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Abstract: This paper considers a simple context in which we can quantify the impact of the 
payment schedule on paid loss development. To isolate the effect of the payment schedule, we 
restrict to the special case when all claims have the same incurred loss. We consider three 
simple periodic payment schedules: (1) a uniform payment schedule (2) an escalated (discounted) 
payment schedule and (3) a schedule that allows a single, fixedproportional adjustment to the 
payment amount. The paper defines a mathematical model for paid loss development and 
presents numeric examples to illustrate the sensitivity of paid loss development to the different 
schedules. 

It is apparent that the payment schedule influences paid loss development. In general a 
faster (slower) schedule will make losses develop faster (slower). While the direct nature 
of that relationship is apparent, it is not so apparent how to quantify it. This paper 
quantifies it in some very particular cases. 

Let S(t) denote a survival function on the fme  interval (0,b) .  2 Weregard  S ( t ) a s a  

distribution of  closure times and let F ( t )  = 1 - S(t) be the corresponding cumulative 

distribution function [CDF]. In effect, all claims are asstaned to close on or before time b. 

We are interested in a related CDF, which we denote byF( t )  to emphasize its relation 

with F ( t ) ,  which models the paid loss development as a function of time. More 

precisely, /3(0 is the proportion of  total loss paid by time t, i.e. the proportion paid out 

dufing(0,t) (without any discount adjustmer~). F ( t )  is the reciprocal of  the paid to 

ultimate loss development factor and we will refer to i f ( t )  as the paid loss development 

divisor [PLDD]. 3 

In this note we make two basic assumptions on the size and the payment pattern of  each 
claim: 

�9 The same (undiscounted) amount is paid out on all claims. 

�9 Payments are made conlSnuously from a common the firne ofloss, t = 0  toclaim 
closure. 

i The author expresses his thanks to Greg Engl, also of NCCI, who reviewed many versions of this paper, 
pointed out some serious errors, and made numerous suggestions for improvements. 
2 We are most interested in the case when b < ~o is finite, although most of what we say applies to the 
case b = oo. We are, however, admittedly rather cavalier about making whatever assumptions are needed 
to assure that all improper integrals exist and are finite. 
3 Gillam and Couret [4] consider the reciprocal of the loss development factor and call it the loss 
development divisor. 
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We consider first the "flat" case when all payments are of  the same amount. We then 
weaken that assumption in a couple ways: first we allow the payments to vary at a 
constant rate of  inflation---this is called a ease of"COLA". Second we allow a single 
fixed proportional change in the payment amount, applicable during the unit of time just 
prior to claim closure--called a case of "Step". Some simple numeric examples are 
followed through the three cases. We begin the discussion with a general model for paid 
loss development. 

Notation and Setup 

With S, F , /~  and b as above, we also let f ( t )  = d F  be the probability density function 
dt 

[PDF], h(t) = f (t) the hazard rate function, C V  = cr the coefficient of variation, and T 
S(t)  Iz 

the random variable that gives the "time" of closure t. We use those same letter symbols 
and "transparent" notation to specify the relationship between these functions. For 

example h',, (t) denotes the hazard rate function of the PLDD Fa (t) that corresponds to the 

claim survival functionSa (t) and T~ the random variable with CDF F~ (t). 

In each of the eases we consider, the complete payment pattern of a claim is completely 
determined by the claim duration. So we make the assumption that for any time t, 0<t<b, 
all claims with duration t have the same pre,-determined and differentiable payment 
pattern. We can capture this mathematically by defining the function 

G(x,t)=amount paid through time t on a claim, conditional upon claim duraficm=x. 

Then define 

g(x,t)---parfial derivative of G(x,t) with respect to t. 

We may interpret g(x,t) as the rate of  payment at time t on any claim of duration x. Both 
G(x,t) and g(x,t) are defined for x,t in (0,b). Note that for t>x we have g(x,t) = 0 and 
G(x,x) = G(x,t) = G(x,b) = the ultimate inCtLrred on any claim of duration x. In this paper 
we only consider the case when all claims have the same ultimate incurred cost. So 
without any w.al loss of  generality we further make the assumption tlroughout the rest of  
this paper that G(x, b) = 1 for all x (see [ 1 ] for a consideration of the more general case). 

As noted, we refer to the case when the rate of  payment g(x,t) does not vary with time t as 
the "flat case". The "COLA case" means the rate corresponds to a fixed rate of inflation 
or discount and the "step case" provides for a one-time change in the rate g(x,t)---the 
precise meaning of those assumptions provided in their respective sections of the paper. 
We consider the cumulative payment for such a claim disln]mtion in which all claims 
occur at time t=0 and conforming to these assumptions (sort of  an accident instant, as 
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opposed to an accident year). The only "stochastic" ingredient in this model is claim 
duration, for which the ffastribuf~onF(t) is specified. Under these asstm~ptions, F(t) 
determines not just closures but all payments. There is a well-defined expected 
ctmaulative paid loss P(t) at any time t, from ~ to ultimate paid at t=b. Indeed, we 
have: 

t b  b t b 

t b 

= f f ( x ) G ( x , t ) d x  + f f ( x )  G(x,t)dx 
0 t 

t b 

b 

= F(t)  + f f ( x ) G ( x , t ) d x  
t 

since G(x,t ) = 1 for t > x. In par~cular, the expected ulfL'nate loss per claim is normalized 
�9 by  our  a s s ~ n N o n s :  

b 

P(b ) = J f (x)ax = F(b)  = 1 
o 

The (expec t )  ultimate paid loss development factor from time t is: 

~.(t) = P(b) = 

P(t) e( t )  

and the inverse provides the PLDD on (0,b) that is the focus of this study: 
b 

(*) F( t )  = P(t)  = F(t)  + J f (x)G(x,t)dx 
t 

For the PDF of the PLDD, we have, by the fundamental theorem of calculus: 
d/'tb ~ b b 

<..) h,>=-z, lf 
--to o ] o t 

since g(x,t) = 0 for t>x. 
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Findings-Flat Case 

In this section we assume a constant payment pattern. With the above notation, the 
following ixogxmition documents some basic relationships between the duration density 
and the PLDD density'. 

Proposition 1: Assume the "flat case" holds, then for t r (O,b ) 

i) F ( t ) = F ( t ) + t $ ,  b f ( f ) d x  = t ( l +  i b ~ ]  

il) )7(t) = ~ f(-~dx= 1 + f F(.~2) x_ F(,)= S(t)- S(t)= F( t ) -  F(t) 
.v x O t x t t t 

s(t) - t  
S(t) �9 ) ~(t)= 

t 

iv) e ( ~ ) =  E(r+) k=1,2 .... 
k+l  

Proof" By our assumptions on the payment pattern, and using the above notation, we 
have: 

G(x,t)= O<t<x 
x<t 

From that we eonflt-m that: 

g(x,t)= O<t<_x 

x<t 

does not vary with t. The above equations (*) (**) show that in this fiat case: 

b ~ b ~ 
?(t) = F(t) + f f (x)G(x,t)dx = F(t) + t f  f ) dx 

t 

Integration by parts gives: 
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f ( . = ~  m hi/ 

x j ,  b t "~ x ~ 
and we find tha~ 

,~(,)=,,.>+,I' :~)~ 
1 F ( t )  1 b F ( x )  

proving (i) and the lust two ext~a~m in (ii). For the r~t of(ii) and (iii) we obs~e  ~a t  

S( t )  = 1 - F ( t )  = i -  F ( t ) - t ~  b f (X)dx  = S ( t ) - q ( t ) ,  
x 

Integration by parts also gives (c.f [2]): 

E(T k ) = k~:t i -IS( t)dt  

And applying t~s toT and T:  

E(T') = k S~ t'='S(t)d, = k ~:ti-iS(t)- ti f (t)dt = E(Ti)- kE(7*) 

and (iv) holds. For (v). subslitute l- .7 forF in (hS: 

S . .  ~_.. f l  r F(t)]  / ' 1  @ l - S ( x ) .  l - S ( t ) ]  

"'-~"='lYJ,  ;,Ze~--r-J=~,~+J, : -7  ~ -  , J 
- t(l +r-l~ - ~ -  I-S'(t) ] = ( - ~ + - ~ )  
- t  ~ LT~ 

completes lhe proofofProposilion 1. 
Nowwe clearly have thatthe PDF f ( t ) i s  decnmsing, indeed d f = _ f ( t )  <0 mad so the 

dt t 
mode ofthe PLDD~(t) isO. Fromthe foUowing Corolla,  we see ~Sat Uhe shiit 

from F(  t ) to/~(t) shrinks ~ mean and increases the coefficient of vari~on, but li~ effect 

onthe vafiancedepends onvalue ofCV (~  >or r < l ~ ) .  
z y z  
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Corollary 1.1: 

Or7 = U-- 
2 

a 2 + #  z a2(1  + 1 "~ 
i~'r=T ~-=Tt, 4---~) 

~.~ #~,=.W_cv~ + l_ 
V 3  3 

Proof" The proof is clear from the general observation that cr 2 +~2 _E(T2)and 
Proposition 1 (iv). 

In the WC work that motivated this, pension cases emerge as those that take longer to 
close and it is nalmal to t~y aod use that as a way to isolate them. This leads us to 
consider what happens whe~ there is a dehy period to closure that applies to all Imasion 
claims, i.e. when f ( t ) = 0  for t e  (0,a) wh~teO<a<b.  Tl~isreaffdyaccomnmdatod, 
as indicated in: 

Corollm-y 1.2: Suppose f (t) = 0 for  t r (O,a) whereO < a < b then 

~'(t)  = t F ( a )  f o r  t r  (O,a). 
a 

Proof" Under these assumptions, Proposition 1 (i) implies that. 

F (a) = F (a) + a fb f (X) dx = a f~ f (X) dx 
Ga x ~a x 

but then for t e (0,a) : 

x . .  x 

Probably the rncst rueful family of distrim~ons defined on a finite interval is the class of 
Beta demities on (0,1). Recall that the Beta distribution is a two-parameter, a ,  f l ,  
d i s l r i ~ n  that is usually defined in ~mns of its PDF: 

f ( a , # ; x ) =  x*'~O-x)Pq = r ( a + # )  x~_~(l_x)#_, x~ (0J) ,a>0,#  >0 
B(a, #) r(a)ro) 

where B and r denote the usual Beta and Gamma functions (c.f. [1], [3]). The CDF of the Beta 
density is: 

B(~,#;t) = ~  s xa-'(l- x) #~ dx te (O,l),a >0,# >0 

and we have: 
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Corol lary 1.3: For  tt > 1, fl > 0 let f ( t ) = f ( a , [3; t ), F ( t ) = B ( ct , [3; t) be the P D F and 

CD F  o f  a beta density on (0,1), as jus t  defined, then: 

f(t)= a+ f1-1 (1-B(t~ - 1,fl;t)) 
( x - 1  

F ( t ) = B ( o t ,  f l ; t )=B(Ot , f l ; t )4  (Ot + f l - l ) t  ( 1 - B ( O t - l , f l ; t ) )  0 < t <  1. 
Or-1 

Proof" The proof is a straightforward application of  Proposition 1. For the PDF: 

7<,): rI<-~  : (  ~<" + ~) ]rx~ 
-, x I,r(a)r([3) ], ~ "~ 

: r r (a  + ~) 1~ x(=_,)_, o -  x)'- '~ 
l, r(a)r(f l)  y 

=r r<a+9) ]'r(a-1)r<fl) ~x<:- '"o-x) '- 'a,]  
I r(a)r(fl) ), r ( a -  l+ fl) ) 

= r  r(a  + fl) y r ( a  - 1)r(fl)]l_ B(a_i &t)) 
I r(a)r(fl),( r ( a -  1+ O) ~ . . . . . .  

_ r(.+a) F(a-:)(l_B(a_l,fl;t))=a+[3-1(l_B(a_l, fl;t)) 
F ( a  + fl - 1) l(Ot) Ot - 1 

And for the CDF, Proposition I gives: 

,~(t)-- F(,) +,7(,)-- s<., ~,,), (" -~1)  O- B(.-1, ~;t)) 

as claimed. 

We next consider some more specific examples: 

h - t  
Example 1: Consider the case when S(t ) = =_~..z, b < ,% is a DeMoivre survival curve. In 

this case (because we will be returning to these examples by number, we specify them 
with a subscript): 

Fl(b;t  ) = F(t )  = -~ f ( t )  = ~ b t  ~,b)) _ _ 
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Example 2: It is easy to generalize the first example in a couple of  ways. Let 
0 < a < b < ,,* where we let a represent a potentially earlier time at which all claims close 
and pick r > 0 .  Then consider the case when claim closure has the CDF: 

F2(cp,a,b; t) = F(t) = t < a 
a<t<b 

When ~p = 1, we readily see from Example 1 that 

It (1-~(t)) ?(t) = a a t < a 
a <t <b  

When ~p #1,  we let the reader verify that: 

_ [ 1 
F(t)=l~_lLal ~a) } t<a 

a<-t<-b 
Example 3: Consider the case when fewer claims close over time according to a linear 
pattern: 

[ 2 ( a - t )  

f3(t) = l ao 2 t~a 
a<t<-b<~ 

We leave to the reader the slraightforward verification that -/'3 (t) is indeed a P DF on[ O, b] 
and that: 

[-' ( 2 - - '  ,_<a 
Fa(a,b;t)=la(1 a )  a<t<_b 

Then Proposition I implies: 

' ( t 2 #  ,<_o 

While we are primarily interested in the case of  finite support, it may be useful to 
comider a couple o f  examples when b = oo. 

Example 4: Consider the case of  a single parameter Pareto (c.f. [6], p 584): 

( 0 ]  = ae= f o r t > e .  F4(a,O;t) = F(t) = 1-  f4(a,O;t)= f ( t ) =  t~+, 

It is natumlto extendthe definition ofthe PDF to assign f ( t )=0  for t e  (0,0]. For 
t _> 0 ,  Proposition 1 gives: 
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F(t) = F(t)+tSt-  f (X)dx 
X 

I x + l  

= l -  + , f "  ~-LLtx = 1 -  
.It X a+2 

+IxO at 
(Ix + l ) t  a+! 

And by Corollary 1.2 we have: 

[ I x + l  ' ' 

O<t<O 

! 

O <_ t, O =O(a + l)-'ff 

For the final example, we recall the following integration formula (c.f. [6] page 570): 

El(t ) = r e----~tt =- -~_  hi(t)_ ~ '  (-1)"t~ 
~, u ~ n.  n! 

Where ? = 0.577215... is Euler's constant. 

Example 5: Comider the case when claim closures follow an exponential density, so here 
again b = oo. In this ease, we have: 

_L 
F s (0; t) = F(t) = 1 - e o 

_t 
e o 

L (0; t )  = Y(0  = -  
o 

Then from Proposition 1 we have: 

F , - ~  ~ - e ~  l f..e-}dx l f-e-~du EI[O) 
f,(O;t)= f ( t )= = =-OJt T T = - O ~ " u  - = 0 

0 

- ( t )( ,  t ~'~(O;t)=F(t)=F(t)+~(t) " - l - e ~  + g i-~ 
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Findings-COLA Case 

In this section we replace the assumption of a flat payment rate with the assumption that 
payments are subject to a constant proportional adjustment equal to 1 + 6 per unit of time. 
Payments are still assumed to be made continuously over the interval from the time of 
toss, t = 0,  to claim closure. Since we have considered the case 6 = 0 in the previous 
section, we will assume throughout this section that 6 ~ 0. It is more convenient to 
express findings in terms of  the force of  interest ~, = In( 1 + 6 ) # 0 (c.f. [5]). 

Under these "COLA" case assumptions, it is again straightforward--just a bit messier--to 

determine the PLDD, again denoted if( t ) ,  on the time interval (0,b).  The basic result is: 

Proposition 2: Assume the "'COLA case" holds, then for  t e (O,b ) 

i) iF(t) = F( t )+ (ert - "Wb f ( x )  . 

l]j, e ~ _ l a x  

y(S(t)-S(t))  ~ o b  f ( x )  
h) f ( t )  = ~e~'/ dx 

" e :a - 1 1 - e -y 

fn) "h(t)= ~ S(t)  ) 
l_e-~  

Proof." Observe that for any claim with closure atx, the amount paid to time t _< x is in 
constant proportion to the continuous annuity (c.f. [5]): 

( l + 6 ) W d w  = e m d w  - e v - 1  
0 0 

By our assumptions on the payment pattern, then, for any claim with closure at x, we 
have: 

r 

G ( x , t )  = le~ - 1  o < t < x 

l er~l-  I x < t 

We again employ the earlier formula (*) fo r i ( t )  : 

if(t) = P ( t ) -  F(t)+ i f(x)G(x't)dx" F(t)+ (e' - l l r  
'dr e rx _ 1 

t 

And for the PDF's we have: 
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and by (**): 

YeW O < _ t < x  
g ( x , t )  = l er~__ 1 

t o x < t  

f (t) = b g ( x , t ) f  (x)dx --7e~ ~ f(-~2-dx 
,t e ~ _ 1 

The second equation in (ii) now follows fi'om: 

~ (t) = l_  ff (t) = l _ F (t) _ (ert -t)Jt'~s ~f (x) I ax = S(t) _ l  ~ l ~  (t). 
\ - - /  

Finally, we have: 

.~(t)= f ( t )  = ( S ( t ) - S ( t ' I ~ )  Y(S-(~f). - l l  

S(t)  S( t)  1 -  e -~ 

This completes the proof of Proposition 2. 

Corollary2.1: /~-/t Mr(-7)-I  
7 

of the PLDD 

where M~ (z) is the moment generatingfunction 

Proof" We have: 

e ~ - 1 ~ - 1 + e-..______~ ~ f ( t )  S ( t ) - S ( t ) = - ( 7 / f ( t  ) Y 

and so: 

s 0 b ( - ~ / ~ f ( t ) d t  = S b e - ~ f ( t ) d t - - I  -- P = [?,u S ( t )  - s ( t ) a t  
Y 

and the result follows. 

In the COLA case, we may regard the PLDD F(t) =/~(y,t) as a function of y, and we 
have: 
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~= ~(F(,)+ (,'-1)r~ ~=(,, _]) a_( r_t_~ ~+fr ~ ~ a__(,, _,) 
o~t L "~ e - 1  ) ayL.~ e)~-I ) L J ' e ) ~ - I  Jay 

=(e : ' - l ] / f f  a ( f ( x ) .  "~ l+ te , (~b  ~ I=  O_e,  ) ~ f ( x ) d x  +te"( r ~ 
k ~  j )  k e -1 ,] (e)~-l) ~.l, e))_l j 

_ ~ xe~ - t ~  + ( t - x ) ~  "~'§ 
- j ,  (e), _i)= f(x)dx. 

This can be used to fccmally prove what is intuitively rather evident, namely that 
/ ~ ( t ) = F ( y , t ) i s a ~ f t m c t i o n o f  y. Indee~ forany a >0:  

e a ~ 2  
ffi l + a + - - + . . . + - - + . . . > l + a  

2 n! 

Tlma for all x_>t>0: 

- . .  ' 

" ' " + " - ' " - ' "  : ' ( ' - t+  .e" * ) . . * ( 1 - . * o  

Fix t and cxmsider the function: 

h(x)= xe)~-te~ +(t -x)e  r('+*) x >_t. 

Observe that h(x) has the same sign as the integrand in the expression for a t ' .  But we 
ay 

have: 
dh ~== yx+ I +~r ~ - ~ e  )' - e  )' <0 

h(t)=O=)h(x)<O for x>t  

and it follows that ~--~-~ N 0 .  
ay 

Observe that: 
b b 

F(t)  >- F(t)  =) S (t) < S(t)  =) ~ = ~ S (t)dt < ~ S(t)dt = I~ 
o o 

with equality only when/~ = 0. Combining these observations with the flat ease, we 
have: 
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Corollary 2.2: Assume It > 0 

It < / ~ < / x ~  7 > 0  
2 

~=~ ~ r = o  
2 

0 < / ~ < &  r 
2 

b 
Proof." Indeed, consider the functiong (7)  = /~  = ~ S ( t )d t .  The above shows that 

0 

/~(0= F(y,t) is  a sNctlydecreasing funcfionof y when ~ > 0. But then S = I - . P  isa  

strictly increasing function of 7.  It follows that g (y)  is monotonic increasing when 

# > 0. But we know from the fiat case that g (0)  = ~--- and Corollary 2.2 follows. 
2 

Note that as y--~ ~ the PLDD distribution reflects payments more concentrated at time of 

closure, making that distribution approximate the distribution of closures, and we would 

expect ~n t7 = # .  On the other hand, as y -~ --~ the PLDD F (t) reflects payments 
t-+- 

becoming concentrated at time 0, suggesting that lira /~ = 0. More formally, we have: 

Corollary 2.3: ~a /7. = # and ~n ~ = O. 

Proof." First assume b < oo . Notice that for 0<t<x: 

e ~ 1 �9 n e r '  = lkn e r(t-x) �9 n G ( x , t ) = ~ n  - -  = = 0 
r-~- r-+- e r~ - 1 r-.| e rx t - . -  

Now S ( t )  is confinuous on (0,b) and with S ( 0 ) =  1, S ( b )  = 0 it follows that S ( t )  is 
unffonnly confirmous on the finite interval [0,b]. But then by Proposition 2 (i): 

t >  0 = ~  l~n i f ( t ) =  F ( t ) = ~  ~ S ( t ) =  S ( t )  

r f (  ' ,+. i =~ r-~-IJm f f  :~r_+.doS( t )d t  : J o ~ l  S ( t )  f "" : o S < t ) d t  :1~ 

Proposition 2 (i) also implies that 

- 1 ) [  t > 0 ~  lin F ( t ) = F ( t ) +  r~n (e ~ b f ( x )  
r -+ ~ r -. ~ It e r~ - 1  

,S: x s = F ( t ) + r t ~ n  ( -1  = F ( t ) +  b f ( x ) d x  =1 .  

Whence: 

7 ~  Y'-~ 0 0 0 

4 3 6  



For the case b = **, consider the"restricfion" ofthe densityJ~t) to fa (t)  = f ( t )  on 
F ( a )  

the finite interval [0,a]. Note that Proposition 2 (i) implies that .~o (t)  = ~ (t) which in 
r(a) 

turn implies that lkn  f ,  (t) = 7 ( t ) .  From the fiinte case we have for any a>O: 

~a  /7o = Ito 

Notice that: 

~-n l.t,, = xfa(x)dx = .,-ran o x e(a) = rrn._,. F(a,,,), ~ 

= rra l ~n ! x f  ( 7 x)dx = 1 x f  (x)dx =It 
o-'" F ( a )  o 

and by the same argument: 

a ~  

Consider the mean of the restriction g2 (a) = It. as defining a fimcfion of a. It is 

intuitively clear that g2(a) is non-decreasing (adding larger observations cannot lower 
the mean); to verify this formally, note that 

o ~ t  a) r ta )  o 
( 

dg 2 = 1 af(a)+ ixf(x)dx(_l)F(a)_2 f (a)  = f(a)la 
da F(a) a o F ( a ) [  

t 

Ot f (x)dx 
= f ( a )  a o fo r somea~  [0,a] 

F(a)[ F(a) 

f ( a )  "a "> O. = F(a) t -or)_ 

a 

x f  ( x)ax 

F(a) 

Define the function g(?', a) =/~o and g l (Y) = ~ g (Y, a) =/~.  As in the proof of 

Corollary 2.2, g(7,a) is a n o n - ~ i n g  function of 7 and from we have just noted 
g(~,, a) is also a non-decreasing function of a: 
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~ >0 gg _> 0. 
~ a  

Now we clearly have g0 ' , a )  < ~ for all y and a. So, by way of contradiction, suppose 

I,t> ha !'a=ha g,(y) = ha ha g(y,a). That would implythat there is e > 0such that 

g(y,a) < l l - ~  forall 7 anda. Butthen 

I I ~ lhn #,  = # ~ 3a o such that # - / z ,  < ~- 

and by the finite ease: 

~nn~g(y,ao)=~.~o, =Poo :=~3yo suchthat I ~ r o , O o ) - . . l < -  ~ 
- 4 

But then we have: 

I~vo.~o)-~1--I~o.~o)- ~.o § ~,  -~1 ~ l~Vo.ao)-~o.1+ I~.o-~1 <-~ § -- ~ 4 4 ~ 
E 

:=~ g(yo,ao) > # - ~ -  

This contra~clion shows that hag(7 )=~ .  Finally, suplx~that ha  g ( 7 ) = a > 0 .  
7--,~ 7 - - ~  

This implies that: 

3yo~-chthat g ( y ) > ~  for all :/ > yo 
2 

and It= "~S(t)dt =~ 3a o such that "~ S(,)d, < r 
6 

0 ao 

Also 

~ =O=a~,,suehthat [ - ~ )  ~ a  ~ foraUy>Yo 

,or ,o [6,ao] 

Selecting y > Max(y0,y, ),  we find that: 
a 

Or< g(y)=i~(t)d t =6 o ~ - ~S(t)dt + ]S(t)dt + ~S(t)dt 
2 0 0 ~ ao 

6 

<_~___+ a fa o_~)+'S(t)dt<Ot+Ot+Ot= Ot 
6 6ao~ " 6 )  ! 6 6 6 2 

This contradiction shows that ha  g(y) = 0. This completes the proof of Corollary 2.3. 
g " * ~  
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Example 1 (COLA case): Recall that here S( t) is the DeMoivre sm'vival curve 

Fi (t) = t ,  ft  (t) =71 ,b < ** and so Proposition 2 gives: 
O b 

Fj ( t )=F~( t )+(er ' - l ) [  * f l ( x ) d x =  t e ~ - I  rb dx 
.It e ~, - 1  b ' + ' ~ ' ~ J t  e ~ ' _ l  ' 

Notice that setting 

g(x )=ha(~]=ha(e r ,_ l )_yx  dg= ye" , _ y e ' - T ( e T ' - , ) _  7 
dx e ~ -1 - ? en - I e ~ -1 

and we have the formula: 
f f l ( t ) = t + e ~ - - l f b  rdx t e r l -  

=--+ i (g(b)- g(t)) 
b ~b J, e r~- I  b 7b 

t er~ - 1  ( ( erb - 1 "~ 

Example 2 (COLA case): Recall that 

F2( q~,a,b; t) = F(t) = t <- a 
a<t<b 

then Fe(t) > F2(t)= l for t > a and for t < a : 

ff2(t , F 2 , t , + ( e  , ~  ( t__] '  cp(er~- 1) f~  X ' - I  d~ " 
= - 1)5, e r~ _ l d X  = ~ a )  + a r J' e ~ - 1 

Example 3 (COLA case): Recall that 
[2(a - t )  

f3(t) = I aO 2 t<a 
a<t<b<** 

[t(2a - t) 
F3(a,b;t)= l a~ t<a 

a<t<b 

then F3 (t) _> F3 (t ) =1 for t~a and for t<a: 

f f3(t)=F3(t)+(e" )f* f3(x)  x 2 (e r t -1 )eo  a - x  - 1 ,  ~ = F 3 ( t ) + ~ /  --------------~x 
.It e ~, - 1  a J' e :a - 1  

= ~ T ( t ( 2 a _ t )  + 2a(e  ~ -..._...~1 )fo Td x _ 2( e ,  -..._..~1 ~fo y_Z~...dx I 
[ 7 y ,  e ~ - I  [ 7 2 )Jr er~_l ) 
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The function dilog (x) = f In(t) dt is useful for evaluating F3 (t) because of the integral 

form~: ~--;~-:d, X e _ l  = -dilog ~e~)- -T  x~ 

Combining this formula with what was observed in Example I(COLA), it can be verified 
that: 

2 ( e V ' - l ~ f "  ydx ~(er'-l~fo ~__~..4x] ff3(t)=-~-1t(2a-t)+ a L T ~ J  t e - ' ~ - l - z / T J J t  e r~_ l  ) 

I e ~ - 1 e TM - 1 i] = I._~ t(2a-t)+2al"-~haIe--'ff~-ll-Y(a-t' I 

a2 / + 2 ( ~ d i l o g  (er~ ( e V ) + ~ - ( a  2 - t  2 ) J 
The following table provides values ofthc taft factor ~. =/~3 (N) -j at various values of 

t~, N and a; it provides some quantification of the sensitivity of the tail factor to inflation: 

!~ ~ ~ i ' i  �84 ~ ~:'~ii ........... ~ ...... 

-0.05 10 40 
-0.05 20 40 
-0.05 30 40 

0 10 40 
0 20 40 
0 30 40 

+0.05 10 40 
+0.05 20 40 
+0.05 30 40 

1.222 
1.032 
1.002 
1.323 
1.06 

1.006 
1.431 
1.094 
1.011 

Findings-Step Case 

In this section we replace the assumption of a flat payment pattern with the assumption 
that payments are at a constant rate fl during the last unit of time (i.e. the interval (x- 1 ,x) 
prior to closure at x), and otherwise at the constant ratec~. We also require that the 
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ratiop = f l  isthesame for all clairm. Payments are still asstened to be made 
a 

continuously ove~ the interval from the time of loss, t = 0,  to claim closure. Obviously, 
the"flatease"isjustthespeeialcasea=,8 ofthis "step ease". Weasstmaeb>l inthis 

step case section, as otherwise this would reduce to the flat case. 

Under these assumptions, it is again straightforward---but messier still--to determine the 

PLDD F(t) , on the time interval (0,b). Indeed, byour asstmapfions on the payment 

patte~ for any claim with closure at x < 1, payments are at the rate fl = fl~ = 1 and the 
x 

payment pattern implies 
f 

G(x, t )=l  t t<x  

t" x < t  

while for x > 1 : 

x-i x 
1: !<,:+ I t l .  : , ,=(x- l)+p<,.  = , ~ . . _ ,  : -  

and we find that:. 

x + p - I  

ot,t  x + p - I  

G ( x , t ) =  ot ( x - 1 ) + f l , ( t - x + l ) = l - p  x - t  x - l < t < x  

1 x < t  

A straightforward verification, again using equation (*) and the fact thatf(x)=O for x>b, 
yields: 

{ F(t+l)+~'(t-x)f(X)dx+p~,+,(t-x)f(X)dx+tfb f(x) dx 
~ x x+p  -1 J'+lx+p -1 
F(t) 

F(t+l)+p~, ' i ( t-x)f(X)dx+t~[, f(x) dx 
x + p - 1  x + p - 1  

OH 

t_<l 

l_<t 
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(t- x)f (x) , _ f,+, (t- x)f(x) . . . .  fb f(x) if(t) = F(t + l ) + ~ ( t ) ~  I dx - r p /  - - - -  u..* "1-,, dx 
x ~M~,0.t) X + p - - I  ~ '+~X+p--1  

where 6 is the characteristic function of the interval (0,1 ), i.e. &(t) = 1 on the interval (0,1 ) 

and is 0 elsewhere. Note that the functionif(t ) is continuous, even though 6 is not. Note 

too that the last integral in the formula vanishes when t>b- 1 and in that case the upper 
limit of  the middle integral can be shifted down to b---this observation is helpful when 
the functional form of J(t) only behaves on (0,b). 

In the step case, we may regard the PLDD if(t) = i ( p , t  ) as a function of p and we have: 

OF 3 (F(t+l)+6(t)f,f(X)dx+pr+, (t-x)f(X)dx+t~" f(x) dx) ~p=~p~ ~t X aM~,O.t) x+p--I .7+IX+p_I 
= p[ '+'  _3____(l~t-x)f(x)dx+[ TM (~Z-x)f(X)dx+tfb+_~-:~--(1]f(x)dx aMo~O,',dp~,x+p--lf JM~,,,~, x+p-1 * ldp(x+p-l] 

=Iil,,.o(Pln(x+p-l)+x+~_l)t-x)f(x)dx+ts dx. 

As the following examples illustrate, the integral form for .P(t) may be preferable to 
some closed form expressions, especially when there is access to decent numerical 

integration software. In the examples, we set t = Max(1,t) = t +•( t ) (1-  t ) .  

Example I (Step case): Recall that here Fl(t)=b, f ~(t)=l,b < ~ , then for t < b - l :  

l l  ( t+l+t~(t)(t-a+(!t++~5)it) )] = - 1 ) h  ^t+p +~ 1 Fl(t) +p (t+p -t-  

+tln 

and for t > b - 1  : 

(t+l+pi+t~(t)(t-l+tht) ") 
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Example 2 (Step case): Recall that 

F2(fp,a,b; t) = F(t) = t < a 
a < t < b  

then F2(t)>F2(t)=l for t>a  and for t<a  .When r is a positive integer >1 and 

t ~ a - 1, we have: 

F2(t)=(~-~'[)'+a.8(;t'_l) (q~(t-1)-t'+l) 
(. -g <,-~,.-,-,c<,-,~,+,~,+,,,-o<,+ ~-,,,, +,o,/ 

+2"-g a i 

When q~ is a positive integer and t ~ a - 1, we have: 

+(~,, ~',<,- p)'-'-'(a'-E') 
t a ' ) ~  i 

Example 3 (Step case): Recall that 
[z(.-,) 

f3(t)= l a~ t<-a 
a~t<b<** 

[ t (2a  - t) 

F3(a,b;t)= l a~ t<-a 
a<_t<b 

then F3 ( t ) > F3 (t ) =1 for t > a . When t < a - l w e  have: 

and when t > a - l :  
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t 1 t 2 if3 ( t )= ( t + l  Y 2 - (  t + l  ) ) +  28_(2t)( .~_a_t_atkl  t + ( a + t ) t - - s  
I, a ]k ~ a j j  a [ z ": )  

a + p - I  
+ P f a  z _~;z + 2 ( 1 - p - a - t ) ( a - t ) + 2 ( p  + t - l X a + p -  l ) l n ( ~ ) /  

The following table provides values of g = ~3 (N) -' atvariousvaluesofp, Nanda;it 
provides some quantification of thv sensitivity of the tail facter to a change of paymant in 
~ te~mating year. 

1/2 10 40 1.307 
1/2 20 40 1.056 
1/2 30 40 1.005 
1 10 40 1.323 
1 20 40 1.06 
1 30 40 1.006 
2 10 40 1.354 
2 20 40 1.068 
2 30 40 1.008 
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