Cox, Ingersoll and Ross (A Theo{y of the Term Structure of Interest Rates Econometr ica  53 March 

1985) provide a model  o f  the morion o f  the short-term rate that has been widely studied. In the 

CIR model,  r follows the following process: 
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dr = a(b - r)dt + srl/Mz. 

Here b is the level of mean reversion. If  r is above b, then the trend component is negative, and if r is 

below b it is positive. Thus the trend is always towards b. The speed of mean reversion is expressed by a. 

Note that the volatility depends on r itself, so higher short-term rates would be associated with higher 

volatility. Also, if r=0 there is no volatility, so the trend takes over. With r=0 the trend would be positive, 

so r would move to a positive value. The mean reversion combined with rate-dependent volatility thus 

puts a reflective barrier at r=0. 

I f  this model were discretized it could be written: 

r t - r t _ l  = a(b - rt-l) + s r t - l l /2~,  where ~ is a standard normal residual. 

This is a fairly standard autoregressive modal, so the CIR. model can be considered a continuous 

analogue of  an autoregressive model. 

Some other models of  the short rate differ from CIR only in the power of  r in the dz term. The 

Vasicek model takes the power to be zero. Another choice is taking a power of  unity. 

Most o f  the models incorporate mean reversion, but constant mean reversion is problematic. 

The rates sometimes seem to gravitate towards a temporary mean for a while, then sMft and re- 

vert towards some other. One way to account for this is to let the reversion mean b itself be sto- 

chastic. This can be done by adding a second stochastic equation to the model: 

ab = j(q - b)dt + wbl/2dzl 

Here dzl is a second, independent standard normal variate, and so b follows a mean reverting 

process gravitating towards q. Again different powers can be taken for b in the stochastic term. 

Such two factor models are popular in actuarial literature. For instance, Hibbert, Mowbray and 

Tumbull  i n ,  "A Stochastic Asset Model & Calibration for Long-Term Financial Planning Pur- 

poses," Technical Report, Barrie & Hibbert Limited, use a two factor model which generalizes 

the Vasicek model by taking b and r both to the zero powers, so they both drop out of  the sto- 

chastic terms. 

The volatility can also be stochastic. For instance, HUll, J. and A. White, 1987, '~lae Pricing of  

Options on Assets with Stochastic Volatilities," The Journal of  Finance, XLII, 2, pp. 281-300 

consider such a model. 
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Combining stochastic volatility and stochastic mean reversion, Andersen and Lurid (Working 

Paper No. 214, Northwestern University Department of  Finance) use the model: 

dr = a(b - r)dt + s rk~ l  k>0 

din s 2 = c(,p - In s2)a~ + v ~ 2  

ab = j(q - b)dt + wbl/2&3 

This model uses three standard Brownian motion processes, zl, z2, and z3. The volatility parame- 

ter s 2 now also varies over time, but via a mean reverting geometric Brownian motion process 

(i,e., Brownian motion on the log). In total there are eight parameters: a, c, j, k, p, q, v, and w and 

three varying factors r, b, and s. I t  is thus labeled a three-factor model. The power k on r in the 

stochastic term is a parameter that can be estimated. 

2. Dynamics o f  Short-Term Rates - Empiriea! Findings 

Estimation of model parameters should be distinguished from calibration to current states. The 

permanent parameters of  the models are estimated from historical data, whereas the variable fac- 

tors are re-calibrated to current yield curves to capture the latest market conditions. Different 

techniques might be used for estimation vs. calibration. 

Multi-factor Brownian motion models can be difficult to estimate. Some single-factor models, 

such as CIR, can be can be integrated out to form a time series, which can be estimated by 

maximum likelihood. In the case of  CIR, the conditional distribution of  the short rate at time 

t+T given the rate at time t follows a non-central chi-squared distribution: 

f(rt+TI rt) -- ce-U-V(v/u)q/2Iq(2(uv)l/2), where 

c = 2as-2 / (1-e -aT) ,  q=-1 +2abs -2, u=crt  e-aT, v=crt+ T and lq is the modified Bessel func- 

tion of  the first kind, order q, Iq(2Z)= ~-k=0~176 where factorial offinte- 

gers is defined by the gamma function 

This is not usually possible for multi-factor models, where the volaflity and other factors can 

change stochastically. Further, the short-term rate is observed, or is closely related to observed 

rates for very short terms, but the other factors, like the reverting mean and the volatility scalar, 
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are not  typically observed. Thus fitting techniques that match models to data will not be applica- 

ble for these factors. 

A few fitting techniques have been developed for stochastic processes. The general topic of  

what these techniques are and how they work is beyond the scope of  this paper, but one method 

which has been used successfully - the efficient method of  moments (EMM) - is briefly dis- 

cussed below. This method was introduced by Gallant, A. and Tauchen, G.: 1996, Which mo- 

ments to match?, Econometric Theory 12, 657-681, and they provide further analysis in 1999, 

The relative efficiency of  method of  moments estimators, Journal of  Econometrics 92 (1999) 

14%172. However the opm'nal methodology for estimating models of  this type is far from set- 

tied. 

In any case, E/VIM is a special case of  G/vIM, the generalized method of moments. A generalized 

moment is any quantity that can be averaged over a data set, such as (3/x)ln x. GMM fits a 

model by matching the modeled and empirical generalized moments for some selection of  gen- 

eralized moments. EMM is a particular choice of  generalized moments that has some favorable 

statistical properties when used to fit stochastic models. 

EMM for a particular data set starts by finding the best time series model, called the auxiliary 

model, that can be fit to that data. I f  the auxiliary model is fit by maximum likelihood, then the 

scores of  that model (i.e., the first partial derivatives of  the log-likelihood function with respect 

to each model parameter)wiU be zero at the MLE estimates. These score functions can be 

viewed as generalized moments, which are all zero when averaged over the data. The fitted value 

of  the scores of  the auxiliary model might be hard to calculate for the stochastic model, but they 

can be approximated numerically by simulating a large sample from the stochastic model, and 

computing the scores of  the auxiliary model for that sample. The parameters of  the stochastic 

model can then be adjusted to match these moments, i.e., until all the scores approximate zero 

for the generated data. 

The result of  this technique is a parameterized stochastic model whose simulated values have all 

the same dynamics as the data, as far as anyone can tell by fitting time-series models to both. 

With this fitting done, the modeled factors then can be calibrated to current economic condi- 
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tions to provide a basis for simulating future possible outcomes. 

Andersen and Lund (AL) did an empirical study of  short-term rate dynamics by EMM-fitting 

their above model to four decades of  US Treasury notes, incorporating data from the 1950's 

through the 1990's. Their results provide empirical background to evaluate other models as well. 

AL estimate k as about 0.55, which supports the power of  1/2 in the CIR model. In fact the AL 

model with this parameter is close to the CIR model at any instant of  time, but the CIR parame- 

ters are subject to change over time. Other models with k=0 or k=l  appear to be disindicated 

for US data by this result. 

The period 1979-81 had high rates and high volatility, and studies that emphasize this period 

have found the power of  tA on r too low. There has been some debate about whether or not to 

exclude this period in fitting models. These results happened, so they can happen, but it was an 

unusual confluence of  conditions not likely to be repeated. By taking a longer period which 

incorporates this interval AL do not exclude it but reduce its influence. 

All parameters in the AL model were statistically significant. This implies that dependence of  the 

volatility on r is not enough to capture the changes in volatility of  interest rates. There have been 

periods of  high volatility with low interest rates, for example. Thus the one and two-factor mod- 

els without stochastic volatility appear to be insufficient to capture US interest rate dynamics. 

3. Generating Yield Curves 

The modeled dynamics of  the short-term rate can produce implied yield curves. This is done by 

modeling the prices of  zero-coupon bonds with different maturities, from which the implied in- 

terest rates can be backed out. P(I'), the current price of  a bond paying $1 at maturity T, can be 

calculated as the risk adjusted discounted expected value of  $1 using the continuously evolving 

interest rate r from the short-term model. Here "expected value" indicates that the discounted 

mean is calculated over all possible paths for r. This can be expressed as: 

P(T) = E'[exp(-[rtdt)], 

where rt is the interest rate at time t, the integral is over the time period 0 to T, and E* is the risk- 
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adjusted expected value of  the discounted value over all paths r can take. 

I f  E were not risk adjusted, the expectation that gives P(T) could be approximated by simulating 

many instances of  the r process to time T over small increments and then discounting back over 

each increment. The risk-adjusted expected value is obtained instead by using a risk-adjusted 

process to simulate the r's. This process is like the original process except that it tends to gener- 

ate higher r's over time. These higher rates usually produce an upward-sloping yield curve. 

What is the risk adjusted process for r that with this procedure will generate the yield curves? I f  

you write the price at time t for a bond maturing at time T as a Brownian motion with drift u 

and volatility v, i.e., 

eV(~a 3 = u(~a3,~ + v(t,a3,~ 

then it can be shown (Vasicek 1977) that the drift u can be expressed as a function of  the risk- 

free rate r #, the volatility v and a quantity L called the market price of  risk, by: 

u(t,T) = r#P(t,T)+ ~(t,r)v(t,T) 

Thus the value of  the bond grows by the risk-free rate plus the product of the bond's volatility 

with the market price of  risk, plus the stochastic term v(t,T)dz. The market price of risk k(t,r) 

does not depend on the maturity date T, but it could depend on the interest rate r and the cur- 

rent time t. 

The market price of  risk in the bond price process is the link that specifies the risk-adjustment to 

the interest rate process that will generate the bond prices as the discounted expected value. As 

for the bond price process, only the drift of the interest rate process needs to be risk-adjusted, 

and the adjustment is to add the market price of risk times a function of  the volatility of  the in- 

terest rate process. For instance, AL suggest using the following adjusted process to simulate the 

interest rates in the bond price calculation: 

dr = a ( b -  r +JL1rs)dt + srkdzl k>0 

din s 2 = c(p - In s2)dt + vdz2 

db = j(q - b+~,3b)dt + wbl/2atz3 

This adds terms to the drift of  the first and third equations but not the second, as AL feel there 
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is little price effect o f  stochastic volatility. The risk-price factors ~t~ 1 and ~3 can be calibrated to 

the current  field curve along with r, s, and b. These factors do not  depend on  T, so are held con- 

stant throughout  any simulated yield curve calculation, but  they can change stochastically when a 

new yield curve is calculated f rom a new time 0. 

In the AL model  you have to actually simulate the dynamics o f  the risk-adjusted process to get 

the yield curves. However,  in the case o f  the CIR model, a d o s e d  form solution exists which 

simplifies the calculation. The  yield rate for  a zero coupon  bond  o f  maturity T is given by: 

Y(T) = A(T) + rB(T) where: 

A(T) = -2(ab/s2T)lnC(T) - 2aby / s2  

B('r) = [1 - C(T)]/yT 

C(T) = (1 + xyeT/x  - xy)-I 

x = [(a- ~,)2 + 2s2]-,/2 

y = (a -  L + l /x) /2 .  

Note  that the only occurrence o f  r is in the Y equation, so Y is a linear function o f  r - but not  o f  

course o f T .  The linearity will come into play when we look at the distribution o f  Y across the 

generated scenarios. Since all the yield rates for different maturities are linear functions o f  r, they 

will also be linear functions o f  each other. 

4. Historical Distributions of Yield Curves 

To develop tests o f  distributions o f  yield curves, it is necessary to find some properties o f  these 

distributions which remain fairly constant  over time. As it is difficult to describe properties o f  

the distribution o f  the entire curve, the focus will be on the distribution o f  yield spreads, i.e., the 

differences between yields. 

For  a property to test the models against, however,  the historical distribution o f  a given field 

spread is not  necessarily all that germane.  When  short-term rates are high, the yield curve tends 

to get compressed or even inverted, so spreads get low or  even negative. This is related to the 

mean reversion o f  the short- term rate. Over  time it tends to move hack towards its long-term 
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average, though with a large random deviation. Thus when it is high, a downward movement is 

anticipated, which produces lower long-term rates and thus negative yield spreads. I f  the period 

being projected by the model is not likely to have such high short-term rates, the yield spreads 

will be higher in the model than in the history. 

An alternative is looking at the conditional distribution of  the yield spreads given the short-term 

rate. Over time, these conditional yield-spread distributions are more consistent than the uncon- 

ditional distributions of  yield spreads. The conditional distributions themselves do change in cer- 

tain ways over time, however, but there are some consistencies remaining. 
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The graph below shows the US treasury three-year to ten-year yield spread as a function of the 

three-month rate for a 40+ year period. This period is divided up into five sub-periods, which 

were selected to maintain somewhat consistent relationships between the spread and the short- 

term rate. From the 60's to the early 80's, the short-term rates increased (sub-periods I - 3), 

then came back down after that (4 and 5). Each sub-period shows a negative slope for the 

spread as a function of the short-term rate, with the slopes in the range of-0.2  to -0.3. For the 

entire forty year period, there still seems to be a negative relationship between the short-term 

rate and the spreads, but the slope is much flatter. 
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This behavior suggests that it would not be appropriate to use the conditional distribution from 

the entire period as a test of  a scenario generator, especially if  it is generating scenarios for a ho- 

rizon of  a few years. Over a several-year period the steeper slopes as in the historical sub-periods 

would be more likely to prevail. For a model projecting a few years into the future, the yield 

spreads would be expected to vary across scenarios, with generally lower spreads expected in 

those scenarios with higher short-term rates. From the historical record, it would be reasonable 

to expect a basically linear relauonship, with a fair amount of  spread around a slope in the range 

o f -0 .2  to -0.3. This could be tested by graphing the scenarios generated by the model to see if  

they were generally consistent with this pattern. 

The graph below shows the same thing for the five-year to ten-year spreads as a function of  the 

three-month rate. The main difference is that the relationship of  the spread to the short-term 

rate is less dramatic, with sub-period slopes about half what they are for the 10 - 3 spread. 
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The three-year to five-year spreads show similar slopes to the I0 - 5 case, except for the latest period, 

which has a much flatter slope. The short-term rates in the last period have stayed in a fairly narrow range, 

however, making it harder to estimate the slope. In any case, relying more on the latest observations, it 

would seem that models producing a somewhat flatter slope in the near future should be reasonable. 
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The one-year to three-year spreads above show something different. Here the trend was below 

-0.2 in the 60's and 70's, around -0.11 in the 80's to mid-90's, and actually insignificant in the 

last period. Thus a flat relationship might be most appropriate in a short-horizon model. 
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The three-month to one-year spread shows even more of  a break from the pattern of the longer 

spreads. Here the slope appears to be steeper when the short-term rates are higher, and the 

spreads can easily be negative. The slope is less in sub-period 5 than 1, and less in 4 than 2, sug- 

gesting that for a given short-term rate the slopes are less than they used to be. Thus a signifi- 

cant negative trend would not be expected for the near future, although a fair amount of ran- 

domness would still be anticipated. 
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5. Testing Models Against Historical Distributions 

Models can be tested against the historical patterns by comparing the conditional distribution of  

yield spreads across the scenarios to the historical patterns to see if  the patterns that have been 

produced historically are produced by the models. Initially two models will be compared. Both 

are produced by Guy Carpenter's proprietary scenario generator Global Asset Realization Proc- 

essor, or GARP. They are both based on the AL specification for the short-term rate generator, 

but they differ in the treatment of  the market price of  risk. The CIR model will be included also. 

The market price of risk has to be a deterministic function across all maturities to guarantee arbi- 

trage-free yield curves at a given time. But it can change stochastically when generating scenarios 

for the yield curves at another time period. Allowing the market price of  risk to change stochas- 

tically produces somewhat more variability among the field curves generated. In one model, the 

constant lambda model, the two AL market price of  risk parameters are held constant across all 

simulations. In the variable lambda model, on the other hand, stochastic changes are generated 

from one period to the next. How best to do that is a subiect of ongoing research. The variable 

lambda model tested here is one of  many possible models of this type and has not been opti- 

mized for this test. I t  probably introduces a bit too much variability into the market-price of  risk. 

The market price of  risk parameters, as well as the current values of the three factors r, b, and s 

are calibrated to the current yield curve to get starting values for the simulations. For this exam- 

ple, a yield curve from May 2001 was used for calibration. The parameters are selected that gen- 

erate a current yield curve that most  closely matches the selected target curve. Then yield curves 

are simulated at various projected periods. For periods in the near future, the curves would not 

be expected to be too much different from the current curves. But going out a few years pro- 

duces a wider variety of  yield curve scenarios. In this case the sets of curves generated for year 

end 2004 are used in the distributional tests. This seems like a long enough projection period to 

expect to see the kind of  variability that exists in the sub-periods historically. 

Models can be tested for the conditional distributions of  all of the yield spreads. First examined 

is the three-year to five-year spread. Recall that the slope for this was about -0.05 in the latest 

sub-period, but ranged from -0.11 to -0.16 in earlier segments. The graphs below show the rela- 

tionship for the simulated spreads under the two models. The constant lambda model shows a 
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slope of about -0.09, vs. -0.1 for the variable lambda, which are both reasonable. There is a dif- 

ference apparent in the spread around the trend line, with the constant lambda model showing 

little spread, and the variable lambda showing a good deal more, which is more compatible with 

the historical data. 
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For the CIR model it was shown above that any yield spread is a linear function of the three- 

month rate. Although this model does have a fair amount of  flexibility in determining the slope 

of  that relationship, there will be no variability possible around the trend line. Graphically this 

would look narrow like the constant lambda case, only more so. This suggests that the CIR 

model will necessarily produce a restricted set of yield curve scenarios, and these will not have all 

the variability present in historical yield curves. Thus yield curve scenarios will not be present in 

proportion to their probability of occurring, contrary to the criteria established above for DFA 

asset generators. 

The table below summarizes the historical and modeled slopes and the residual standard errors 

from the trend lines for the sub-periods and models considered. 

R10 3 R10 5 115 3 

Period 1 

Period 2 

Period 3 

Period 4 

Period 5 

Constant  

Variable ~L 

Period I se 

Period 2 se 

Period 3 se 

Period 4 se 

Period 5 se 

Constant  ~L se 

Variable ~. se 

R 3 1  R 1 3 M O  

(0.2720) (0.1380) (0.1340) (0.2158) (0.0769) 

(0.2526) (0.1351) (0.1175) (0.2544) (0.1267) 

(0.2225) (0.1170) (0.1055) (0.1066) (0.2177) 

(0.2957) (0.1393) (0.1564) (0.1100) (0.0895) 

(0.2050) (0.1524) (0.0526) 0.0170" (0.0132)* 

(0.2489) (0.1635) (0.0853) (0.0721) 0.0299 

(0.2960) (0.1987) (0.0973) (0.0615) 0.0475 

0.0013 0.0009 0.0006 0.0013 0.0019 

0.0031 0.0022 0.0013 0.0037 0.0030 

0.0026 0.0013 0.0017 0.0070 0.0051 

0.0022 0.0012 0.0012 0.0024 0.0029 

0.0020 0.0013 0.0009 0.0028 0.0028 

0.0008 0.0005 0.0004 0.0013 0.0023 

0.0042 0.0028 0.0015 0.0021 0.0028 

* Not significantly different from zero 

These results indicate that the constant lambda model tends to produce too little variability 

around the trend, whereas this formulation of the variable lambda model produces perhaps too 

much in the longer spreads. This suggests that allowing somewhat less variability in the stochas- 

tic processes that generates the market prices of risk could lead to still more realistic models. 
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6. Testing Residual Distributions 

The conditional distributions o f  the generated yield spreads given the short- term rate have been 

tested against the slopes and standard errors o f  histotical data. What  about  the actual distribu- 

tions o f  the residuals a round the trend lines? Are these the same historically and for the gener- 

ated scenarios? This was tested by fitting t-distributions to the residuals f rom the model and the 

combined set o f  residuals f rom the historical periods. The graphs below show QQ-plots ,  which 

graph the percentiles o f  the residuals against the same percentiles o f  the fitted t's. 
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T h e  10 - 3 constant  and variable l ambda  residuals look a lot like the data except  in the left tail, 

where  the constant  l ambda  diverges. T h e  t-distribution with 33 degrees o f  f r eedom was fit here. 
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�9 Fo r  the 3 - 1 spreads the variable lambda model  provided residuals distributed similarly to those 

f rom the data, when  compared  to the t with 13 degrees o f  freedom. 
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Again for the I year - 3 month spread residuals, the data and the variable lambda model compare simi- 

larly to the t-13 fit, where the constant lambda is a little different. 
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Conclusion 

Many models of  interest rates have been proposed. For one survey, see R. Rebonato (1997) "In- 

terest Rate Option Models,"John Wiley NY. Models of the dynamics of  the short-term rate ap- 

parendy need to incorporate mean reversion, stochastic changes in mean reversion over time, 

mean sensitive volatility, proportional approximately to the square-root of  the mean, and sto- 

chastic volatility as well. 

Testing the conditional distribution of  various yield spreads, given the short-term rate appears to 

be a reasonable way to see i f a  model is generating a realistic distribution of  yield curves. The 

unconditional distribution of  generated yield spreads would not necessarily be comparable to the 

historical distribution, because different spreads are associated with different short-term rates, 

and the simulation might not be generating a distribution of  short-term rates that matches the 

historical record, due to the particular economic conditions that prevail at the time of  the simula- 

tion. The slopes of  the conditional fitted lines are fairly consistent over different historical peri- 

ods. 

As with most  tests of  distributional issues, this one is not a formulaic system that gives a strict 

"yes /no"  answer to a model's output. But it does provide a realm of  reasonable results so you 

can give an opinion of  the "probably ok /p robab ly  not" type. For example, having no variability 

around the conditional trend line would seem to be too limiting. Slopes that are much steeper 

than historical would also seem disindicated, as would distributions of  residuals around the 

slopes that differ substantially from the t-distributions fit. Even though these tests are not strict, 

better results could be sought than those of  any of  the models tested. 

An application issue is how much variability you should have for projection periods of  different 

lengths. When projecting out four or five years, a conditional distribution similar to those of  the 

historical sub-periods might be appropriate. However there is some chance of  entering a new 

realm - i.e., changing sub-periods - over that much time. In all the sub-periods graphed, chang- 

ing to an adjacent sub-period would tend to flatten the conditional trend. 
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Appendix  I - Scalar Measures of  Response 

A number of  risk measures have been devised to look at the effect on an investment holding or 

portfolio of  a small change in some quantity. For example, Macaulay duration measures the 

change in the value of  a portfolio due to a change in the armualized average yield to maturity. I t  

can be expressed as the weighted average of  the times to each cash flow of  the portfolio, where 

the weights are the cash flow amounts discounted at the average yield. Thus duration is ex- 

pressed in units of  time. (Duration measures value per interest rate, but as interest rate is value 

per time, duration is time.) One way to produce a given change in the average yield to maturity is 

to shift the entire yield curve by the same amount, so duration is often described as the sensitiv- 

ity of  the portfolio to a parallel shift in the curve. 

Macaulay convexity is the weighted average of  the squares of the times to the cash flows, using 

the same weights as for duration. It  can be shown to be the square of  duration less the derivative 

of  duration with respect to the instantaneous average yield. 

The analysis of  derivative instruments has produced several similar measures, denoted by Greek 

letters, and so calied "the Greeks." These measure the change in the value of  a position brought 

on by the change in something else that affects value. For instance, the change in the value of  an 

option due to the change in the value of  the underlying security is called delta. 

For bond portfolios, each bond could be thought of  as a holding of a combination of  future po- 

sitions in the short-term rate, which cotild thus be considered to be the underlying security. With 

the short-term rate as the underlying security, the delta risk is the change in the value of  the 

portfolio with respect to a small change in the short-term rate. This is different than duration, as 

even though all the rates will change in response to a change in the short-term rate, they will not 

necessarily change by the same amount. This is clear in the CIR model where a change in r 

makes all the rates change, but each by its own B(I).  I f  the underlying security is taken to be the 

average yield to maturity, then delta is duration. 

Gamma risk is the change in delta due to a small change in the value of  the underlying security. 

With the short-term rate as the underlying security, in CIR gamma is zero, but for a typical asset 

or liability portfolio it will not be. Gamma is somewhat analogous to convexity, but as defined 
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here focuses on the actual short-term rate, not the average yield. 

Vega measures the change in value due to a change in the volatility of  the underlying instrument. 

The volatility of  the short-term rate Brownian motion is an element in bond pricing, so vega risk 

is present in bond portfolios. CMO's probably have a fair degree of this risk as well, as greater 

interest rate volatility can increase the probability of  pre-payment. 

Theta is just the sensitivity of  the position to a small change in the valuation date. 

Rho for any portfolio measures its change in value due to a small change in the interest rate. In 

most asset pricing models the yield curve is assumed to be constant, so rho could be considered 

to be the effect of a shift in the average yield, i.e., duration. 
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Appendix 2 - The  Arbi t rage Debate  

Most finance theory takes the impossibility of arbitrage as a given, but some actuaries use inter- 

est rate models that are not arbitrage-free. This may be just a matter of  convenience, but two 

arguments are sometimes advanced for using such models: 

1. Actual published yield curves are not always arbitrage-free 

2. It  is more important to get the statistical properties of  the set of  scenarios right than to 

avoid arbitrage. 

One problem from having arbitrage possibilities in generated scenarios is that searching for op- 

timal investment strategies would find the arbitrage strategy, and that will appear the best. It 

seems pretty unlikely, however, that a DFA model could identify truly risk-free high-profit in- 

vestment strategies that insurers could work in practice. Even if the search disallowed the arbi- 

trage strategies, their presence in the scenario set could have a distorting effect. However, a 

model that allows arbitrage only in unrealistic cases, like being able to borrow huge amounts at 

the risk-free rate, could be considered arbitrage-free in practice. 

With this in mind, the two arguments can be reviewed separately. First, there may occasionally 

be some arbitrage possibilities in published yield curves. But this does not mean that these can 

be taken advantage of  in practice. For one thing, the published curves look at trades that took 

place at slightly different times, so are not snapshots of  one moment in time. Looking at a com- 

bination of  positions in different deals that have happened recendy could yield a hypothetical 

arbitrage, but that possibility could be gone before it could be realized. A related issue is that 

some of  the deals might have to be scaled up signlficandy to get the arbitrage to work, and doing 

this could change the prices. In short, finding some historical published yield curves with hypo- 

thetical arbitrage possibilities in them is not reason enough to use a modeled set of scenarios that 

have specific arbitrage strategies built in. 

The second argument is more interesting. This paper argues for the importance of  getting the 

statistical issues right, focusing on the distribution of  yield spreads across scenarios. This does 

not appear to be in any way inconsistent with no arbitrage. Using models like AL also empha- 

sizes that the movement of  interest rates across time should be statistically correct.. Thus both 
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the statistics of changes in rates over time and the distribution of  yield spreads at each time are 

compatible with arbitrage-free scenarios. I t  would be interesting to see what other statistical is- 

sues there are that would require using scenarios with arbitrage built in. 
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