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The Valuation of Stochastic Cash Flows 

Leigh J. Halliwell 

Abstract 

A stochastic cash flow depends on a random outcome. Since insurance and 
reinsurance contracts in exchange for financial considerations provide financial 
compensations against random outcomes, their compensations are perfect examples of 
stochastic cash flows. This paper develops a theory for the valuation of such cash flows 
from the four principles of present value, utility, optimum, and equilibrium. The most 
important implications of the theory are that the optimal amount for an economic agent 
to purchase depends on price, that (price, amount) loci are preliminary to market value, 
and that market value is the unique price at which all interested economic agents 
purchase optimal amounts. The theory belies the prevalent practices of risk-adjusted 
discounting and capital allocation (Appendix A), faulting them for naive and erroneous 
conceptions of time. Accordingly, although the information that the theory presumes of 
economic agents is formidable, each agent is realistically burdened with ascertaining its 
own present opinions and preferences, rather than impossibly burdened with 
omniscience. And ff sets the agents to the virtuous task of extracting value from 
projects, rather than from one another. The theory lays claim to fundamental principles 
of financial economics; ff derives from the work of European risk theorists Karl Borch, 
Hans BEthlmann, and Hans Gerber, and gains support from a small but growing number 
of American actuaries. Though the paper remains theoretical throughout (especially in 
Appendices B-D), it furnishes several examples of sufficient detail for actuaries to apply 
ff to pricing traditional insurance and reinsurance contracts. 

Keywords: present value, utility, optimum, equilibrium 

2 



The Valuat ion of Stochastic Cash Flows 

Leigh J. Halliwell 

1. INTRODUCTION 

The insurance and reinsurance industry is in an impasse. The muddled and 

contradictory thinking on how to value its contracts is the stuff of a Dilbert cartoon. 

Industry leaders act inconsistently, belittling theory as stifling action while grasping at 

every idea of the month. Actuaries too are swept along with the tide. What is needed, 

and what this paper hopes to accomplish, is to define basic economico-financial 

concepts and to develop a theory for the valuation of insurance and reinsurance 

contracts. 

In the next section we define the basic concepts of stochastic cash flow and present 

value within the framework of modern probability theory. Then, in Section 3, we argue 

that present value is a random variable with a probability distribution, something that 

strikes at the heart of current financial theory. From there we turn in Section 4 to utility 

theory, for it alone seems to provide a criterion for preferring one probability distribution 

to another. But Section 5 gives a new twist to utility theory, according to which one 

purchases at a given price the amount that maximizes one's expected utility, as opposed 

to determining the price for a unit amount that maintains that utility. So the issue of price 

remains open until in Section 6 we see how it is collectively determined. Sections 5 and 

6 contain what might aptly be called a market-tempered utility theory. Section 7 



illustrates this theory with a reinsurance example, and suggests how to dampen the 

swings of the reinsurance market. Before the conclusion, Section 8 draws out two 

implications of the theory, especially how it could change actuaries per se from followers 

to leaders. 

The theory to be developed is complicated. However, it is no more complicated than the 

various risk modeling and capital allocation projects in which companies have for years 

invested large sums of money and time, so far with little success. Moreover, very little 

herein is new; as radical as it may seem, the theory is just culled from the best actuarial, 

financial, and economic sources, from sources of unquestionable orthodoxy. 

2. DEFINITIONS AND COMMENTS 

We begin with the unexciting but important task of defining four essential terms: cash 

flow, present value, stochastic [cash flow], and random variable. 

A cash flow is a mapping, or function, c from [0,o~) into the real numbers that describes 

how much cash has been received up to and including c(t). It should have at most a 

countably infinite number of discontinuities. Sufficient for our purposes are discrete cash 

flows, which jump at times tt and are flat elsewhere. Thus we can imagine a cash flow 

as a countable set of increments, and denote it as c={ ( t l , x i ) : i= l ,2 ,K  }, where an 

ordered pair (t,x) represents the receipt of cash x (dollars) at time t (years) from now. By 

definition, the present is time zero, and the time coordinates must be nonnegative. In 

other words, cash flows have no memory of the past. 



Present value is a function v f rom [0,oo) onto the half-open interval (0,1]. It states that 

the receipt of one dollar t years from now is equivalent to the receipt of v(t) dollars now. 

Four properties of present value are that v(0) = 1, that v strictly decreases, that v is 

continuous, and that v(t) approaches zero as t approaches infinity. Just as cash flows 

have no memory of the past, present value looks only forward, not backward. 1 

Theoretically, each economic agent could chose its own present-value function; but 

practically, prices at which U.S. Treasury securities are traded determine a market- 

accepted present-value function at any moment of time. For centuries investors have 

been accustomed to think of present value in terms of yield. However, since yields are 

not constant by maturity, investors should abandon them in favor of the discount function 

with its equivalence between one dollar at time t and v(t) now. 2 

The present value of discrete cash flow c is PV[c]=~xi.v(tj), if it exists. 3 It is an 
i 

operator that assigns a real number to a function; and it implies that cash flow c is 

equivalent to the receipt of PV[c] now. It is a linear operator in that for cash flows c and 

d and constants (z and 13, PV[(o~c+~dXt)]=c~PV[c(t)]+~PV[d(t)]. Henceforth we 

1 Inasmuch as accounting looks backward over an accounting period, one must take care not to foist 
accounting concepts onto present value. The currently popular "results monitoring" projects have not 
recognized this. 
2 Halliwell [2001, Appendix A] challenges the notion that money somehow works at the yield. If a five-year 
STRIP (zero-coupon Treasury security) sells at 85.10 for a yield of 3.29 percent per year and a ten-year 
STRIP sells at 63.38 for a yield of 4.64 percent per year, is it helpful to assert that ten-year money is 
working harder than five-year? 
3 For some countably infinite cash flows, the sum does not converge. But the present value of a finite 
cash flow must exist. 



assume that at any given moment every economic agent has a present-value operator 

(whether its own or the market-accepted), and can value any cash flow. If in the next 

moment the agent's operator changes, it must recalculate the present values of its cash 

flows; however, it does not follow that the agent should attempt to adjust its present- 

value operator for the risk that the operator itself will change. 4 

The adjective ' s tochast id  means 'probabilistic' or 'pertaining to a probability system'. In 

the 1920s and 30s the Russian mathematician Andrei Nikolaevich Kolmogorov devised 

the modern theory of probability with its fundamental concept of a probability system. In 

the words of Pfeiffer [1978, p. 29]: 

A probability system (or probability space) consists of the triple: 

1. A basic space S of elementary outcomes (elements) 
2. A class E of events (a sigma field of subsets of S) 
3. A probability measure P(.) defined for each event A in the class E and having the 

following properties: 

(P1) P(S) = 1 (probability of the sure event is unity) 
(P2) P(A) > 0 (probability of an event is nonnegative) 
(P3) If A = {Ai: /~J} is a countable partition of A (i.e., a mutually exclusive class whose 

union is A), then 

P(A)= ~.aP(Ai) (additivity property) 
~ J  

A simplified version of a discrete probability system will serve our needs. The basic 

space S will consist of a countable number of elementary outcomes ~, for i = 1, 2 . . . . .  

The class E of events will consist of all the subsets of S, i.e., it will be the power set of S. 

But we will concern ourselves with the "elementary" events {~}, and henceforth will 

4 A change in one's present-value operator can have profound effects, good as well as bad. On the bad 
side, it may render one insolvent accountingwise. However, that the operator might change in the next 
moment has no effect on the value of a cash flow at the present moment. The ultimate inference from this 
is that present value and solvency are unrelated (Section 8). 



ignore the distinction between elementary events and elementary outcomes, referring to 

both indiscriminately as ~. The class of these mutually exclusive ~; is a countable 

partition of S, and the probability measure is determined by nonnegative P(~i) that sum 

to unity. 

Each agent has its own probability system, or in our simplified version, its own basic 

space S and probability measure P. Many elementary outcomes will appear  only in one 

agent's basic space. Even to compare elements of different spaces may be difficult. 

But should two agents share an elementary outcome, they are free to assign different 

probabilities to it. And one agent may know for certain something that another regards 

as uncertain. Probability systems are as subjective as human beings; it is difficult, as 

well as unnecessary, for anyone to pontificate whether one system is more accurate or 

more in tune with reality than another. One can only hope that reality is reasonable 

enough to reward agents according to how accurately they perceive it. 

Two characteristics of probability systems need to be appreciated. First, a probabil ity 

system is as momentary as a present-value operator. An economic agent is free to 

change its system at any moment. But for now that system defines all that is, and to 

require it to consider how it might change would be endlessly circular. And second, a 

probability system is timeless. For example, if a coin toss were an elementary outcome, 

it would not matter if the toss had already happened and the agent were just ignorant of 

the outcome, or if the toss were yet to happen. 5 

5 So we do not need to resolve the paradox of SchrSdinger's cat: Before one opens the box is the cat 
either 100% dead or 100% alive, or is it suspended in a probability distribution between life and death? 



A stochastic cash flow C is a mapping from a basic space into the collection of cash 

flows. In the simplified version, such a mapping assigns to each ~i a cash flow c;. One 

can transfer probability from the elementary outcomes to the cash flows. For any cash 

flow c, let A = { ~  S:C(~)= c}. Then P(c) = P(A). If no outcome maps to c, then A = 

and P(c) = 0. Or if many discrete ~ map to c, but the probability of each is zero, then still 

P(c) = 0. In these cases c is an impossible cash flow, according to the probability 

system under consideration. At the other extreme, if every discrete cash flow with 

positive probability maps to c, then P(c) = 1, and the stochastic cash flow is degenerate. 

There is as little difference between degenerate stochastic cash flow C and cash flow c 

that it equals with certainty as there is between degenerate random variable X and the 

number xthat it equals with certainty. 

Strictly speaking, a random variable is a function from S into the real numbers, which 

function is also "a measurable function with respect to the class of events ~.,." [Pfeiffer, 

1978, p. 376] Our simplified version permits us to ignore the subtleties of measurability; 

for us a random variable is merely a function from the countable basic space into the 

real numbers. And the probability that the random variable equals some number is the 

sum of the probabilities of the elementary outcomes that map to that number. 

3. PRESENT VALUE AS A RANDOM VARIABLE 

So, at length, we are ready to define the present value of a stochastic cash flow. If C is 



a mapping from S into cash flows (i.e., a stochastic cash flow), and PV is a mapping 

from cash flows into the real numbers, then the present value of stochastic cash flow C 

is the composite mapping PVoC. Being a mapping from S into the real numbers, it is a 

random variable. 

As a very simple example of a stochastic cash flow, let S have two elementary 

outcomes: S = {H, T}. This basic space would model the outcome of a coin toss. The 

event class E would equal {0, {H}, {T}, S}. A fair coin would have the probability 

measure P({H}) = P({T}) = 0.5, with P(~) = 0 and P(S) = 1. This triple (S,F,,,P) satisfies 

the definition of a probability system. Let two cash flows be the receipts of 120 dollars 

and 80 dollars one year from now; they can be expressed incrementally as {(1,120)} and 

{(1,80)}. Let stochastic cash flow C map the heads outcome to the first flow, and the 

tails outcome to the second. According to the set-theoretic definition of a function or 

mapping, C = {(H,{(1,120)}~ (T,{(1,80)}) }. At the end of August 2002, a one-year Treasury 

STRIP traded at 98.71 dollars (on a par value of 100 dollars). Taking that as time zero, 

we derive the market-accepted v(1) as 0.9871. Hence, PV({(1,120)}) = 120x0.9871 = 

118.45 dollars, and similarly, PV({(1,80)}) equals 78.97 dollars. And the present value of 

the stochastic cash flow is the function or mapping X = P V o C ,  where 

X(H) = PV(C(H))= PV({(1,120)}) = 118.45, and similarly with the tails outcome for a value 

of 78.97. Xsatisfies the definition of a random variable, and we are allowed to make the 

four probability statements: 



P ( x  = 118 .45 )  = P({H}) = o.5 

P(X = 78.97)= P({T})= 0.5 

P(X = 118.45 or X = 78.97)= P(S)= 1 

P(X ~= 118.45 and X =~ 78.97)= P(~)= 0 

The cumulative distdbution function of X is: 

f i x < 78.97 
Fx(x)= O. 78.97< x <118.45 

118.45_< x 

Exhibit 1 presents a slightly less simple stochastic cash flow. Ten elementary outcomes 

determine ten cash flows. Each cash flow consists of one ordered pair (t,x), as in the 

previous example, and these pairs are graphed on a Cartesian half-plane with present- 

value isobars. Treasury STRIP prices on 30 August 2002 at various maturities provided 

the raw data to which a v(t) curve was fitted. So the isobar that stems from (0, Xo) plots 

the curve xo/v(t); in other words, the isobars are proportional to one another, and fill the 

half-plane. The present values of the cash flows fall within the [75,100] interval. 

Provided that the probability of each elementary outcome is ten percent, Exhibit 2 

graphs the cumulative density function of the present value of the stochastic cash flow. 

We have not yet treated valuation, but already one might suspect that the value of this 

stochastic cash flow must be greater than seventy-five and less than one hundred. 

The third and final example of this section deals with a corporate bond. On 01 October 

2001 investors paid just over 747 million dollars for unsecured bonds issued by Tyson 

Foods. The face amount of the bonds was 750 million dollars, and the coupon was 7.25 

percent per year, payable semiannually. Moody's Investors Service rated the bonds as 

]0  



Baa3, the lowest of the investment-grade ratings. Exhibit 3 contains this information, 

along with Moody's default probabilities and recovery parameters. 6 For example, 

Moody's estimates that Baa3 bonds have a 1.28% chance of default within three years 

of issue. The chance of the Tyson Foods bond default over its five-year term is 2.79%. 

And when a company defaults, holders of its bonds usually recover some of the face 

amount. Moody's estimates that holders of defaulted senior unsecured bonds recover 

44.62% + 26.32% of the face amount. 

The bottom-left part of Exhibit 3 shows the cash flow that the bondholders hope to 

receive, the full payment of interest and principal. According to Moody's default 

probabilities their hopes have a 97.21% chance of fulfillment. On the bottom-right side 

of the exhibit are present-value factors, v(t), based on current STRIP prices. The non- 

defaulted cash flow has a present value of 618,046,875 (principal) and 247,614,404 

(interest) for a total of 865,661,279 dollars. The bottom-middle part of the exhibit shows 

the value of the cash flow that defaults after five interest payments and returns at 

maturity forty percent of the principal. The present value of this cash flow is 

247,218,750 (principal) and 130,372,559 (interest) for a total of 377,591,309 dollars. 

The exhibit is part of a spreadsheet that simulates default probabilities and recovery 

rates. The default probability is a uniform (0,1) random variable, such as the 1.00% in 

the exhibit, which is compared with the Baa3 default probabilities. And the recovery 

factor (e.g., 40.00%) is modeled as a beta random variable whose parameters c~ and 

are matched to the mean and standard deviation of Moody's recovery rates. The 

6 Moody's revises these probabilities and parameters annually, and one can download them from the 
webske riskcale.moodysrms.com/us/research/defrate.asp. 
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spreadsheet simulated 10,000 cash flows and calculated their present values. Exhibit 4 

graphs ~ the distribution of the present value, along with reference lines for the mean 

(E[X] = 854,166,433) and the purchase price (c/IX] = 747,187,500). Therefore, the 

expected profit is 106,978,933 dollars. The present value is at its maximum of 

865,661,279 dollars past the ninety-seventh percentile, and thereafter declines in a fairly 

straight line effectively to zero. The probability that the bondholders will lose money, i.e., 

P(PV(X) < 747,187,500) is 2.73%. Nearly all the defaults constitute a loss of money. 

These three examples illustrate the concept of the present value of a stochastic cash 

flow as a random variable. It differs from the common concept of present value as a 

number. The common concept would discount a stochastic cash flow at a rate of return 

that is greater than the risk-free rate. Typical investors, considering the Tyson Foods 

bond at the time of issue, would know that the present value of its cash flow, if it does 

not default, is 865,661,279 dollars. And they would know that discounting the non- 

defaulted cash flow at 3.87 percent per year results in this dollar amount. Now if the 

bond does not default, its stochastic cash flow is degenerate and equivalent to a simple 

cash flow; hence the correctness of the equation PV(XIno default) = 865,661,279 

dollars. This, indeed, is the mode of the present-value distribution (97.21% probable 

according to Moody's statistics). But does it do justice to the remaining 2.79% for one to 

decide somehow to discount the non-defaulted cash flow at 7.48%, and offer the 

resulting amount of 747,187,500 dollars? If not, then Donald Mango [2003, footnote 8] 

is correct to write that "the method of risk-adjusted discounting ... represents an 

7 Lee [1988] introduced actuaries to this form of graphing a probability distribution, wherein quantiles of 
the distribution are plotted against its percentiles, a form now commonly called a Lee diagram. 
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example of 'overloading an operator,' piling additional functional burden onto what 

should be a single purpose operator." 

We believe that dsk-adjusted discounting, with its concept of present value as a number, 

short-circuits the stochasticity of present value, is a legacy from pre-probabilistic, 

deterministic ages, and may be responsible for many of the woes in the past two 

decades of the insurance and reinsurance industry. 8 The conclusion of this section is 

that deriving the present value of a stochastic cash flow as a random variable is 

necessary for valuing the cash flow. More pointedly, if the random variables of the 

present values of two stochastic cash flows are equal, then the values of the two flows 

must also be equal. 

4. THE UTILITY OF A DISTRIBUTION OF PRESENT VALUE 

The value of stochastic cash flow C depends on the random variable X that maps from 

elementary outcomes ~j of basic space S to the present values of its outcome- 

dependent cash flows PV[ci]. The cumulative distribution function of X, viz., Fx(x), is 

P(X< x)= ~P(F~i). The cumulative distribution function of a random variable maps 
pv[o,~x 

from the real numbers into the unit interval [0,1]. Though closely associated with its 

random variable, it lacks information about the basic space. Hence, from this 

distribution alone, one would not know how X relates to other random variables. 

8 some think that the deterministic concept approximates the probability concept, perhaps as Newtonian 
physics approximates special relativity. However, the deficiency is much more glaring, rather like that of 
Adstotelian physics in comparison with Newtonian. Appendix A critiques risk-adjusted discounting. 
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However, an economic agent could evaluate the sum of its stochastic cash flows, i.e., its 

total (present-valued) stochastic wealth W, from the distdbution of W. Such an agent 

would have to express preferences; for example, whether a normally distributed wealth 

of mean 600 and standard deviation 100 is preferable to one of mean 550 and standard 

deviation 50. So an economic agent values not stochastic cash flows themselves, but 

rather the effect of such cash flows on its total stochastic wealth. Let W represent an 

agent's current stochastic wealth. Let X b e  a stochastic cash flow offered at price q. If 

the agent purchases X, its resulting wealth will be W+X-q. The agent needs a decision- 

making operator U that assigns real numbers to distributions of stochastic wealth, such 

that W1 is preferable to W2 if and only if U(WI) > U(W2). 

Karl Borch [1961, p. 248] briefly recounts the history of utility theory, particularly how it 

fell out of favor with late nineteenth-century economists, who deemed it too complex to 

be workable. Around 1900 the indifference theory of Vilfredo Pareto, which seemed to 

circumvent utility functions, found favor with many. But in the 1940s Von Neumann and 

Morgenstem [1972] resurrected utility theory by proving that every decision-making 

operator U that possesses certain reasonable properties implies a utility function. ~ 

Borch himself offers a proof [1961, pp. 249-251] that every operator U that satisfies two 

axioms implies a utility function. The first axiom, which is hardly disputable, is that U 

constitutes "a complete preference ordering over the set of all probability distributions." 

The second axiom is that if U deems two distributions as equivalent, it will also deem 

equivalent their linear combinations with a third distribution. He discusses criticism of 

See also Debreu [1987, §4.6] for a proof of the existence of an n-dimensional utility function for an 
economic agent that can form preferences about baskets of n goods. 
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the second axiom, but concludes, "... this general criticism does not concern ... 

insurance where the only events considered are payment of different amounts of 

money." [1961, p. 254] 

So we will proceed on the assumption that an economic agent estimates both the 

present value of its stochastic wealth W and the present value X of the stochastic cash 

flow. Moreover, the agent has a utility function u, .so that its decision whether to 

purchase the cash flow at price q is determined by the relation 

E[u(W + X-q) ] -  E[u(W)]. To those who argue that estimating random variables and 

utility functions is too much to ask of economic agents, there is a two-part rejoinder. 

First, economic decision-making is not an easy problem. But rather than to cut the 

problem down to the size of the economic agents, we ought to build the agents up to the 

size of the problem. And second, the capital-allocation alternatives have grown so 

complicated that one rightly wonders whether it be any less difficult to apply them than to 

apply utility theory. 

The properties of a realistic utility function are well known. 1° The utility of wealth w, 

u(w), should be strictly increasing, twice differentiable, and concave downward. These 

properties imply increasing utility and diminishing marginal utility, viz., that u'(w) > 0 and 

u"(w) < 0. To such functions applies Jensen's inequality, E[u(W)]<u(E[W]), with 

equality if and only if W is a degenerate random variable. Most treatments of utility 

lo Some actuarial references favorable to utility theory are Bowers [1986], B~hlmann [1980], Gerber [1979 
and 1998], Halliwell [1999 and 2001 ], Long ley-Cook [t998], Mango [2003], Panjer [1998], Schnapp [2001], 
Sundt [1991], and Van Slyke [1995 and 1999]. Economic works, e.g., Debreu [1987], Dixit [1990], Duffie 
[1990], and Von Neumann [1972], inevitably begin with a utility-theoretic foundation. 

1.5 



theory consider only these three properties; however, it is reasonable to add that 

lim=u'(w)=O, from which it also follows that l i m u ' ( w ) = 0 .  Furthermore, since 

stochastic cash flows can be much larger than an agents' stochastic wealth, one cannot 

set lower and upper bounds on W+X-q. Hence, u(w) should exist for all real w. 

Candidates for utility functions are either quadratic, power, logarithmic, or exponential. 

But of these four types, only the exponential function is appropriate for all real numbers. 

For the power and logarithmic functions are not defined for zero and negative numbers, 

and the quadratic function decreases after its vertex. 

The decision whether to purchase stochastic cash flow X at price q hinges on the 

comparison E[u(W + X-  q) ] -  E[u(W)]. For a small enough q (perhaps negative), the 

left side of the equation is greater, and the purchase is desirable. But as q increases, 

the left side decreases and there should be a unique q* at which both sides are equal. 

At a price greater than q* the purchase is undesirable. So it is true of stochastic cash 

flows in general what Borch writes about insurance losses: 

In insurance a basic assumption is that there will always exist a unique amount of money which 
is the lowest premium at which a company wilt undertake to pay a claim with a known 
probability distribution. This assumption establishes an equivalence between certain and 
uncertain events. [1961, p. 249] 

Borch writes from the insurance standpoint of receiving a minimum positive premium p 

for paying positive losses L, from which standpoint the decision hinges on the 

comparison E[u(W-L+p)]~ E[u(W)]. But paying a positive loss corresponds to 

receiving a negative payoff, and receiving a positive premium to paying a negative price. 

So "the lowest premium at which the company will undertake to pay a claim" from 

Borch's insurance standpoint is equivalent to the price q* "greater than which the 
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purchase is undesirable" from our investment standpoint. It augurs well for a valuation 

theory that one may treat liabilities as negative assets, and assets as negative liabilities. 

For one whose wealth is the real number w, the decision to purchase hinges on the 

comparison E[u(w+ X -  q)] ~ u(w). And due to Jensen's inequality: 

E[u(w + X - q)] -< u(E[w + X - q~ 
< u(w + E[X]- q) 

If q equals E[X], the inequality becomes E[u(w+X-E[X])]< u(w), with equality if and 

only if X is degenerate. Thus an agent whose wealth is deterministic cannot improve its 

expected utility by purchasing at expected value. A non-degenerate stochastic cash 

flow must sell at less than its expected present value for the expected utility of the agent 

to increase. This is not always the case when wealth W is truly stochastic, since X might 

countervail W. 

The q* that solves the equation E[u(W+ X-q ) ]=  u(W) satisfies the two principles of 

Appendix A. As per the first principle, it must lie within the minimum and maximum 

bounds of X. In particular, if X is degenerate, q* must equal X with probability one. As 

per the second, for any real number k, E[u(W+(X+k)-(q+k)) ]= u(W) if and only if 

E[u(W+ X -  q)]= u(W). Therefore, a change in the level of Xcan be offset only by the 

same change in q. 

The strengths of this version of utility theory notwithstanding, it has two defects that may 

explain why many sympathizers remain unconvinced. First, the comparison 

E[u(W+X-q) ] -u (W)  allows one to calculate the unique q* at which both sides are 
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equal, at which price the economic agent merely conserves its expected utility. But a 

ceiling or maximum price is not the same as a bidding price. Knowing not to pay more 

than 100 dollars for something is not quite the same as knowing what to pay for it. And 

second, these ceiling prices are not linear; for example, the ceiling price for twice X is 

not twice the ceiling price for X. The next section will remove these defects. 

5. OPTIMAL UTILITY AND INDIVIDUAL EQUILIBRIUM 

To determine whether E[u(W + X -  q)]> u(W) is to concentrate on the price q. Perhaps 

we should concentrate not on the price q at which to buy the whole X, but rather on the 

amount of Xto  buy at the price q. It may not be realistic to buy a fraction of a house, or 

a negative amount of land; but stochastic cash flows are ideally scaleable. The 

expected utility of an agent that purchases e units of X at price q per unit is 

f(e, q) = E[u(W + e X -  eq)]. The derivative with respect to q is 

a-J-f = -e .  E[u ' (W+eX-eq) ] .  Since u' is positive, the expectation is positive, and the 
~q 

sign of the derivative is opposite to that of e. If e is positive, a decrease in price q 

increases expected utility f. And if 0 is negative, an increase in price q increases f. 

Hence, a buyer (with positive e) seeks as low a price as possible, whereas a seller (with 

negative C)) seeks as high a price as possible. Nothing more than this obvious truth is to 

be gained from concentrating on price. 

A more subtle and fruitful perspective is to treat q as given and to determine how much 

of X to purchase. The derivative of the expected utility with respect to 0 is 
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a~f = E[u'(W + e X -  e q ~ x -  q)]. Appendix B proves that if P(X > q) and P(X < q) are 
De 

both greater than zero (i.e., that X -  q has both upside and downside Potential), then fas  

a function of e looks like a concave downward parabola. In symbols, /im+~ f(e,q) . . . .  

And f strictly increases up to a maximum, after which it strictly decreases. Hence, an 

economic agent that has little influence on price turns its attention to buying the unique 

amount that optimizes its expected utility. What determines price is left to Section 6; but 

for now one might reasonably expect prices to be less erratic and more reflective of 

value when the concern of agents is how much to buy or to sell, rather than to negotiate 

the most advantageous deals. 

Exhibit 5 graphs f(e) for various values of q. In this example W = 0, X is a fifty-percent 

chance of receiving 100 dollars, and the agent's utility is exponential, viz., u ( w ) = - e  ~lW . 

Not unexpectedly, all the curves intersect at e = 0, for the price of X is irrelevant if the 

agent has none; in symbols, f(0,q)= E[u(W)] = El-  e ° ]= -1.  As long as 0 < q < 100 the 

curves rise from negative infinity, attain a maximum, and fall back to negative infinity. If 

0 < q < E [X ]=50 ,  the risk-averse agent will optimize its expected utility with a long 

position (e > 0). If E[X]< q<100,  a short position (e < 0) is maximal; at q = 50 the 

agent neither buys nor sells. If q were 0 (a "can't lose" situation), or even negative (a 

"must win" situation), the agent would buy an infinite amount of X. Similarly, if q were 

100 dollars (a "can't win" situation) or greater (a "must lose" situation) the agent would 

sell an infinite amount. In addition to four curves with maxima, the graph shows curves 

for the "must lose" situation of q = 110 and for the "can't lose" situation of q = 0. Due to 
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the fact that this agent cannot distinguish X from 100 - X ,  the family of curves is 

symmetric about the vertical line e = 0, i.e., f ( -  8,100- q)= f(e, q). 

The total differential of fis: 

Df Df 

= EN ' (W + e x  - e q ) ( X -  q)]de - eS[u ' (W + e x  - eq)]dq 

Since u' is everywhere positive, E[u ' (W + 8 X -  eq)]> 0. Therefore, an increase in price 

(a positive dq) causes a change in fwhose sign is opposite to that of e. In other words, 

on the positive or long side of the e-axis high-q curves lie below Iow-q curves. 

Correspondingly, on the negative or short side of the e-axis high-q curves lie above Iow- 

q curves. As one can see in the exhibit, to increase price causes the expected utility of 

long positions to decrease and the expected utility of short positions to increase 

From this point we restrict our attention to those values of q for which both Prob[X < q] 

and Prob[X > q] are greater than zero, for which values f(e) has a maximum. Amount e 

at price q is optimal if and only if: 

D f = E[u ' (W + eX - eqXX - q)] = 0 
De 

One would like to know how the optimal amount varies with price; in particular, one 

would expect it to vary inversely with price. The total differential of this partial derivative 

is: 

d(  Df ~_ DE[u'(W + e X -  e q X x  - q)] d84- DE[u'(W + eX - 8 q X x  - q)] dq 
De ) De Dq 

= E[u ' (W + eX - eqXx  - q)2]~ _ E[u ' (W + e x  - eq )a (x  - q )+  u ' (W + e x -  eq)],~q 
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Optimal (09, dq) combinations maintain the total differential at zero: 

0 = E[u'(W + eX - OqXX- q'~J~ - E[u'(W + eX - eq)~(X - q)+ u'(W + eX - eq)]dq 

Because u" is everywhere negative the coefficient of dO is negative. And because u' is 

everywhere positive, the second term within the coefficient of dq is positive. If the whole 

coefficient of dq is positive, de and dq will vary inversely. It may not be positive in all 

cases, even with the fact that E[u'(W+OX-OqXX-q)]=O. But in the case of 

exponential utility, u'(w)= -a2 e -a" = -a. ae-"' = -a.  u'(w). Consequently: 

S[u'(W + e X -  eq)e(x - q)] = S[- a- u'(W + e x -  eq )e (x -  q)] 
= (- aO)E[u'(W + 8X - 8qXx - q)] 

=(-ae) 0 
=0 

Then the whole coefficient of dq is positive. In behavioral terms, with an increase of q 

the agent deems a decrease of e to be optimal. But even without exponential utility, for 

optimal 8 to vary inversely with q should be usual; real agents buy less at higher prices, 

and more at lower. 

An economic agent can optimize its utility simultaneously for many stochastic cash 

flows. Let the present values of the cash flows be ~ for j = 1, 2 . . . . .  and let them be 

offered at prices qj. Sotheagent seeksto maximize f (® )=E [u~W+~ je iX i -~ jO jq j l  ] .  

The partial derivatives ' f  = E [ u l W + ~ O j X ~ - ~ j  OjqjIXk--qk)] m u s t b e z e r o a t t h e  
o~ek 

optimal values e*. Letting W* denote the optimal portfolio W + ~ e ~ X j - ~ e ~ q j , w e  
J i 

must have for all k, E[u'(W *Xx k - qk)]= o. This means that the prices of the stochastic 
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cash flows with respect to which an agent has optimized its expected utility, even though 

the agent passively accepted them, satisfy the equations: 

E[u'(W *)x,J 
qi = E[u ' (W*)  ] 

= E[ 'xj] 

A portfolio optimized with respect to cash flows Xj is also in equilibrium with respect to 

them; in other words, the agent wishes neither to buy nor to sell amounts of Xj. The 

agent can express the value of each cash flow as qj = E['~'Xj]. This may not be true of 

every stochastic cash flow; but it is true of the flows with respect to which the portfolio is 

optimized. 

The random variable • is equal to u' (W*) /E[u ' (W*) ] ,  and E [ ~ ] = I .  ~ is called 

variously a state-price random variable (Halliwell [2001] and Panjer [1998]), a deflator 

(Christofides and Smith [2001]), and a Radon-Nikodym derivative (Gerber and Pafumi 

[1998]). In terms of the probability system, • maps from elementary outcome F~ to: 

u ' ( w  * ) ) 
I£ u'(w* 
J 

Because of diminishing marginal utility u'wi l l  be less positive for the favorable outcomes 

of W* than it will be for the unfavorable. Therefore E[~/X] = ~., P(~,)~£(~,)X(~,) reweights 
i 

the present value of a stochastic cash flow, giving more weight to the outcomes at which 

the portfolio is less valuable. 11 Hence, if X tends  to vary with W*, E[~X] will tend to be 

11 So P(~).'£(~) qualifies as a probability measure (Section 2). That it equals zero if and only if P(~) = 0 
makes it an equivalent measure. Wang [2001] refers to P(~).~(~) as distorted probability. 
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less than E[XJ. If it tends to vary against W*, E[~XJ will tend to be greater. 

A perfectly optimized portfolio would be in equilibrium with respect to all stochastic cash 

flows. Equipoised and wishing to buy or to sell nothing, its economic agent would value 

every cash flow as qx = E[u'(W*)X]/E[u ' (W*)]= E[~X] .  This formula satisfies the 

principles of Appendix A. For first, it handles correctly the degenerate cash flow: 

qk = E[~k]  = E[~].  k = 1-k = k 

And second, as a weighted average it stays within any bounds. Moreover, it is linear: 

q~o,x, = E[~(T_,~,X,)]= T_, ~,E[~X,]  = E,~',qx, 

The linearity of valuation is paradoxical. Valuation should be linear, and indeed is linear, 

if an agent is in equilibrium. However, if the agent is in equilibdum, it neither buys nor 

sells. But an agent that buys or sells believes that the result will restore equilibrium, and 

buys or sells into the equilibrium price. In other words, the valuation of economic agents 

anticipates equilibrium. 

6. PRICE DETERMINATION AND MARKET EQUILIBRIUM 

Until now we have thought of economic agents as having no influence on price. But 

consider a market of n > 1 agents. ~2 Since at any given moment stochastic cash flow C, 

with present value X, can have just one price, the fh agent seeks to maximize its 

expected utility f~(e,)=E[u,(W,.+e,x(,)-e,q)J, the optimal amount being e;. In this 

12 There is no need to distinguish between large and small markets (as per Wang [2001, §2]), a distinction 
that continuity of size renders arbitrary. 
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formulation each agent has its own utility function, current wealth, and optimum. 

Moreover, each has its own estimate of the properties of X, which is indicated by a 

subscript in parentheses, X(,). But really this means that each agent has its own 

probability system. The only quantity common to all is the price q. Sellers belong as 

much as buyers to the market, selling being just the buying of a negative amount and 

vice versa. 

Whether an agent regards itself as a price-maker, a price-taker, or something in 

between, for any given q, the agent should purchase the amount e that maximizes its 

expected utility. But in a market they collaborate by setting q such that their optimal e* 

amounts clear. Normally to clear is for net buying to be zero, i.e., ~,e~ = 0. However, it 
i 

could be otherwise, e.g., ,~,e I =1, as in an auction. There is one and only one price q 
i 

at which optimal amounts 0* clear. For at higher prices, the expected utilities are 

maximized at lesser e values, which means that sellers want to sell more than buyers 

want to buy. Conversely, at lower prices, the utilities are maximized at greater e values, 

and buyers want to buy more than sellers want to sell. 

In mathematical terms, a market of n agents is a mechanism for solving a system of n+l 

equations in n+l variables. The n+l equations consist of the n equations that maximize 

the expected utilities (or that set their first derivatives to zero) and the clearing equation 

~, i = 0 (or 1). And the n+l variables are the n values of 0 and the one price q. 
i=1 
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Essentially, price is a device whereby the agents of a market maximize their expected 

utilities. Most agents claim to have little or  no influence on price, and great or  total 

influence on quantity. But if the market solves a system of s imultaneous equations, then 

in overall equil ibrium the random wealth 14/* of each agent is more than acceptable; as 

far as cash flow X is concerned it is optimal. The agents collaborate, most ly unawares, 

to arrive at an equil ibrium in which each does as well as possible. 13 

The remaining exhibits develop this idea in a three-agent market. The three agents are 

A, B, and C, or Abel, Baker, and Charl ie for realism. At first, let us assume that the 

wealth of each is deterministic at 100,000 dollars, and that their utility functions are the 

same at u(x)~= - e  -°°°°°°~x. An agent at this wealth and with this utility would regard a 

gain of 11,000 dollars and a loss of 10,000 dollars as offsetting. 

Exhibit 6 describes how these agents would price stochastic cash f low X, which they all 

bel ieve to be a fifty-percent chance of gaining 100,000 dollars. Four parameters 

determine the exhibit, one price q and three amounts e, one for each agent. These 

parameters are the shaded cells of the topmost table of the exhibit. However,  the e 

amount  for Charl ie is constrained so that the three amounts total to one. In other words, 

stochastic cash f low X must be completely auctioned off to Abel, Baker, and Charlie. So 

really, the free parameters are the unit price q and the e amounts of Abel and Baker. 

13 Such an overall equilibrium is known as a Pareto optimum (Gerber, 1979, Chapter 7), technically 
defined as a state in which one cannot do better unless another does worse. 
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The next table simply lists the marginal utilities of the agents, which here are the same. 

The next three tables take q and the e amounts and calculate each agent's expected 

marginal utility, i.e., E[u'(W+eX-eqXX-q)]. This appears in the last cell of the 

"Mean" row of each agent's table, which is the sumproduct of the columns labeled 

"Probability" and "u'( )(X-q)". The expected marginal utilities are fed into the last column 

of the topmost table, and their summary statistic in the "Total" row is their root mean 

square, i.e., the square root of the average of their squares. 

The Excel Solver add-in seeks q, Abel's e, and Baker's e so as to minimize the root 

mean square. According to theory, there is one, and only one, equilibrium at which all 

three expected marginal utilities are zero, which happens if and only if their root mean 

square is zero. The solver deemed 5.959E-03 as the minimum, with individual marginal 

utilities 1.931E-03, 9.495E-03, 3.555E-03. Being six or seven orders of magnitude less 

than the state marginal utilities, these amounts are effectively zero. So Abel, Baker, and 

Charlie buy equal shares (33.33%) of X, which makes sense since they have the same 

utility and the same outlook as to Probability, W, and X. And together they buy all of X 

at a price of 45,843 dollars. At a higher price they would not buy it all, and at a lower 

price they would want to buy too much. It doesn't matter here from where X enters the 

financial universe of Abel, Baker, and Charlie. There does not have to be a fourth agent 

who owns all of X. One may posit an infinitely risk-averse quasi-agent, such as "Luck" 

or "Possibility," which will unload Xat  any price with upside potential. 

In Exhibit 7 Abel is less risk-averse than Baker and Charlie; his exponential parameter 

a = 2.500E-06 is half theirs. They all have the same outlook; but Abel has twice the 
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appetite for risk. This implies that the price must rise from 45,843 to discourage 

overbuying. The solver arrived at the price of 46,879 dollars, at which price Abel takes 

half and Baker and Charlie take quarters. Abel, in effect, functions like two agents: If a 

fourth agent were added to Exhibit 6 having the same parameters and outlook as Abel, 

Baker, and Charlie, the solver would arrive at the price of 46,879 and each would have a 

quarter share. 

Exhibit 8 takes a step into the reality of differing opinions. Charlie continues to believe 

that X is a fifty-percent chance of gaining 100,000 dollars. But Abel assesses it as a 

fifty-percent chance of gaining 80,000, and Baker as a forty-percent chance of gaining 

100,000. All have the same utility; but to Abel and Baker stochastic cash flow X is less 

attractive than it was in Exhibit 6. Therefore, it is no surprise that the equilibrium comes 

at the lower price of 39,353 dollars, at which Abel's and Baker's shares are only 8.09% 

and 5.41%. Charlie rates Xhighly, and buys 86.50% of it. This example shows that the 

market model developed in this paper does not require the economic agents to have the 

same assessment of risk. Each agent must be free to create its own probability system. 

Finally, Exhibit 9 treats the spreading of risk within a closed system. Charlie owns X (in 

addition to his deterministic wealth of 100,000 dollars). And Charlie's e amount is 

constrained so that the three amounts total to zero. Otherwise, the exhibit is the same 

as Exhibit 6. Not unexpectedly, the equilibrium is the same; the price is 45,843 dollars, 

and each agent ends up with a third of X. 

This market-tempered utility theory generalizes to any number of agents and any risk- 
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averse utility functions. Moreover, the probability system of each agent, in which its 

wealth W and the cash flow X are related, is arbitrary. Each agent is free to act on its 

own beliefs, whether accurate or not. Even as to the issue of present value, mentioned 

in Section 2, each agent is free to make its own judgments. But this model 

countenances no difference between large and small markets; it holds as much for a 

market of two agents as for a market of millions. A market would seem to be no more 

and no less than the sum of its parts, i.e., a number of agents each seeking to maximize 

its own expected utility. It is agents that move their markets, not markets their agents. 

7. REINSURANCE PRICING 

It is instructive to apply this valuation theory to reinsurance. Suppose that an insurance 

company asks reinsurers to assume a catastrophic risk, e.g., its exposure to hurricane 

losses in excess of a certain threshold. We will assume that the insurer wants, or is 

constrained, to reinsure this risk at any reasonable cost. Exhibit 10 shows how a market 

of two reinsurers might determine the price. The exhibit is set up for insurance losses L 

and premiums p, rather than for payoffs X and prices q. But Section 4 explained how 

losses are equivalent to negative payoffs, and premiums to negative prices. 

Reinsurer A is freshly capitalized at one billion dollars, which it has placed in cash and 

government securities. After examining the underwriting information, it estimates the 

probability of losing fifty million dollars to be four percent, and that of losing one hundred 

million to be two percent. So the expected loss is four million dollars. Reinsurer B 

already has an insurance and investment portfolio; in fact, it estimates the distribution of 
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the present value of its wealth as twenty-five percent at 1.1 billion dollars, fifty percent at 

1.0 billion, and twenty-five percent at 0.9 billion. So its size is comparable to that of 

Reinsurer A, and we've assumed both their utilities to be exponential with a-parameter 

5.000E-09. 

Though Reinsurer B agrees with Reinsurer A that the expected loss is four million 

dollars, it believes the probability of losing twenty-five million dollars to be one percent, 

that of losing fifty million dollars to be two and a half percent, and that of losing one 

hundred million to be two and a half percent. The "Probability" column of Reinsurer B in 

the exhibit is the outer product of (25%, 50%, and 25%) and (94%, 4%, 2%). If loss 

column "L" consisted of three blocks of (0, 50, 100) million dollars, the hurricane loss 

would be independent of the stochastic wealth of Reinsurer B. If this were the case, 

exponential utility would allow Reinsurer B to value this risk on its own (Appendix C). 

Both reinsurers would have the same assessment of the risk, and each would take a fifty 

percent share at the total premium of 4,781,718 dollars. TM 

However, Reinsurer B does not deem the risk as independent; the tendency is for the 

loss to be greater when the current stochastic wealth is less. In fact, the correlation 

coefficient between W and L is -8.2 percent. Perhaps Reinsurer B has already 

assumed some of the same hurricane risk from other insurers. In any case, it is not as 

eager to assume the new risk as is Reinsurer A. If fact, a total premium of 5,501,545 

dollars is needed for a fifty percent share of the risk to maximize the expected utility of 

14 Each reinsurer receives its share of the premium. The e factors in the fifth and sixth columns of each 
reinsurer's calculation take this into account. 
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Reinsurer B, versus the 4,781,718 for Reinsurer A. The undesirable covariance 

increases the quote of Reinsurer B by more than 700,000 dollars. But the reinsurers 

together will assume the whole risk for a total premium of 5,106,791 dollars, Reinsurer A 

signing the slip for 68.29 percent and Reinsurer B for 31.71 percent. 

One often hears about erratic swings in the reinsurance market. Exhibit 11 suggests 

how this valuation theory might help to moderate such swings. Suppose that there is a 

third reinsurer, Reinsurer C, freshly capitalized just like Reinsurer A. But this reinsurer is 

dour about the hurricane risk, estimating a ten percent chance of losing fifty million 

dollars, and a three percent chance of losing one hundred million. So it expects eight 

million dollars of loss, twice as much as what the others expect. Therefore, it sits on the 

sidelines, lamenting the overcapitalized and soft reinsurance market while Reinsurers A 

and B offer 5.1 million dollars. Reinsurer C would be content with an equal share of the 

risk, but a total premium of 8.9 million dollars would be needed to maximize its expected 

utility at a one-third share (and 10.8 million at a full share). 

Why not let Reinsurer C sign the placement slip for a negative share? This is the 

equivalent to short selling in other markets; so why not here? Implicitly the insurance 

company is on the slip at a -100 percent share. The short positions on the slip can lose 

at most the premiums that they pay; it is the long ones that are "naked" to the losses. In 

fact, since losses and premiums are inverses of payoffs and prices, it is hard to define 

here what is long and what is short. According to the exhibit, Reinsurer C expresses its 

belief in cheap reinsurance by taking a -90.91 percent share. The effect of its 

contrariness is to raise the price from 5,106,791 to 6,077,896 dollars. Instantly the 
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market hardens by nineteen percent, and everyone (other than, perhaps, the insurance 

company) is happy. One might have qualms about a reinsurer's having more than a 100 

percent share; but this is less likely to happen in a market of more than three. 

Though it is not uncommon for direct-writing reinsurers to cooperate and to take shares 

of risks, reinsurance brokers would have the advantage to implement this particular 

strategy of negative shares, even as they have advantages to foster cooperation among 

reinsurers. However, at present reinsurers are not prepared for market pricing, for few 

understand that the premium for a share of a deal should not equal the share of the 

premium for the whole deal. is 

8. IMPLICATIONS 

Before concluding, we will here draw out implications for two important and relevant 

topics, solvency and investment. As to solvency, risk-adjusted discounting has misled 

many to elevate it from the status of a constraint to that of a valuation method. Solvency 

is important, especially for insurance and reinsurance companies; so important, in fact, 

that they ought to decline deals that jeopardize it no matter how attractively priced they 

are. But the insurance industry, along with its regulators and analysts, has adopted the 

method of the banking industry, as expressed in the so-called "Basle Accord" (Basle 

Committee, 1988). This method is concerned with how a company's net worth might 

deteriorate from one (annual) balance sheet to the next. Capital is charged against, or 

15 Again, risk-adjusted discounting is the culprit. Rates of return are scaleable; the ROE of half the deal at 
half the price is the same as the ROE of the whole deal at the whole price. 
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allocated to, elements of wealth that are subject to various risks. A comparison of net 

worth with this overall "risk-based capital" determines whether the company is financially 

strong or weak. 

This has led many, both in banking and insurance, to cost-of-capital pricing. One 

calculates how much capital to allocate to a deal and subtracts the cost of this capital 

from the deal's expected value. Now, to be fair, the solvency regulations refrain from 

saying how to price banking and insurance products. But lack of vice is not virtue. For 

regulators do believe cost-of-capital pricing to be a proper application of their solvency 

regulations. In fact, they can't imagine how pricing could be done otherwise, and they 

are gratified to see their industries following in their trains. This busies many technical 

minds with constructing ideal risk measuFes, according to which one may allocate 

enough, but not too much, capital to risky deals. As Glenn Meyers [2002] expresses it, 

"We have to balance the cost of an insolvency with the cost of holding capital." 

Both the regulation and the application are flawed, the flaw in both concerning time. 

First, the regulation countenances only accounting items and how they might change 

from statement to statement. But cash, not capital, is the prima materia of the financial 

universe. To stress the current balance sheet with an array of one-year assaults tells 

something about financial strength; but it does not plumb to the depth of cash. Better is 

to estimate the probability for a company's cash account to remain positive throughout 

its runoff. A company highly certain to have enough cash on hand to quit its obligations 

should be deemed stronger than a company highly certain to have a positive net worth 

one year hence. This superior criterion of strength requires peering into the cash level. 
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Second, nearly everyone blithely assumes that money works, in particular, that it works 

at a certain rate per time period. So one hundred dollars working at ten percent per year  

should be paid ten dollars at the end of the year. 16 But if a risk were resolved in a very 

short time, days or even hours, capital allocated to it should be paid pro-rata as to time. 

Unlike repairmen, who charge by the hour or fraction thereof, capital does not bill by the 

whole year. 17 The whole picture of insurance needs revamping. Fussing over 

regulation and its effect upon accounting statements evades economics, is Insurance is 

not the exposing of capital to loss and the pooling of risks to optimize such exposure. 

Rather, it is a transaction in which a stochastic cash flow is exchanged to the benefit of 

the expected utilities of both parties (Bowers, 1986, Chapter 1, aptly titled "The 

Economics of Insurance"). 

As to the second topic, investment is a species of valuing stochastic cash flows. An 

insurance or reinsurance company ought always to revise its estimate of the present 

value of the sum of its stochastic cash flows. To keep negligible the probability that this 

present-value random variable is negative (perhaps more accurately, the probability that 

its run-off cash account would ever be negative) the company must limit both its 

insurance and investment activities. Investment neither piggybacks upon nor 

16 But who gets paid, the money or its owner? If the money works for its owner, is it a slave? Appendix A 
argues that for money to work is nonsensical and misleading language. Obviously it is a figure of speech. 
But if none bothers (or is able) to translate it into literal language, how can the figure be harmless? 
17 "The is no natural unit of time." (Halliwell, 1999, Appendix E) In the same section he teases out the 
ramifications to capital allocation of doing business on other planets. Venus might become the Bermuda 
of the next century, for its shorter year may afford reinsurers accounting advantages! 
18 One can improve wealth on paper without improving real wealth. The fault is not just with the present 
accounting rules; it will always exist, even after the eagerly awaited convergence of IAS and GAAP in 
2005. One should make sound economic decisions and let the accounting chips fall where they may. 
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supercharges underwriting. Since each crowds out the other, the business of insurance 

should be to underwrite well, not to underwrite to generate funds to invest well. 

Insurance deals are perfect specimens of stochastic cash flows; insurance is the ideal 

setting in which to apply this theory. 19 Investing in equities is far more complicated. For 

the stock investor puts money not into a project, but into a corporation whose employees 

will put money into projects indefinitely. Since one bets not on a deal, but on persons 

who will bet on deals, the equity investor is at one remove from the stochastic cash 

flows. It is not just a matter of buying in, possibly receiving a few dividend checks, and 

selling out; it is not even as simple as projecting a dividend stream, as per the Gordon 

dividend-growth model. To value a stock is to value the human management of a 

stochastic perpetuity. (No wonder that investment theory eschews stochastic cash 

flows!) In companies that understand this theory and the near idealness of its 

application to insurance chief actuaries will be kings; chief financial officers will be 

charged with corporate reporting and cash management. More than forty years ago Karl 

Borch predicted the ascendance of actuaries: "The traditional approach implies that the 

actuary should play a rather modest part in the management of his company . . . .  In the 

light of these theories [for decision making under uncertainty] it appears that the actuary 

should take a broader view of his duties." [1961, pp. 245f.] 

19 More accurately, it will be the ideal setting, if insurers and reinsurers should get back to basics, one of 
which is to underwrite exposures free of moral and morale hazards. According to Rob Jones of Standard 
& Poor's, "Reinsurers reaJize that they must focus on underwriting performance rather than investment 
portfolios." ("Reinsurers Must Get Back To Basics," Reactions Rend~ Vo~ Reporter, September 11, 2002, p. 
12, www.rvs-monte-carlo.com/docs/reaction/Reaction 11-09-2002.pdf. 
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9. CONCLUSION 

From taking seriously the meaning of 'present' in 'present value' our theory of valuation 

derives. Present value really is value now, not value on the horizon of time, not value as 

of the next accounting statement. The present is right this moment, not after the next 

news flash, not even after a double take. Anything else, however cleverly concealed, is 

value in the future, to which the present is linked by capital working at percent per year. 

How strange that this understanding of 'present' is as countercultural to 1990s finance 

as such slogans as "Live for the moment!" were to 1960s society! But perhaps it will 

catch on in this decade. 

The belief that value now must impound what it might later become confuses subject 

and object. "The price of an asset or a deal is different from the cash flow - as different 

as subject is from object." (Halliwe[I, 2001, {}6) Hence, many cannot tell the difference 

between keen appraisers and s a w y  traders. Theorists construct models in which 

present price depends on future price, the more knowable on the less knowable. 

Predicting the future replaces valuing the present. This misconception is twin to that of 

subsuming the value of risk into the value of time. Recognizing this may well cause a 

financial revolution, as Oakley Van Slyke (1995, p. 587) writes: 

The theory of finance, both as it is and as it will be after the coming revolution, is by its nature 
prescriptive. The theory of finance suggests how a decision-maker should make decisions 
among alternative courses of action. The theory of finance is not descriptive. It does not show 
why people or institutions behave as they actually do. 2° 

2o Similarly Borch [1961, §5.2]: "Shackle does not consider his theory as normative in the sense that it 
states how rational businessmen should make decisions. All he claims is that his theory describes, or 
explains how businessmen actually reach their decisions." Which is more important, a description of how 
something is done or a description of how it ought to be done? Rationality has to do with oughtness. 
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One can enumerate risks of all sorts, e.g., that payoffs will be too small or too large, or 

too soon or too late, that interest rates will go up or down, that courts will be too lax or 

too stern, that the company cornptroJJer wJJl embezzJe millions of dollars, that a virus will 

infect the company database, that an asteroid will strike the earth. These may or may 

not be legitimate concems for the management of an insurance or reinsurance 

company. But valuation impounds into the price of a stochastic cash flow the distribution 

of the probability of its present value. Hence, valuation countenances only the risks that 

affect that distribution. 

Present value is a random variable. An economic agent must know the present value W 

of its current stochastic cash flow. Then it must estimate the present value X of the 

proposed deal (e.g., as in Exhibit 2), as well as its joint distribution with W. Utility theory 

is the bridge from random variables to values. An agent should know how much e of the 

deal to purchase at price q, i.e., the amount that maximizes its expected utility 

f(e)= E[u(W + eX -  eq)]. Interaction of agents with one another will produce a clearing 

price, at which each agent purchases an optimal amount. The analytics of all this may 

seem too complex and difficult a task. However, insurance cash flows are perfect 

specimens of stochastic cash flows, and actuaries are fortunate to work in such an ideal 

laboratory. Furthermore, capital-allocation programs have grown at least as complex 

and difficult. Perhaps actuaries disenchanted with them will examine present value and 

utility, and give the finance worJd something to emuJate. 
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Stochastic Cash Flow on Present-Value Coordinate System 
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Cumulative Distribution of Present Value 
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Exhibit 3 

t 
0.0 01 Oct 2001 
0.5 01 Apr 2002 
1.0 01 Oct 2002 
1.5 01 Apr 2003 
2.0 01 Oct2003 
2.5 01 Apt2004 
3.0 01 OCt 2004 
3.5 01 Apr 2005 
4.0 01 Oct 2005 
4.5 01 Apr2006 
5.0 01 Oct 2006 

Present Value 

Issuer TYSON FOODS INC 
Issue Date 01 Oct 2001 
Maturity 01 Oct 2006 
Price 747,187,500 
Face Amount 750,000,000 
Coupon 7.25% 
Frequency semi-annual 
Moody's Rating Baa3 
Structure senior unsecured 

Without Default 

Default 
Date Probability Actual Principal Interest 

0.00% 1 0 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 27,187,500 
0.00% 1 750,000,000 27,187,500 

618,046,875 247,614,404 

Recovery Parameters i 4462o/0 I 
26.32% I 

1.145 I 
1.422 I 

B((~, p) 40.00% 
Recovery 300,000,000 

Simulated Default 

DefauLt 
Probability Actual Principal Interest 

0.00% 1 0 
0.20% 1 27,187,500 
0.31% 1 27,187,500 
0.48% 1 27,187,500 
0.75% 1 27,187,500 
0.98% t 27,187,500 
1.28% O 0 
1.68% 0 0 
2.21% 0 0 
2.48% 0 0 
2.79% 0 300,000,000 0 

1.00% 247,218,750 130,372,559 

@ 01 October 2001 

STRIP 
Prices v(t) 

100 00/32 1 000; 
98 27/32 0.988 ! 
97 22/32 0.977 
96 02/32 O.96O 
94 14/32 0.944 
92 18/32 0.925 
90 12/32 0.904 
88 06/32 0.882 
86 02/32 0.860 
84 07/32 0.842 
82 13/32 0.824 



Exhibit 4 
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Exhibit 5 
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Expected Exponential Utility with X as lO0,Bernoulli(0.5) 
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Agent 
Abel 
Baker 
Chariie 

Total I 45,843 100.0(7-/o 

Exhibit 6 

Three Identical Agents 

E[U'( I(X-q)] 
1,931 E-03 I 
9.495E-03 

, 3.555E-03 

5.959E-031 

Agent a u'Ix ) 
Abel 5 . 0 0 0 E - 0 6  exp(-5.0COE-06 • x,n 
Baker 5.000E-06 exp(-5.00OE-06 * x) 
Chadie 5.000E-06 exp(-5.000E-06 * x) 

Abel 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean Lo~% [o:oXl~ol, ~oXo:o;i ~1.1 ~o]l~l: I t.931E-031 

Baker 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean I 

x-q w+ex.eq 
-45,843 84,719 
54,157 118,052 

i 1 " .  | i  $ 1 1  ! I H  • I ; 

u'(W+ex.eq) u'( )(X-q: 
6.547E-01 -3.001 E+0~ 
5.542E-01 3.001 E+0~ 

9.495E-0~ 

Charlie 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
Stata 9 
State 10 

Mean I 100% 100,000 50,0C0 4,157 101,386 3.5SSE-031 
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Exhibit 7 

One Agent Less Risk-Averse 

Agent Price q 8 E[u'( )(X-c/)] 

Baker / 46 879 ~:!~ i ~ i ~  1,425E-02 
46 879 ~ Charlle | . . . . . . . .  .... 1.500E-02 

Total I 46,879 100.00% 1,200E-021 

Agent a u'(x) 
Abel 2.500E-06 exp(-2,500E-06 * x)l 
Baker 5.000E-06 exp(.5.000E-06" x) 
Charlie 5.000E-06 exp(-5.000E-06 * x) 

Abel 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
Steta 10 

Mean I 100% 100,000 50,000 3,121 101,560 2.005E-03l 

Baker 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean I 100% 100,000 50,000 3,121 100,780 1.425E.021 

Charlie 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean I 100% 100,000 50,000 3,121 100,780 1,500E-02l 
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Exhibit 8 

Agent 
Abel 
Baker 
Charlie 

Total L 

Agents of Differing Opinions 

39,353 100.00% 9:327E-031 

Agent a u '(x} 
Abel I 5.000E-06 exp(-5.00OE-06 * x)l 
Baker I 5.000E-06 exp(-5,000E-06 * x) 
Charlie 5.000E-06 exp(*5.0OOE-06 * x) 

Abel 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean I 100% 100,000 40,000 647 100,052 1.431 E-02I 

Baker 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean I 

Chadie 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean ] 

100% 100,000 40,000 647 100,035 3.093E-031 

100% I00,000 50,000 10,647 109,210 6.819E-031 
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Agent 
Abel 
Baker 
Chadie 

Total 

Agent 
Abel 
Baker 
Chadie 

Abel 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean 

45,843 

a 

5.000E-06 
5.000E-06 
5.000E-06 

Exhibit 9 

Agents as a Secondary Market 

e E![u'()(X-~)] 
1"~6E'02 I 
8.972E-03 
5.156E-03 

o.oc~ 1.022E-02 I 

u'ix) 
exp(-S.000E-0~ * x) I 
exp(-5.000E-06 * x)l 
exp(.5.000E-06 * x)l 

Comment 
CharUe owrm X 

I 100% 100,000 50,000 4,157 101,386 1.,n36E-021 

Baker 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

M e a n  I 100% 100,000 50,000 4,157 101,386 8.~72E-o31 

Chadie 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

5.156E-031 
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Exhibit 10 

Reinsurance Pricing 

Agent Premium p e E u'( )(-L +p ) 
Reinsurer A 6 8 . ~  .4.276E-03 
Reinsurer 8 ....... 5 1~79:1 ; ' ; 311~% -5.540E-03 

Total 5,106,791 100.00% 4.948E-031 

Agent a u'(x) 
Reinsurer A 5 . 0 0 0 E ~ 0 9  exp(-5.00OE-09 * x) 
Reinsurer B 5.000E-09 exp(-5.000E-09 * x) 

Reinsurer A 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean 100% 1,000,000,000 4,000,000 1,106,791 1,000,755,878 4.276E-03 

Reinsurer B 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean 

-L+p W-6L +ep u'(W-gL +ept u'( )(-L +p) 
5,106,791 1,101,619,131 4.054E-03 2.070E+04 

-19,893,209 1,093,692,769 4.218E-03 -8.390E+04 
-44,893,209 1,085,766,407 4.388E-03 -1.970E+05 

5,106,791 1,001,619,131 6.684E-03 3.4t 3E+04 
-44,893,209 985,766,407 7.235E-03 -3.248E+0~ 
-94,893,209 969,913,682 7.832E-03 -7.432E+05 

5,106,791 901,619,131 1.102E-02 5.627E+04 
-94,893,209 869,913,682 t.291E-02 -1.225E+~ 
-94,893,209 869,913,682 1.291E-02 -1.225E+0( 

100% 1,000,000,000 4,000,000 1,106,791 1,000,350,913 -5.540E-0~. 

State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
Stata9 
State 10 

Mean 0% 0 0 0 0 0.000E+001 
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Exhibit 11 

Reinsurance Pricing with a Short Position 

Agent Premium p 5 E[u'( )I-L+p)] 
-1.891E-02 I 

ReinsurerReinsu rer AB [ . . . . . .  6 0 ~  8 ~  6.643E-04 
Reinsurer C / 6 , 077 ,896 :90~ .q~ l~  -9.633E-03 

Total 6,077,896 100.00% 1.226E-021 

Agent a u'(x) 
Reinsurer A 5 .000E-09  exp(-5.000E-09 * x)l 
Reinsurer B 5 .000E-09  exp(-5.000E-09 * x) 
Reinsurer C 5.00OE-09 expI-5.000E-09 * x) 

Reinsurer A 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 
Mean 1(]0% 1,000,000,000 4 ,000 ,000  2,077,896 1,002,419,808 -1.891E-02, 

Reinsurer B 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Probability W L -L~  w-eL +ep u'(W-eL +ep) u'( I(-L +p; 
6,077,896 1,104,525,231 3.995E-03 2.428E-I-O~ 

-18,922,104 1,085,911,75,3 4.385E-03 -8.297E+04 
-43,922,104 1,067,298,274 4.813E-03 -2.114E+OE 

~ ! ~ 7 ~  t ~ , ~  ~ =0 6,077,896 1,004,525,231 6 .587E-03 4.004E+04 

-93,922,104 930,071,318 9.558E-03 -8.977E+05 
5.077,896 g04,525,231 1 .086E-02 8.801E-,-04 

I !  :~ i! ~, ~ O 0 0 i  -93,922,104 830,071,318 1.578E-02 -1.480E+OE 
~= i~ i  ~:!~ ~ ' ~ : i  : ~ i : i  I !i00, -93~922,104 830,071,318 1.576E-02 -1.480E+OE 

Mean 100% 1,000,000,000 4,0(J0,000 2,077,8~8 1,001,547,075 6.643E-04 

Reinsurer C 
State 1 
State 2 
State 3 
State 4 
State 5 
State 6 
State 7 
State 8 
State 9 
State 10 

Mean 100% 1,000,000,000 8 ,000 ,000  -1,922,104 1,001,747,358 -9.633E-03 
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APPENDIX A 

The imposture of Risk-Adjusted Discounting 

One widely used and highly respected textbook on finance opens with the definitive and 

programmatic statement: 

To calculate present value, we discount expected payoffs by the rate of return offered by 
equivalent investment alternatives in the capital market. The rate of return is often referred to 
as the discount rate, hurdle rate, or opportunity cost of capital. [Brealey and Myers, 2002, p. 15] 

That the payoffs (here assumed to be positive, or at least nonnegative) may be 

stochastic is unimportant. As long as one knows which investments are equivalent to 

the one in question, and at what rate of return these equivalent investments are 

discounted, one needs only to discount the "expected payoffs." On the same page the 

authors repeat this statement, explicitly mentioning risky investments: 

Here we can invoke a second basic financial principle: A safe dollar is worth more than a risky 
one. Most investors avoid risk when they can do so without sacrificing return. However, the 
concepts of present value and the opportunity cost of capital still make sense for risky 
investments. It is still proper to discount the payoff by the rate of return offered by an equivalent 
investment. But we have to think of expected payoffs and expected rates of return on other 
investments. 

One can hardly disagree with the second basic principle; if the present values of the 

expected cash flows of a riskless investment and a risky investment are equal, the risky 

investment should be worth less. But the authors see no way to make the risky 

investment worth less other than to discount it at a greater rate of return, a return equal 

to that "offered by an equivalent investment." One should a least wonder how to tell 

which investments are equivalent. 21 And if there are equivalents, is there one that is 

21 Why do the authors even suggest that not all investments are equivalent when they intend to argue that 
the Capital Asset Pricing Model renders them all 13-equivalent? 
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standard and priced by itself? If there is no standard, how do we avoid circular 

reasoning, viz., that A should be discounted at 15% because of [] and that B should be 

discounted at t5% because of A? But even apart from the matter of circular reasoning, 

we can here show that discounting expected payoffs at risk-adjusted rates of return 

leads to inconsistencies. This will help us to see that conceiving present value as a 

random variable is necessary for consistently valuing stochastic cash flows. 

Consider again the simplest stochastic cash flow of Section 3, the receipt of either 120 

or 80 dollars one year from now, depending on a coin toss. The source of this example 

[D'Arcy, 1999, p. 23] assumed a risk-free discount rate of seven percent per year, and a 

risk-adjusted discount rate of twelve. The expected flow of 100 dollars would be 

discounted at twelve percent per year to yield a present value of 89.29 dollars. Though 

this seems reasonable, inconsistencies appear when one generalizes the problem to 

time t. The general present-value formula is $100/(1.12) t ; but for t> 4.89 years this will. 

be less than the present value of the tails-dependent cash flow $80/(1.07) t . Wishing to 

avoid this inconsistency, many would resort to making the risk-adjusted discount rate to 

vary with t, i.e., $ 1 0 0 / ( l + r ( t ) )  t However, as t increases, the discount rate must 

decrease, approaching the risk-free lower bound of seven percent per year. And as t 

approaches zero, $100/(1+ r(t))' approaches $100 (unless r(t) approaches infinity), and 

the expected profit vanishes. Moreover, if the discount rate had to vary with time, 

equivalent investment alternatives would be fewer and harder to identify. 

Finance textbooks assume that the cash flows to be discounted are nonnegative. 
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Normal ly this is true of investments, especial ly of stocks and bonds. But stochast ic cash 

f lows are more comprehensive. We could think of insured losses as negat ive payoffs, 

and the coin-toss flow would be the receipt of either -120  or - 8 0  dollars one year  from 

now. An insurer would like to "pay" less than the present value of - 1 0 0  dollars, and this 

would require discounting at a rate less than the risk-free seven percent per year. 22 But 

as with the example with positive amounts, one would have to take care not to pierce the 

envelope,  especial ly its lower bound of -$120 / (1 .07 )  t ; and the problem of discounting 

too much for large t and too little for small t persists. 

Inconsistency appears in yet another form. What is to prevent us from decomposing the 

$120/$80 cash f low into a degenerate cash f low of x dollars one year  from now and a 

stochastic cash f low of either $ 1 2 0 - x  or $ 8 0 - x  one year  from now, depending on the 

coin toss? It is hard to imagine why the "$120 -x  or $80-x"  flow would not be equivalent 

to the same investments as those to which the "$120 or $80" f low is equivalent.  Then it 

too would be discounted at twelve percent per year. But the x dollars are now 

discounted at seven percent per year, and the present value depends on x:. 

PV = x/(1.07) t + ( $100 -  x)//(1 + r(t))' 

Should a change in the level of the stochastic cash flow place the asset into a different 

class of equivalents, and justify a risk-adjusted rate that now depends not just on t, but 

also on x, i.e., r(t,x)? Especially t roublesome is the case of x = $100, the expected 

22 so according to Robert Bustic [1988, p. 149]: "The risk-adjusted interest rate [for loss reserves], being 
lower than yield rates available in the market, falls between the two extremes of not discounting (a zero 
interest rate) and discounting with a market rate." On p. 169 he estimates the risk-adjusted rate to be 
about four percent per year lower than the risk-free rate. That U.S. Treasury rates might become so low 
that one would discount loss reserves at a negative rate was unimaginable to him at the time. 
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payoff, in which case PV= $100/(1.07)'. This clearly violates the second principle of 

Brealey and Myers, for risky dollars are now worth as much as safe ones. 

The only answer to this form of inconsistency is to forbid decomposing cash flows, or 

more accurately, to insist that each stochastic cash flow has one and only one suitable 

decomposition. This actually is the genesis of capital allocation. If stochastic cash flow 

C has negative outcomes, one allocates enough capital k to offset its negative 

outcomes, or at least to rendei them insignificant. Then one discounts the combination 

of the degenerate cash flow -k  and (the expected payoff of) the stochastic cash flow 

k+C. 23 But which degenerate cash flow k is the suitable one? In particular, if C has no 

lower bound, how much capital is required to render the remaining negative outcomes 

insignificant? Only to true believers are these inconsistencies trivial. The rest, not 

knowing a better way, may acquiesce to risk-adjusted discounting and capital allocation; 

but they suspect that such practices are arbitrary. 

On two principles the foregoing argument has been based. The first principle is that the 

value of a stochastic cash flow must lie within the minimum and maximum values of its 

outcome-dependent cash flows. In other words, if random variable X is the present 

value of a stochastic cash flow, as defined in Section 3, and if for some real number a 

P(X < a) = 0, then the value of the stochastic cash flow must be greater than or equal to 

a. Similarly, if for some b P(X > b)= 0, the value must be less than or equal to b. In the 

23 Some practitioners discount the expected flows separately, C at the risk-free rate and the allocated 
capital at some ROE rate. This only underscores the absence of theory from risk-adjusted discounting. 
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extreme, if random variable X is degenerate, i.e., for some a P(X  = a )=  1, the va lue of 

the stochastic cash f low must be a. For example, if all ten outcomes of Exhibit 1 lay on 

the $100 isobar, the cash f low would have to be worth 100 dollars. 

Some disagree with this inference, arguing that the several points extending over  the 

isobar create a t iming risk that no single point has. However, the risk that affects value 

resides not in the timing of the outcomes, but rather in their present value. And the 

present value is always 100 dollars. Others argue that if the present-value operator,  or 

the coordinate system, changes, the ten outcomes will lie on different isobars. Though 

this is true, it ignores what was said in Section 2, viz., that the present-value operator  is 

momentary  and does not second-guess itself. Moreover, if this argument were valid, it 

would prove too much. For it would work even if the cash f low consisted of just one 

point on the $100 isobar, for instance, the point (5, $117.69). One might just as well 

argue that due to "interest-rate risk" this one point ought to be worth somewhat  less than 

100 dollars. 

Donald Mango has coined a phrase that poignantly addresses this issue: 

... involves discounting cash flows at a default-free rate. Scenario analysis is built upon the 
premise that possible, realizable, plausible outcomes can be generated and analyzed. For the 
entire process to work, each generated scenario is "conditienally certain": given the scenario 
occurs, its outcome is certain. Where it is not, the entire practice of simulation modeling would 
be undermined by "meta-uncertainty." 

Uncertainty for the contract in total is represented in the distribution across all modeled 
scenarios, and the probability weights assigned to those scenarios. In other words, uncertainty 
is reflected between the scenarios, not within them. Given conditional certainty, scenario cash 
flows can be discounted at a default-free rate. [2003, p. 355f.] 

Condit ional certainty is a striking concept. For our basic space S, consisting of a 

countable number  of e lementary outcomes ~i, the Theorem of Total Probabil i ty states: 
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P(A)= 
i 

We can analogize from the probability of event A to the value of stochastic cash flow C, 

using present value as the conditional operator: 

v(c ) = 7. Pv(q , ) 
i 

But this would be the expectation of the present value. One must adjust the probabilit ies 

P(E,i) to obtain a risk-adjusted value for C, a value that will lie between any minimum and 

maximum since it is a weighted average. 24 

The second principle is that to change the level of a stochastic cash flow is to change its 

value by the amount of the level. I n  symbols, V(k+C) = k+V(C). Philosophically this 

means that no point on the real continuum is special, not even zero. 2s Negative one 

million dollars is merely one million dollars less than zero, and two million dollars less 

than one million. It may mean bankruptcy to an accountant, 26 but for valuation it is just 

another real number. The principle means also that we can decompose cash flows. In 

fact, we could generalize this principle into linearity. 27 For stochastic cash flows C and 

D, and constants (~ and J~, V[e~C+~D]= o~V[C]+~V[D]. A non-linear valuation operator 

enables arbitrage; nevertheless, finance textbooks are devoted more to risk-adjusted 

24 Adjusted probabilities reappear in the discussion of Section 5 concerning state prices. 
2s As mentioned in Section 2, this renders valuation independent of solvency. 
26 Some argue that negative wealth is not possible with bankruptcy laws. However, these are positive 
laws, and something de jure humano is not worthy of the name "theory." Moreover, bankruptcy law does 
not make everyone's wealth the greater of zero and book value. One whose book value is negative must 
file for bankruptcy, turn his assets over to a court for liquidation to his creditors, and possibly suffer long- 
term consequences (e.g., ineligibility for credit, imprisonment). Furthermore, creditors and society at large 
bear the debt that remains after liquidation. So bankruptcy laws recognize the reality of negative wealth. 
27 Paradoxically, lineafity obtains only in an equilibrium (Section 5). Though the generalization is 
important, for the purpose of this appendix it is unnecessary. 

55 



discounting than to the avoidance of arbitrage. Risk-adjusted discounting violates these 

two principles, and additionally, cannot build realistic risk loads into short-duration risks. 

Finally, we comment about the notions of rate of return and cost of capital. For centuries 

individuals and banks have lent money "for so many years at such an interest rate per 

year, payable so many times per year." So everyone became accustomed to measuring 

the cost of money in percent per year, and to imagining that borrowed money worked at 

that rate of return. In Section 2 we argued for the present-value function v(t). Rather 

than say, for example, that the cost of dollars is five percent per year, we should say that 

the cost of one dollar t years from now is v(t) dollars today. The cost of money later is 

not percent per year, but rather an amount of money now. But even if one insists on 

cost of capital as percent per year, one cannot apply it to stochastic cash flows. Money 

loaned out at five percent per year is money that is eventually repaid. But capital 

allocated to a risky project is capital that stands ready to be sacrificed. Even if it were 

proper to say, "My money works at five percent per year while it's away from me," it 

would not necessarily be proper to say, "My money works at fifteen percent per year 

while it's risking its life. "28 

28 For similar opinions that a stochastic cash flow cannot be valued by adjusting the discount rate see 
Halliwell [2001, §3], Schnapp [2001], and Van Slyke [1995 and 1999]. Schnapp [2001, §8] writes, " ... the 
certainty equivalent price for future outcomes can be obtained by discounting the uncertain outcomes to 
present value and then determining the certainty equivalent price." So too Van Slyke: "The cost of 
uncertainty in the future is treated as a real cost, and is discounted at only the time value of money 
indicated by the currency markets." [1995, p. 617] and " ... a distinction between the time value of money 
and the cost of risk. The time value of money is recognized by replacing all outcomes that may be 
realized at future times with their equivalent values in current dollars." [1999, p. 140] 
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APPENDIX B 

Properties of the Expected Utility Function 

Here follows a proof of the claim in Section 5 that if the net cash flow, i.e., the cash flow 

minus its price, or X -  q, has both upside and downside potential, then the graph of the 

equation f(e)= E[u(W+ e x - e q ) ]  looks like a concave downward parabola (provided 

that u is a risk-averse utility function). Hence, f(e) has one and only one maximum. This 

holds true regardless of the joint distribution of Wand X. 

The second derivative is f'(O)=E[u'(W+OX-OqXX-q)2J. As a risk-averse utility 

function, u" is negative. Therefore, unless Prob[X = q]= 1 (contrary to the downside- 

upside assumption), f" is everywhere negative. This establishes that f is concave 

downward, or equivalently, that f'strictly decreases. Hence, there can be at most one 

critical value, a value e at which f ' (8)=0,  at which value f is a maximum. But not 

established is that there must be at least one critical point. It will be proven that 

lim f '(e)= #oo. The continuity of f '  will then guarantee a zero. 
8-e_+~ 

For the proof that lim f ' (e)=-oo, one may assume that 8 is positive. Since the 
0--)+~ 

stochastic cash flow has downside potential at price q, there exists some q0 < q such 

that Fx (q0) = Prob[X _< q0] > 0. And since it has upside potential, 

1- F x(q)= Prob[X > q] > 0. And the probability of the middle interval, q0 < X < q, is 
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greater than or equal to zero. So the first step is to express f'(8) in terms of conditional 

probability: 

f'(e ) = E[u'(W + BX - e q X x  - q)] 
= E[u'(W + e x -  e q X x -  q~x <_ qo ]Fx (qo) 

+ S[u'(w + e x - e q X x - q l q  o < x <  q](Fx(q)-Fx(qo)) 

+ E[u'(W + eX - eqXX - qlq < x](1 - F x (q)) 

In the middle interval, q o < X < q ,  u ' (W+OX-OqXX-q )<O.  For u" is everywhere 

positive, and in that interval X -  q is less than or equal to zero; hence, the product is less 

than or equal to zero. And in the upper interval, X - q > O .  Since O is positive, 

e X - O q >  0 and W + S X - e q >  W. u' is positive, but strictly decreasing. Hence, 

u'(W + OX - Oq)< u'(W), and u'(W + OX - OqXX - q)< u ' ( w X x -  q). Therefore: 

f'(O) = E[u'(W + OX - o q X x -  q l X  < qo]Fx(qo) 

+ E[u'(W + O X -  OqXx - q~qo < x < q](F x (q ) -  F x (qo)) 

+ E[u'(W + O X -  O q X x -  qlq < x](1 - F x (q)) 

< E[u'(W + e X -  OqXX - q l X  < qo]Fx(qo) 

+ E[u'(W + e X -  e q X x -  q]q < x](1 - rx (q)) 

< E[u'(W + O X -  oqXx  - q l X  < qo IF x (qo) 

+ E[u ' (WXX - q~q < X~ I  - F x (q)) 

The next step concerns the lower interval. Since here X < q0, X - q <  qo-  q. u' is 

positive, so the following are true: 

u' (w + e x -  e q X x -  q)_< u' (w + e x -  eqXqo - q) 
E[u'(W + e x -  e q X x -  q)lx -< qo]-< E[u'(W + e x -  eq~x < qo](qo - q) 

= E[ -  u ' (w + e x -  e q l x  <- qo ] (q-  qo) 
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However, - u' is an increasing, but concave downward function. It meets the condit ions 

of Jensen's inequality (Section 4): 

E[u'(W + eX - eqXx - q ]X  <_ qo ]<- E l -  u'(W + eX - 8q lX <_ qo Xq - qo ) 

<_ - . ' (E[(W + ~X - 9q lX <- eo])(e- qo) 

= -u ' (E [w lx  <- .0 ]+  o E [ x -  q l x  -< q0 ] ) ( . -  qo) 

So finally: 

f'(e) < E[u'(W + OX - e qXX - q l X  < qo ]Fx ((7o) 

+ E[u'(WX x -  q~q < X](1 - Fx(q) ) 

< -u'(E[wl x <- qo]+ eE[X- qlx-< qo])(q- q0)Fx(q0) 
+ E[u'(WXX - q]q < X](1 - Fx(q) ) 

e appears only once on the right side of the inequality. Its coefficient, E [ X -  qlX < q0], is 

negative. So as e approaches oo, the argument of - u" approaches -o~. Since - u" is an 

increasing, concave downward function, it must approach -oo. And its coefficient, 

( q -  qo)Fx(qo), is positive. Therefore, lim f'(e) . . . .  
e--~+~ 

Duality makes the proof of the opposite limit simple. Since X has both upside and 

downside potential at price q, - X  has both upside and downside potential at pric~. -q.  

What is a limit as O-~-oowith cash flow X at price q can be expressed as a limit as 

- 6 = ~ ---* +~ with cash flow - X a t  price -q :  

lim f ' (e)= lim E[u'(W+ 8 X -  e q X x -  q)] 

= lim E[u'(W + (- ~)X - (-  ~)qXX - q)] 
(~+~  

= lira E [ u ' ( W + ( ( - X ) - ~ ( - q ) X ( - X ) - ( - q ) ) ] . ( - 1  ) 
(--e+~ 

. . . .  ( - 1 )  
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Since f" is continuous and strictly decreasing, but ranges over all the real numbers, it 

must have one and only one zero. So f has one and only one maximum. 
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APPENDIX C 

Exponential Utility 

Is there an ideal form of utility? Section 4 stated commonly accepted properties, viz., 

that u(w) should be increasing, twice differentiable, and concave downward. One could 

argue that quadratic, power, and logarithmic functions have these properties. However, 

the quadratic function has a maximum utility at its vertex; utilities of greater wealth are 

undefined. And power and logarithmic functions are undefined for negative wealth. 

Arguments in Appendix A to the contrary, many appeal to bankruptcy law for putting a 

floor of zero under the wealth of an economic agent. But even here power and 

logarithmic functions fail, because utility distributions could have probability masses at 

u(O) . . . .  The ideal utility function would be defined for all real numbers, and its first 

derivative would approach zero as wealth approached positive infinity. It is hard to 

devise any function with all these properties other than the exponential. 

Hans Gerber [1979, p. 70] proposes five desirable properties for premium calculation. 

One of these properties is additivity, viz., that the premium for the combination of two 

independent risks should equal the sum of the premiums for the single risks. He 

demonstrates that "the principle of zero utility" has this property if and only if the utility 

function is linear or exponential. Gerber's principle is equivalent to our formulation of 

utility in Section 4. However, in Section 5 we recommended a principle of maximal 

utility, according to which an economic agent whose stochastic wealth W is in 
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equilibrium should value stochastic cash flow Xaccording to the formula: 

E[u'(W)X] 
qx = ] 

Being linear in X, this formula is additive for any utility function. Moreover, the formula 

holds even when the risks are not independent, which exposes the weakness that 

Gerber's principle is not in general additive. 

In the case of exponential utility the formula above becomes: 

El- e-'WXl 
qx = E[_ e aW j= 

Hans B~hlmann [1980, p. 58] notes that when Xand W-Xare independent: 

E[e-aW X] 
qx = ~  

_ de'xx] 

The right side of the last equation is known as the Esscher transform of X. This form is 

especially attractive to insurance, since it allows "quantum" cash flows, i.e., cash flows 

independent of the rest of the portfolio, to be valued on their own. This suggests that the 

ideal utility function should allow quantum cash flows to be valued on their own; 

otherwise, one would have to know potentially everything in order to value anything. 

Unfortunately, we have not been able to prove that only exponential utility allows for this. 

However, there is a related property. If X is independent of W-X, then for any constant k 

it is also independent of k+W-X. The principle is that the level of wealth should be 

irrelevant to equilibrium; in other words, if Wis an equilibrium wealth, then so too should 
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be k+W. This comports with the second principle of Appendix A, viz., that no point on 

the real continuum is special, not even zero. This will offend many "solvency-minded" 

persons, but even in everyday matters value is unrelated to one's financial condition. 

Asking a valuation formula to depend on k is like asking a shopkeeper to charge lower 

prices to the poor than to the rich. Therefore, we recommend that the valuations of an 

ideal utility function should be invariant to level; in symbols, for all k, W, and X: 

E[u'(k +W)X] E[u'(W)X] 
E[u'(k + W) ] - E [ u ' ( W ) ]  

As we are about to see, this recommendation makes demands on the form of u. 

To begin, this equation cannot be true for all X unless: 

u'(k + W) _ u'(W) 
E[u'(k + w ) ]  - 

And one can substitute tWfor  W, for arbitrary real number t. Hence, u must ensure for 

all k, t, and Wthe equality: 

u'(k + tW) u'(tW) 
E[u'(k + tW)] - E[u'(tW)] 

Now differentiate the equation with respect to t. 

S[u'(k + tW)]u'(k + tW)W - E[u'(k + tW)W]u'(k + tW) _ S[u'(tW)]u'(tW)W - E[u'(tW)W]u'(tW) 
E[u'(k + tW)~ E[u'(tW)~ 

In particular, this equation is true for t=  0: 

E[u'(k )]u'(k )W - E[u'(k ~vl/ ]u'(k ) _ E[u'(0)]u'(0)W - E[u'(O )W ]u'(O ) 
E[u'(k)~ E[u'(O)~ 

And its simplified form is: 

u'(k XW - E[W]) _ u'(o Xw - E[W ]) 
u'(k) u'(O) 
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But this can not hold for all W unless for all k:. 

u'(k) u'(o) 
u'(k)- u'(o) 

Only linear and exponential functions solve this equation, which expresses constant 

absolute risk aversion (Longley-Oook [1998, p. 90]). And by standardizing u(0) and u'(0) 

(Gerber [1979, p. 68] and Halliwell [1999, §6]) the linear function becomes the limit as a 

approaches -ero of the exponentia, function u(w)= 0 -  e-aW)/a. 

The ideal form of utility is (linear-)exponential. It is hard to devise other functions that 

possess the commonly accepted properties. Exponential utility allows for independent 

risks to be valued on their own, and perhaps it alone has this distinction. Finally, it alone 

renders valuation independent of the arbitrary level of an agent's stochastic wealth. 
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APPENDIX D 

Cumulants and the Esscher Transform 

In accordance with Appendix C, the formula for the value of a quantum cash flow (a 

cash flow that is independent from the rest of an agent's portfolio) can be transformed: 

qx = 

_ d inE[e_aX] 
da  

_ d i n M x ( _ a )  
da  

_ d ~ x ( _ a )  
da  

The function t~x(a), the logarithm of the moment generating function, is called the 

cumulant generating function (Daykin [1994, p. 23] and Halliwell [1999, Appendix C]), 

not to be confused with the state-price random Variable ~ of Section 5. Its derivatives 

evaluated at zero are called the cumulants of X; they are the Ki of the Maclaurin-series 

. ,  ~ K i t  i 
expansion ~xl ,  t )= ~ . . ~  . . The first three cumulants are the mean, the variance, and the 

skewness; the fourth cumulant is the kurtosis with an adjustment: 

K, = E [ X ]  = p. 

= 

,% : ] 

K 4 = El(x-~.. I . )  4 ] -  3(~ 4 

All the cumulants of the normal distribution beyond the second are zero. The cumulants 

of a sum of independent random variables equal the sums of the variables' cumulants. 
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So the value of a quantum cash flow can be expressed in terms of its cumulants: 

d qx = - ~ , x ( - a )  
_ d ~ ( - 1 ) '  K,a' 

da .=~ i! 

"~" ~ 1"~i-~ Kja i-1 

-~ ' - "  ~ 5  
=K 1 --K2~+ K3 a 2 -K4a3 +K_ 

2 6 

=,LI.-- o-2a + K-~3 a 2 --K4a3 +K  
2 6 

From this follows the formula for the expected profit: 

1~ x = E [ X ] -  qx 

= # - q x  

= ( ~ 2 a - ~ - a 2 + K 4 a 3 - K  
6 

As a first-order approximation, ~x = ~2a, which holds exactly for normally distributed X. 

One can generalize the cumulant generating function and its Maclaurin series to two 

random variables: 

~,x ~(~ t)= In e[~ ~x+'w] 

,.__~' j_~ i! j! 

The derivative of this function with respect to s, evaluated at (0, -a), is the general 

formula for value: 
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a ElXe,X+tW ] ~,xw(S,t)=~ 
= ~" ~ ~'~ s'-'tJ 

a , .,J i [Xe -"w] 

Somewhat  tediously, the formulae for the following cumulants can be derived: 29 

KI0 = E [X ]=  ~x 

K,I = E[(X-Px XW -Pw) ]  = Cov[X,W]= ~x.w 

,,2 = E [ ( X - . x X W - . . )  ~] 
,,0 = E[(X- .x  Xw-.w)~] -  3~,x.~¢ 

By replacing X with W one obtains the cumulants of W in keeping with the earl ier 

formulae. The formula for expected profit is: 

~x = E[X]-  qx 

:,ix,_(,,0 6 
=E[X ] - [E [X ] -Cov [X ,W]a+-~ -a2 - -~ -aS+K)  

= Cov[X, W]a- K'2 a 2 + K'3 a ° - K  
2 6 

Though beautiful, the formula is often impractical, not just because high-order cumulants 

are unfamiliar, but mainly because it may  converge slowly. In the case of Reinsurer A of 

Exhibit 10, qx is nowhere near the total premium of 5.1 million dollars after four terms, 

29 Kozik and Larson [2001, 58-63] derive similar formulae, but in terms of rates of return. Though much 
can be learned from their derivation, rate of return is an accounting notion that introduces an arbitrary time 
horizon (viz., one year). Our present-value perspective (Sections 2 and 3), which keeps to monetary units 
(dollars) and impounds all the future into the present moment, avoids the risk-adjusted discounting implicit 
in the rate-of-return approach (Appendix A). 
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i.e., after the K13 term. Since the order of the magnitude of the fa term of the series for 

qx is K.lja j,~, WJa ],~. (1,000,000,000x5.000E-09) j =5 j ,  the factorial in the denominator 

does not begin to dampen the series before the fifth term. 

Nevertheless, the formula provides the general first-order approximation, =x = (~x,w a, 

which is exact when Xand Ware normally distributed. That expected profit, or risk load, 

is approximately proportional to covariance is true to the spirit of the Capital Asset 

Pricing Model. Since we can express the approximation with the correlation coefficient 

as =x = Px.wGxaw a, one may say that risk load is proportional to standard deviation 

(Kreps [1990, p. 198]). And if X is independent of W, the risk load should be zero. 

However, one must distinguish the independence of X from W and the independence of 

Xfrom W-X. In the latter case, 

Cov[X, W] = Cov[X, X + W - X] 
= cov[x,  x ] +  cov[x, w -  x ]  
= var [x ]  

Then the risk load is proportional to variance. From the premise that X should be small 

relative to W some 3° infer that the covariance and the risk load should be effectively 

zero. The premise itself is debatable; however, the proper conclusion is merely that =x 

should be small relative to ~w. It certainly is not negligible relative to ~ 

3o E.g., Wang [2001, §2]: "For an insurance market in which any individual risk is negligible relative to the 
aggregate risk, under the assumption that X and Z-X are independent, the equilibrium premium for X 
equals the expected loss without risk loading." 
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The  A g g r e g a t i o n  and Corre la t ion o f  Re insu rance  Exposure  

By 

Glenn Meyers - Insurance Services Office 

Fredrick Kl inker-  Insurance Services Office 

David Lalonde - AIR Worldwide Corporation 

Abstract 

This paper begins with a description o f  how to calculate the aggregate loss 
distribution for a reinsurer. We include most of  the standard exposures as well as 
property catastrophe exposure. Next we show how this aggregate loss distribution 
can be used to determine the needed capital, and its cost, for a reinsurer. Finally 
we show how to calculate the capacity charges for individual reinsurance contracts 
that will allow the reinsurer to recover its cost of  capital. We demonstrate the use 
of  this methodology on some illustrative reinsurance contracts. We believe this 
methodology can be used in practice by most reinsurers. 
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1. Introduction 

This paper has three objectives: 

1. Demonstrate a practical method to determine the distribution ofa reinsurer's 

aggregate loss payments. This includes not only losses from the contracts it 

currently is reinsuring, but also contracts that have expired but still have 

outstanding claims. This distribution will depend on the variation of each 

contract's claim frequency and severity. It will also reflect dependencies 

among the various hazards reinsured. 

2. Using the results of Objective #1, demonstrate how to determine the amount 

of capital needed for a reinsurance company based on its risk of loss. 

3. Using the results of Objective #2 demonstrate how to determine the capacity 

charge for a new reinsurance contract. 

We will illustrate the use of our model and methodology on a portfolio of 

reinsurance contracts. The parameters for the loss models were obtained from 

analyses by Insurance Services Office (ISO) and AIR Worldwide Corporation 

(AIR). 

The exposures for these contracts were obtained from the annual statements for 

several primary insurers and from data reported to ISO. Using the descriptions of 

the reinsurance programs that were reported to A.M. Best Company, we modified 

the loss models accordingly. 

We treat the time value of money by assuming a fixed risk-free interest rate. 

While the assets of a reinsurer are not always risk-free, a full treatment of asset risk 

is beyond the scope of this paper. Thus, we should expect reinsurers to have more 

capital than that indicated by the methodology described in this paper because they 

have asset risk. 
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We begin with a description of  possible ways to model a reinsurer's distribution of  

underwriting losses. This description will include ways to model dependencies 

among the various reinsurance contracts. It will also discuss how to parameterize 

these models. 

Next we will describe how we calculate the required capital. This description will 

include a short survey of  the issues involved in making such a calculation. It turns 

out that there is no strong consensus on how to do this; but, if we are to get a final 

answer, we must and do pick one method. 

We then move on to developing a methodology for calculating a capacity charge. 

As we do in our section on calculating the required capital, we will include a short 

survey of  the issues involved in doing this. Again we note that there is no strong 

consensus on how to do this but, as before, we do pick one method. 

While we recognize that others may differ in their methodology for solving these 

problems, we do feel that our methodology for calculating both the required capital 

and the capacity charge is reasonable. We note that the underwriting risk model 

that we have built to solve these problems could be used for other methodologies. 

2. Models of  Reinsurer Losses 

This section begins with a description of  the classic collective risk model, and it 

then enhances it with correlations or, more precisely, dependencies generated by 

parameter uncertainty. 

Next we introduce catastrophe models, in which the dependencies are caused by 

geographic proximity. We describe catastrophes generated by hurricanes and 

earthquakes. 
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2.1 The Collective Risk Model 

The collective risk model (CRM) describes the total reinsured loss in terms of  the 

underlying claim count and claim severity distributions for each reinsured contract. 

We describe this model by the following simulation algorithm. 

Simulation Algorithm #1 

Step 

1. For each reinsurance contract, h, with uncertain claim payments, do the 

following: 

• Select random claim count Kh from a distribution with mean Xh where Xh is 

the expected claim count for contract h. 

• For each h, select random claim sizes, Zhk, for k = 1 .... , Kh. 

2. Set Xh = ~Zh~ = Loss for contract h. 
k=l 

3. Set X = ~Xh = Loss for the reinsurer. 
h 

This formulation of  the CRM assumes that the losses for each class are 

independent. We now introduce a dependency structure into the CRM with the 

following algorithm. 

Simulation Algorithm #2 

Step 

1. For each reinsurance contract h, with uncertain claim payments, do the 

following: 

• Select a random claim count Kh from a distribution with mean ~,h where )~h is 

the expected claim count for contract h. 
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• For each h select a random claim size, Zhk, for k = 1,...,Kh. 

Select a random [3 from a distribution with E[[3] = 1 and Var[[3] = b. 

K~ 

2. Set X h = ~Zhk = LOSS for contract h. 
k=l 

3. 

4. Set x = [~ . ~ x  h = Loss for the reinsurer. 
h 

The extra step of  multiplying all the losses by a random [3 adds variability in a way 

that losses for each reinsurance contract will tend to be higher, or lower, together at 

the same time. This induces one kind of  dependency, or correlation, among the 

losses o f  different reinsurance contracts. One can think o fb  as a parameter that 

quantifies the uncertainty in the economic environment affecting multiple lines of  

insurance. 

Figures 1-4 provide a graphic illustration of  how Simulation Algorithm #2 

generates dependency and correlation. In these figures we randomly selected XI 

and X2. Next we randomly selected [3. We then plotted [3 X1 against 13 X2. If  we do 

not change the distributions Xt and X2, a higher b will lead to a higher coefficient 

of  correlation. But, as illustrated in Figures 3 and 4, the coefficient of  correlation 

also depends on coefficients of  variation (CV) of  X1 and X2. 

75 



Figure 1 

XI and X2 are independently drawn 
random variables with CV=0.1. 

15 was drawn from a distribution with 
b=Var[13] = 0. Thus p = 0.00. 

pXI 

Figure 2 

X~ and X2 are independently drawn 
random variables with CV=0.1 

13 was drawn from a distribution with 
b=Var[15] = 0.005. Thus 9 = 0.33. 
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Figure 3 

Xl and X2 are independently drawn 
random variables with CV=0.1 

13 was drawn from a distribution with 
b=Var[[3] = 0.020. Thus p = 0.66. 
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Figure 4 

X1 and X2 are independently drawn 
random variables with CV=0.2 

15 was drawn from a distribution with 
b=Var[13] = 0.020. Thus p = 0.33. t 
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Having described one method to introduce dependencies into the collective risk 

model, we now apply this method to a model o f  the underwriting losses for a 

reinsurer. Here is a summary of  the main features o f  this model. 

It is necessary to hold capital for uncertain losses in expired reinsurance 

contracts. Thus the model treats unpaid losses from both new and expired 

reinsurance contracts from prior accident years 

We use separate parameter uncertainty multipliers for both claim frequency 

and claim severity. For reinsurance contract h, a random claim frequency 

multiplier, C~h, is applied to the expected claim count parameter, )~h. Each cch 

has a mean of  one and a variance ofgh. We call gh the covariance generator 

for contract h. 

Each reinsurance contract is assigned to a distinct "covariance group" 

according to the line of  business that it covers. (Granted, some reinsurance 

contracts cover multiple lines, but in this paper, we use a narrower 

definition of"contract.") Within a given covariance group, the random 

claim frequency multipliers, c% are identical within line of  business, not 

necessarily identical to other lines of  business in the same covariance group, 

but they increase and decrease together. 

• The random claim severity multiplier, 13, is applied uniformly across all 

contracts. 

One can informally classify the sources of  risk in this model into process 

risk and parameter risk. Process risk is the risk attributable to random 

claim counts and claim sizes, and parameter risk is the risk attributable to 
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the randomness of  the claim frequency multipliers and the claim severity 

multiplier. 

• When parameter risk operates on several contracts simultaneously, we say 

that there is correlation generated by parameter risk. 

These features are described in the following algorithm. 

Simulation Algorithm #3 

Step 

1. Select a random [3 from a distribution with El13] = 1 and Var[f3] = b. 

2. For each covariance group i, select random percentilepi.  

3. For each covariance group i, reinsurance contract h in the covariance group 

(denoted by G~), and accident year y with uncertain claim payments, do the 

following: 

• Select ahy =Pi  th percentile o f  a distribution with E[c~hy] = 1 and Var[ahy] = 

ghy 

• Select random claim count Khy from a distribution with mean O~hy'~hy, where 

)~hy is the expected claim count for reinsurance contract h and accident yea ry  

in covariance group i. 

• For each h a n d y ,  select random claim size Zhyk for k = 1 .... ,Khy. 

4. Set X~ = ~-~, ~ZZhyk = Loss for covariance group i. 
h~G i y k=l 

5. Set x = [3 . ~ X  i = Total loss for the reinsurer. 
i 

We now describe our parameterization of  this model. 
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For the non-catastrophe reinsurance contracts, we use claim severity 

distributions derived by ISO. We use a piecewise linear approximation to 

the ISO models. 

Smaller claims tend to settle quickly. In fitting the models for the 

distribution of future payments for expired reinsurance contracts, we 

removed those claims that are already settled. 

Reinsurers often write multiple contracts, covering different layers, with a 

single insurer. For example, one reinsurance contract will cover 50% of a 

lower layer, and another contract will cover 80% of a higher layer. We treat 

such arrangements as a single contract and adjust the claim severity 

distribution accordingly. 

We use the negative binomial distribution to model claim counts. The 

expected claim count will depend on the reinsurer's limits and exposure. A 

second parameter of the negative binomial distribution, called the contagion 

parameter must be provided. We use estimates of the contagion parameters 

obtained in an analysis performed by ISO. This analysis is described in the 

appendix. 

The same analysis in the appendix also provides estimates of the covariance 

generators, gh. A noteworthy feature is that these estimates use data from 

several insurers. This estimation necessarily assumes that each gh is the 

same for all insurers writing that particular line of insurance. While we 

agree in principle that each gh could differ by insurer, it is unlikely that any 

single insurer will have enough observations to get reliable estimates of the 

gh's. 
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• The main idea behind the estimation of  the parameters, described in the 

appendix, is that expected values of  various statistics that we can calculate 

from the data are functions of  the negative binomial parameters and the 

covariance generators. We calculated these statistics for a large number of  

insurance companies and we found parameter values that best fit the 

statistics we calculated. As we show in the appendix, reliable estimates of  

these parameters cannot be obtained with data from a single insurer. It is 

only by combining the data of  several insurers that we can obtain reliable 

estimates of  these parameters. 

Finally, we describe how we calculate a reinsurer's distribution of  underwriting 

losses. Since we describe the loss model in terms of  a computer simulation, one 

could actually do the simulations. In practice, many do. We calculate the 

distribution of  underwriting losses with Fourier transforms using the method 

described by Heckman and Meyers [ 1983 ]. The extension of  this method to 

address dependencies is described by Meyers [1999a and 1999b]. 

Both simulation and Fourier transforms are valid ways to calculate the distribution 

of  underwriting losses. The advantage of  Fourier transforms is that one can 

calculate the distribution of  underwriting losses in seconds, where a simulation 

could take hours to do the same task. A disadvantage o f  Fourier transforms is that 

it can take a long time to do the initial set-up whereas the set-up time for a 

simulation is relatively short. 

2.2 Catastrophic Perils 

Natural catastrophes such as earthquakes, hurricanes, tornadoes, and floods have 

an impact on many insureds; and the accumulation o f  losses to an insurer or 

reinsurer can jeopardize the financial well-being of  an otherwise stable, profitable 
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company. Hurricane Andrew, in addition to causing more than $16 billion in 

insured damage, left at least 11 companies insolvent in 1992. The 1994 Northridge 

earthquake caused more than $12 billion in insured damage in less than 60 

seconds. 

Fortunately, such events are infrequent. But it is exactly their infrequency that 

makes the estimation of losses from future catastrophes so difficult. The scarcity 

of historical loss data makes standard actuarial techniques of loss estimation 

inappropriate for quantifying catastrophe losses. Furthermore, the usefulness of 

the loss data that does exist is limited because of the constantly changing landscape 

of insured properties. Property values change, building codes are change over 

time, along with the costs of repair and replacement. Building materials and 

designs change, and new structures may be more or less vulnerable to catastrophic 

events than were the old ones. New properties continue to be built in areas of high 

hazard. Therefore, the limited loss information that is available is not sufficient for 

directly estimating future losses. 

The modeling of catastrophes is based on sophisticated stochastic simulation 

procedures and powerful computer models of how natural catastrophes behave and 

act upon the man-made environment. The modeling is broken into four 

components. The first two components, event generation and local intensity 

calculation, define the hazard. The interaction of the local intensity of an event 

with specific exposures is developed through engineering based vulnerability 

functions in the damage estimation component. In the final component, insured 

loss calculation, policy conditions are applied to generate the insured loss. 

Figure 5 below illustrates the component parts of the AIR state-of-the-art 

catastrophe models. It is important to recognize that each component, or module, 
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represents both the analytical work of the research scientists and engineers who are 

responsible for its design and the complex computer programs that run the 

simulations. 

Figure 5: Catastrophe Model Components (in gray) 

2.2a Event Generation Module 

The event generation module determines the frequency, magnitude, and other 

characteristics of potential catastrophe events by geographic location. This 

requires, among other things, a thorough analysis of the characteristics of historical 

events. 

After rigorous data analysis, researchers develop probability distributions for each 

of the variables, testing them for goodness-of-fit and robustness. The selection and 

subsequent refinement of these distributions are based not only on the expert 

application of statistical techniques, but also on well-established scientific 

principles and an understanding of how catastrophic events behave. 

These probability distributions are then used to produce a large catalog of 

simulated events. By sampling from these distributions, the model generates 

simulated "years" of event activity. Many thousands of these scenario years are 

generated to produce the complete and stable range of potential annual experience 
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of catastrophe event activity and to ensure full coverage of extreme (or "tail") 

events, as well as full spatial coverage. 

2.2.b Local Intensity Module 

Once the model probabilistically generates the characteristics of a simulated event, 

it propagates the event across the affected area. For each location within the 

affected area, local intensity is estimated. This requires, among other things, a 

thorough knowledge of the geological and/or topographical features of a region 

and an understanding of how these features are likely to influence the behavior of a 

catastrophic event. The intensity experienced at each site is a function of the 

magnitude of the event, distance from the source of the event, and a variety of local 

conditions. Researchers base their calculations of local intensity on empirical 

observation as well as on theoretical relationships between the variables. 

2.2.c Damage Module 

Scientists and engineers have developed mathematical fimctions called 

damageability relationships, which describe the interaction between buildings 

(both their structural and nonstructural components as well as their contents) and 

the local intensity to which they are exposed. Damageability functions have also 

been developed for estimating time element losses. These functions relate the 

mean damage level as well as the variability of damage to the measure of intensity 

at each location. Because different structural types will experience different 

degrees of damage, the damageability relationships vary according to construction 

materials and occupancy. The model estimates a complete distribution around the 

mean level of  damage for each local intensity and each structural type and, from 

there, constructs an entire family of probability distributions. Losses are calculated 
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by applying the appropriate damage function to the replacement value of the 

insured property. 

The AIR damageability relationships incorporate the results of well-documented 

engineering studies, tests, and structural calculations. They also reflect the relative 

effectiveness and enforcement of local building codes. Engineers refine and 

validate these functions through the use of post-disaster field survey data and 

through an exhaustive analysis of detailed loss data from actual events. 

2.2.d Insured Loss Module 

In this last component of the catastrophe model, insured losses are calculated by 

applying the policy conditions to the total damage estimates. Policy conditions 

may include deductibles by coverage, site-specific or blanket deductibles, coverage 

limits and sublirnits, loss triggers, coinsurance, attachment points and limits for 

single or multiple location policies, and risk-specific reinsurance terms. 

2.2.e Model Output 

After all of the insured loss estimations have been completed, they can be analyzed 

in ways of interest to risk management professionals. For example, the model 

produces complete probability distributions of losses, also known as exceedance 

probability curves (see Figure 6). Output includes probability distributions of 

gross and net losses for both annual aggregate and annual occurrence losses. The 

probabilities can also be expressed as return periods. That is, the loss associated 

with a return period of 10 years is likely to be exceeded only 10 percent of the time 

or, on average, in one year out often. For example, the model may indicate that, 

for a given regional book of business, $70 million or more in insured losses would 

be expected to result once in 50 years, on average, in a defined geographical area, 
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and that losses of  $175 million or more would be expected, on average, once every 

250 years. 

Output may be customized to any desired degree of geographical resolution down 

to location level, as well as by line of business and, within line of  business, by 

construction class, coverage, etc. The model also provides summary reports of  

exposures, comparisons of exposures and losses by geographical area, and detailed 

information on potential large losses caused by extreme "tail" events. 

Figure 6: Exceedance Probability Curve (Occurrence) 
r ___ 

0 50 100 150 200 250 300 350 400 

Loss  A m o u n t  ($  m i l l i ons )  

2.2.f Correlation 

An advantage of this modeling approach is the generation of a stochastic event set 

that can be used to analyze multiple exposure sets. In this study, individual 

companies' exposures were analyzed using a common catalog of events. As 

mentioned earlier, details of reinsurance programs were also applied, resulting in 

both net and gross distributions of  potential catastrophe losses. By analyzing 

various sets of  exposure against the same set of  events we are able to ascertain 

correlation amongst the exposure sets. 
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3. Calculating the Required Capital 

This paper is focused on the underwriting risk generated by uncertain loss 

payments. We assume that all assets are invested at a risk-free rate of  return and 

thus make the simplifying assumption that the capital required by a reinsurer 

depends solely on its aggregate loss distribution. 

A reinsurer is exposed to underwriting risk not only from future claims on new 

business, but also from unsettled claims on past business. One must consider the 

underwriting risk from both sources when calculating the required capital. Larger 

claims tend to take longer to settle, and the underwriting loss model should reflect 

this. 

Let Xbe  the random variable for the reinsurer's total loss. Denote by p(X) the total 

assets that the reinsurer needs to support its business ~. Now some of  the 

reinsurer's assets come from the premium it charges for its business. At a 

minimum, this amount should equal the expected value of  X, E[X]. The remaining 

assets, which we call (economic) capital, must come from investors. We define the 

capital needed by the reinsurer by the equation: 

Capital = o(X) - E[X] (1) 

Let c~ be a selected percentile of  X. The tail value-at-risk for X, TVAR~(X), is 

defined to be the average of  all losses greater than or equal to the c( h percentile of  

X. In this paper we use o(X) = TVAR99%(X). 

i I f  we were to allow assets, denoted by A, to be random, we would require A to satisfy 9(X-A) = 0. With translation 
invariance, this says that p(X) = A when A is fixed. 
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The tail value-at-risk is a member of  an important class of  risk measures, called 

coherent measures of  risk. These measures are defined by the following set of  

axioms. 

1. Subadditivity - -  For all random losses Xand Y, 

p ( x +  r) <__ p (x) + p (r). 

2. Monotonicity - -  For all random losses Xand Y, if X <  Y for all scenarios, then 

p (X)< p (Y). 

3. Positive Homogeneity - -  For all ~, > 0 and random losses X, 

p (ZX) = kp (X). 

4. Translation Invariance - -  For all random losses Xand  constant loss amounts ct, 

p (Y+c0 = p (Y) + c~. 

These measures were originated by Artzner, et al. [1999]. See Meyers [2002] for 

an elementary description of  these measures as well as for other coherent measures 

of  risk. 

4. Calculating the Capacity Charge 

As noted in the last section, a reinsurer needs to get capital from investors in order 

to attract business. The investors expect to be compensated in return for providing 

this capital at an expected rate of  return that is somewhat higher than they would 

obtain for not exposing their capital to reinsurance risk. This additional return 

must come from the sum of  the premiums charged to each individual reinsurance 

contract. The portion of  this additional return for an individual reinsurance 

contract is called the capacity charge. In this section we give our formula for 

calculating the capacity charge. 
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Our formula is based on the underwriting strategy of establishing a target return on 

the additional capital needed to write this contract. We view the capacity charge as 

input into the underwriting decision. If  the market will not allow the reinsurer to 

obtain this target return, the reinsurer should consider not writing the proposed 

contract. 

We divide this section into two subsections. The first subsection gives our 

rationale for using this formula in terms of our chosen underwriting strategy. The 

second subsection gives our capacity charge formula. 

4.1 A General Discussion of Capacity Charge Formulas 

We take it as a given that a sound method of calculating capacity charges should 

lead to decisions that benefit the entire operation of a reinsurer. 

This discussion will be somewhat informal. A more rigorous treatment of this 

subject is provided by Meyers [2003]. We shall quote a number of results that are 

proved in that paper. 

Proposition 1 

Adding a reinsurance contract to a reinsurer's portfolio will increase the reinsurer's 

expected return on capital if and only if the contract's expected re~rn on marginal 

capital (i.e., the contract's capacity charge divided by the additional capital needed 

to write the contract) is greater than the reinsurer's current expected return on 

capital. 

This proposition provides a minimum standard on the capacity charge for n e w  

contracts. It says nothing about the capacity charge on existing contracts. 
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Proposition 2 

Let the reinsurer's capital be determined by Equation (1), with o(X) being a 

subadditive measure of  risk. Then the sum of  the marginal capitals for each 

reinsurance contract is less than or equal to the reinsurer's total capital. 

As we shall see in the examples below, we expect strict inequality to be common. 

When this is the case, at least some of  the contracts will have an expected return on 

marginal capital that is greater than the reinsurer's overall return on capital. 

However there are conditions when we can prove that the sum of  the marginal 

capitals will be equal to the total capital. 

Definition 1 

Suppose for a reinsurance contract i, the random losses, X,, for the contract are 

equal to a random number, Ui, times the exposure measure, ei, for all possible 

values ofe~. Then, following Mildenhall [2002], the distribution of  X~ is said to be 

homogeneous with respect to the exposure measure, ei. 

Proposition 3 

Assume that the needed capital is a smooth (differentiable) function of  the 

exposure. 

Let the random loss, Xi, for the ith reinsurance contract be a homogeneous random 

variable for each contract with respect to some exposure measure, ei. 

LetX = ~-~x i . Let the reinsurer's capital be determined by Equation (1), with p(X) 
i 

being a measure of  risk satisfying the positive homogeneity axiom. Then the sum 

of the marginal capitals for each reinsurance contract is equal to the reinsurer's 

total capital. 
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An early version of Proposition 3, assuming each X~ has a lognormal distribution 

and using a different formula for calculating the needed capital, was proved by 

Myers and Read [2001]. Mildenhall [2002] proved that the homogeneity 

assumption was both necessary and sufficient for the Myers-Read result. The 

proof of  Proposition 3 above is a direct consequence ofLemma 2 in Mildenhall's 

paper. 

Note that the definition of homogeneity bears a strong resemblance to the way we 

introduce parameter risk in Section 2 above. As the exposure (in Section 2, 

quantified by the expected claim counts khy) increases, the parameter risk becomes 

an increasingly large part of the total risk. But in the parameterization of our 

model, the parameter risk is rarely dominant enough to assume homogeneity. 

Proposition 4 

Assume that the needed capital is a smooth (differentiable) function of the 

exposure. I f  we can continuously adjust the exposures while holding the needed 

capital constant, the maximum expected retum on capital occurs when the 

expected return on marginal capital is the same for all contracts. 

Note that Proposition 4 does not require homogeneity with respect to some 

measure of exposure. If  the loss random variables are not homogeneous, the equal 

expected retums on marginal capital under the optimality conditions of  the 

proposition will be higher than the reinsurer's overall return on capital. 

Definition 2 

The heterogeneity multiplier, HM, for a reinsurer is its needed capital divided by 

the sum of the marginal capitals for each contract in its reinsurance portfolio. 
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The motivation for this definition arises from the fact that most reinsurers will have 

a total capital that is higher than the sum of  the marginal capitals for each 

reinsurance contract. In theory, a market could evolve with bigger contracts where 

parameter risk dominates the process risk, and the homogeneity conditions 

required by Proposition 3 would be reasonable. In practice, the distribution of  

losses of  reinsurance contracts are far from homogeneous, and the heterogeneity 

multiplier for a given reinsurer will be noticeably higher than the theoretical 

minimum of  1. 

Our target capacity charge will be determined by a target return on marginal capital 

times the reinsurer's heterogeneity multiplier. To summarize, the rationale for this 

is based on: 

1. Proposition 4 - The expected return on marginal capital should be equal for 

all contracts to if the reinsurer is to make the most efficient use of  its 

capital. 

2. Propositions 2 and 3 - The sum of the marginal capitals over all 

reinsurance contracts is less than or equal to the total capital. The 

conditions that will force equality are not satisfied. 

Note that the rationale underlying this charge depends on the individual 

reinsurance contracts being a small part o f a  reinsurer's portfolio, so that the 

smoothness criterion of  Proposition 3 and 4 is a reasonable assumption. 

4.2 The Capacity Charge Formula 

If  the underwriting result of  all reinsurance contracts could be known within a 

year, we expect to release the capital at the end of  the year, earning investment 

income on the capital. We would calculate the capacity charge as follows. 
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1. Establish a reference portfolio, FI, of  existing contracts. Ideally this portfolio is 

updated as each new contract is accepted. But the year-end rush to book 

January 1 renewals makes this difficult to do in practice, so the portfolio will be 

set up according to a business plan. 

2. Calculate the marginal capital for each contract in the reference portfolio. This 

is done by first calculating the capital needed for the reference portfolio 

according to Equation 1. Next we calculate the capital needed when a given 

contract is removed from the portfolio. The marginal capital for the given 

contract is the difference between the two capital calculations. 

3. Calculate the heterogeneity multiplier, HM, by the formula: 

HM = Total capital for l-I (2) 
Sum of the marginal capitals of each contract in FI ' 

4. For a prospective reinsurance contract, calculate the marginal capital, AC, 

needed when the contract is added to the reference portfolio. 

5. Let r be the rate of  return needed to attract the needed capital. Let i be the rate 

of  return on invested assets. We expect r > i. The capacity charge, AP, for the 

prospective reinsurance contract is given by2: 

AP- (r-i).HM .AC (3) 
(l+r) 

Because of  the way we defined the HM, the sum of  the capacity charges will 

yield the reinsurer's desired return on its capital. 

z This formula is special case of  Equation 5, which is derived below. 
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As discussed above, the underwriting result of some reinsurance contracts can be 

uncertain for a period of severai years. In this case the reinsurer must hold capital 

over this period to support these potential liabilities. This affects the calculation of 

the capacity charge in the following ways. 

• The reference portfolio must contain the contracts that have expired but still 

have uncertain losses. The required capital for the reference portfolio must 

reflect the uncertainty in the ultimate losses from these unexpired contracts. 

• When calculating the capacity charge, the reinsurer has to consider the fact 

that it has to hold additional capital in future years to support the contracts it 

is writing now. The cost of  holding this capital over this extended period of 

time must be included in the capacity charge. 

With these considerations in mind, we calculate the capacity charge as follows. 

1. Establish a reference portfolio of existing contracts for this year, and for as 

many years in the future that the reinsurer expects uncertainty in its ultimate 

losses for contract written in this and prior years. Denote the portfolio for the 

current year by II0, the portfolio for next year by FI1, and so on. These 

reference portfolios will contain current and expired and planned future 

reinsurance contracts. 

2. Calculate the marginal capital for each reinsurance contract (current and 

expired) in each of  portfolios, H0, l-Ira .... 

3. For each portfolio, I-In, calculate the heterogeneity multiplier, HM,, by the 

formula. 
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H M .  - Total  capital  for 1-I . ( 4 )  

Sum o f  the marginal  capitals o f  each contract in  F l  

4. For a prospective reinsurance contract, calculate the marginal capital, AC,, 

needed when the contract is added to the n th reference portfolio. Note that the 

contract is considered to be new in Fi0, but expired in Fin, for n > 0. 

5. Let r be the rate of  return needed to attract the needed capital. Let i be the rate 

of  return on invested assets. The capacity charge, AP, for the prospective 

reinsurance contract is given by: 

(r - i). H M . .  AC. 
AP 

.=o ( l + r )  "+' ' ( 5 )  

Note that the capacity charge is applied to the new contracts only. The time to 

collect the capacity charge on the expired contracts was when the contract was 

written. In defining the capacity charge in this way, the reinsurer is making its 

desired rate of  return on its allocated cost of  capital 3. 

We finish this section with the derivation of  Equation 5. 

• The reinsurer puts up an initial investment o f  HMo'ACo at time t = 0. It 

commits to holding PRM1.AC1 at time t = 1, HMz'AC2 at time t = 2, and 

SO on .  

• While the reinsurer is holding the capital, it is earning interest at rate i. 

At time t = 1, it expects to receive HMo'ACo'(1 + i) - HMI.AC~. At time 

t = 2, it expects to receive HMI"AC~'(1 + i) - HMz'AC2, and so on. 

• The capacity charge is cqual to the initial investment less the present 

value (at interest rate r) of  the expected amount received. That is: 

3 One possible enhancement of Equation 5 would be to vary the rate of return by the length of time it is invested. 
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£ HM,,. AC,. (1 + i) - HM.+,. AC~+, 
AP HM o • ACo ,:o (l+r) "+' (6) 

• Equation 5 is derived from Equation 6 by rearranging and grouping the 

terms in increasing order of n. 

5. Examples 

We now illustrate the use of our model and methodology on a number of sample 

reinsurance contracts. We constructed a reference portfolio of reinsurance 

contracts from real insurance companies, based on publicly available data. The 

lines of business in the reference portfolio included general liability, commercial 

auto, workers' compensation, professional liability, commercial multi-peril, fire, 

allied lines, earthquake and some personal lines. We treated the hurricane and 

earthquake exposures as separate contracts that took a 25% share of  the underlying 

catastrophe reinsurance contract. 

What follows is a description of the steps we took to construct this reference 

portfolio. 

1. We first estimated the expected direct losses, by annual statement line of 

business, for the insurers included in the reference portfolio. For the most 

recent accident year, we estimated the expected losses by multiplying the 

reported premiums by our estimated loss ratio for the industry. For prior 

accident years, we used the insurers' reported loss reserves. 

2. Using details of each insurer's reinsurance program reported to the A.M. 

Best Company, and the loss distributions underlying the ISO Underwriting 

Risk Model and the AIR catastrophe model for hurricanes and earthquakes, 

we partitioned the insurer's expected direct losses into two segments by 
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annual statement line of business - the expected net losses and the expected 

reinsured losses. 

3. In order to project the expected release of the marginal capital over the next 

several years using Equation 5, we need to know the marginal capital 

attributed to current contracts in future accident years. This will depend on 

the reinsurer's business plan. We assumed that the reinsurer would continue 

its current business plan but, going forward, we estimated the expected 

unpaid losses using an ISO industry loss reserve study. 

For the reference portfolio, the total expected loss for all lines in the current year is 

$739,998,127. The expected payout for losses from prior accident years is 

$1,813,101,644. In constructing this reference portfolio, we did not have all the 

detailed contract level information that is potentially available to a reinsurer. The 

reference portfolio had a few hundred contracts covering a variety of limits. The 

insurers in the reference portfolio tended to be larger than average and thus we 

expect the size and the retentions of the contracts to be a bit higher than normal. 

We now describe how we calculated the necessary capital for the reference 

portfolio, with and without the proposed contracts. 

1. In evaluating the non-catastrophe exposure we used the expected loss estimates 

and the limits for each contract. Using claim severity distributions in the ISO 

Underwriting Risk Model, we obtained the expected claim count by dividing 

the expected loss by the expected claim severity. The claim count distribution 

requires a second parameter that ISO obtained from analyses similar to that 

described in the appendix. 

2. Using exposures that primary insurers reported to ISO, we ran the AIR 

catastrophe model to produce 10,000 simulated years of hurricane and 

96 



earthquake losses for each primary insurer in the reference portfolio. The 

catastrophe losses were adjusted to reflect the reinsurance provisions and the 

25% share of the catastrophe contracts taken by the reference portfolio. The 

losses for all the catastrophe contracts in the reference portfolio were summed 

by year to produce a combined catastrophe size of loss distribution. 

3. The distributional information above was used to derive the reference and 

marginal aggregate loss distributions by a procedure mathematically equivalent 

to Simulation Algorithm 3 above. Table 1 describes the aggregate loss 

distribution for the reference portfolio. 

4. Following Equation 1, we set the needed capital for the reference portfolio 

equal to TVaR99%(X) - E[X] = $670,997,012. 

The next step was to calculate the heterogeneity multiplier, HM,, for each year. 

This is done by finding the marginal capital for each reinsurance contract in the 

reference portfolio and applying Equation 2. While the heterogeneity multipliers 

varied slightly by year, they were all close to 1.64, well above the theoretical 

minimum of 1.00. Since we were assuming a stable business plan, we selected 

HM~ = 1.64 for all n. 

Now we are ready to calculate the capacity charges for prospective reinsurance 

contracts using Equation 5. 

The first set of examples consists of some standard property and casualty 

reinsurance contracts. We first calculate the marginal capital for the prospective 

contract for the current year and up to the following six years, which we assumed 

will have uncertainty in the ultimate paid losses. In this example, we are ignoring 

all uncertainty in ultimate losses after two years for Fire, after five years for 
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Commercial Auto, and after seven years for General Liability. In Table 2 we 

provide an illustrative aggregate loss distribution when a General Liability 

reinsurance contract are added to the reference portfolio. Table 3 gives the result 

of  marginal capital calculations for the remaining contracts in this set of  examples. 

We used HM,, = 1.64, r = 18% and i = 6%. The capacity charges calculated using 

Equation 5 for this set of  examples are in Table 4. 
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Table 1 

Aggregate Loss Distribution 
Produced by 

ISO Underwriting Risk Model 
Reference Portfolio - Year 1 

Aggregate Mean 2,553,099,771 
Aggregate Std. Dev 226,983,918 

Aggregate Cumulative Tail Implied 
Loss Probability Value at Risk Capital 

2,544,328,941 0.50000 2,733,373,669 180,273,898 
2,572,708,866 0.55000 2,752,806,019 199,706,248 
2,601,822,082 0.60000 2,773,508,440 220,408,669 
2,632,192,534 0.65000 2,795,884,342 242,784,571 
2,664,579,556 0.70000 2,820,498,110 267,398,339 
2,699,943,781 0.75000 2,848,200,965 295,101,194 
2,739,710,696 0.80000 2,880,411,932 327,312,161 
2,787,036,572 0.85000 2,919,645,004 366,545,233 
2,847,436,074 0.90000 2,971,590,416 418,490,645 
2,887,426,613 0.92500 3,006,495,925 453,396,154 
2,940,100,948 0.95000 3,053,590,102 500,490,331 
2,953,219,034 0.95500 3,065,480,084 512,380,313 
2,967,653,154 0.96000 3,078,622,916 525,523,146 
2,983,799,371 0.96500 3,093,339,811 540,240,040 
3,002,061,116 0.97000 3,110,102,957 557,003,187 
3,023,031,771 0.97500 3,129,649,532 576,549,761 
3,048,079,271 0.98000 3,153,220,036 600,120,266 
3,080,209,479 0.98500 3,183,009,313 629,909,542 
3,123,377,033 0.99000 3,224,096,783 670,997,012 
3,195,198,671 0.99500 3,292,456,190 739,356,419 
3,350,378,069 0.99900 3,446,040,482 892,940,711 
3,416,123,232 0.99950 3,512,255,729 959,155,958 
3,567,277,277 0.99990 3,670,239,1901,1 t7,139,419 
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Table 2 

Aggregate Loss Distribution 
Produced by 

ISO Underwriting Risk Model 
Reference Portfolio + General Liability Treaty B - Year 1 
Aggregate Mean 2,554,099,777 
Aggregate Std. Dev 227,010,259 

Aggregate Cumulative Tail 
Loss Probability Value at Risk 

2,545,328,752 0.50000 
2,573,712,090 0.55000 
2,602,827,651 0.60000 
2,633,202,873 0.65000 
2,665,594,329 0.70000 
2,700,955,923 0.75000 
2,740,735,861 0.80000 
2,788,066,006 0.85000 
2,848,476,835 0.90000 
2,888,468,111 0.92500 
2,941,144,453 0.95000 
2,954,263,865 0.95500 
2,968,702,964 0.96000 
2,984,851,364 0.96500 
3,003,106,105 0.97000 
3,024,076,687 0.97500 
3,049,146,274 0.98000 
3,081,283,973 0.98500 
3,124,409,548 0.99000 
3,196,271,436 0.99500 
3,351,471,608 0.99900 
3,417,154,542 0.99950 
3,568,402,012 0.99990 

Implied 
Capital 

2,734,394,860 180,295,083 
2,753,829,391 199,729,614 
2,774,534,227 220,434,450 
2,796,912,584 242,812,807 
2,821,528,848 267,429,071 
2,849,235,353 295,135,576 
2,881,449,351 327,349,574 
2,920,686,432 366,586,655 
2,972,637,184 418,537,407 
3,007,545,936 453,446,159 
3,054,644,769 500,544,992 
3,066,535,955 512,436,178 
3,079,679,982 525,580,205 
3,094,397,423 540,297,646 
3,111,162,780 557,063,003 
3,130,710,903 576,611,126 
3,154,284,003 600,184,226 
3,184,073,593 629,973,816 
3,225,162,418 671,062,641 
3,293,544,811 739,445,034 
3,447,105,396 893,005,619 
3,513,336,592 959,236,815 
3,671,307,9581,117,208,181 
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Reinsurance 
Contract 

Fire A 
Fire B 
Fire C 

Tab~3 

Mar~n~ Capit~ Needed ~ Be~rmingofYear 
Year0 Year 1 Year2 Ye~3 Year4 Year5 Year6 

52,488 11,869 
54,694 12,428 
66,358 15,383 

Comm Auto Liab A 34,962 28,845 18,913 16,435 7,944 
Comm Auto Liab B 37,350 30,810 18,045 15,255 7,533 
Comm Auto Liab C 52,799 44,260 27,308 19,896 9,560 
Comm Auto Liab D 40,810 33,850 21,319 16,976 8,064 
General Liability A 63,628 53,837 44,341 38,707 22,441 15,493 12,034 
General Liability B 65,629 55,336 45,939 39,968 24,076 17,144 13,550 
General Liability C 77,826 65,733 55,518 49,518 33,768 25,682 20,273 
General LiabilityD 67,488 56,882 47,205 41,727 25,945 18,759 14,742 

First Contract 
Contract Retention Limit Retention Limit 
Fire A 500,000 500,000 - - 
Fire B 1,000,000 1,000,000 - - 
Fire C 1,000,000 5,000,000 - - 
Comm Auto Liab A 500,000 500,000 - 
Comm Auto Liab B 1,000,000 1,000,000 - 
Comm Auto Liab C 1,000,000 5,000,000 - 

Table 4 

Second Contract Expected Capacity Cap Chg as 
Loss Charge % Exp Loss 

1,000,000 10,432 1.04% 
1,000,000 10,878 1.09% 
1,000,000 13,241 1.32% 
1,000,000 14;525 1.45% 
1,000,000 14,942 1.49% 
1,000,000 21,174 2.12% 

Comm Auto Liab D 500,000 500,000 2,000,000 2,000,000 1,000,000 16,561 1.66% 
General Liability A 500,000 500,000 - - 1,000,000 31,265 3.13% 
General Liability B 1,000,000 1,000,000 - - 1,000,000 32,484 3.25% 
General Liability C 1,000,000 5,000,000 - - 1,000,000 39,976 4.00% 
General Liability D 500,000 500,000 2,000,000 2,000,000 1,000,000 33,695 3.37% 

When you examine-Tables 3 and 4, we hope you would agree that the capacity 

charges follow a logical progression in terms of  relative risk and the length of  time 

that capital must be held to support that risk. 
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Next we consider a set of examples consisting of catastrophe treaties. As we did in 

constructing the reference portfolio, using exposures that primary insurers reported 

to ISO, we ran the AIR catastrophe model to produce 10,000 simulated years of 

hurricane and earthquake losses for a number of primary insurers. The catastrophe 

losses were adjusted to reflect the reinsurance provisions, and we continued with 

the 25% quota share provision that was taken by the reference portfolio. For each 

contract, the losses were added to the losses of the catastrophe contracts in the 

reference portfolio by year to produce a combined catastrophe size of loss 

distribution. We assumed that there was no uncertainty in the catastrophe losses 

after one year. 

Table 5 gives an illustrative aggregate loss distribution when a catastrophe contract 

is added to the reference portfolio. Table 6 gives the results of the marginal capital 

calculations and resulting capacity charges for each of the catastrophe contracts. 
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Table 5 

Aggregate Loss Distribution 
Produced by 

ISO Underwriting Risk Model 
Reference Portfolio + Earthquake C 

Aggregate Mean 2,559,254,438 
Aggregate Std. Dev 230,864,879 

Aggregate Cumulative Tail Implied 
Loss Probability Value at Risk Capital 

2,549,206,753 0.50000 2,742,159,379 182,904,941 
2,577,918,536 0.55000 2,762,007,818 202,753,380 
2,607,399,694 0.60000 2,783,186,946 223,932,508 
2,638,206,921 0.65000 2,806,117,885 246,863,447 
2,671,104,813 0.70000 2,831,392,904 272,138,466 
2,707,046,998 0.75000 2,859,915,077 300,660,639 
2,747,671,983 0.80000 2,893,170,794 333,916,356 
2,796,075,394 0.85000 2,933,840,121 374,585,683 
2,858,223,270 0.90000 2,987,982,052 428,727,614 
2,899,467,753 0.92500 3,024,575,910 465,321,472 
2,954,132,749 0.95000 3,074,238,226 514,983,788 
2,967,817,054 0.95500 3,086,832,661 527,578,223 
2,982,939,047 0.96000 3,100,778,128 541,523,689 
2,999,816,143 0.96500 3,116,425,597 557,171,159 
3,018,878,770 0.97000 3,134,301,652 575,047,214 
3,040,922,350 0.97500 3,155,211,119 595,956,681 
3,067,778,750 0.98000 3,180,494,563 621,240,125 
3,101,546,799 0.98500 3,212,599,452 653,345,014 
3,146,195,429 0.99000 3,257,314,564 698,060,126 
3,224,424,972 0.99500 3,331,993,080 772,738,642 
3,396,310,134 0.99900 3,503,462,403 944,207,965 
3,468,506,073 0.99950 3,578,282,216 1,019,027,778 
3,642,049,455 0.99990 3,762,498,626 1,203,244,188 
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Table 6 

Reinsurance Marginal  Expected Capacity Cap Chg as 
Contract Capital Loss Charge % Exp Loss 

Earthquake A 14,736 5,287 2,458 46.48% 
Earthquake B 7,538,096 4,939,820 1,257,201 25.45% 
Earthquake C 27,063,114 6,154,667 4,513,577 73.34% 
Earthquake D 1,483,536 1,273,219 247,424 19.43% 
Earthquake E 1,862,063 303,947 310,554 102.17% 
Earthquake F 3,174,465 593,735 529,436 89.17% 
Earthquake G 5,513,907 2,760,151 919,608 33.32% 
Earthquake H 2,102,509 371,200 350,656 94.47% 
Hurricane A 2,092,047 123,008 348,911 283.65% 
Hurricane B 95,297 75,723 15 ,894  20.99% 
Hurricane C 3,532,354 640,824 589,125 91.93% 
Hurricane D 1,838,135 462,064 306,564 66.35% 
Hurricane E 1,716,522 266,411 286,281 107.46% 
Hurricane F 4,063,674 226,776 677,738 298.86% 
Hurricane G 2,871,555 577,426 478,917 82.94% 
Hurricane H 33,428,704 7,840,572 5,575,228 71.11% 
Hurricane ! 22,259,834 2,197,780 3,712,488 168.92% 
Hurricane J 8,167,187 2,695,188 1,362,121 50.54% 

A noteworthy feature of this last set of examples is the wide range of capacity 

charges. Earthquake Contracts E and G provide one of the nicer illustrations of 

what drives these differences. Table 7 gives some key statistics. 

Table 7 

Earthquake Coefficient of Correlation with 
Contract Variation Reference 

Portfolio 

E 36.3 0.76 

G 27.5 0.16 
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Earthquake Contract E is more volatile than Earthquake G, but the main difference 

is the correlation between the contracts and the reference portfolio. Figure 7 

provides scatter plots of  the contracts and the reference portfolio. 

F i g u r e  7 

Note: The vertical and horizontal dotted lines represent the respective 99 th percentile 
of the reference portfolio and the indicated reinsurance contract for earthquake 
reinsurance. 
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7. Summary and Conclusions 

This paper started with three objectives: 

1. Demonstrate a practical method to determine the distribution of a reinsurer's 

aggregate loss payments. 

2. Using the results of Objective #1, demonstrate how to determine the amount 

of capital needed for a reinsurance company based on its risk of loss. 

3. Using the results of Objective #2 demonstrate how to determine the capacity 

charge for a new reinsurance contract. 

We demonstrated our methodology for accomplishing these objectives on an 

illustrative reinsurer with hundreds of reinsurance contracts. 

We used the ISO Underwriting Risk Model to determine the aggregate loss 

distribution. As input, the model took the limits and quota share percentages for 

each reinsurance contract for the "standard lines" of insurance. We used the claim 

count and claim severity distributions provided by the model. For hurricane and 

earthquake losses, we used the AIR catastrophe model with exposures reported to 

ISO as input. 

Dependencies among the various lines of insurance were reflected in the model by 

quantifications of  parameter uncertainty in the standard lines of insurance and by 

geographic proximity for the catastrophe exposure. 

Next we determined the capital needed for the reinsurer by calculating the Tail 

Value-at-Risk from the aggregate loss distribution. 

Finally we calculated capacity charges for a variety of reinsurance contracts. The 

rationale underlying these calculations was that the total capacity charge over all 
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reinsurance contracts should provide the reinsurer with a competitive expected 

return on capital. 

The underwriting strategy used to get this expected return assumed that the 

reinsurer will write those contracts that provide the greatest return on marginal 

capital. Now it can take several years for some reinsurance contracts to be settled. 

The reinsurer must hold capital as long as there is uncertainty in the final 

settlement of  its claims, and the capacity charge reflects how long capital must be 

held because it reinsures a given contract. 

We believe we have demonstrated that this methodology can be implemented for 

most reinsurers. 

8. Additional Comment 

There is recent actuarial literature on "correlation in the tails" such as that of  

Venter [2002]. The analysis documented in the appendix of  this paper estimates an 

overall level o f  correlation not attributed to particular region of  the loss 

distribution. We doubt that we have sufficient data to make such an attribution. 

Furthermore, to the extent that correlation in the tails is driven by large natural 

catastrophes, we argue that, when we couple a collective risk model parameterized 

by the parameters estimated in the appendix with simulation runs from a 

catastrophe model, as documented above, we do indeed capture at least some 

"correlation in the tails." 

Should a reinsurer want to use a copula, or some other dependency model, our 

methodology for determining the needed capital and capacity charges can 

accommodate it. At the very least, one can generate a large number of  stochastic 

scenarios and incorporate that into the collective risk model in exactly the same 
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way that we did for the catastrophe model. 
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Appendix: Estimation of Correlation 

Certainly one major driver of  actuarial interest in correlation is the perception that 

positive correlation among lines of  business, books of  business, etc. has the 

potential to increase required capital. As a consequence of  this observation, it 

seems to us that the program should be as follows: 

• Estimate expected losses or loss ratios, 

• measure deviations of  the actuals from these expectations, 

• and estimate correlations among these deviations as the correlations relevant 

to the required capital issue. 

In an effort to parameterize various ISO models, we have carried out this program. 

For the sake of  parsimony (to limit the required number of  parameters to a relative 

few), we have imposed on correlation a model structure as documented in Meyers 

[ 1999a and 1999b]. We estimate correlations within company between lines of  

business and between company both within and between lines of  business. These 

correlations among companies and among lines o f  business then drive correlations 

among reinsurance contracts written on those companies and lines of  business. 

Our dataset includes a fairly large number of  companies, and our models are 

parsimonious in the sense of  assuming that the same correlation model parameter 

values apply across all companies within a line of  business. So our estimates are in 

effect pooled estimates. Even so, parameter estimates (contagions and covariance 

generators) were never more than two or three or four times their associated 

standard errors. Common statistical practice holds that an estimate is not 

statistically significant (at the approximately 95% level) unless the estimate in 

absolute value is at least twice its standard error. Had our dataset not included as 

many companies or had we attempted to estimate separate parameters by company 
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(or at least by class of company), standard errors would have been larger in relation 

to their estimates. So it is doubtful that we would have found many parameter 

estimates significant at the 95% level. The large number of companies and the 

pooling are necessary to achieve significance. 

The next section of this Appendix will address some philosophical issues of just 

precisely what correlation do we wish to measure anyway, and what are some of 

the adjustments we must make to observe this correlation. The following section 

will then discuss the correlation model of Meyers [1999a and 1999b] and an 

introduction to how we estimate the parameters appearing in the resulting 

formulae. The remaining sections will discuss the technical details of the 

estimation, with a few representative results presented at the end. We defer to the 

end of the model discussion a quick summary of the remainder of  this Appendix, 

because even a quick summary of the technical details requires as background the 

topics we will discuss in the next two sections. 

Correlation of What? 

Suppose a realistic forecast, taking into account current rates and prices, estimates 

of trend, perceptions of  current market conditions, etc., indicates that next year's 

losses will be higher than the long-term average. On the day the business is 

written, the insurance executive therefore already expects losses higher than 

average and makes some provision for that. Where the requirement for capital 

comes from, however, is the recognition that losses could emerge even higher than 

the already higher expected, and potentially higher than expected simultaneously 

for a number of  lines of business, books of business, etc., due to positive 

correlation among those books. Thinking in this way clearly identifies the fallacy 

of measuring correlations of deviations about long-term averages, where some of 
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the deviation from-long term average is due to predictable cycles, trends, etc. 

What matters, at least for correlation studies relevant to required capital, is not 

predictable deviation from long-term average but correlated, unpredictable 

deviation from expectations varying predictably from long-term averages. 

As an enlightening thought experiment, consider an optimistic insurance company 

that consistently forecasts losses lower than their true expected value. 

Considerably more often than not, deviations of actual from forecast will be 

positive, yielding apparently fairly significant positive correlations among the 

outcomes, probably more positive correlation than would result if we were to 

measure deviations about true expected values. This thought experiment warns us 

that, to some extent, the correlations we measure will be dependent upon the way 

we estimate expectations from which we measure deviations. 

As a further enlightening thought experiment, we ask what algorithm would most 

likely produce correlation estimates most relevant to the required capital issue. 

This would be the algorithm that most closely mimics the actual emergence over 

time of information in the insurance industry. Suppose for a number of companies 

and lines of business that we had time series of annual ultimate loss results (or 

results to date developed to ultimate), as well as potential predictor time series, 

such as losses emerged at each point in time (not developed to ultimate), rate and 

price indices, trend estimates at various points in time (based only on information 

up through that time), indicators of market competitiveness at various points in 

time, etc. As an example, suppose we sit at the end of year 10 and forecast year 11 

based only on what the industry would have known at the end of year 10. Then in 

year 11 we calculate deviations of ultimate losses from these forecasts. Then we 

roll the time series forward to the end of year 11 and repeat the process, forecasting 

year 12, etc. Finally estimate correlations among these deviations. 
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The problems with this algorithm are at least twofold: 1) We probably need time 

series with duration of at least a couple of decades--at least the first decade to 

calibrate the time series forecasting model, plus at least another decade of forecasts 

from the calibrated model, and their attendant deviations and correlations, so that 

correlation estimates are not driven too much by events in any one year. In fact, it 

would probably be useful to have at least a couple of decades of forecasts and 

deviations so that we could potentially test the stability of correlation estimates 

over time. 2) We would need to reconstruct time series of what the industry knew 

at past points in time, such as rate and price indices, past estimates of trend, market 

competitiveness indices, etc. We might not be able to construct such time series at 

reasonable cost. Also, we might not be able to reconstruct other time series of 

what the industry knew or could have known at past times with any reasonable 

accuracy. 

In light of these difficulties, we have constructed "forecasts" about which to 

measure deviations and correlations via an alternative algorithm. By line of 

business (LOB) and company, we have about a decade's worth of paid losses 

developed out to the oldest age in our available loss development triangles. We 

have not constructed time series of other potential predictors of those loss ratios. 

Instead, separately by LOB, we have developed generalized additive models for 

these loss ratios with main effects for company and a non-parametric, non-linear 

smoother term for year. The year effect is a loess smoother (Not a typo. Loess is a 

form of localized regression.) of local second degree with smoothing window over 

years sufficiently wide that long-term trends and turning points are captured 

without respondingmuch to the random ups and downs of individual years. We 

have chosen a smoother of local second degree rather than first degree to better 

respond to turning points in the data. 
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The downside of this algorithm for correlation analysis is that the use of smoothers 

produces "forecasts" that, at any given point in time, depend on all of past, present, 

and future with respect to that point in time. Such "forecasts" may perform better 

than even the best of forecasts that must depend strictly on only the past, especially 

with respect to turning points and points of  inflection. Therefore, some of what is 

captured in a smoother-based "forecast" (and therefore considered "predictable" 

with respect to that forecast) would be unpredictable and not captured by forecasts 

dependent strictly on the past and would instead be captured in the unpredictable 

deviations about those forecasts. Therefore, deviations about true forecasts 

dependent only on the past might tend to be somewhat larger and somewhat more 

correlated than deviations about smoother-based forecasts. As a consequence, our 

correlation estimates should be regarded as lower bounds. 

On the other hand, the performance of our smoother-based forecasts may not be 

vastly superior to forecasts based only on the past that take advantage of more 

information than just losses, such as rate, price, trend, market competitiveness, etc. 

We would therefore not expect our correlation estimates to be vastly understated. 

Furthermore, we would expect those correlation estimates to be considerably closer 

to the mark than estimates based on deviations about long-term averages to the 

extent that in many of the lines we have studied there has been considerable long- 

term trend over the last decade; and we would argue that much of this long-term 

trend was indeed predictable, at least on a rolling one-year-ahead forecast basis. 

A Correlation Model Based on Parameter Uncertainty 

The reader is referred to Meyers [1999a and 1999b] where one of us has developed 

a model with correlation driven by parameter uncertainty. The essence of this 

model is captured in Simulation Algorithm #3 in the main text of  this paper. 
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Losses are assumed conditionally independent; but correlation is imposed via 

severity multipliers assumed common across all lines of  business and via 

frequency multipliers assumed common across all losses within a line of  business 

and at least perfectly correlated, i f  not identical, across all lines within a so-called 

"covariance group." This model imposes a certain structure on correlations that 

depend upon parameters that can be estimated. 

Although the models published in Meyers [ 1999a and 1999b] include both severity 

and frequency multipliers, we have chosen to fit to a version of  the model with just 

frequency multipliers and have estimated the additional contribution to correlation 

from severity effects not by fitting data but rather by appeal to our understanding 

of  severity-trend uncertainty. All losses across all lines are assumed multiplied by 

a common severity multiplier. This multiplier is a random variable with 

expectation 1 and variance b. I f  we assume our uncertainty regarding severity- 

trend translates to an uncertainty regarding severity on the order of  3%, then this 

translates to a b of  approximately (.03) 2 = 0.001. Although we fit to a model form 

excluding severity-parameter uncertainty, the data we fit probably includes a 

component of  correlation due to severity uncertainty, because we have certainly 

made no adjustments to the data to remove this particular uncertainty. Therefore, it 

is likely that the frequency uncertainty parameters of  the model have taken up 

some of  the slack and have responded to both frequency and severity uncertainty, 

at least to the extent that severity uncertainty can be captured by this model form. 

Then adding on top of frequency parameters, which may already have captured a 

portion of the severity effect, a b value estimated from first principles has the 

potential to overstate the total correlation. This is countervailing to the effect 

discussed in the previous section of  this Appendix, which would potentially cause 

an understatement of  correlation. 
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We note lastly that we have not yet studied correlations across years. But, within 

year, we note that we have studied across company/across LOB, across 

company/within LOB, within company/across LOB, and within company/within 

LOB (this last would be just variance, the usual process variance but augmented 

for the additional impact of  parameter uncertainty). 

Let Luk be the annual aggregate ultimate loss for line of business i, company j,  and 

year k. Similarly for L;)..k. The two companiesj and j" could be the same or 

different, the two lines i and i" the same or different. Assuming no severity 

parameter uncertainty, so b = 0, the covariance between Luk and LiT'~ is as given in 

Meyers [1999a]: 

~2 
Cov[L~,LiT.k]=6ir6.u, IIvi + la, lEi)k +(1+ gl,ciE~ I+~Ga ~ E o ,  E~7,1,. (A.1) 

L t,/x, j j ' "  

• 6u. is 1 if  and only i f / =  i" (i.e., the first and second LOBs are the same) 

and 0 otherwise. Likewise for 6).. In other words, the first term is 

nonzero only when first and second LOBs match, first and second 

companies match, and first and second years match, in other words, only 

when calculating variances. 

• (~GiGi" is 1 if  and only if the first and second lines of  business are in the 

same covariance group, otherwise 0. To get 1, first and second 

companies don't have to match, nor do first and second lines of  business, 

but first and second lines of business have to be at least in the same 

covariance group. 

• ~ and ai are the mean and standard deviation of the severity distribution 

associated with LOB i. 
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Auk is the expected claim count associated with Luk and c~ is the contagion 

for LOB i, so the variance of  claim count associated with Lgk is 2gk + 

• E~j~ = E[L~jk] = 2U~u,. 

gi is the covariance generator associated with LOB i. In other words, in 

this line of  business, parameter uncertainty associated with frequency is 

captured by a common multiplier across all companies within this line of  

business, the multiplier being a random variable with mean 1 and 

variance g~. The formula above reflects one departure from the 

referenced Meyers [ 1999a and 1999b] papers. Whereas those papers 

assumed the same multiplier across all lines of  business within 

covariance group, it is now assumed that across lines of  business within 

covariance group the frequency multipliers could be different, with 

different covariance generators, but they are still assumed perfectly 

correlated. This results in replacing some occurrences ofgi  in the earlier 

formulae with the ~ appearing above. 

Recall that, by definition: 

COV[L~k,L,yk] = e[(L~ -- e[Z.,j,])(L,.S, -- e[ZO. ~])]. 

Define the normalized deviation 

Zu, - E[Zo, ] 
Ao. k = 

Then divide through equation A. 1 above by EukEiy. k to find: 
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(°2 / 
E[Aij,~Ai,,.,}] 'Hi 'us 4-4r6ji.(l + gi)e i +6aia,. ~ . (A.2) 

Sok 

So, i f / - -  i" andj  = j ' ,  we are looking at a variance. Then that variance is a 

regression on I /E ,  with regression coefficient depending only on the parameters of  

the underlying severity distribution and with intercept term equal to ci + gi + cgi .  

This term is approximately ci + gi because the product cg~ can be expected to be 

much smaller than either ci or gt, both of  which are expected themselves to be 

small. I f  first and second companies are different but first and second lines of  

business are the same, then the expectation above is gi, the covariance generator for 

the single common line of  business. Regardless of  whether first and second 

companies are the same or different, if  first and second lines of  business are 

different, then the expectation above becomes ~ ,  the geometric average of  the 

covariance generators o f  the two lines of  business. If  the two lines of  business are 

in different covariance groups, then the expectation above is zero. 

Suppose we estimate those expectations, and hence the parameters of  our 

correlation model, from (weighted) averages of  or regressions on pairwise products 

of  normalized deviations of  our underlying data. We will discuss the appropriate 

weights later. Consider first all pairwise products of  normalized deviations where 

the first and second LOBs are equal to a single selected LOB of  interest, with first 

and second companies different. From equation A.2, we expect an appropriately 

weighted average (across all companies and years) o f  these pairwise products to 

approximate the expectation gi. We estimate gr  for a second LOB i" the same way. 

Having determined gs and g~., suppose now we consider all pairwise products 

where the first LOB is i and the second is i', without constraint on first and second 

companies being the same or different. We expect that the appropriate weighted 
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average of those pairwise products will b e ~ .  I f  we find this indeed to be the 

case, then we conclude LOBs i and i" are in the same covariance group. But if  we 

find the weighted average to be statistically insignificantly different from zero, we 

conclude that LOBs i and i" are in different covatiance groups. Lastly, we consider 

pairwise products where the first and second company is the same and where the 

first and second LOB is the same and equal to a selected LOB of interest. 

According to equation A.2, these products should display a 1/E dependence. 

Regress these products on 1/E and identify the intercept estimate with ci + gi. Note 

that c never appears naked in these expressions, always in conjunction with g, but, 

having already inferred g, we can back out g to infer c. 

For the rest of this Appendix we will carry out the following program: 

1) In the next section, "Model for Expected Losses," we will discuss the 

estimation of the Eok and calculation of the normalized deviations Auk with 

an adjustment for degrees of freedom. The need for weights and the 

appropriate weights to u.se in modeling E/jk will be important issues. 

2) The following section, "Model for Loss Variances," will discuss the use of 

squared normalized deviations AUk 2 to fit the 1/E variance models mentioned 

above and estimate the sums of contagions and covariance generators by 

LOB, c~ + gi. 

3) The following section, "Other Pairwise Products," will discuss the use of 

other pairwise deviation products AokA~).k with at least one o f / ~  i" or j  ~ j ' .  

Products in which the first and second LOBs are the same, i = i', but 

companies are different,j Cj ' ,  yield estimators for the covariance generators 

g~. Products in which the first and second LOBs are different, i # i', provide 
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a test of whether two LOBs are in the same covariance group or not. The 

issue of weights will again be important. Also to be introduced at this point 

will be the use of the bootstrap to quantify standard errors of estimates. 

4) The last section, "Some Representative Results," will discuss for two lines 

of business some representative results for contagion ci, covariance 

generator gi, and whether or not these two lines are in the same covariance 

group. Furthermore, for one of our representative lines, we will also 

perform the calculations measuring deviations relative to means not adjusted 

for long-term trends. We will indeed find much larger contagions and 

covariance generators. But, as we have already argued, these larger 

parameters are not appropriate for capital requirement calculations. 

Model for Expected Losses 

As already noted, we start with paid losses by LOB, by company (or company 

group), by year developed not to true "ultimate" but rather to the greatest age in 

loss development triangles available to us. We ratio.these losses to premiums, 

build models for expected loss ratio, then multiply by premium to get back to 

estimates for expected loss. For each LOB, we actually test a number of 

denominators (premium, PPR, one or more exposure bases) in search of a 

denominator that produces a model for the ratio of loss to that denominator with a 

relatively high R 2. Presumably, for those denominators producing ratio models 

with lower R 2, the additional unexplained volatility is attributable to the 

denominator and interferes with good estimates for expected loss. High R 2 means 

the denominator is either stable or changes smoothly over time and is less likely to 

interfere with good estimates of expected loss. 
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Graph A. 1.1 shows loss ratios by year, each line representing a separate company 

or company group. This is a package line with considerable property exposure, 

which may explain the apparent coordinated short-term up and down movement, 

which is evidence of  correlation across company within LOB. The long-term 

apparent upward trend is probably just that, trend, was probably predictable, and, 

according to the discussion at the beginning of  this Appendix, should not be 

considered evidence of  correlation in the sense that we mean correlation. 

Graph A. 1.2 shows loss ratios by year for a liability line. Correlation is less 

readily apparent in this second graph. We should not be surprised if the correlation 

parameters we estimate for the second LOB are less than those for the first. 

The graphs for these two lines are reasonably representative of  graphs for the other 

lines we studied as well. The reader should note an important feature of  these 

graphs that motivates the subsequent model. The lines for some companies lie 

consistently above the lines for other companies and appear to move in parallel to 

one another. Where correlation is visually significant (LOB 1), the parallel motion 

is evident even over short periods of  time. Where correlation is less visually 

significant (LOB 2), the parallel motion is less pronounced over short periods of  

time but is still evident, on average, over the decade as a whole. This suggests a 

main-effects model with main effects for company and year. We assume no 

company/year interactions partly because such interactions are not apparent on the 

graphs and partly because we could argue that we lack sufficient data to estimate 

separate year effects by company anyway. We fit the year effect with a non-linear, 

non-parametric smoother to capture a wide range of  possible behaviors across 

years - consistent trend, turning points, points of  inflection, etc. This model 

produces fitted loss-ratio values that are parallel curves, a separate curve for each 

company. 
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The fitting is performed by invoking a generalized additive model package, 

specifying normally distributed errors, an identity link function, main effects for 

company and year, and a loess smoother on year with wide smoothing window 

(large "span"), so as not to respond too much to random hits in any one year. 

Although one could argue that, technically, loss ratios cannot be normally 

distributed (shouldn't be negative and are likely positively skewed), we observed 

deviations from normality sufficiently mild for our data that the normal assumption 

was acceptable, which brought us that much closer to the classic linear model. 

Also, we saw no evidence that the loss ratios themselves were not additive in the 

explanatory variables (company and year), hence the identity link function, which 

again brings us that much closer to the classic linear model. In fact, the only 

reason for invoking the generalized additive model, rather than the classic linear 

model, was our desire to impose a non-linear, non-parametric smoother on the year 

effect. 

The generalized additive model was weighted. Over the years, it has been our 

experience fitting statistical models to insurance data that unweighted models are 

almost never appropriate. Weighted models are generally more appropriate, 

because insurance data points are almost never of  equal credibility or volatility; 

and, furthermore, the range of  credibilities or volatilities is sufficiently great that 

unweighted models are inadvisable. The general statistical practice is that the 

weight associated with a data point varies as the reciprocal of  its variance. This 

practice produces minimum-variance fitted values. A general statistical rule o f  

thumb is that, so long as the variances of  the data points are sufficiently similar to 

one another (in other words, differ from one another by no more than a factor of  

two or three) and assuming the variances independent of  the explanatory variables 

in the model, then the differences in results between a weighted and an unweighted 
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model can be expected to be sufficiently modest that they are ignorable. Then an 

unweighted model is acceptable. The purpose of  weighting is not to adjust for 

every last bit of  difference in variance but rather to correct for gross asymmetries 

in variance. But most insurance data presents a range of  variances considerably 

greater than a factor of  two or three and so generally calls for the estimation of  

weighted models. 

The classic actuarial assumption is that the variance of  a loss ratio declines as one 

over some measure of  volume, such as premium, which would suggest weighting 

on premium. But the formulas of  the previous section of  this Appendix would 

suggest that, in the presence of  parameter uncertainty, the variance depends on two 

terms, one of  form 1~volume, the second a constant greater than zero. So the very 

smallest risks, for which the 1~volume term dwarfs the constant, do indeed see a 

variance declining as 1~volume. The very largest risks, for which the 1~volume 

term has essentially died away to zero, see a variance essentially independent of  

size. If  all the data is essentially small risks, weighting on volume is appropriate. 

I f  all the data is essentially large risks, doing an unweighted analysis is reasonable. 

Generally, we are somewhere in the middle, with risks all the way from the small 

to the large. 

One possibility is to construct an iterated model. Select some weights. Fit a 

weighted model to find fitted means. Find the differences of  actuals and fitted 

means, square the differences, and fit these squared differences to the variance 

model 1~volume plus a constant. Invert the fitted variances to find a new set of  

weights and iterate a few times. This is admittedly a fair amount of  work. A 

"quick and dirty" alternative that we have frequently found to work adequately for 

weighting, where adequate means it removes gross asymmetries in variance 

without necessarily reducing all variances to exact equality, is to assume that 
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variance dies away as 1 over some fractional power of volume; say, variance dies 

away as 1 / ~ - - h e n c e  use the square roots of volumes as weights, Over quite 

a robust range of different models, we have found that this square root rule roughly 

captures the change in volatility from the small to the large. 

As an example, Graph A.2 shows the same loss ratios as in Graph A.I.1 (LOB1), 

but plotted against premium rather than year. The smallest risks have premium as 

small as approximately $5 million. The largest premiums exceed $1 billion. So 

premium covers a range of two and a half orders of magnitude. As expected, loss 

ratio volatility appears to decline with increasing volume, but apparently not as fast 

as a 1~volume rule would imply. If  the 1~volume rule held, as premium increased 

by more than a factor of 100, variances on the extreme right would be less than 

1/100 of the variances on the extreme left, and standard deviations on the extreme 

right would be less than 1/10 of standard deviations on the extreme left. Standard 

deviations on the extreme left don't look 10 times as big as standard deviations on 

the extreme right--more like the three or four times as big that would be implied by 

variances that went as 1 / ~ ;  hence standard deviations that went as 

1 / ~ .  So, in building our models for loss ratio for LOB 1, we have used 

weights of ~/premium. In other words, data points associated with the largest risks 

are assigned weights on the order of 10 times as large as data points associated 

with the smallest risks. 

Graph A.3 shows the year effect for this model on LOB 1. The dotted lines are the 

fitted year effect plus and minus two standard errors, corresponding to an 

approximately 95% confidence interval. The year effect has been translated to 

yield an average effect of 0. The absolute level of loss ratios is captured by the 

other main effect, the company effect. So we see loss ratios have been trending 
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upwards throughout the decade, increasing by more than 20 loss ratio points from 

the beginning tothe end of the decade, but the trend has not been uniform 

throughout. There is a point of inflection at mid decade. Throughout the first half- 

decade, trend was positive but decreasing, until it vanished altogether at mid- 

decade, only to resume its upward movement at decade end. Because this 

happened to all companies (at least our model assumes so, being a main-effects- 

only model, but, as noted before, there is no evidence of different year effects by 

company), and because the trend was essentially consistently upward and of 

significant magnitude, if we were to measure deviations about the decade mean, 

we would find most deviations early in the decade negative, most late in the decade 

positive. We would infer considerably larger correlations from these deviations 

than from deviations measured about the varying-year effect plotted in Graph A.3. 

For illustrative purposes only, we have actually done both calculations and will 

report the results later in this Appendix. 

This year effect has a cubic appearance. This shows the importance of the non- 

parametric component of the smoother on year. Because the smoother was locally 

quadratic, in the absence of a non-parametric component, the global year effect 

would have been linear or quadratic and could not have captured the pattern 

evidenced in Graph A.3. At the same time, the smoother is not so responsive as to 

pick up the year-to-year ups and downs apparent in Graph A. 1.1. So long-term 

trends captured in the means, as driven by the year effect, therefore are removed 

from deviations about means, and don't impact correlation estimates. Short-term 

ups and downs are not captured in the year effect or the resulting means, so do 

flow through to deviations about those means and do cant  through to correlations. 

This is the desired behavior. 
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Having identified good models for ratio of loss to one of premium, PPR, or 

exposure, we multiply the fitted values resulting from these models by the 

denominators to yield estimates for mean losses. These mean losses are then used 

to calculate the normalized deviations of the previous section of this appendix. As 

noted in the previous section, the normalized deviations are the actual loss minus 

the expected loss, the difference then divided by expected loss. 

There is one additional, important adjustment to the normalized deviations not 

already discussed. These deviations are adjusted for degrees of freedom by 

multiplying by ~ ,  where n, p, and the justification for this particular 

multiplier will now be described. Suppose the model for loss ratios for a particular 

LOB is based on n observed data points. The fitted model hasp effective 

parameters, where p is the number of companies, plus two (because of the locally 

quadratic nature of the year smoother ) , plus the additional effective number of 

degrees of freedom of the non-parametric component of the year smoother, which 

was generally in the neighborhood of 0.8. An unbiased estimator for variance 

involves taking differences of actual and fitted values, squaring the differences, 

summing up the n squared differences, and dividing the sum not by n but by n - p .  

The way in which we subsequently use the normalized deviations to estimate 

correlation parameters amounts to taking averages, dividing sums ofn  terms by n 

rather than by n - p .  By adjusting normalized deviations by the factor ~ ,  

we are adjusting squared deviations by n/(n -p), the n's cancel, yielding the right 

denominator, n - p ,  in the end. 

The need for applying a multiplier greater than 1 to the unadjusted normalized 

deviations can also be seen from the following argument, although this argument 

doesn't also establish the magnitude of the multiplier. We start with n data points. 
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To these data points we fit a model with p effective degrees of freedom. The fitted 

values are themselves random variables that approximate the "true" expected 

values to the extent that the model is the "true" model. But note that fitted values 

are pulled in the direction of the observed data and away from the true expected 

values by the fitting process (least squares, maximum likelihood, whatever). The 

magnitude of differences between actual and fitted values will therefore be smaller 

on average than the magnitude of differences between actual and true expected 

values. This shrinkage can be offset by multiplying the first differences 

b y e ,  where the actual value of the multiplier is established by the 

requirement that sums of squares reproduce the right unbiased estimate for the 

variance. 

In the interests of  wrapping up loose ends, we should note that, although we 

always started with a model with main effects for company and for year, with a 

smoother for year, the finally accepted models were many different variants on 

this. We sometimes found that company was not statistically significant; in other 

words, there was no statistically significant evidence that loss ratio differed by 

company. We sometimes found that the non-parametric component of  the year 

effect was not significant, so the year effect was globally quadratic. Sometimes the 

quadratic term was not significant, so the year effect was globally linear (long-term 

constant trend). And sometimes even the linear effect was not significant, so there 

was no statistically significant evidence of loss ratio varying across years at all. 

Model for Loss Variances 

So now we have normalized deviations, adjusted for degrees of freedom. We 

consider all manner ofpairwise products of these deviations. We demand that the 

year associated with the first factor in the pair match the year associated with the 
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second factor, because we have not yet studied correlations across year. I f  we 

consider just those pairwise products where the first and second company also 

match, and where first and second LOB also match and are equal to some specified 

LOB of interest, then we are looking at squared deviations. Equation A.2 suggests 

that, if we plot these squared deviations against expected loss E, we should see a 

1/E dependence plus a constant term, where the constant is the contagion plus the 

covariance generator for that LOB. See Graph A.4 for the graph just described for 

LOB 1. The circles represent the squared deviations from data. The triangles are 

the fitted values of the functional form lIE plus constant. 

The fit was created by least squares regression. There is again an issue of weights. 

Squared deviations for small expected loss appear considerably more volatile than 

squared deviations for large expected loss, and so should receive less weight. 

Otherwise, there is a considerable risk that some noisy data at small E could have a 

considerable impact on the estimate of the constant term out at large E. What 

weights might be appropriate? I f  the deviation A were approximately normal with 

standard deviation a, then A2/~ would be distributed approximately chi-squared 

with one degree of freedom. This result would imply that A z has an expectation of 

2 and a variance of 2a 4. In other words, the standard deviations of  the squared- 

deviation random variables appear proportional to their expected values, which is 

not inconsistent with Graph A.4. This suggests the following algorithm. Fit the 

1/E plus constant functional form to the squared deviations. Square the fitted 

values, take their reciprocals, and use these values as weights in another fit of the 

functional form to the squared deviations. Iterate a few times. 
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Other Pairwise Products 

Consider next pairwise products where first and second year are the same, first and 

second LOB are the same and equal to some specified LOB of  interest, but first 

and second company are different. These products measure correlation among 

companies within LOB, and their (weighted) average yields an estimator for the 

covariance generator for that LOB, per equation A.2. Consider first a plot of  the 

second factor in each pair against the first factor in each pair. Can one visually see 

the correlation? Graph A.5.1 is such a plot for LOB 1. 

The most striking thing about this plot is that the data appears to array itself in 

rows and columns. Consider an example. Suppose for this LOB we have 10 years, 

10 companies, hence 100 independent observations from which we construct 100 

normalized deviations. For each of  the 100 deviations thought of  as the first factor, 

there are nine deviations available as second factor (same year, each of  the other 

nine companies), hence a total of  900 pairwise products relevant to this section of  

the Appendix (same year, different companies) and 900 plotted points on the plot 

of  second factor vs. first factor of  the form of  Graph A.5.1, The points in this plot 

array themselves in columns of  nine points and rows of  nine points. The columns 

of  nine result because all nine share the same first factor (plotted on the x axis) 

while the second factor (plotted on the y axis) ranges over nine possible values. 

Rows of  nine also result because alt nine share the same second factor while the 

first factor ranges over nine possible values. The nine points in a colunm are not 

independent but highly interdependent through their shared first factor. Likewise, 

the nine points in a row are not independent but highly interdependent through 

their shared second factor. These interdependencies through shared first and 

second factors apply also to the 900 pairwise products. It would be very wrong to 
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treat these 900 pairwise products as 900 independent draws from some underlying 

process. This observation will be relevant to a later discussion of standard errors 

of parameter estimates, such as estimates of covariance generators. 

Returning to Graph A.5.1, note the slightly tilted horizontal line. This is an 

unweighted linear regression line on the plotted points. It is included as an aid to 

visualizing a possible tilt to the plot, which would be indicative of a correlation, 

but the degree of tilt of  this regression line is not a good estimator of the 

correlation. First, points with either very low or very high first deviation may be 

highly leveraged and highly influential in estimating the unweighted regression 

line. Yet these extreme first deviations are likely to be the most volatile and the 

least deserving of receiving any significant weight. An unweighted regression 

gives them too much weight. Second, the regression line treats all the plotted 

points as independent of one another, and we have already argued that there is a 

great deal of interdependency among these points. So the plotted regression line 

should be treated as a visual aid only and not considered a good estimator. We 

have argued in a previous section of this Appendix that a weighted average of 

pairwise products, with judicious choice of weights, might be a good estimator of 

covariance generators. 

The deviations of Graph A.5.1 are those measured about expected losses taking 

into account the year effect of Graph A.3. As an additional aside on the potential 

distortion of estimating correlations from deviations about grand means, Graph 

A.5.2 shows a plot corresponding to Graph A.5.1 of deviations vs. deviations, 

measured about expectations not reflective of the year effect. The apparent 

correlation is much greater, the excess correlation being driven by the failure to 

remove long term predictable trend from the deviations. 
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We have concluded that, because of various technical difficulties, plots of 

deviations vs. deviations of the form of Graph A.5 are useful visual aids but not 

good estimators. As weighted averages ofpairwise products of deviations can be 

used as estimators, what weights are appropriate? Previously, we presented a 

heuristic argument in terms of the chi-squared distribution for squared deviations; 

in other words, for pairwise products where the first and second factors are 

identical. But we don't know what the sampling distribution might be for pairwise 

products of deviations where the first and second factors may be interdependent 

but not identical. Suppose we plot pairwise products against some measure of 

volume to see if there is any evidence of changing volatility with increasing 

volume. For each of the first and second factors of a pairwise product, there is a 

measure of volume, namely the expected loss associated with that deviation, but 

the two expected losses are unlikely to be equal. Suppose we define as a measure 

of volume for the pairwise product the geometric average of the expected losses for 

the first and second deviations in the product; in other words, the square root of the 

product of the two expected losses. Call it E. 

Graph A.6.1 shows a plot for LOB 1 of the pairwise deviation products, same year 

first and second factors, different companies, against this volume measure E. 

Pairwise products associated with larger volumes are clearly less volatile and so 

should receive more weight in any weighted average of these products. Suppose 

we imagine that the variance of the sampling distribution of a pairwise product 

declines as unity over some power orE. Dividing the observed pairwise products 

by the square root of the presumed variance law and plotting this against E should 

produce a graph more symmetrical left to right than Graph A.6.1. Suppose we 

guess the variance law to be 1/E. Then multiply pairwise products by-rE. Graph 

A.6.2 shows this plot. We have gone from a graph that shows more volatility on 
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the left to one that shows more volatility on the right. Clearly, a 1/E variance law 

overdoes it. Suppose we assume a variance law 1 / ~ .  Then multiply pairwise 

products by the fourth root of E. Graph A.6.3 shows the resulting plot is far more 

symmetric than either A.6.1 or A.6.2, supporting a variance law something like 

1/x/E and, therefore, a weighted average of pairwise deviation products with 

weights proportional to x/E as a reasonably best estimator from among this family 

of  estimators of  the covariance generator for this LOB. 

Now that we have an estimate for the covariance generator, how precise is it? 

What is the standard error of that estimate? Generally, when an estimator is a 

weighted average of independent observations, the standard error of the estimate is 

the standard deviation of one observation divided by the square root of  the number 

of observations, with some adjustment for the weighting. As we have already 

argued, these pairwise products are far from independent of  one another, ruling out 

the square root ofn rule. We have chosen to estimate standard errors of  estimators 

via bootstrap. From the original data draw a data resample of  the same size as the 

original data set, but with replacement, so that some data points might not appear 

at all in the resample and others might appear more than once. Re-estimate the 

statistic or parameter of interest from this resample. Repeat this many times, 

building up a collection of estimates, from which collection one can estimate such 

quantities as the standard deviation and extreme percentiles of the estimator. 

Statistical rules of thumb suggest that, whereas one may need hundreds of 

resamples to reasonably estimate extreme percentiles (such as the 95 th or 99 th) of 

the sampling distribution of the estimator of interest, as few as fifty resamples will 

yield a reasonable estimate of the standard error of  the estimator. 

Furthermore, to preserve the two-way structure of  the underlying problem on 

company and year, as well as to estimate the relative impact of  company and year 

132 



on estimators, we bootstrap separately on company and year. Bootstrapping on 

company yields a standard error of  the estimator due to the randomness of which 

companies are in or out of  the database. In other words, if  certain companies were 

dropped from the database, and certain others were added, how much could we 

expect the estimator to vary from its current value? Bootstrapping on year yields a 

standard error of the estimator due to the randomness of  which years are in or out 

of the database. The total standard error of the estimator is the square root of the 

sum of squared standard errors due to company and year separately. 

An example may again be useful. Suppose our previous example with an LOB 

with ten years and ten companies. This produces 100 normalized deviations, 100 

squared deviations used to estimate the variance model, and 900 pairwise deviation 

products, first and second years the same, first and second LOBs the same and 

equal to the LOB in question, but different first and second companies, from which 

an estimate for the LOB covariance generator is calculated. One way to bootstrap 

would be to draw from the 100 deviations with replacement, but it is likely that this 

would produce a resampled dataset in which some years were represented by some 

companies but not all ten companies, and some companies were represented by 

some years but not all ten years. The resampled dataset would not preserve the 

two-way structure of the original on company and year. Also, from this resample 

it would be impossible to segregate the potentially interesting different impacts of 

company and year. 

We chose to resample on company and year separately. One resamples on 

company by drawing ten companies with replacement from the original list often. 

As an example, the resampled list might include eight of the original ten appearing 

once each, the ninth appearing twice, and the tenth not at all. Then one takes all 

ten years for each of the resampled companies. The result would be 100 

133 



deviations, the first 80 from the original 100 representing the first eight companies, 

then 81 through 90 from the original 100 representing the ninth company, then 91 

through 100 repeating 81 through 90, representing the ninth company showing up a 

second time in that particular resampling on company. So, although the resample 

includes 100 deviations, there are only 90 distinct values, because company 9 

occurs twice in the resample. One uses these resampled 100 deviations to calculate 

the previously discussed variance model and covariance generator estimator. 

Resample 50 times to estimate standard errors for the estimators. 

Next resample on year by drawing ten years with replacement from the original list 

often. As an example, the resampled list might include six of the original ten 

appearing once each, the seventh and eighth appearing twice each, and the ninth 

and tenth appearing not at all. Then take all ten companies for each of the 

resampled years. The result would be 100 deviations but only 80 distinct values, 

because years 7 and 8 occur twice in the resample. Use these resampled 100 

deviations to calculate the previously discussed variance model and covariance 

generator estimator. Resample 50 times to estimate standard errors for the 

estimators. 

The previous section of this Appendix, on the variance model, considered pairwise 

deviation products where the first and second factor years were the same, first and 

second LOBs the same, and first and second companies the same; in other words, 

the pairwise products were actually squared deviations. These lead to variance 

models and estimators for the sum of contagion and covariance generator for the 

LOB. In this section, we have considered pairwise products with first and second 

years the same, first and second LOBs the same, but first and second companies 

different. These products lead to estimates of correlation among companies within 

LOB, to estimators for the LOB covariance generator. Other pairwise products not 
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yet discussed but of  potential interest would be those for which first and second 

years are the same, but first and second LOBs are different. Such products would 

lead to estimates of between-LOB-correlation, to estimators for the geometric 

average of the covariance generators for the two LOBs if they are in the same 

covariance group, or to a statistic not statistically different from zero if the LOBs 

are in different covariance groups. We will not discuss these products further other 

than to note that the weighting and bootstrap issues discussed above are the same 

for these products and were addressed in the same way. 

Some Representative Results 

Before discussing Exhibits A. 1 through A.3, which provide some representative 

results, we should note that we tested two other model issues that have not yet been 

discussed. 

l) Between company pairwise deviation products yield estimators for 

covariance generators. We asked whether there was any evidence that these 

covariance generators varied by size of company. We tested this by 

regressing the appropriate pairwise products against the base 10 logarithm of 

the size of  the company, size measured as the expected loss for that LOB. A 

statistically significant regression coefficient for the log explanatory variable 

would have been evidence of a size dependency. A statistically significant 

positive coefficient would have been evidence of a covariance generator 

increasing with increasing company size, and vice versa for a statistically 

significant negative coefficient. We used log(size) as the explanatory 

variable on the assumption that the effect, if there was one, would be 

logarithmic in size, that the magnitude of the effect would be about the same 

when going from a company of size 1 to size 10 as when going from a 
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company of size 10 to one size 100, etc. No statistically significant size 

effects for the covariance generators were detected. 

2) For certain property lines, we asked whether much of the apparent 

correlation arose through catastrophes. We eliminated the heavy catastrophe 

years of 1992 and 1994 and found that correlations did indeed go down but 

were still significant. 

Turning now to Exhibit A. 1, this exhibit considers just pairwise deviation products 

where first and second LOB are LOB 1. Considered first are products where first 

and second companies are different ("Between companies"), hence the expectation 

is g~. Based on a weighted average of the relevant pairwise products from the data, 

the point estimate for g~ is 0.0026. The square root of this, 0.051, is the standard 

deviation of the underlying frequency multiplier, which appears to indicate a 

frequency parameter uncertainty impacting LOB 1 industry wide of on the order of 

plus or minus 5%. Bootstrapping on years yields a range of estimates for g~ with a 

standard deviation of 0.0008. Bootstrapping on companies yields a standard error 

due to companies of 0.0009. So uncertainty regarding this parameter due to years 

is comparable to the uncertainty arising through companies. The total standard 

error forgl is a combination of standard errors due to years and companies and is 

0.0012. The estimate for g~ is more than twice its standard error, so is certainly 

statistically significant. 

The test for g~ size dependence yields a regression coefficient for the log(size) 

explanatory variable of-0.00004, with a standard error estimated from bootstrap of 

0.00344. The standard error is much larger than the parameter estimate. There is 

no statistically significant evidence that g~ depends upon size. 
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Considering next pairwise products with first and second LOB equal to LOB 1 and 

with first and second companies equal ("within company"; in other words, the 

squared deviation products) yields an estimate for LOB 1 of  contagion plus 

covariance generator o f  0.0226 with a standard error of  0.0092. This is certainly 

significant. The difference of  the c + g estimate (0.0226) and the g estimate 

(0.0026) yields an estimate for the contagion c for LOB 1 of  0.0200. 

If, just for the sake of  illustration, not that we argue this is the right thing to do, we 

repeat these calculations for LOB 1 using deviations about grand means rather than 

about means adjusted for the year effects of  Graph A.3, we find much larger 

correlation estimates. For gl, instead of  the 0.0026 with standard error 0.0012 

discussed above, we find 0.0135 with standard error 0.0051. This latter value for 

gl implies a frequency parameter uncertainty of  11.6% vs. the 5% discussed above. 

Likewise, for cl + gl, instead of  the 0.0226 with standard error 0.0092 discussed 

above, we find 0.0298 with standard error 0.0099. Failing to adjust deviations for 

long-term predictable trends significantly inflates correlation estimates in ways not 

directly relevant to the required capital issue. 

Exhibit A.2 shows the same statistics for LOB 2, a g estimate of  0.0007 with 

standard error of  0.0004 (hence just about significant at two standard errors, 

indicating a frequency parameter uncertainty of  plus or minus 2.6%), no significant 

size dependence o f  this g estimate, and a significant estimate of  c + g of  0.0090 

with standard error of  0.0023. From comparing Graphs A. 1.1 and A. 1.2 we had 

suspected we would find more correlation in LOB 1 than in 2, and indeed we find 

g for LOB 1 larger than that for LOB 2. c + g measures large risk volatility (the 

limit as the 1/E term dies away). This is also larger for LOB 1 than for LOB 2. 
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Turning lastly to Exhibit A.3, this considers pairwise products where the first LOB 

is LOB 1 and the second LOB is LOB 2, hence measures between LOB 

correlations. This yields an estimate of  ~ of  0.0005 with a standard error o f  

0.0006. Because this statistic is not statistically significantly different from 0, 

there is no evidence that LOBs 1 and 2 are in the same covariance group. 

Knowing what lines of  business LOB 1 and 2 are, we did not expect them to be in 

the same covariance group and are not surprised by this result. 
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Exhibit A. 1 

Correlation Parameter Estimates 

LOB 1 

Between companies: g 

Estimate: 0.0026 

Standard error due to years: 0.0008 

Standard error due to companies: 0.0009 

Full standard error: 0.0012 

Between companies: logl0(size) coefficient 

Estimate: -4e-005 

Standard error due to years: 0.00235 

Standard error due to companies: 0.00251 

Full standard error: 0.00344 

Within company: c + g 

Estimate: 0.0226 

Standard error due to years: 0.0048 

Standard error due to companies: 0.0078 

Full standard error: 0.0092 
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Exhibit A.2 

Correlation Parameter Estimates 

LOB 2 

Between companies: g 

Estimate: 0.0007 

Standard error due to years: 0.0002 

Standard error due to companies: 0.0003 

Full standard error: 0.0004 

Between companies: logl0(size) coefficient 

Estimate: -0.00065 

Standard error due to years: 0.00050 

Standard error due to companies: 0.00065 

Full standard error: 0.00082 

Within company: c + g 

Estimate: 0.0090 

Standard error due to years: 0.0007 

Standard error due to companies: 0.0022 

Full standard error: 0.0023 
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Exhibit A.3 

Correlation Parameter Estimates 

LOB 1 vs. LOB 2 

Between and within companies: g 

Estimate: 0.0005 

Standard error due to years: 0.0005 

Standard error due to companies: 0.0003 

Full standard error: 0.0006 

Between and within companies: lOgl0(size) coefficient 

Estimate: -0.00086 

Standard error due to years: 0.00080 

Standard error due to companies: 0.00106 

Full standard error: 0.00133 
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C o r r e l a t i o n  

Thomas Struppeck, FCAS, MAAA 

Abstract 

Actuaries frequently are called upon to estimate sums of random variables. 
Such sums arise in a variety of  contexts, as aggregate loss distributions, as 
losses including loss adjustment expense, as losses to a particular layer in 
stop loss reinsurance. If the quantities being summed were independent, 
things would be easy, however this is seldom the case. Generally, there will 
be some amount of"correlation" between the summands. 

This paper examines the Pearson product moment correlation coefficient's 
strengths and weaknesses and discusses two non-parametric alternatives: the 
Spearman rank correlation coefficient and Kendall's tau statistic. 
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Correlation 

Cor-re-la-tion n. 
1. A causal, complementary, parallel, or reciprocal 

relationship, especially a structural, functional, or qualitative 
correspondence between two comparable entities. 

2. Statistics. The simultaneous change in value of two 
numerically valued random variables. 1 

What is correlation? As can be seen from the above dictionary 
definition, correlation is a difficult concept to precisely define. 
Complicating the matter is the fact that the word "correlation" has a 
common usage (definition l) and a technical usage. Upon hearing the word 
"correlation", actuaries may think of the (Pearson product moment) 
correlation coefficient, this preconceived notion can lead to further 
confusion. 

In this paper, we will consider several notions of correlation and 
examine their relative strengths and weaknesses. After this brief 
introductory section, we will develop the Pearson product moment 
correlation coefficient and see why it specifically is central to the problem of 
estimating aggregate loss distributions. In the third section, we examine two 
other poss~le measures of correlation, Spearman rank correlation and 
Kendall's tan. These measures are in some ways more natural than product 
moment correlation, and they have appeared at various places in the 
actuarial literature. 

In the fourth section, we examine some ways of estimating correlation 
coefficients. As we shall see, this can be a very tricky business. Sometimes 
pairs of quantities that at first glance would appear to be highly correlated, 
turn out not to be. We will see an example in which two independent 
random variables appear to be correlated! 

Oftentimes the goal of studying some correlated random variables is 
to obtain an aggregate distribution. A common method for estimating the 
aggregate distribution is to use Monte Carlo methods. Our fifth section is 
devoted to examining different ways of simulating correlated random 
variables along with some cautions for the various methods. 

t The American Heritage® Dictionary of the English Language, Fourth Edition, 2000, 
Houghton Mifflin Company. 
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Finally, before the Conclusions section, we consider a hypothetical 
aggregate stop loss and examine how our choice of correlation model can 
vastly change the estimated value of the different layers. 

Independence and Correlation 

In the normal course of business insurers commonly extend vastly 
more in total limit outstanding than they have in total assets. Consider a 
homeowners writer that insures 10,000 houses in each of fifty states for 
$100,000 each. The total sum insured is $50 billion. Assuming a premium 
of $1,000 per house, total annual premiums would be $500 million, so 
policyholder surplus might be $200 million. In this example, the total sum 
insured is 250 times the available surplus. How can such leverage work? 
The answer, of course, is that the insurer does not expect claims from all of 
its insureds at once. There is an assumption that losses occur somewhat 
independently from one another. This spreading of the risk is the essence of  
insurance. 

What is Correlation? 

First, let us review some probability. Suppose that X and Y are 
random variables with finite means, then: 

E(X+Y) = E(X) + E(Y). 

That is, the expected value of the sum is the sum of the expected 
values. Since expected value is the amount that the insurer will have to pay 
on average, it is naturally of considerable interest to insurers. 

Insurers are also concerned about the variation around this expected 
value. This variability is commonly measured by using the standard 
deviation or its square, the variance. The variance is the expected squared 
deviation from the mean, namely: 

VAR(X) = E((X - E(X)) 2) 

Or equivalently: 
VAR(X) = E(X 2) - E(X) 2 

156 



Unlike the rule for expected value, the variance of a sum is not sum of 
the variances, except under specific conditions. Instead there are other 
terms: 

VAR(X+Y) = E((X+Y) 2) - EfX+Y) 2 
E(X2+ 2 X Y  + y2) _ E(X)2 -2E(X)E(Y) -E(Y) 2 
E(X 2) - E(X) 2 + E(Y 2) - E(Y) 2 + 2E(XY) - 2E(X)E(Y) 

Denoting E(XY) - E(X)E(Y) by COV(X,Y), we obtain: 

VAR(X+Y) = VAR(X) + VAR(Y) + 2 COV(X,Y) 

As we see above, computing the variance of the sum of X and Y leads 
us to consider the expected value of the product of X and Y and the product 
of their expected values. This product term in turn motivates the definition 
of covariance. It is worth noting that the covariance of X with itself is the 
variance of X. 

Covariance is one step away from our goal, the correlation coefficient. 
If X is expressed in one unit of measure (say, meters) and Y is expressed in 
another unit (say, seconds), then the unit for the covafiance will be the 
product (in this case meter-seconds). It is possible to normalize the 
covariance (assuming finite, non-zero second moments for X and Y), by 
dividing by the product of the standard deviations of the two variables. In 
his delightful book [F], Feller 2 suggests that a physicist might call this 
quantity "dimensionless covariance"; this ratio is the Pearson product- 
moment correlation coefficient. Since we will be looking at several possible 
measures of correlation, we will henceforth refer to this measure as 
"dimensionless covariance". 

This quantity measures the extent to which X and Y are linearly 
related. It ranges between minus one and one. Being a measure of the linear 
relationship between two quantities might lead one to suspect that there is 
some connection between the correlation coefficient and linear regression. 
Indeed there is such a relationship, and it highlights a subtle point. Select a 
sample from the jointly distributed population (X, Y). From this sample, 
first compute the sample correlation coefficient. Then do two regressions: 
regress Y on X, and X on Y. In each of these regressions, X and Y have 
asymmetric roles: X is the independent variable and Y is the dependent 

2 Every actuary should read, at a minimum, section 1.5 of Volume Two, "The Persistence 
of Bad Luck". 
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variable in the first and vice versa for the second. From each of the two 
regression lines, a slope is obtained. The sample correlation coefficient is 
the geometric mean of these two slopes (see for example, [CS].) The sample 
correlation coefficient treats X and Y equally; neither is thought of as being 
a function of the other, they are simply related somehow. 

There are several ways that the correlation coefficient could be zero. 
The most important case is when the variables are independent. 
Independence, however, is a much stronger condition than correlation zero. 
Recall that two or more random variables are called independent if their 
joint density function factors into the product of their respective density 
functions. If two random variables are independent, knowledge about the 
value of one of them tells you nothing new about the value of the other one; 
i.e. the conditional distribution is with probability one the same as the 
unconditional distribution. On the other hand, if two random variables have 
a non-zero correlation, then knowing the value of one of them might give 
you information about the other one. 

Here is an example. Consider two lines of insurance, A ~nd B, which 
have losses jointly distributed as follows: 

1 2 

1/4 

So the losses for line A can be either 1 or 2 and the losses for line B 
can be 1, 2, or 3 with the probabilities for the 6 possible pairs of events 
given by the above table. This table is the joint distribution function and it 
contains all of the information about A and B. For example, by summing 
the columns we get the marginal distribution for A, namely 50% of the time 
it is 1 and 50% of the time it is 2. Similarly by summing the rows, we get 
the marginal distribution for B, which is also miform, this time on the three 
values 1, 2, and 3. 

If  A and B were independent, the probability of any given pairing 
would be 1/6. Evidently A and B are not independent. If we compute the 
Pearson correlation coefficient, we find that it is about 20.4%. It is 

3 More exactly, the probability that the conditional distribution is different than the 
unconditional distribution is positive. 
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interesting to note that the conditional distribution of A given that B=I is the 
same as the unconditional distribution of A; however, if we are given that 
B=2 instead, then we have a different conditional distribution for A. (A in 
this case has a 75% chance of being 1 and a 25% chance of being 2, as the 
reader may check.) 

Correlation and covariance are central concepts in modem portfolio 
theory. Consider a simple portfolio consisting of N securities, X,, each of 
which has a value that is randomly distributed with mean M and variance V. 
Further, suppose that each pair of security prices has covariance equal to C, 
then: 

N N 

E(~_,XO='~ E(XO= N. M 
i=l i=l 

and: 
N N 

VAR(~_XO= ~__VAR(X,)+ 2~_Cov(JLXj) 
i=1 i=1 j<i 

The first sum in the variance line has N terms, but the second sum has 
N(N-1)/2 terms. As N gets larger, the second term, which is quadratic in N, 
starts to dominate. What happens if we examine the average instead of the 
sum of the X, ? 

= 

N i=1 N i=l 

N.V+2N.(N-B.C. . V N 2 - N  
- - + - - C  N 2 N 2. 2 N N 2 

The first term goes to zero as N goes to infinity, but the second term is 
bounded away from zero by C, the pairwise covariance. This last term, 
called "non-diversifiable risk" (because it doesn't go away as N gets large), 
is a cornerstone of the capital asset pricing model (CAPM) and of other 
factor models such as arbitrage pricing theory (APT). 
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Knowing the correlation coefficient is not enough 

There are many ways that two random variables can co-vary. Even if 
we know the marginal distribution of X and Y and we know the correlation 
of X and Y, there generally will be many possible joint distribution 
functions, and hence, different ways that they might co-vary. A good way to 
visualize the relationship between two variables is to examine a scatterplot 
of  them. 

Consider the two data sets in Figures I and II. Both have standard 
normal marginal distributions, and the each pair of  variables has correlation 
coefficient p =80%. The pair of  normal random variables shown in Figure I 
is multivariate normal. We will use the term "binormar' for a pair of 
multivariate normal random variables. Each of the random variables shown 
in Figure n is normal, but their joint distribution function is not the 
multivariate normal. The pair in Figure II has been engineered so that the 
random variables exhibit extreme behavior simultaneously much more often 
than the pair in Figure I, yet the pairs in Figures I and II both have p =80%. 
Notice how the second and fourth quadrants have fewer observations in 
Figure II than in Figure I. These two quadrants represent pairs of random 
variables that have opposite signs. Similarly, the first and third quadrants 
appear to have more observations in Figure II than in Figure I, especially 
away from the origin. These points represent observations with both random 
variables being exceptionally far away from average. 4 This comparison 
illustrates a major problem with using any single number to attempt to 
describe how two things co-vary: one number cannot do the job. 

Remarkably, for continuous random variables, there is an object that 
does capture the exact way that two or more random variables co-vary. 
Furthermore, it captures only the interaction between the variables, being 
independent of their respective marginal distributions. This object is called 
a copula and is described briefly in a following section. The next section 
serves to give further motivation to the introduction of copulas. 

4 The probability of an observation being in quadrants one or three minus the probability 
of an observation being in quadrants two or four is one way to define Kendall's tan, 
which we will discuss later. 
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r h o = 8 0 % ; b i n o r m a l  

Figure I 

rho=80%; ta i l s  more  cor re la ted  

Figure II 
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Mango and Sandor's experiment 

In a recent paper [MS], Mango and Sandor report on an experiment 
they performed to test a simulation procedure for generating correlated 
excess losses. They were attempting to estimate how much capital a 
reinsurer needs to support its book. They began by generating a binormally 
distributed pair of random variables with mean 0, variance 1, and specified 
correlation. As is well-known, a multinormal random variable is uniquely 
defined by its covariance matrix and its vector of means. 

They take the pair (X, Y) of normal random variables and compute 
from it a pair (U, V) of lognormal random variables by setting U = exp(X) 
and V = exp(Y). They then censor these observations from below retaining 
only the pairs (U, V) where both exceed some threshold. At this point, they 
compute the correlation coefficient of the censored pair and observe that it is 
considerably smaller than the original correlation used when generating the 
pair (X, Y). Since the amount of correlation strongly influences how much 
capital is needed, they found this result to be alarming. 

It will be instructive to examine these steps again, inserting one 
intermediate step. 

Step 1: Generate a pair (X, Y) of normal random variables, binormally 
distributed with mean 0, variance 1, and specified dimensionless 
covariance. 

Step 2: Denote by FO the cumulative distribution function for a normal 
random variable with mean 0 and variance 1. Determine the point in 
the unit square given by F(X), F(Y). In other words, determine the 
joint cumulative distribution fimction for this pair. (This step we 
have inserted into Mango and Sandor's process.) 

Step 3: Compute U = exp(NORM(X)) and V = exp(NORM(Y)), where exp 
is the exponential function and NORM is the inverse of the 
cumulative distribution function that we introduced into the process 
in Step 2. 

Step 4: Censor the results from below deleting all observations that have 
either U or V less than some threshold. 

Step 1 is the generation of a pair random numbers and in this case the 
imposition of some sort of correlation structure on them. 

162 



Step 2 takes these random numbers and transforms them into a distribution 
function over the unit square. This particular choice of random number 
generation and transformation creates what is called a normal copula. The 
marginal distribution for each of the two coordinates is uniform on (0,1). 

Step 3 takes these uniform (0,1) marginals and converts them to specified (in 
this case lognormal) marginals. 

Step 4 takes the pair of lognormally distributed random variables and 
censors them from below. 

Mango and Sandor noticed that the dimensionless covariance 
dropped. In which steps did they lose it? Some was lost in step 2 and some 
more in step 3 (they combined these steps). Also, some was lost in Step 4. 

The loss in steps 2 and 3 comes about because dimensionless 
covariance is not preserved under non-linear transformations. A binormal 
pair of random variables is created in Step 1 and two nonlinear 
transformations are applied to it. There are measures which we will discuss 
later that are preserved under these transformations. 

The loss in step 4 is more fundamental. The process of censoring is 
not a transformation --- some observations are discarded. Paraphrasing 
Embrechts, et al [EMS], the normal copula exhibits independence in the 
tails. What this means is that as we focus our attention on the observations 
in the extreme upper right portion of the first quadrant the pairs of 
observations that we find there are distributed as though they were (nearly) 
independent. This happens even though if we look at all of the observations 
they will exhibit some correlation. 

Copulas 

Recently the notion of a copula has begun to become more widely 
known by North American actuaries. Venter's paper, Tails of Copulas, is a 
particularly nice source [V]. (Other good sources are [W], [EMS], and 
Nelson's book [N].) 

A copula is a dependence structure between two or more random 
variables. Let X and Y be (real-valued) random variables with joint 
distribution function F(x,y). That is: 

F(x,y) = Pr(X<=x and Y<=y) for all real x and y 
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If we just consider the variable X, we can ask about its distribution. It 
is given by the marginal distribution function, Fx(x). Similarly, the 
marginal distribution of Y is given by F~ (y). 

If we can fred a fi.mction C :  [ 0 , 1 ]  2 ") [0,1] with F(x,y) = C ( F x ( x ) , F r ( y ) )  , 

then we call that function a copula for X and Y. 

Copulas have many nice features. First, they always exist. Secondly, 
in the case when X and Y are continuous, they are unique. This feature 
follows from what is known as Sklar's Theorem. It would take us too far 
afield to discuss this important result further. (The interested reader should 
see, for example, [ELM] or [N].) 

One corollary of Sklar's Theorem is that, given a pair of continuous 
marginal distributions, every possible joint distribution with those marginals 
is given by a copula. The copula contains all of the information about the 
dependence structure of  the joint distribution function; the marginal 
distributions contain the information about the individual components. 

Considering the above, it seems that a good measure of the 
dependence of two (continuous) random variables would depend only on 
their copula since the copula captures all of the dependence information. 
Alas, dimensionless covariance is not a function of just the copula (in 
general it will depend of the marginals also), but there are measures that 
depend only on the copula. Since the copula captures all of the dependence 
information, this would suggest that these other measures are more natural. 
We discuss two of  these measures later, but first let us see some other 
problems with dimensionless covariance. 

Problems with dimensionless eovarianee 

As we have seen, dimensionless covariance has several nice 
properties. It is easy to compute an estimate of it from a sample. It is 
related to linear regression, a familiar topic. In the case of a standard 
multivariate normal, knowing the pairwise correlations (equivalently, the 
covariance matrix) completely determines the joint distribution. 

Ironically, these same properties highlight major weaknesses with it. 
The fact that it is easy to compute may lead practitioners to use it when it is 
not appropriate. The relationship to linear regression may make 
management feel that this is the right measure to consider, even if better 
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measures are offered. And finally, the fact that the covariance matrix 
contains all of the pertinent information in the multivariate case has led 
many to believe that it is true in general, when in fact, this relationship is 
seldom true. 

The dimensionless covariance is invariant under positive affine 
transforms. I.e. if you multiply one of  the variables by a positive constant 
and add another constant, the transformed variables have the same 
correlation coefficient. However, it is not preserved under more general 
transforms even if  these transforms are monotone increasing. This 
noninvariance is a distinct weakness which seems to still not be fully 
understood by all practicing actuaries. Wang and Mango-Sandor touch on 
this issue. 

Another problem with dimensionless covariance was alluded to 
earlier, namely that it is a single number. There are other problems too. 
While the dimensionless covariance is always between minus one and one, it 
is not always possible to achieve those bounds. Wang [W] gives explicit 
bounds for some lognormal random variables and shows that the range of 
achievable correlations can be made arbitrarily small. Wang shows that the 
largest possible dimensionless covariance between a lognormal random 
variable with parameters g and 1 and another one with parameters ~z.(r and 
cr 2 is: 

e ° -1  

~ _ 1  e.Q-e-S_l 

As the reader may check, this quantity tends to zero as sigma tends to 
infinity. So, in particular it is possible to have a pair of comonotonlc 
lognormal random variables with dimensionless covariance arbitrarily close 
to zero. 

Here is another easy example. Let X and Y be Bernoulli random 
variables with success probabilities of 10% and 20%, respectively. To 
maximize the correlation coefficient, we make X and Y equal to one 
simultaneously as often as possible. To do this we select a uniform (0,1) 
random variable, U and define: 

X = 1, ifU<O.1 X = 0, otherwise 

Y = 1, if U<0.2 Y = O, otherwise 
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We now compute the covariance of X and Y. 

COV(X,Y) = E(XY) - E(X)E(Y) = 0.1 - 0.02 = 0.08 

The standard deviations of X and Y are 0.3 and 0.4, respectively, so 
their correlation coefficient is 2/3. These two variables move together as 
much as possible, but their correlation coefficient is not 1. The reader can 
check that the smallest possible correlation between such a pair of Bernoulli 
random variables is -1/6. 

In the case of multivariate normal random variables (or more 
generally elliptical distributions), the correlation matrix is the canonical 
measure, i.e. specifying the correlation matrix uniquely defines the 
distribution. Therefore, it may be surprising to some that the correlation 
lives near the center of the distribution. What I mean by that is that, in the 
tails, there is little correlation. As mentioned earlier, this is what Embrechts 
means when he says that the normal copula exhibits tail independence. 
Mango and Sandor observe this property in their study in which they 
consider lognormal random variables [MS]. 5 

It is easy to produce a spreadsheet that generates, say, 500 pairs of 
standard binormal random variables with p =60% and then computes the 
sample correlation when these are mmcated at 1 from below or censored at 1 
from below. If you make such a spreadsheet, you will observe that in both 
cases, the resulting population correlation is smaller than 60% and the 
observed sample correlation is usually smaller. These examples illustrate 
two potential missteps for modelers: 

Mistake 1: 

Mistake 2: 

Assuming that by modeling the ground-up losses and their 
correlations accurately, you will automatically get the excess 
loss correlations correct. 
Assuming that because you know that the excess layers do not 
exhibit significant correlation, the ground-up losses will also 
not exhibit any. 

Finally, correlation is very hard to measure. While the sample 
correlation is easily computed, the confidence intervals around it are quite 
wide, even under the assumption that the variables are binormally 
distributed. The author's spreadsheet exhibits considerable instability in the 

s Since the tail independence is a property of the copula, one expects that they would 
have observed something similar for any marginal distributions. 
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sample correlations --- even in the sample correlations of the binormal 
random variables themselves. Brehm [B] alludes to some of the problems of 
measuring correlations from data. 

Here is one suggestion: when analyzing data, looking at a scatterplot 
of the data is almost always a good idea. 

Consider this pair of jointly distributed random variables: 

Two subpopulat ions 

Figure III 

A computation of the correlation coefficient will show a significant 
correlation, however it is misleading. As we see from examining the plot, 
we really have two classes. Once the two classes are identified and split, the 
apparent correlation goes away. We will see a second example of this type 
when we look at simulating correlated random variables. The variables here 
could be profitability for two lines of business, perhaps auto and general 
liability. One cluster might be urban risks and the other cluster rural risks. 
Given that a risk is rural, the auto and general liability are independent, 
similarly, given that the risk is urban, the auto and general liability are 
independent. However, naively computing the correlation of these two lines 
without partitioning the data, we will be misled into thinking that the lines 
are highly correlated. 

Care should also be taken when adjusting data. Commonly, one 
adjusts for changing exposure bases over time by examining loss ratios. A 
danger with this is that loss ratios depend on premium and premium depends 
on the underwriting cycle. It is possible that apparent correlation between 
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losses from various lines is actually simply simultaneous fluctuations in 
premium adequacy caused by the underwriting cycle. If correlation between 
loss ratios is to be computed one should adjust for any premium redundancy 
or inadequacy first. 

Another computational danger arises from binning of data. Insurance 
data frequently has a large degree of"lumpiness". Sometimes data is binned 
(perhaps all values between 100 and 300 are coded as 200). In addition, 
policy limits, deductibles, and case reserving methodologies can cause 
observations to be clustered around certain values. These data quirks can 
play havoc with canned correlation calculating software. Even if a more 
detailed analysis is attempted, the loss of detail in the data may lead to 
spurious results. The non-parametric methods described in the next section 
are more robust in this regard. 

Since the computation of dimensionless covariance is essentially 
fitting a least squares line through the data, it is very sensitive to outliers. 
Observations that appear to be outliers should not just be ignored. Their 
existence should immediately call into question the assumption that the data 
is binormal (insurance data almost never is). There are non-parametric 
measures that are not as sensitive to the exact population distribution. We 
will examine two of these in the next section. 

So, in summary, there are several problems with dimensionless 
covariance as a measure of correlation: 

1) Confidence interval tests are usually predicated on the underlying data 
being binormal; 

2) Insurance data frequently is binned or dirty in some other way, when 
reviewing this type of data, computing correlation is especially 
dubious; 

3) Seldom can every possible value between -1 and 1 be achieved; 
4) It is not preserved under increasing transformations; and finally, 
5) It can be overly sensitive to outliers and to the distribution of the 

population which is almost never know. 

Other Measures 

As central to the study of aggregate losses as correlation and 
covariance are, as we shall see later, they really are not well behaved with 
respect to transformations of the data. There are other notions of correlation 
that are better behaved in that regard and are in some ways more intuitive 
than correlation. 
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The first of these measures is Spearman rank correlation. The idea 
behind rank correlation is very simple. Suppose that we have N pairs of 
observations of X and Y. (Remember that we are trying to understand how 
they are jointly distributed, so we must always think of the pair.) We look at 
the set of observed X values and the set of observed Y values (for the 
moment, assume no repeated values in either set). We take the N values of 
X and rank them from smallest (which gets assigned the number 1) up to 
largest (which gets assigned the number N). We similarly rank the Y values. 
We now look at the pairs of rankings, which we show sorted by X ranking: 

Pairs (X, Y) Pairs (Rankings) 
(2.1, 7.4) (1, 3) 
(4.9, 9.8) (2, 4) 
(7.7, 7.3) (3, 2) 
(8.0, 5.2) (4, 1) 

Notice that all of the information about X and Y is gone, all that is left 
is information about how they are paired together. I.e. it is a function of 
their copula. With all of the information about X and Y abstracted away, we 
have reduced the problem to one involving only finite sets. Once we know 
N and the pairs of rankings, we have extracted all of the information. 

Having sorted the pairs in order by their X rankings, we now count the 
number of "inversions" in the Y rankings, in this example we have: 3 
appears before 1 and 2, 4 appears before 1 and 2, and 2 appears before 1: a 
total of 5 inversions. 

The maximum possible number of inversions is N(N-1)/2 and the 
minimum possible is 0. The number of inversions is normalized to lie 
between -1 and 1 by subtracting N(N-1)/4 and dividing by N(N-1)/4. If 
N=4, as in this case, we get 2/3. 

The result is the Spearman rank correlation. Like the dimensionless 
covariance, it ranges from -1  to 1 with negative scores indicating random 
variables that move opposite one another while positive scores tend to 
indicate random variables that move together. 

An alternative way to define Spearman rank correlation is to compute 
the dimensionless covariance of the rankings, it turns out that this is 
equivalent to the above definition. 

Another closely related measure is the Kendall rank correlation 
coefficient tau ("Kendall's tau"). As before, we take pairs (X, Y) and rank 
them. Then we count the number of times that the first variable is greater 
than the second variable (in rank). This count yields a number between 0 
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and N which we subtract from N/2 and normalize by dividing by N/2 to 
produce a final result in the range of -1 to 1 as for the other two measures. 
The result is Kendall's tau. Using the example with four observations 
above, the only pair with the first coordinate's rank larger than the second's 
is the pair (3, 2), so we subtract 1 from 4/2 and divide by 4/2. This tells us 
that Kendall's tau for this data is 0.5. 

There is an equivalent way to think of Kendall's tau that gives it a 
nice intuitive interpretation. Select two pairs of observations (x,, Y~) and 

(x2, Y~ ) from the jointly distributed population. Call this pair concordant if 
either x~ < X 2 AND Y~ < Y2 or x, > x 2 AND Y~ > Y2; otherwise call the 
pair discordant (if ties are permitted this definition needs to be adjusted). 
Let P(C) and P(D) be the probabilities of concordant and discordant 
observations, respectively. Then Kendall's tau is P(C) - P(D). 

In a scatterplot, Kendall's tau can be thought of as the probability that 
an observation is in quadrants one or three (concordant) minus the 
probability that it is in quadrants two or four (discordant). 

So, Kendall's tau measures the likelihood that two random variables 
move in the same direction. It is a statement about probability; it does not 
try to relate the size of the changes, only their directions. I suspect that 
when people say that two things are correlated, they generally have 
something like this relationship in mind. 

A third non-parametric measure, which we mention in passing is the 
Gamma statistic. It is similar to Kendall's tan in that it also is a probability. 
It is useful when there are many ties (such as you might find in frequency 
data). It is the probability of concordance minus the probability of 
discordance divided by one minus the probability of ties. (See for example, 
Siegel & Castellan [SC]) 

All three of these non-parametric measures have the nice feature that 
they are equal to one in the case on concordance and minus one in the case 
of discordance. Also, they are invariant under increasing transformation, so 
they are actually properties of the copula. 

Kendall's tau (~) and Spearman's rank statistic (R) cannot differ by 
very much, as illustrated by the following inequality due to Daniels [see N]: 

- 1  < 3'r - 2 R  < 1 

What this inequality tells us is that if either Kendall's tau or the 
Spearman R is near 1 (or -1)  then the other must be also, and when one is 

170 



near 0 the other cannot be too far away. For example, if the Spearman 
coefficient is zero then Kendall's tau is at most 1/3 in absolute value. 

An alternative development of Kendall's tan, Spearman rank 
correlation, and dimensionless covariance can be found in Wang's paper on 
aggregation of risk portfolios [W]. 

Simulation 

One of the more common methods for estimating aggregate 
distributions is to run a Monte Carlo simulation. Reinsurance may have 
features such as drop-downs or shared retentions, or any number of other 
features that make analytic modeling practically impossible. In these cases, 
Monte Carlo simulation may be the only available tool. 

Determining how to incorporate correlation information into a 
simulation is an important problem. It is quite common to use the normal 
copula in these cases, as we have seen earlier there are some pitfalls 
associated with this. 

Some canned simulation packages can induce a given Spearman rank 
correlation. One possible method for simulating a given rank correlation 
structure is described below. 

Parameter uncertainty is commonly dealt with through use of a 
simulation. The incorporation of this uncertainty can produce some 
unexpected results. Let X and Y be two independent identically distributed 
random variables that are both normal with variance 1 and mean 0, where 0 
is either 1 or 2, but is not known which. Suppose that we run a simulation 
and assign 0 the value 1 half of the time and the value 2 the other half of the 
time, using the same value of 0 for both X and Y. We then compute the 
correlation of X and Y across the simulation. We will show a positive 
correlation even though X and Y are independent! The scatterplot of the 
result will look similar to plot number III. (The scatterplot of the two lines 
of insurance with an urban cluster and a rural cluster.) 

In the previous example, 0 was constant in each scenario. Frequently, 
parameter uncertainty arises from uncertainty about the parameter for each 
individual. This uncertainty can manifest also itself as observed correlation. 
Meyers [M] has written extensively about this topic. 

Even if it is believed that the correlation is known, it may be best to 
use Kendall's tau or rank correlation anyway. There are several reasons for 
this. In the case of binormal random variables, there is a formula for 
converting from dimensionless covariance to rank correlation and vice versa. 

171 



So, in at least one important case they are almost the same. 6 Secondly, the 
confidence intervals that arise in the calculation of dimensionless covariance 
from samples are generally very wide. If one uses rank correlation, it is 
possible to achieve the specified rank correlation when performing a Monte 
Carlo simulation, a goal which in general in unachievable in the case of 
dimensionless covariance as we have seen. 

One possible method to generate random variables with a given rank 
correlation in a simulation is to do the following: 

Assume that the variables are X and Y and that a method exists for 
generating instances of each of these variables. We will also assume that a 
simulation with N iterations is to be rim. 

Step 1: Generate N instances of X and Y. Sort each of these from smallest 
to largest. 

Step 2: Notice that paired this way (sorted) they are fully concordant so the 
rank correlation is one. 

Step 3: (Loop) While the rank correlation is larger than desired, interchange 
two of the Y's moving a smaller one up and a larger one down. 

The choice of pair to swap in step 3 can be tailored to make the 
process appear to have more or less tail dependence as the modeler desires. 

An Example of an Aggregate Stop Loss 

To illustrate some of these concepts, let us examine a simplified 
example of an aggregate stop loss. Our model consists of 100 risks, each of 
which has a 5% chance of suffering a loss of (exactly) 1. For simplicity, we 
will assume a zero percent discount rate. 

We will divide these losses into three layers: a primary layer that 
covers losses in aggregate from 0 up to 6, a "working layer" that covers 
losses from 7 up to 10 and a catastrophe (CAT) layer that covers losses from 
11 to 100. 

The expected loss to the entire program is 5 (since there are 100 risks 
each with a 5% chance of loss). Of course, this expectation does not mean 

6 This is the classic case for dimensionless covariance where everything works as 
expected. 
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that we expect no loss in the working layer. If  the losses were independent 
Bernoulli trials, the probability of 7 or more losses would be about 23.4% 
and the probability of 11 or more losses would be less than 0.5%. 

What happens if the losses are not independent? The answer is that 
things can be very different. How they are different depends on the joint 
distribution function of these 100 variables. We will look at three different 
models. 

First, is it possible for the pairwise correlation to be negative for each 
pair of  insureds? At first blush, ones intuition might lead one to think that 
you cannot have 100 things which are all pairwise negatively correlated. 
Positive correlation intuitively means that when one variable goes up the 
other tends to also, so negative correlation should mean that they move in 
opposite directions. If we have 100 such variables, then when one of them 
goes up we expect the other 99 go down ... that means that most of them are 
moving together! As compelling as this argument is, it is wrong. To see this 
fallacy, consider our example of 100 risks each with a 5% chance of loss 
where we are given that the total number of losses is exactly 5. Now, 
knowledge that one given risk had a loss decreases the probability that any 
other risk had a loss (from 5 in 100 to 4 in 99). Similarly, knowledge that a 
given risk did not have a loss increases every other risk's chance of loss 
(from 5 in 100 to 5 in 99). This information shows pairwise negative 
correlation. Of  course, in this case we could have done a simple calculation 
to explicitly compute it also (it is equal to -1/95). 

When we look at the effect of this particular correlation structure on 
our excess losses we see that it results in no excess losses at all! Since there 
are always exactly five losses, all of the loss occurs in the primary layer• In 
this example, negative correlation helps the excess layers and hurts the 
primary layers. Of course, this example is somewhat unrealistic. 

In the second model, we will set the pairwise correlation to a specified 
value using a normal copula. One way to achieve this pairwise correlation is 
to generate 101 independent standard normals. One of these variables, say 
the first one, we will call the "market factor". Each of our one hundred 
correlated normal random variables will be obtained by taking a multiple of 
the "market factor" and adding to it one of the other standard normals. The 
resulting variable will be normal (the sum of normals is normal), but it will 
require rescaling to be standard (variance 1). If the multipliers are selected 
appropriately, any specified non-negative correlation can be achieved in this 
manner. 

Here is a simple example. Suppose that we wish to achieve a pairwise 
correlation of 36%. We create standard normals which are correlated 60% 
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with the market factor (60% being the square root of 36%). If we call the 
market factor M, the independent normals x ,  and the correlated normals Y,, 
we would set: 

Y~ = 0 . 8 X  i + 0 . 6 M  

The g have mean 0 (because both y and M do) and variance 1 
(because 0.82 +0.62 = 12 ). An easy calculation left to the reader shows that the 
correlation between distinct Y, and ~ is indeed 36%. 

These normals are then used to create a copula (i.e. the inverse 
transformation is used to obtain I00 uniformly distributed (0,1) random 
variables) the components of which, in turn, are used to determine if the 
corresponding risk has a loss. If the uniform random variable is less than 
0.05, then there is a loss on that risk. 

The overall expected losses remain 5, however the sharing of these 
losses amongst the layers depends heavily on the correlation (however it is 
measured). The higher the correlation, the more expected loss there is above 
the primary layer. 

Strangely, beyond a certain point additional correlation stops hurting 
the working layer and actually begins to lower its expected losses. This 
reduction happens when the additional expected loss coming in from the 
primary layer is exceeded by the expected loss passed up to the CAT layer. 
Global reinsurers have observed similar phenomenon when dealing with 
currencies that have extreme inflation. 

In the third model, we will consider the following method for 
generating losses with a specified pairwise correlation that includes a 
catastrophe component. Select 101 standard independent normals as before 
and generate uniform random variables as in the prior example. Now 
generate one more independent standard normal. If it is smaller than some 
specified amount, set all of the one hundred risks equal to the first one. It is 
easy to do the parameter selection so that a given pairwise correlation is 
exactly achieved. 

This model has the exact same correlation as the prior model, but it is 
vastly more dangerous for the CAT layer and safer for the primary (again the 
working layer might either benefit or lose). Effectively, our 100 separate 
risks get replaced by one giant risk a certain percentage of the time. When 
this giant risk has a loss, the CAT layer is totally wiped out. This is a form 
of common shock model. 

Spectacularly large losses to the CAT layer will almost never be 
observed in the prior model because of the tail independence of the normal 
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copula, but they will be observed with this modification. Certain risks (in 
particular credit losses) may be better modeled by something with a very fat 
tail, such as a mixture of this last model with the prior one. 

Conclusions 

Determining how the correlation of risks changes the aggregate loss 
distribution is a very difficult problem. One number cannot describe the 
relationship between two jointly distributed random variables. It is possible 
to make two models with identical correlation coefficients that exhibit 
wildly different excess aggregate losses. The difference lies in the copula. 

The copula (which captures the structure of joint distribution) and the 
marginals (which capture the individual random variable) can be used to 
specify pairs (or more generally tuples) of jointly distributed random 
variables. Casualty actuaries are beginning to use these tools to understand 
the correlation structure of insurance loss random variables. This use will no 
doubt increase in the future. 

Because of its relationship to the second moment of the aggregate loss 
distribution, Pearson product moment correlation (which we have referred to 
as dimensionless covariance) is a fundamental quantity. However, it lacks 
some of the nice features of the non-parametric measures, Kendall's tau and 
Spearman rank correlation. 

The non-parametric measures may be somewhat more intuitive and 
may better capture what management is thinking when they say that two 
things are correlated. 
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Abstract 
Actuaries commonly build statistical models to predict future experience. 
To do this a model must be chosen, and parameters for that model must be 
calculated and selected. This paper assumes that the correct model has been 
chosen, but looks at the risk taken by assuming that the selected parameters 
accurately represent the true underlying distribution. A bootstrapping 
methodology is used to estimate the parameter risk associated with a loss 
ratio distribution. The results provide an estimate of the parameter risk of 
the ground-up loss ratio and for excess loss ratio layers commonly known as 
aggregate stop loss contracts. The paper shows that the impact of parameter 
risk on expected losses can be significant especially for aggregate stop loss 
contracts. 
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Estimating the Parameter Risk of a Loss Ratio Distribution 

Introduction 

This paper presents a methodology for estimating the parameter risk of a 
loss ratio distribution. Estimates of parameter risk will be calculated for the 
ground-up loss ratios and for excess loss ratio layers. The parameter risk 
estimate is calculated when determining the expected loss of the business 
being priced. 

The basic idea of estimating parameter risk is similar to Hayne [1], and to 
Meyers and Shenker [2], but instead of a theoretical approach a 
bootstrapping technique is used. Also different is that the work mentioned 
above concentrates on the collective risk model with frequency and severity 
distributions, but this paper uses loss ratios directly. Loss ratios were used 
because this is frequently all that is available for pricing aggregate stop loss 
covers, and often used when pricing primary business. 

The key idea of the paper is that many different sets of parameters could 
have produced the actual data, and it is impossible to know which set of 
parameters produces a model that accurately represents the actual underlying 
distribution. The methodology presented determines sets of lognormal 
model parameters that could have produced the given loss ratios, and the 
relative probability of each of these sets of parameters. These parameters 
sets and their relative probabilities are then used to determine a ground-up 
expected loss ratio and to price possible aggregate stop loss reinsurance 
layers. 

The paper will show that an actuary that does not take parameter risk into 
account runs the risk of underestimating the expected loss. The impact of 
parameter risk on expected losses can be significant especially for aggregate 
stop loss contracts. 

Assumptions Underlying the Analysis 

It was assumed that a simple loss ratio distribution would adequately 
represent the true underlying exposure of the ceding insurance company. A 
one in a hundred year catastrophe is likely not included in the data available, 
but the exposure for this type of loss is still present. The loss experience for 
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these types of exposures should be removed from the total loss experience, 
and the expected loss for these exposures should be calculated separately. 

It was also assumed that the loss ratios given produce the correct prospective 
estimate of the ultimate loss, and that there was no risk from reserving or 
pricing assumptions. This simplification allows the paper to concentrate on 
the parameter risk of the loss ratio distribution. 

The lognormal distribution was used because it is a flexible distribution, and 
much of the math has been programmed directly into most spreadsheet 
software. This methodology can be completed using most probability 
distributions. 

It should also be noted that the selected distribution should be a good 
approximation of the actual prospective loss ratio probability distribution. If 
there is not a reasonably good fit then this methodology will not provide 
appropriate results. All models should be checked against the actual data to 
ensure they are a reasonable representation of that data. 

The Prospective Loss Ratio Distribution 

Exhibit 1 provides a ten-year prospective loss ratio distribution and the 
mean, standard deviation and skewness of that distribution. It also provides 
the logs of the loss ratios, and the mean and standard deviation of the logs of 
the loss ratios. The mean and standard deviation of the logs were assumed 
to be the best-fit parameters Mu and Sigma. 

It is a good idea to calculate a reasonable pair of best-fit parameters. This 
can be done using several well-documented methods [3]. The best-fit 
parameters will act as the starting point for determining viable parameter 
sets. 

Also presented in Exhibit 1 is the actual experience of an aggregate stop loss 
layer, and the expected loss for the aggregate stop loss layer using the fitted 
parameters. The Expected Loss on Line is also given. This is the expected 
loss of the layer divided by the maximum loss of the layer. 

180 



Determining Viable Parameter Sets 

The intent of the methodology is to find sets of parameters for the lognormal 
distribution that could have produced the prospective loss ratio distribution, 
and to determine the relative probability for each set of parameters. These 
parameter sets and their relative probabilities are then used to directly price 
the cover. 

The methodology first needs to determine what sets of lognormal parameters 
could have possibly produced the given data. This is done using an excel 
macro stepping through parameter ranges. The macro methodically steps 
through ranges around the best-fit Mu and Sigma parameters creating 
possible parameter sets. 

The following procedure was used to determine viable parameter sets. 

1.) A Possible Mu and Sigma parameter set is determined from the excel 
macro. 

2.) Ten years of data were used for this analysis; so 10,000 ten-year 
blocks of loss ratios are simulated using the lognormal distribution 
with the possible parameter set. 

3.) For each ten-year block the simulated mean, standard deviation and 
skewness is compared to the actual ten-year prospective loss ratio 
mean, standard deviation and skewness. If  it is close then that ten- 
year block is marked, and the parameter set is considered to be viable. 

4.) The number of simulated ten-year blocks that were marked as having 
a mean, standard deviation and skewness close to the actual 
prospective loss ratio experience are tallied and recorded along with 
the parameter set Mu and Sigma values. 

5.) The Excel macro moves to the next possible Mu and Sigma parameter 
set in step 1 until it has stepped through the entire range of possible 
Mu and Sigma parameters. 

The size of the parameter ranges, the step sizes through the ranges and the 
definition of close are discussed in the Comments on Determining Viable 
Parameter Sets section of the paper. 

A sample of steps 2 through 4 above can be seen in Exhibit 2. The 
parameter set used for the simulations in Exhibit 2 was the best-fit 
parameters with a Mu parameter of-0.45 and a Sigma parameter of0.11. In 
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the bottom section of Exhibit 2 each row is a simulated 10-year block with 
the mean, standard deviation and skewness of the simulated 10-year block 
given. These are compared to the ranges determined and labeled above as 
"Min Target Range" and "Max Target Range". If the simulated mean, 
standard deviation and skewness are all within the target ranges determined 
it shows up as a 1 in the "Frequency" column at the far right. Just one row 
of simulated loss ratios in Exhibit 2 meets all three criteria. 

A sample of the outcome from the entire process can be seen in Exhibit 3. 
The parameter set test number of 1600 means that -0.45 and 0.11 were the 
1600th set of parameters tested. The frequency of 1600 is 117. This is how 
many times out of the 10,000 simulations that the simulated ten-year loss 
ratio mean, standard deviation and skewness were close to the actual 
prospective loss ratio mean, standard deviation and skewness. Finally the 
relative frequency is given. For parameter set 1600 the relative probability 
is 2.985%. This is calculated by taking the frequency of parameter set i600 
(117) divided by the total frequency of all parameter sets (not given but is 
3,920). The parameter sets with frequencies greater than zero are sorted out 
and used for pricing. 

In Exhibit 3 it can be seen that the Mu parameter was -0.45 and Sigma varies 
from 0.0055 to 0.4345. Some insignificant entries were removed so that the 
exhibit is easier to read. There are 78 total steps through the Sigma range. 
The Mu parameter also steps through a range, but this is not shown in 
Exhibit 3 where it is just -0.45. The range that the Mu parameter steps 
through is bounded by -1.549 to 0.226, and there are 50 steps through the 
Mu parameter range. 

In the bottom section of Exhibit 4 the parameter sets have been sorted by 
relative probabilities, and the sets with the largest relative probabilities are 
presented. The best-fit parameters of-0.45 under Mu and 0.11 under Sigma 
were the third most likely set of parameters to simulate close 10-year blocks. 
Using 10,000 simulations did not ensure that the best-fit pair was the most 
likely, but it does produce a relative probability that is close to what it 
should be. More simulations could be used to increase accuracy, but there 
are trade-offs between the processing time and the accuracy. 

The important thing to note is not which parameter set is most likely, but 
how many possible parameter sets had large relative probabilities. In total 
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there are 364 parameter sets out of 3950 parameter sets tested that simulated 
at least one ten-year block close to the actual data provided. 

Graphs of the parameter sets and their relative probabilities are given in 
Figures land 2. Each of the graphs shows the relative probabilities of the 
parameter sets from different perspectives. Figure 1 shows the distribution 
from the side, and Figure 2 is a top view. These graphs must be read 
carefully because the scale for the Mu and Sigma are determined by the step 
sizes selected. Note that the scales were selected so that all of the parameter 
sets greater than zero could be seen. 

In Figures 1 and 2 it can be seen that the Sigma parameter has a significant 
amount of skew. It should also be pointed out that Mu and Sigma are 
related. Given a certain Mu only Sigma parameters within a certain range 
will provide simulated 10-year blocks that are close to the given mean, 
standard deviation and skewness, and within that Sigma range some Sigma 
parameters are much more likely than others. 

Calculating the Estimate of Parameter Risk 

Calculating the expected loss using the viable parameter sets is a reasonably 
straightforward task. The lognormal expected value formula is used for each 
viable parameter set to come up with the expected loss for the parameter set. 
Each parameter set expected loss is then weighted together using the relative 
probabilities determined earlier in the process. 

Exhibit 4 shows the expected loss for the best-fit pricing methodology and 
the parameter set methodology. The top block labeled "Fitted Original 
Distribution" gives the expected loss for the best-fit pricing, and the second 
block labeled "Parameter Set Distributions" gives the summary of the 
expected loss for the parameter set pricing. The difference between the 
expected losses of the two methods is labeled as "Difference Parameter Set 
to Fitted". This is calculated as (Parameter Set Expected Loss/Fitted 
Expected Loss) - 1. The weighted expected loss for the most likely 
parameter sets is shown in the lower section of the exhibit. The first column 
of calculated expected losses gives the ground-up expected loss for the 
distribution, and the second column gives the expected loss of the aggregate 
stop loss layer given in Exhibit 1. Each column after that gives the expected 
loss for the given loss ratio range. 
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In Exhibit 4 it can be seen that for a primary insurer the ground up best-fit 
expected loss ratio is 64.1% (Exp Loss Ratio = Exp(Mu+(Sigma^2)/2)), but 
the parameter set expected loss is 64.5%. If the company's permissible loss 
ratio is 63.0% than the best-fit indicated rate change is 1.75%, but the 
parameter set indicated rate change is 2.38%. If  the margin for the risk and 
profit of this business is 5.0%, than the difference between the two 
indications is 12.38% of the margin including the lower rate increase 
((2.38%- 1.75%)/(5% of 101.75%)). 

The aggregate stop loss layer given in Exhibit 1 is the second column in 
Exhibit 4. It has an attachment point of 72.5% and a layer of 2.5%. It can 
be seen in Exhibit 4 that there is a 45.85% difference or load in expected 
loss for a 2.5% excess 72.5% aggregate stop loss layer. The additional 
columns show how the difference in expected losses changes by layer, and 
how it increases significantly as the expected loss on line goes down. 

Note that the difference in expected losses is negative for the low layers up 
to 65%. It appears that the parameter set methodology is shifting the 
probability distribution from the lower loss ratios to the higher loss ratios 
where aggregate stop loss contracts are usually purchased. 

The difference in expected losses is the key finding of the paper. It is the 
estimated parameter risk for the prospective loss ratio distribution given. If 
the actuary does not calculate and include an estimate of parameter risk in 
the price then the company may not be charging enough for the business. 

Sensitivity Analysis 

Several alternative situations were looked at using the parameter set 
methodology. A higher mean, a larger standard deviation, a larger skewness 
and decreasing the number of years of data were investigated. Loads for 
primary expected losses and expected loss by layer are both considered. 

The other alternatives are presented in Exhibits 5 through 8. Exhibit 5 
increases the expected mean of the actual data (-0.36 0.11 0.5). Exhibit 6 
increases the standard deviation of the actual data (-0.45, 0.2 0.5). Exhibit 7 
increases the skewness of the actual data (-0.45, 0.11 1.5). Exhibit 8 
assumes that only five years worth of data were available for pricing but that 
the mean, standard deviation and skewness remained the same (-0.45, 0.11 
0.5 5Yr). 
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If the loads by layer are looked at by expected loss on line (expected loss for 
the layer/maximum loss of the layer) they can be compared to distributions 
with different means and standard deviations. In Exhibits 4 through 8 the 
expected loss on line is given for both the best-fit pricing and the parameter 
set pricing. A graph comparing the loads by expected loss on line for the 
parameter set pricing is given in Figure 3. 

Parameter set relative probability graphs for the four additional distributions 
are given in Figures 4 through 11. The same views are presented for each 
distribution. Please note that these must be looked at carefully because the 
scales are not consistent. Looking at the relative probabilities should help 
compare between the four distributions given. Using only five years of data 
required that the Sigma parameter range be extended. This can be seen in 
Figures 10 and 11. 

The actual data underlying each of these additional distributions is given in 
Exhibits 9 through 12. The format of these exhibits is the same as Exhibit 1. 

Increasing the Mean 

For both the primary and layered loss ratios the load does not vary 
substantially when the mean is increased (Exhibit 5 and Figure 3 with -0.36 
0.11 0.5). This would intuitively make sense. The shape of the distribution 
has not changed, but is just shifted upwards. 

Increasing the Standard Deviation 

For the alternative with the higher standard deviation (Exhibit 6 with -0.45 
0.2 0.5) the difference in indicated ground-up rate changes increased 
significantly. The ground-up fitted loss ratio went from 65.1% for the best- 
fit pricing to 66.5% for the parameter set pricing. The difference between 
rate change indications based on the same 63% permissible loss ratio rose to 
2.23%, or 43.16% of a 5% margin. This implies that having a block of 
information with loss ratios that are less stable has a substantial impact on 
the ground-up parameter risk. 

The load by layer is somewhat higher for the distribution with the higher 
standard deviation (Figure 3 -0.45 0.2 0.5). One possible explanation for 
this is that increasing the standard deviation shifts the parameter set 
distribution more than the best-fit distribution. 
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Increasing the Skewness 

Increasing the skewness (Exhibit 7 with 0.45 0.11 1.5) does not seem to 
have a large impact on the ground-up loss ratios. The difference in rate 
change indications rose to 0.79%, or 15.53% of a 5% margin. 

Looking at Figure 3 (0.45.11 1.5) the load for excess layers seems to track 
closely with the loads for the higher standard deviation. It appears that 
increasing the skewness has an impact similar as increasing the standard 
deviation of the actual data on the excess layers. 

Five Years of Data Available 

Only having five years of data (Exhibit 8 with -0.45, 0.11 0.5 5Yr) has a 
significant impact on the indicated primary loss ratio parameter risk load. 
The ground-up loss ratio went from 64.1% for the best-fit pricing to 65.7% 
for the parameter set pricing. The difference in rate change indications rose 
to 2.54% or 49.93% of a 5% margin. 

Looking at the five-year distribution (Figure 3 -0.45 0.11 0.5 5Yr) it can be 
seen that for every expected loss on line that the load by layer is 
significantly higher for the five-year distribution. It appears that having 
fewer years of data has a much larger impact on loads for the higher layers 
than increasing the standard deviation or skewness. 

The number of years of data is a key input into the model. The actuary 
should attempt to find additional years of data, or find other alternative 
sources of data that are reasonably consistent with the available data. 
Integrating this additional data into the analysis should bring the parameter 
risk down. 

Comments on Determining Viable Parameter Sets 

it is noted that the above process does contain a fair amount of judgment. 
The distance of the steps in the parameter ranges, the size of the parameter 
ranges and the definition of close should be discussed. Also the use of 
mean, standard deviation and skewness as the criteria to judge if a parameter 
set is close should be considered. 
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Step Size 

The size of the steps through the parameter ranges should be considered. 
Running the Excel macro several times using increasingly smaller step sizes 
each time can help determine an appropriate step size. When the results 
don't change substantially the step size is small enough to be a reasonable 
estimate of the infinite number of possible parameter sets. The macro used 
to calculate the information in Exhibit 4 took around 8 hours to run. When 
the step sizes were cut in half and the macro was rerun it took 36 hours to 
complete the macro. The results are presented in Exhibit 13. The expected 
primary loss ratio stayed at 64.5%, and there was an increase of only 0.001% 
when the loss ratios are rounded to hundred-thousandths. The expected loss 
to the layer from 72.5% to 75.0% went from 0.342% to 0.345%, or an 
increase of 0.703%. The change in results does not seem to justify the 
increase in processing time. 

Size of Ranges 

The parameter set ranges that the Excel macro loops through should be wide 
enough so that at the edges of the ranges very few simulated ten-year blocks 
have a mean, standard deviation and a skewness close to the actual mean, 
standard deviation and skewness. 

Close to Original Distribution 

The intent of close should also be considered. The definition of close 
selected was based on practical considerations. How close does the 
simulated ten-year block need to be to the actual mean and standard 
deviation in order to be comfortable while pricing the underlying cover. 
Skewness was included to make sure that the distribution had the correct 
skew around the mean. These considerations have to be balanced against the 
frequency needed to minimize the impact that random simulations could 
have on the outcome. 

To be consistent the final definition of close was that when using the best-fit 
parameters about 21%-22% of the simulated means, standard deviations and 
skews were within a band centered at the actual mean, standard deviations 
and skewness of the actual data. For the distribution in Exhibit 2 this was a 
mean centered at 64.1% with a band from 63.52% to 64.77%. The standard 
deviation was centered at 0.0712 with a band from 0.0662 to 0.0762. The 
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skewness was centered at 0.5 with a band from 0.29 to 0.71. This translates 
into roughly 100 simulated viable 10-year blocks when using the best-fit 
parameters (10,000 simulations x 21% x 21% x 21%). 

Criteria Used 

The mean, standard deviation and skewness were used as the criteria to 
determine if the parameter set is viable. Other measures could have been 
used in place of or in addition to these. The mean, standard deviation and 
skewness were used because they are well known, are simple to work with, 
and capture the basic characteristics of the underlying loss ratio distribution. 
Other measures should be considered. 

Conclusion 

Viable parameter sets and their relative probabilities were determined, and 
then used to directly calculate the expected primary toss ratios and the 
expected loss by layer. The concept is that any one of the viable parameter 
sets could have produced the actual loss ratio experience of the ceding 
company. By comparing the expected losses of the parameter sets to the 
expected losses of the original best-fit an estimate of the parameter risk of 
using just one set of parameters can be determined. 

The process requires a fair amount of judgment, but actuarial pricing cannot 
be completed without some level of judgment. The assumptions that need to 
be made are relatively straightforward and can easily be changed to measure 
the impact. 

It should also be mentioned that this methodology only estimates the 
parameter risk of the loss experience that is present in the prospective loss 
ratios. Actuaries hope that modeling will account for some of the potential 
variation that could occur in the experience. There are exposures that did 
not have loss experience within the data set, and that are not anticipated nor 
reflected in the adjusted loss ratios. This risk is still present and not 
measured directly by the methodology. The catastrophe and other risk that 
was removed in the beginning still need to be taken into account. Expected 
losses for these exposures need to be determined and included in the overall 
expected loss. 
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In addition the original data set likely has process risk included in the 
experience. Even when using the best-fit parameters to simulate 10-year 
blocks of  loss ratios only a small number of the 10-year blocks had a mean, 
standard deviations and skewness close to the actual data. This would imply 
that the process risk could be substantial. This paper assumes that the given 
data provides a good representation of the true underlying distribution. 

This methodology could be adapted to most statistical distributions. It 
therefore could apply to a wide variety of situation where statistical 
distributions are used. Property and casualty primary loss ratios and an 
aggregate stop loss reinsurance layer were looked at in this paper, but there 
is no reason it can't be used in other situations to estimate parameter risk. 
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Loss Ratio Distribution Exhibit 1 

7o 
O 

5 
6 
7 
8 
9 

10 
Average 

Stdev 
Skew 

Expected 

58.4% 
Actual Actual 

LR Ln(LR) 
1 58.4% (0.5376) 
2 64.5% (0.4388) 
3 67.3% (0.3953) 
4 52.6% (0.6415) 

58.4% (0.5376) 
64.5% (0.4388) 
78.3% (0.2440) 
70.6% (0.3488) 
62.0% (0.4786) 
64.5% (0.4388) 
64.1% (0.4500) 

0.0712 0.1100 
0.5000 

64.1% 

Min 72.5% 
Max 75.0% 

Loss 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
2.5% 
0.0% 
0.0% 
0.0% 

Average 0.250% 
Stdev 0.0079 

Expected Loss On Line 10.0% 

Fitted Expected Loss 0.235% 
Fitted Expected Loss On Line 9.389% 



Simulating Loss Distributions 
Sample Expected 
Values Value of X LN(X) 

Distributi LnN 64.1% 64.1% (0.4500) Mean 
Param 1 (0.4500) 0.0712 0.1100 Standard Devation 
param 2 0.1100 0.5OO0 Skewness 
ProbX$ 0.625% 0.6352 Min Target Range Mean 
Count 4000 0.6477 Max Target Range Mean 

0.500% 0.0662 MinTargetRangeStdDev 
0.0762 Max Target Range Std Dev 

21.000% 0.2900 Min Target Range Skew 
0.7100 Max Target Range Skew 

Mean StdDev Skewness Mu 
Simulated Year 

1 2 3 4 5 6 7 8 9 10 0.6411 
59.7% 67.5% 5 9 . 7 %  7 2 . 8 %  67.9% 70.0% 63.5% 71.6% 70.0% 70.4% 0.6730 0.047 (0.8060) 
67.9% 59.0% 6 1 . 1 %  6 2 . 1 %  63.7% 55.6% 66.9% 71.4% 66.8% 64.6% 0.6390 0 .046 (0.2625) 
72.3% 58.4% 4 9 . 1 %  6 1 . 0 %  51.8% 75.1% 53.6% 67.2% 79.4% 59.3% 0.6270 6 .104  0.3481 
67.0% 61,5% 70~3% 5 7 . 2 %  75.0% 61.8% 72.9% 61.6% 54.3% 66.2% 0.6478 0 .067  0.0551 
80.2% 77,3% 6 1 . 5 %  6 6 , 8 %  72.5% 72.7% 69,9% 61.1% 65.6% 76.6% 0.7063 0 .068 (0.0367) 
65.2% 67.4% 6 2 . 3 %  6 0 . 4 %  62.5% 58.0% 64.9% 62.7% 60.1% 62.2% 0.6259 0 .027 0.1428 
64.5% 49.1% 5 6 . 5 %  5 4 . 4 %  70.3% 71.4% 60.8% 57.7% 63.1% 55.7% 0.6033 0.071 0.2402 
63.7% 66,3% 7 0 . 7 %  6 8 . 0 %  58.3% 73.6% 60.6% 59.3% 62.8% 68.8% 0.6521 0 .051 0.1746 
69.1% 63,9% 6 5 . 5 %  7 0 . 5 %  62.3% 76.7% 66.0% 59.7% 68.7% 50.9% 0.6532 0.069 (0.6321) 
60.4% 50.3% 5 4 . 8 %  7 3 . 9 %  52.9% 56.0% 65.0% 87.8% 55.8% 55.7% 0.6124 0 .115  1.6355 
67,1% 63.0% 6 6 . 8 %  5 5 . 3 %  68.1% 72,6% 60.5% 55,6% 53,6% 53.0% 0.6157 0 ,070  0.1487 
69.3% 54.5% 5 8 . 6 %  6 6 . 4 %  52.1% 67.9% 70.5% 68.6% 59.0% 81.9% 0,6487 0 .089  0,3172 
60.8% 69,1% 6 9 . 4 %  6 5 . 3 %  69.4% 69.0% 59.4% 73.2% 61,7% 64,7% 0.6623 0.045 (0,1600) 
68.7% 63,4% 6 0 . 0 %  6 4 . 2 %  71,6% 63,0% 71,4% 63.4% 63.8% 57.2% 0.6466 0 .046  0.2322 
60.6% 57.7% 5 7 . 6 %  7 0 . 9 %  55.7% 74.9% 66.6% 63.9% 61.1% 73.9% 0.6428 0 .070  0.4429 
56.9% 61.4% 5 8 . 2 %  6 9 . 7 %  72.7% 61.4% 66.9% 70.1% 61.8% 76.5% 0.6556 0 .066  0.2973 
56.8% 62.2% 5 9 . 7 %  6 7 . 5 %  64.3% 69.2% 59.0% 70.7% 62.1% 61.6% 0.6331 0 .046  0.3840 
58.8% 54,2% 5 0 . 6 %  6 2 . 1 %  61.3% 79.8% 69.7% 57.3% 58.2% 53.0% 0.6060 0 .086  1.3500 
62.7% 66.4% 6 9 . 7 %  7 3 . 3 %  65.1% 72.3% 61.9% 60.0% 70.7% 76.5% 0.6789 0 .055  0.0395 
61.6% 67.9% 6 6 . 6 %  6 3 . 3 %  63.0% 65.0% 65.9% 57.9% 71.7% 72.7% 0.6557 0 .045 0.1061 
66.2% 60,3% 6 1 . 2 %  6 6 . 5 %  75.5% 55.4% 67.6% 61.8% 50.3% 55.9% 0.6209 0 .073  0.2043 
72.5% 46,4% 6 9 . 1 %  7 5 . 4 %  54.4% 78.9% 58.2% 85.2% 73.5% 66.9% 0.6804 0 .119 (0.5527} 
55.5% 59.9% 6 2 . 4 %  60.70/0 65,6% 49,7% 50,6% 62.2% 52.5% 57.3% 0.5763 0 .655 (0.2139) 
63.1% 65.8% 6 1 . 7 %  5 9 . 9 %  60.4% 60.4% 64.9% 59.3% 64.9% 56.9% 0.6175 0.029 (0.0099) 
71.4% 63.7% 6 5 . 3 %  5 9 . 2 %  74.3% 52.1% 72.7% 72.2% 65.1% 59.9% 0.6558 0.072 (0.6295) 
61.4% 72,7% 6 5 . 1 %  6 3 . 0 %  61.0% 68.0% 74.5% 56.5% 64.1% 59.5% 0.6458 0 .067  0.6148 
54.9% 59,8% 7 0 . 8 %  6 2 . 4 %  68.7% 59.9% 58.7% 63.0% 63.9% 64.7% 0.6268 0 .047  0.2350 
59.4% 69.7% 7 1 . 9 %  6 6 . 1 %  71.2% 63.8% 56.5% 61.9% 69.5% 65.9% 0.6550 0.051 (0.4868) 
63.8% 64.0% 5 9 . 5 %  5 6 . 8 %  54.0% 80.4% 54.1% 54.3% 58.9% 59.1% 0.6051 0 .079  2.0171 
64.5% 69.4% 7 3 . 6 %  7 2 . 0 %  80.4% 71.9% 56.3% 60.7% 57.3% 68.9% 0.6750 0.077 (0.0749) 
66.2% 54,7% 6 2 . 0 %  6 8 . 5 %  64.5% 66.9% 55.7% 52.0% 60.5% 54.5% 0.6055 0 .060 (0.0986) 
80.6% 59.7% 5 9 . 9 %  5 9 . 4 %  62.7% 57,7% 70.1% 51A% 59.3% 55.7% 0.6164 0 .062  1.5169 
62.8% 54.7% 6 2 . 3 %  5 8 . 9 %  71.4% 65.1% 70.9% 64.7% 68.0% 56.8% 0.6356 0.057 (0.1001) 
57.2% 69.7% 6 3 . 9 %  7 1 . 4 %  66.7% 61.7% 52.5% 74.0% 66.5% 57.3% 0.6408 0.069 (0.2704) 
75.2% 61.1% 6 3 . 2 %  5 9 . 7 %  53.4% 68.0% 57.1% 60.3% 69.0% 65.1% 0.6322 0 .063  0.4329 

Exhibit 2 
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Std Dev Skew Frequency 
(0.4500) 0.1100 0.50000 
22.00% 21.97% 21.36% t.17% 

0 0 0 0 
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O 0 1 O 
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O 1 O 0 
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0 0 0 0 
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0 0 0 0 
0 1 0 0 
1 O 1 O 
0 0 0 0 
0 0 O 0 
0 0 0 0 
0 0 O 0 
O O 0 0 
O 0 6 O 
1 0 0 0 
1 1 O O 
O 0 1 0 



Sample of Simulated Outcomes Exhibit 3 

Parameter 
Set Test Relative 
Number Mu Sigma Frequency Probability 

1581 -0.45 0.0055 0.000% 
1582 -0.45 0.0110 0.000% 

1592 -0.45 0.0660 10 0.255% 
1593 -0.45 0.0715 22 0.561% 
1594 -0.45 0.0770 43 1.097% 
1595 -0.45 0.0825 82 2.092% 
1596 -0.45 0.0880 99 2.526% 
1597 -0.45 0,0935 103 2.628% 
1598 -0.45 0.0990 121 3.087% 
1599 -0.45 0.1045 118 3.010% 
1600 -0.45 0.1100 117 2.985% 
1601 -0.45 0.1155 102 2.602% 
1602 -0,45 0.1210 89 2.270% 
1603 -0.45 0,1265 90 2.296% 
1604 -0.45 0,1320 79 2.015% 
1605 -0.45 0.1375 59 1.505% 
1606 -0.45 0.1430 38 0.969% 
1607 -0.45 0.1485 49 1.250% 
1608 -0.45 0.1540 28 0.714% 
1609 -0,45 0.1595 30 0,765% 
1610 -0,45 0.1650 19 0.485% 
t611 -0.45 0.1705 24 0.612% 
1612 -0.45 0.1760 15 0.383% 
1613 -0.45 0.1815 13 0.332% 
1614 -0.45 0.1870 10 0.255% 
1615 -0.45 0.1925 11 0.281% 
1616 -0.45 0.1980 6 0.153% 
1617 -0.45 0.2035 5 0.128% 
1618 -0.45 0.2090 6 0.153% 
1619 -0.45 0.2145 5 0.128% 
1620 -0,45 0.2200 0.000% 
1621 -0.45 0.2255 5 0.128% 
1622 -0.45 0.2310 2 0.051% 
1623 -0.45 0.2365 2 0.051% 

1658 -0.45 0.4290 0.000% 
1659 -0.45 0.4345 0.000% 
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Fitted Distributions ° LnNormal 
Base 

E(X) Mu Sigma Skew 
Fitted 64,1% (~500):~ 0~1 ~ ~ 

Stop Loss 
Fitted Original Distribution 
Loss Ratio Minimum Range 
Loss Ratio Maximum 
Expected Loss to Layer 
Expected Loss On Line 

Parameter Set Distributions 
Loss Ratio Minimum Range 
Loss Ratio Maximum 
Expected Loss to Layer 
Expected Loss On Line 

Difference Parameter Set to Fitted 

Relative 

Ground-Up Contract 
72.5% 0.0% 50.0% 55.0% 60.0% 65,0% 70.0% 75.0% 80.0% 85.0% 90,0% 95.0% 
75.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0% 100.0% 

64.1% 9.235% 49.975% 4.785% 4.105% 2.858% 1.532% 0.629% 0.201% 0.052% 0.011% 0.002% 0.000% 
9.399% 99,950% 95.707% 92.091% 57.152% 30.637% 12.572% 4.030% 1.040% 0.223% 0.041% 0.007% 

Ground-Up Stop Loss 
72.5% 0.0% 50.0% 55,0% 60.0% 65,0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0% 
75,0% 50.0% 55.0% 60.0% 65.0% 70.0% 75,0% 80.0% 85,0% 90.0% 95.0% 100.0% 

64.5% 0.342% 49.860% 4.622% 3.955% 2.850% 1.677% 0,641% 0.388% 0.176% 0.082% 0.039% 0.020% 
13,693% 99.719% 92.445% 79.103% 56.994% 33.544% 16.812% 7.754% 3.516% 1.630% 0.788% 0.401% 

0.60% 45.85% -0.23% -3.41% -3.64% -0,28% 9.49% 33.73% 92.41% 238.17% 632.45% 1938.02% 6059,95% 

MU Sigma Freq Prob 
(0.4500) 0.0990 1.210% 3.087% 1.978% 0.006% 1.543% 0.150% 0,130% 0.009% 0.044% 0.016% 0.004% 0.001% 0.000% 0.000% 0,000% 
(0,4500) 0,1045 1,100% 3,010% 1.930% 0.006% 1,505% 0.145% 0.125% 0.067% 0.045% 0,017% 0,005% 0,001% 0,000% 0.000% 0,000% 
(0.4500) 0.1100 1.170% 2.905% 1.915% 0.007% 1.492% 0.143% 0.123% 0.065% 0.046% 0.019% 0,006% 0.002% 0.000% 0.000% 0.000% 
(0.4500) 0.0935 1.030% 2.628% 1.683% 0.004% 1.314% 0.128% 0.113% 0.077% 0.036% 0,012% 0.003% 0.C00% 0.000% 0.600% 0.000% 
(0.4500) 0.1155 1.020% 2.602% 1.670% 0.007% 1.300% 0.124% 0.105% 0.074% 0.041% 0.018% 0.006% 0.002% 0.000% 0.000% 0.000% 
(0.4500) 0.0880 0,990% 2.526% 1.617% 0.003% 1.263% 0.t24% 0.110% 0.074% 0.034% 0.010% 0.002% 0.000% 0.000% 0.000% 0.000% 
(0.4500) 0.1265 0.900% 2.296% 1.476% 0.007% 1,147% 0.107% 0.091% 0.065% 0.030% 0.010% 0.007% 0.003% 0.001% 0.000% 0.000% 
(0.4500) 0.1210 0.890% 2.270% 1.458% 0.007% 1.134% 0.107% 0,091% 0.064% 0.037% 0.017% 0.006% 0.002% 0.001% 0.000% 0.000% 
(0.4172) 0.1100 0.830% 2.117% 1,404% 0.008% 1,058% 0.103% 0,094% 0.072% 0.044% 0,021% 0.008% 0,002% 0.001% 0.000% 0.000% 
(0.4500) 0.0825 0.820% 2.092% 1.338% 0.002% 1,046% 0.103% 0.093% 0.062% 0.026% 0.007% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.4172) 0.1045 0.800% 2.041% 1.352% 0.007% 1.020% 0.100% 0.092% 0.070% 0.042% 0.019% 0.006% 0.002% 0.000% 0.000% 0.000% 
(0,4500) 0.1320 0.790?/o 2.015% 1.296% 0.007% 1.006% 0.093% 0.079% 0.056% 0.034% 0.017% 0.007% 0.003% 0.001% 0.000% 0.000% 
(0.4839) 0.1155 0.720% 1.937% 1,t40% 0.003% 0.917% 0.084% 0.066% 0.042% 0.020% 0.008% 0.002% 0.001% 0.000% 0.000% 0,000% 
(0.4839) 0.1210 0.690% 1.760% 1.093% 0.003% 0.878% 0.079% 0.063% 0.040% 0,020% 0,000% 0.003% 0.001% 0.000% 0.000% 0.000% 
(0.4172) 0.1210 0.670% 1.709% 1.134% 0.008% 0.854% 0.083% 0.074% 0.057% 0.036% 0.019% 0.006% 0.003% 0.001% 0.000% 0.000% 
(0.4039) 0.1100 0.650% 1.658% 1.028% 0.002% 0.828% 0.076% 0.061% 0.037% 0.017% 0.006% 0.002% 0.000% 0.000% 0.000% 0.000% 
(0,4172) 0.1320 0.640% 1.633% 1.005% 0.008% 0.816% 0.070% 0.069% 0.053% 0.035% 0.019% 0.009% 0,004% 0.001% 0.000% 0.000% 
(0.4172) 0.0990 0.630% 1.607% 1.064% 0.005% 0.804% 0.079% 0.073% 0.056% 0.033% 0.014% 0.004% 0.001% 0.000% 0.000% 0.000% 
(0.4172) 0.1155 0.630% 1.607% 1.066% 0,007% 0.803% 0.078% 0.p70% 0.054% 0.034% 0.017% 0.007% 0.002% 0.001% 0.000% 0.000% 



Fitted Distributions - LnNormM 
Higher Mean 

E(X) MU Sigma Skew 
P ~ 6  

Stop Loss 
Fitted Original Oistribctlon 
Loss RBIio Minimum Range 
Loss Ra�o Maximum 
Expected LOSS to Layer 
Expected LOSS On Line 

Parameter Set Distributions 
Loss Ratio Minimum Range 
Lass Ratio Maximum 
Expected Loss to Layer 
Expected Loss On Line 

Difference Parameter Set to Fitted 

Ground-Up Contract 
72.5% 0.9% 50.0% 55,0% 00.0% 65.0% 70.0% 75.0% 60.0% 85.0% 90.9% 95.0% 
75.9% 50.9% 55.0% 60.0% ~5.0% 70.0% 75,0% 80.0% 85,9% 90.0% 95,9% 100.9% 

70.2% 0.769% 49.990% 4 .970% 4 .785% 4 ,183% 3 , 9 8 3 %  1 .831% 9~867% 0 .332% 0 .105% 0 .028% 0.006% 
30.775% 99,996% 99A02% 95.700% 83.667% 61.670% 36.623% 17.349% 6 .635% 2 .003% 0 ,558% 0,129% 

Ground-Up Stop Lois 
72.8% 9.0% 50,0% 55.0% 00,9% 55.0% 70.0% 75.0% 89,9% 85,9% 90.0% 95.0% 
75.0% 50,0% 55.0% 60.0% 65.0% 70.0% 75,0% 80.0% 85.0% 9O.O% 95.0% 100.0% 

70.9% 0.842% 49.051% 4 .075% 4 ,615% 4 .018% 3 . 0 4 1 %  1 .942% 1 .070% 9 ,539% 9 ,263% 0 ,130% 0,067% 
33.675% 99.993% 97,508% 92.292% 80.350% 60.820% 38.850% 21.406% 10.776% 5 .263% 2.5O4% 1,337% 

0.59% 9.42% - 0 . 0 9 %  - 1 . 9 1 %  - 3 . 5 6 %  - 3 . 9 6 %  -1.38% 6.08% 23.39% 62,41% 151,42% 366.63% 939.92% 

Relative 
MU Sigma Freq P;'ob 
-36.0% 1 1 . 0 %  1.240% 3.273% 0.023 0 . 0 2 5 %  1 .636% 0 .163% 0 .157% 0 ,137% 0 ,101% 0 .060% 0 .028% 0 .011% 0 .003% 0 .001% 0.900% 
~36.0% 9.9% 1,170% 3.088% 0.022 0 . 0 2 2 %  1 .544% 0 ,154% 0 .150% 0 .133% 0 .097% 0 .054% 0 .023% 0 .007% 0.CO2% 0.OOO% O.OO0% 
-36.9% 10 .5% 1.140% 3.009% 0.021 0 . 0 2 2 %  1 .504% 0 ,150% 0 .145% 0 .128% 0 .994% 9 .054% 9 .924% O.OO9% 0.C02% 0 .001% 0.000% 
.,36.0% 12 .1% 1.019% 2.666% 0.019 0 . 0 2 2 %  1 .333% 0 .132% 9 .125% 0 ,109% 9 .051% 0 .050% 0 .026% 0 ,911% 0 .004% 0 ,001% O.0O0% 
-36.9% 11 .6% 0.950% 2.507% 0.018 0 . 0 2 0 %  1 .254% 6 .124% 0 .119% 0 .103% 0 .077% 0 .047% 0 .023% 0 .010% 0 .003% 0 .001% 0,OO0% 
-36.0% 9.4% 0.830% 2.191% 0.015 9 . 0 1 6 %  1 .095% 0 .109% 0 .107% 9 .096% 9 .070% 0 .038% 0 ,015% 0 ,004% 0 ,001% 0 .000% 9.0OO% 
-36.0% 12 .7% 0.780% 2.059% 9.014 0 . 0 1 7 %  1 .029% 0 .101% 0 .096% 9 .503% 9.OO2% 0.039% 0 .021% 0 .010% 9 .004% 0 .001% 0.000% 
-36.0% 8.8% 0.760% 2,006% 0.014 0 . 0 1 3 %  1 .003% 0 .100% 0 .099% 0 .089% 0 .065% 0 .034% 0 .012% 0 .003% 0 .001% 9 .000% 0.000% 
-32.7% 11 .0% 9.720% 1.900% 0.014 0 . 0 2 0 %  0 .950% 0 .095% 0 .093% 0 .085% 0 .069% 0 .046% 0 .025% 0 .011% 0 .004% 0 .001% 9.000% 
-32.7% 9,9% 0.710% 1.874% 0.014 0 . 0 1 9 %  0 .937% 0 .094% 0 .092% 0 .086% 0 .070% 0 .045% 0 .022% 0.0O8% 0 .003% 0 .001% 0.000% 
-32.7% 10 .5% 0.710% 1.874% 0.014 0 . 0 1 9 %  0 .937% 0 ,094% 0 .092% 0 .085% 0 .069% 0 .045% 0 .023% 9 ,910% 0 .003% 0 .001% 9.000% 
-32.7% 11 .6% 0.719% 1.874% 0.014 0 . 0 2 0 %  0 .937% O.093% 0 .091% 0 .083% 0 .067% 0 .045% 9 .025% 0 .012% 9 .005% 0.002% 0.000% 
-39.4% 11 .6% 0.670% 1.768% 0.012 0 . 0 1 0 %  0 .884% 0 .087% 0 .081% 9 .066% 0 .044% 0 .024% 0 .010% 9 ,004% 0 .001% 0.0O0% 0.000% 
-32.7% 12 .1% 9.660% 1.742% 0.013 0 . 0 1 9 %  0 .871% O.087% 0 .084% 0 .076% 0 .061% 0 .042% 0 .024% 0 .012% 9 .005% 9 .002% 0.001% 
-39.4% 9.9% 0.650% 1.715% 0.012 0 . 0 0 8 %  9 .858% 0 .085% 0 .081% 9 .066% 0 .043% 0 .020% 0 ,007% 0.0O2% 0 .000% 9 .000% 0.0OO% 
-39A% 12.7% 0.650% 1.715% 9.012 0 . 0 1 0 %  0 .857% 0 ,084% 0 .077% 9 .062% 0 .043% 0 .025% 0 ,012% 0 ,005% 0 ,002% 0 .901% 0.000% 
-39,4% 13 .8% 0.650% 1,715% 0.012 0 . 0 1 1 %  0 .857% 0 .083% 0 .075% 9 .061% 0 .043% 0 ,026% 0 .014% 0 .006% 0 .003% 0 .001% 0.000% 
-36.0% 13 .2% 0.510% 1.610% 0.011 0 . 0 1 4 %  0.8O5% 0 .079% 0 .074% 0 .064% 0 .048% 0 .031% 0 .017% 0 .000% 0.0O4% 0.001% 0,000% 
-39.4% 12 .1% 0.600% 1,584% 0.911 0 . 9 6 9 %  0 .792% 0 .077% 0 .071% 9 .058% 0 .039% 0 ,022% 0 .010% 9 .504% 9 ,501% 0 .000% 0.900% 



Fitted Distributions - LnNormal 
Higher Standard Deviation 

E(X) Mu Sigma Skew 
Filted 65.1% (Q 4500) 0 5  

Stop Loss 
FiRed Originat Distribution 
LOSS Ratio Minimum Range 
Loss F~atio Maximum 
Expected Loss to Layer 
Expected Loss On• Line 

Parameter Set Distributions 
Loss F~atio Minimum Range 
Loss Ratio Maxfmum 
Expected Loss to Layer 
Expected Loss On Line 

Difference Parameter Set to Fitted 

Exhibit 6 

Ground-Up Contract 
72,5% 0.0% 50.0% 55,0% 60.0% 65,0% 70.0% 75.0% 90.0% 85.0% 90,0% 95.0% 
75.0% 50.0% 55.0% 69.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.8% t00,0% 

65.1% 0.984% 49.500% 4,163% 3.483% 2.700% 1.945% 1.309% 0,630% 0.499% 0.287% 0.159% 0.086% 
23.379% 98.999% 83.262% 69.653% 54.009% 38.696% 26.176% 16.591% 9.984% 5.748% 3.187% 1.713% 

Ground-Up Stop Loss 
72.5% 0.0% 50.0% 55.6% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0% 
75,0% 50.0% 55,0% 60.0% 65.0% 70.0% 75.0% 80,0% 66.0% 90,0% 95.0% 100.0% 

66.5% 0.696% 49.041% 4.013% 3.414% 2.737% 2.081% t.516% 1,074% 0.749% 0.520% 0.362% 0.254% 
27.793% 96.982% 80.258% 68.272% 54.749% 41.610% 30.318% 21.473% 14.977% 10.398% 7.242% 5.067% 

2.23% t8.88% -0,93% -3.61% -1.96% 1.37% 6.98% 15.92% 29.43% 50.02% 80.91% t27.21% 196.99% 

Relative 
MU Sigma Freq Prob 
-49.0% 19.0% 1.2% 1.665% 0.011 0.009% 0.926% 0.070% 0.059% 0.045% 0.032% 8.021% 0,013% 0.007% 0.004% 0.002% 0.001% 
-41.7% 19.0% 1,2% 1.610% 0.011 0,011% 0.881% 0.071% 0.061% 0.049% 0.036% 0,025% 0.616% 0.010% 0.006% 0,003% 0.002% 
-41,7% 16,0% 1.'2% 1.583% 0.011 0,011% 6.768% 0,071% 0.061% 0,049% 0,035% 0.024% 0.615% 0.009% 0.005% 0.002% 0,001% 
*45,0% 20,9% 1.1% 1.542% 0.010 0.009% 0,763% 0.064% 0.054% 0.042% 0.030% 0,020% 0,013% 6.008% 0.064% 0.602% 0,00~1% 
*48.4% 21,0% 1.1% 1,501% 0.009 0.007% 0,739% 0.058% 0.C47% 0,036% 0.025% 0,017% 0.010% 0.006% 0.004% 0.002% 0,061% 
-46.4% 19,0% 1,0% 1,416% 0.009 0.006% 0,701% 9.057% 0.046% 0.033% 0,023% 0.014% 0,006% 0.004% 0,002% 0.001% 0.001% 
-45,0% 22.0% 1,0% 1,392% 9,009 0,009% 0,687% 0.056% 0.047% 0,037% 0.828% 0.020% 0,013% 0,008% 0,005°/0 9,003% 0.002% 
-48.0% 17.0% 1.0% 1.365% O.O09 0.007% 0.679% 0.059% 0.050% 0.037% 0,025% 0.015% 0.009% 0.005% 0.002% 0,001% 0.000% 
-43.0% 18.0% 1.0% 1.351% 0,009 0.007% 0.671% 0.088% 0.046% 0.037% 0.025% 0,016% 0.010% 0.005% 0,003% 0.001% 0.001% 
-41.7% 21.0% 1.0% 1.338% 0.009- 0,010% 0.663% 0.057% 0.050% 0.040% 0.030% 0.022% 0.0t5% 0.010% 0.006% 0.094% 0.002% 
-45.0% 21.0% 1.0% 1.297% 0.008 (].006% 0.641% 0.053% 0.045% 0.035% 0,026% 0.018% 8.012% 0.007% 0.004% 0.003% 0,001% 
-48.4% 20.0% 0.9% 1.269% 0.008 0.006% 0,626% 0.050% 0.040% 0.030% 0.021% 0,013% 0.008% 8.005% 0,003% 0.001% 0.001% 
-41.7% 20,0% 0.9% 1,269% 0.009 0.009% 0.830% 0.065% 0.048% 0.038% 0.029% 0.020% 0.013% 0.008% 0.005% 0.003% 0,002% 
-41.7% 23.0% 0.9% 1.242% 0.006 0.010% 0.614% 0.062% 0,045% 0.037% 0.028% 0.021% 0.015% 0.010% 0.007% 0.004% 0.003% 
*43.0% 24.0% 0.9% 1.228% 0.008 0.008% 9.603% 0.049% 0.041% 0,033% 0.025% 0.018% 0.013% 0.009% 0.006% 8.004% 0.092% 
-45.0% 25.0% 0.9% 1,201% 0.008 0.006% 0.599% 0.047% 0.040% 0,032% 0.025% 0.018% 0,013% 0.009% 0.006% 0.004% 0.003% 
-48.4°/0 23.0% 0.9% 1.187% 0.008 0.006% 0.582% 0.045% 0.037% 0.826% 0.021% 0.014% 0.010% 0.006% 0,004% 0.002% 0,001% 
*41.7% 22.0% 0.9% 1.174% 0,008 0.009% 0.581% 0,060% 0.043% 0.035% 0.027% 0.020% 0.014% 0.009% 9.006% 0.004% 0.002% 
-46.4% 17.0% 0.9% 1.160% 0.007 0.004% 0.575% 0.048% 0.038% 0.027% 0.017% 0.010% 0.005% 0.003% 0.001% 0.001% 0.000% 



O~ 

Fitted Distr ibutions - LnNormal  
Higher Skew 

E X) Mu Sigma Skew 
Fitted 64.1o/~ (0,~1~0) ; 0 . ~  ~ ~ ~ ~1~5 

Stop Loss 
Fitted Original Distr ibution 
LOSS Ratio MFnimum Range 
Loss Ratio Maximum 
Expected Loss to Layer 
Expected Loss On Line 

Parameter Set Distr ibutions 
Loss Ratio Minimum Range 
Loss Ratio Maximum 
Expected Loss to Layer 
Expected Loss On Line 

Difference Parameter Set to Fitted 

Relative 
Mu Sigma Freq Prob 

(0.4500) 0.0990 0.990% 2.787% 
(0.4500) 0.1045 0.960% 2.703% 
(0.4500) 0.1155 0.960% 2.703% 
(0.4500) 0.1100 0.950% 2.675% 
(0.4500) 0.1210 0.870% 2.449% 
(0.4500) 0.1265 0.850% 2.393% 
(0.4500) 0.0935 0.780% 2.196% 
(0.4500) 0.0880 0.730% 2.055% 
(0.4172) 0.1155 0.710% 1.999% 
(0.4172) 0.1100 0.670% 1.886% 
(0.4172) 0.1265 0.620% 1.745% 
(0.4800) 0.1320 0.610% 1.717% 
(0.4500) 0.1375 0.610% 1,717% 
(0:4839) 0.0935 0.600% 1.689% 
(0.4172) 0.1210 0.600% 1.689% 
(0.4839) 0,0990 0.570% 1.605% 
(0,4839) 0.1100 0,560% 1.577% 
(0.4839) 0.1210 0.560% 1.577% 
(0,4839) 0.1045 9.550% 1.548% 

Exhibit 7 

Ground-Up Contract 
72.5% 0.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85,0% 90.0% 95.0% 
75.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0% 100.0% 

64.1% 0.235=/, 49.975% 4.785% 4.105% 2,858% 1.532% 0.629% 0.201% 0.052% 0.011% 0.002% 0.000% 
9.389% 99.950% 95.707% 82.091% 57.152% 30.637% 12.572% 4.030% 1.040% 0.223% 0.041% 0.007% 

Ground-Up Stop Loss 
72.5% 0.0% 50.0% 55.0% 60,0% 65,0% 70.0% 75.0% 80,0% 85,0% 90.0% 95.0% 
75.0% 50.0% 55,0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0% 100.0% 

64.6% 0.356% 49,846% 4.610% 3.940% 2,847% 1,695% 0.866% 0,412% 0.193% 0.094% 0.048% 6,026% 
14.240% 99.691% 92.198% 78.798% 56.937% 33,906% 17.353% 8.233% 3,068% 1.074% 0.955% 0.514% 

0.73% 51.67% -0.26% -3.67% -4.01% -0.38% 10.67% 38.03% 104.29°/= 272.02% 742.00% 2246.96% 7799.28% 

1.786% 0.005% 1.393% 0.135% 0.118% 0.081% 0.040% 0.014% 0.004% 0.001% 0.000% 0.000% 6.000% 
1.733% 0.006% 1.351% 0.130% 0.113% 0.078% 0.040% 0,015% 0.004% 0.901% 0.000% 9.000% 0.0000/0 
1.735% 0.007% 1.350% 0.128% 0.109% 0.077% 0.043% 0.019% 0.006% 0.002% 0.000% 0.000% 0.000% 
1.716% 0.006% 1.337% 0.128% 0.110% 0.076% 0.041% 0.017% 0.005% 0.061% 0.000% 0.000% 0.000% 
1,573% 0.007% 1.223% 0.115% 0.098% 0.069% 0.039% 0.018% 0.907% 0.002% 9.001% 0.000% 0.000% 
1,538% 0.008% 1.195% 0.112% 0.094% 0.067% 0.039% 0.019% 0.008% 0.003% 0.001% 0.000% 0.000% 
1.406% 0,003% 1.098% 0.107% 0.094% 0.064% 0.036% 0.010% 0.002% 0.000% 0.000% 0.000% 0.000% 
1.316% 0.003% 1.026% 0.101% 0.090% 6.060% 0.027% 0.008% 0.002% 0.000% 0.000% 0.000% 0.000% 
1.326% 0.008% 0.999% 0.097% 0.089% 0.067% 0.042% 0.021% 0.008% 0.003% 0.001% 0.000% 0.000% 
1.250% 6.007% 0.943% 0.092% 0.084% 0,064% 0.039% 0.019% 0.007% 0.002% 0.001% 0.000% 0.900% 
1.159% 0.008% 6.872% 0.084% 0.075% 0,058% 0.037% 0.020% 0.009% 0.003% 0.001% 0.000% 0.000% 
1.105% 0.(X)6% 0.857% 0.079% 0.067% 0.048% 0.029% 0.014% 0.006% 0.002% 0.001% 0.000% 0,000% 
1.105% 0.006% 0.857% 0.079% 0.066% 0.048% 0.029% 0.015% 0.007% 0.003% 0.001% 0.000% 0.000% 
1.046% 0.001% 0.844% 0.080% 0.068% 0.037% 0.015% 0.004% 0.001% 0.000% 0.000% 0.000% 0.600% 
1.121% 0,007% 0.844% 0.082% 0,073% 0.056% 0.036% 0.018% 0.608% 0.003% 0.001% 0.000% 0.000% 
0.994% 0.001% 0.802% 0.076% 0.060% 0.036% 0.015% 0.004% 0.001% 0.000% 0.000% 0.000% 0.000% 
0.978% 0.002% 0.787% 0.073% 0.658% 0.036% 0.017% 0.006% 0.002% 0.000% 0.000% 0.000% 0.000% 
0.979% 0.003% 0.787% 6.671% 0.056% 0.036% 0,018% 0.007% 0.002% 0.001% 0.000% 0.000% 0.000% 
0.960% 0.002% 0.774% 0.072% 0.057% 0.035% 0.015% 0.005% 0,001% 0.000% 0.000% 0.000% 0.000% 



- . J  

Fitted Distributions - LnNormal 
Five Years of Data 

E(X) Mu Sigma Skew 
Fitted 

Stop Loss 
Fitted Original Distribution 
Loss Ratio Minimum Range 
Loss Ratio Maximum 
Expected Loss to Layer 
Expected LOSS On Line 

Parameter Set Distributions 
Loss Ratio Minimum Range 
Loss Ratio Maximum 
Expected Loss to Layer 
Expected Loss On Line 

Difference Parameter Set to Fitted 

Exhibit 8 

Ground-Up Contract 
72.5% 0.0% 50.0% 55.0% 60.0% 65.0% 70,0% 75.0% 80,0% 85.0% 90.0% 95.0% 
75.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85,0% 90.0% 95.0% 100.0% 

64.1% 0.235% 49.975% 4.785% 4.105% 2.858% 1.532% 9.629% 0.201% 0.052% 9,011% 0.002% 0,000% 
9.389% 99.950% 95.707% 92.091% 57,t52% 30.637% 12.572% 4.030% 1.040% 0,223% 0.041% 0.007% 

Ground-Up Stop Loss 
72.6% 0.0% 50.0% 55,0% 60.0% 65.0% 70.0% 75.0% 80.0% 55.0% 90.0% 95.0% 
76.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0% 100.0% 

65.7% 0.489% 49,475% 4.393% 3.773% 2.837% 1.853% 1.121% 0.677% 0.424% 0.279% 0.192% 0.137% 
19.545% 98.959% 97.862% 75.456% 56.743% 37.067% 22.414% 13.534% 9.488% 5,583% 3.840% 2.745% 

2,43% 168,17% -1.00% 4.20% -8,08% -0.72% 20.99% 79,29% 235,82% 716,34% 2407,96% 9339.89% 42069,69% 

Relative 
Mu Sigma Freq Prob 
-45.0% 9.9% 1.190% 1.246% 0.008 0.002% 0.623% 0.061% 0.053% 0.036% 0.918% 0.006% 0.002% 0.000% 0.000% 0.000% 0.000% 
-45,0% 10.5% 1.140% 1.194% 0.008 0.002% 0.597% 0,058% 9.050% 0.034% 0.018% 0.007% 0.002% 0.000% 0.000% 0.000% 9.000% 
-45.0% 8.3% 1.120% 1.173% 0.008 0.001% 0.586% 0.958% 0,052% 0.035% 0.015% 0.004% 0.001% 0.000% 9.000% 0.000% 0.000% 
-45,0% 9,4% 1,t20% 1.173% 0.008 0.002% 0.586% 0,057% 0,050% 0.934% 0.016% 0,065% 0.001% 0.000% 0.009% 0,099% 0.000% 
-45.0% 11.0% 1.100% 1.152% 0.007 0.003% 0.576% 0.055% 0.047% 0.033% 0,018% 0.007% 0.002% 0.001% 0.000% 0.000% 0.000% 
-41.7% 9.4% 1.080% 1.131% 0.007 0.003% 0.566% 0.956% 0.052% 0.049% 0.023% 9.009% 0,003% 0.00t% 0.000% 0.000% 0,000% 
-48.4% 11.0% 1,030% 1.079% 0.007 0.001% 0.539% 0.050% 0.039% 0.024% 0.011% 0.904% 0.001% 0.000% 0.000% 0.000% 0.000% 
-45.0% 8.8% 1,000% 1.047% 0.007 0.001% 0.524% 0,051% 0,046% 0.031% 0.014% 0.004% 0.001% 0.000% 0.000% 0.000% 0.000% 
-48,4% 10.5% 0.960% 1.005% 0.006 0.001% 0.502% 0,047% 0.037% 0.023% 0.010% 0.003% 0.001% 0,000% 0.000% 0,000% 0.000% 
-41.7% 11.6% 0.940% 0,984% O.00T 0.004% 0.492% 0.048% 0,043% 0,033% 0.021% 0.010% 0.004% 0,001% 0.000% 0.000% 0.000% 
-41,7% 11.0% 0,929% 0,964% 0.006 0.904% 0.492% 0.047% 0,043% 0.033% 0.020% 0,009% 0.004% 0.091% 0.000% 0.000% 0.000% 
-41.7% 10.5% 0.900% 9.943% 0.006 0.003% 0.471% 0.046% 0.042% 0.033% 0.019% 0.909% 6.003% 0.091% 0.000% 0.090% 0.000% 
-45.0% 7.7% 0.880% 0.922% 0.006 0.00t% 0.461% 0.046% 0,041% 0.028% 0.011% 9,002% 0.000% 0.000% 0.000% 0.000% 0.000% 
-46.0% 11.6% 0.980% 0,922% 0.006 0,002% 0.461% 0.044% 6.037% 0,026% 0.014% 0.006% 0.002% 9.001% 0.000% 0,000% 0.000% 
-46.0% 13.2% 0,870% 0.911% 0.006 0.003% 0.455% 0,042% 0.036% 0.026% 0.015% 0.008% 9.093% 0.091% 0.000% 0,000% 0.000% 
-45.0% t2~7% 0.830% 0.869% 0.006 0.003% 0.434% 0.041% 0.034% 0.024% 9.914% 9.007% 0.003% 0.001% 0.000% 0.000% 0.000% 
-41,7% 6,6% 0.900% 0.838% 0.006 0.002% 0,4t9% 0,042% 0.039% 0,030% 0.017% 0.006% 0,001% 0,000% 0.000% 0,000% 0.000% 
-49.4% 9.4% 0.780% 0.817% 9,905 0,001% 0.408% 0,039% 0.031% 0,019% 0.907% 0,002% 0,000% 0,000% 0.000% 0.000% 0.000% 
-48.4% 9.9% 0.780% 6.917% 0,005 0.001% 0.408% 0.038% 0.031% 0,019% 0,008% 0.002% 0.000% 0.000% 0.000% 0.000% 0.000% 



Higher Mean Exhibit 9 
Loss Ratio Distribution 

OO 

Actual Actual 
LR Ln(LR) 

1 60.0% (0.5107) 
2 70.9% (0.3445) 
3 74.4% (0.2955) 
4 64.9% (0.4321) 
5 60.0% (0.5113) 
6 70.9% (0.3445) 
7 85.4% (0.1580) 
8 77.4% (0.2568) 
9 66.9% (0.4020) 

10 70.9% (0.3445) 
Average 70.2% (0.3600) 

Stdev 0.0780 0.1100 
Skew 0.5000 

Expected 70.2% 

Min 
Max 

Average 
Stdev 

Expected Loss On Line 

Fitted Expected Loss 
Fitted Expected Loss On Line 

72.5% 
75.0% 

Loss 
O.O% 
0.0% 
1.9% 
0.0% 
O.O% 
0.0% 
2.5% 
2.5% 
0.0% 
0.0% 

0.692% 
0.0112 
27.7% 

0.769% 
30.775% 



Higher Standard Deviation Exhibit 10 
Loss Ratio Distribution 

xO 
xO 

Actual Actual 
LR Ln(LR) 

1 51.2% (0.6695) 
2 57.7% (0.5504) 
3 74.7% (0.2920) 
4 53.3% (0.6299) 
5 74.2% (0.2985) 
6 80.8% (0.2137) 
7 62.4% (0.4724) 
8 87.1% (0.1380) 
9 50.0% (0.6933) 

10 58.1% (0.5424) 
Average 64.9% (0.4500) 

Stdev 0.1324 0.2000 
Skew 0.5000 

Expected 65.1% 

Min 
Max 

Average 
Stdev 

Expected Loss On Line 

Fitted Expected Loss 
Fitted Expected Loss On Line 

72.5% 
75.0% 

Loss 
0.0% 
0.0% 
2.2% 
0.0% 
1.7% 
2.5% 
0.0% 
2.5% 
0.0% 
0.0% 

0.887% 
0.0117 

35.5% 

0.584% 
23.379% 



Higher Skewness 
Loss Ratio Distribution 

Exhibit 11 

bO 
O 
O 

Actual Actual 
LR Ln(LR) 

1 61.6% (0.4842) 
2 58.7% (0.5327) 
3 64.5% (0.4379) 
4 56.3% (0.5746) 
5 67.4% (0.3946) 
6 61.1% (0.4921) 
7 81.3% (0.2071) 
8 70.9% (0.3437) 
9 58.2% (0.5411) 

10 61.1% (0.4921) 
Average 64.1% (0.4500) 

Stdev 0.0747 0.1100 
Skew 1.5000 

Expected 64.1% 

Min 72.5% 
Max 75.0% 

Loss 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
2.5% 
0.0% 
0.0% 
O.O% 

Average 0.250% 
Stdev 0.0079 

Expected Loss On Line 10.0% 

Fitted Expected Loss 0.235% 
Fitted Expected Loss On Line 9.389% 



Five Years of Data 
Loss Ratio Distribution 

Exhibit 12 

t o  
O 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
Average 

Stdev 
Skew 

Expected 

Actual 
LR 
58.1% 
67.3% 
74.2% 
56.6% 
64.2% 

64.1% 
0.0712 
0.5000 

Actual 
Ln(LR) 
(0.5425) 
(0.3961) 
(0.2990) 
(0.5687) 
(0.4436) 

(o.45oo) 
0.1100 

64.1% 

Min 
Max 

Average 
Stdev 

Expected Loss On Line 

Fitted Expected Loss 
Fitted Expected Loss On Line 

72.5% 
75.0% 
Loss 

0.0% 
0.0% 
1.7% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 
0.0% 

0.165% 
0.O052 

6.6% 

0.235% 
9.389% 



Fitted Distributions - LnNormal 
Half Steps 

E(X) Mu Sigma Skew 
Fitted 64 1% ~ ' ~ ' ~ { 0 , ~  ~ 0~1~1J~ ;;%~ ~- ~ 0 ~  

Stop LOSS 
Fi(ted Original Distribution 
Loss Ratio Mi,imum Range 
Loss Ratio Maximum 
Expected Loss to Layer 
Expected Loss on Line 

Parameter Set Dfstributions 
LOSS Ratio Minimum Range 
Loss Ratio Maximum 
Expected Loss to Layer Half Steps 
Exp Loss Original Steps 
Expected Loss On Line Half Steps 
Expected Loss On Line Odginal Steps 

Exhibit 13 

Ground-Up Contract 
72.5% 0,0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 65.0% 90.0% 95.0% 
76.0% 50,0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90,0% 95.0% 100.0% 

64.1% 0.236=/= 49.975% 4.785% 4.105% 2.858% 1.532% 0.629% 0.20t% 0.052% 0.011% 0.002% 0.000% 
9.389% 99.950% 95.707% 82.091% 57.162% 30.637% 12.572% 4.030% 1.040% 0.223% 0.041% 0.007% 

Ground.Up 
72.5=/0 0.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 05.0% 
76.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0% 95.0% 100.0% 

64.537% 0.345% 49.855% 4.617% 3.946% 2,842% 1.676% 0.845% 0.393% 0,181% 0.086% 6.043% 0.022% 
64.836% 0.342% 49.860% 4.622% 3.955% 2.850% 1.677% 0.841% 0.388% 0.176% 0.082% 0.039% 0.020% 

t8.790% 99.709% 92.330% 78.922% 56.838% 33.522% 15.893% 7.867% 3.624% 1.719% 0.854% 0.447% 
13.693% 99.719% 92.445% 79.103% 56.994% 33.544% 16.812% 7.754% 3.516% 1.630% 0.788% 0.401% 

t~  
O bO 

Comparison with Larger Steps 
Oiffin Exp Loss with Original Steps 0,001% 0.802% *0.005% *0.005% -0.009% *0.008% -0.001% 0.004% 0.006% 0.005% 0.004% 0.003% 0.G02% 
Diff in ELOUs w9h Original Steps 0,096% *0.010% -0.106% -0.182% *0.156% *0.022% 0.081% 0,113% 0.106% 0.089% 0.066% 0.046% 
% Diff With Original Steps 0.092% 0,703% *0.010% -0,115% -0,230% *0.274% -0.065% 0.486% 1,456% 3.070% 5.437% 8.372% 11,479% 

Relative 
In x y Freq Prob 

(0.45000) 0.10725 0.0123 0.787% 0.50% 0.002% 0.393% 0.038% 0.033% 0.023% 0.012% 0.005% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.45000) 0.11000 0.0123 0.787% 0.50% 0.002% 0.363% 0.035% 0.032% 0.022% 0.012% 0.005% 0.002% 0.000% 0.000% 0.000% 0.000% 
(0.45000) 0.10450 0.012 0.767% 0.49% 0.002% 0.384% 0.037% 0.032% 0.022% 0.011% 0.004% 0.001% 0.000% 0.000% 0.000% 0.000% 
(6.45000) 0.10175 0.0115 0.735% 0.47% 0.001% 0.36B% 0.036% 0.031% 0.021% 0.011% 0.004% 0~001% O.0O0% 0.000% 0.000% 0.000% 
(0A3347) 0.09900 0.011 0.703% 0.46% 0.002% 0.352% 0.034% 0.031% 0.023% 0.0t2% 0.005% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.46681) 0.12100 0.0109 0.697% 0.44% 0.002% 0.348% 0.032% 0.026% 0.018% 0.010% 0.004% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.43347) 0.09350 0.0107 0.684% 0.45% 0.001% 0.342% 0.034% 0.031% 0.022% 0.012% 0.004% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.45000) 0.11275 0,0105 0.671% 0,43% 0.Q02% 0,336% 0.032% 0,027% 0.019% 0,010% 0.004% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.46681) 0.11000 0.0104 0.665% 0,42% 0.001% 0,332% 0.031% 0.026% 0.017% 0.009% 0.003% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.46681) 0.10450 0.0103 0,659% 0.42% 0.001% 0.329% 0,031% 0,026% 0.017% 0,008% 0,003% 0,001% 0.000% 0,000% 0.000% 0,000% 
(0AS000) 9.09075 0,0103 0,859% 0.42% 0.001% 0.329% 0,032% 0.028% 0,019% 0.009% 0,003% 0.001% 0,000% 0.000% 0,000% 0,000% 
(0,45000) 0.11550 0.0103 0.659% 0.42% 0.002% 0.329% 0,031% 0.027% 0.019% 0.010% 0,005% 0.002% 6,000% 0,000% 0,000% 0,000% 
(0.46681) 0,10175 0.0102 0.652% 0,41% 0,001% 0,326% 0.031% 0.026% 0.017% 0.008% 0.003% 0.001% 0.000% 0,000% 0.000% 0.000% 
(0.46881) 0,11550 0.0t01 0.648% 0.41% 0,001% 0,323% 0.030% 0,025% 0.017% 0,009% 0.003% 0,001% 0,000% 0,000% 0.000% 0.000% 
(0.45000) 0.09625 0.01 0.639% 0.41% 0.001% 0.320% 0.031% 0.027% 0.019% 0.009% 0.003% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.43347) 0.10725 0.01 0.639% 0.42% 0.002% 0.320% 0.031% 0.028% 0.020% 0.011% 0.005% 0.002% 0.000% 0.000% 0.000% O.00O% 
(0.45000) 0.09350 0.0099 0.633% 0.41% 0.001% 0.316% 0.031% 0.027% 0.018% 0.009% 0.003% 0.001% 0.000% 0.000% 0.000% 0.000% 
(0.43347) 0.09075 0.0099 0.633% 0.41% 0.001% 0.317% 0.031% 0.028% 0.021% 0.011% 0.004% 0.001% 0.000% 0.000% 0.000% 0.000% 
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Quantifying Correlated Reinsurance 
Exposures with Copulas 
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Quantifying Correlated Reinsurance Exposures with Copulas 
Gary G Venter, Guy Carpenter Instrat 

Copulas provide a convenient way to represent joint distributions. In fact 
the joint distribution function can be expressed as the copula function 
applied to the separate individual distributions. That is, F(xl, x2,...Xm) = 
C[FI(xl), F2(x2) . . . .  Fm(xm)] where C is the copula function. Background 
information on copulas is covered in my Proceedings paper Tails of Copu- 
las, and will be largely assumed here. 

That paper gave illustrations of  bivariate copulas, most o f  which do not 
extend well into higher dimensions. For a multivariate copula for reinsur- 
ance related variates you would like to be able to feed in a correlation ma- 
trix of  the variates as well as have some control over the degree o f  corre- 
lation in the tails o f  the distributions. Often more than two related vari- 
ates are needed, such as losses in different lines of  insurance. 

This paper focuses on the t-copula, which meets these minimum require- 
ments, but just barely. You can input a correlation matrix and you do have 
control over the tail behavior, but you only have one parameter to control 
the tail, so all pairs o f  variates will have tail correlation that is determined 
by that parameter. The normal copula is a limiting case, in which the tails 
are ultimately uncorrelated if you go out far enough. 

The structure of  the paper is to jump right in to a discussion of  the t- 
copula in the bivariate case, then extend this to higher dimensions. A tri- 
variate example is given using cat model output for three lines of  insur- 
ance. Methods for selecting parameters and testing goodness of  fit are 
discussed in this context. 

ACKNOWLEDGEMENT 
Much credit must go to Andrei Salomatov for solving the calculation is- 
sues for certain extreme cases discussed below. 
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T h e  B i v a r i a t e  t - C o p u l a  

The bivariate t-copula has two parameters that control the tail dependence 
and the degree of  correlation separately. 

The t-distribution with n degrees of  freedom is defined by: 

f,(x) = K1 (1 +x2/n) -0+1)/2, with K; =F(1/2+n/2) (nn) - ; /2 /F(n /2) .  

Here n is often an integer, but doesn't have to be. The distribution is 
symmetric around zero and can be calculated by: 

Fn(x) = 1/2 + 1/2 sign(x)betadist[x2/(n+x2), 1/2, n/2],  

where betadist defines the beta distribution, as in Excel. 
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An example of  the density of  the t-copula is graphed above. The density 
of  the bivariate t-copula with n degrees of  freedom and the correlation 
parameter p is defined as: 

c(u,v; n,p) = K2[(l +s2/n)(l +t2/n)]~+l)/2{ l +[sZ-- 2pst +t2]/[(1-pZ)n]} "l'n/2 

with K2 = Vz[F(n/2)/F(0.5+n/2)]ha(1-pZ) -]/2 and s=Fn't(u), t=Fn'l(v). 

The inverse t-distribution needed for this can be calculated with an in- 
verse beta by s = sign(u-V2)nl/2[- 1 +1/betainv([  2u-1 ] ,V2, n/2)] -1/2. 

Bivariate t-Copula Density Ratio n=5 to n=50, 0=0.5 

1.5 

. 1~  

1.t 

1 

0.9 

0.8 

~.6 

).5 

The concentrations of  probability near [0,0] and [1,1] are seen in many 
copulas, but the smaller concentrations around [0,1] and [I,0] are more 
unusual. The above graph shows the ratio of  densities for n=5  to n=50. 
The latter is similar to the normal copula density, which approaches zero 
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at [0,1] and [1,0]. Thus the density ratio is highest in those regions, even 
though it is well above unity around [0,0] and [1,1]. With a given correla- 
tion parameter or matrix, the linear correlation and Kendall's x for the t- 
copula are the same for any n as for the normal copula (n -~ o0). The 
lower values of  n produce greater upper and lower tail dependence with 
the same overall correlation essentially because they put more weight in all 
the comers. The additional weight in the off-diagonal comers cancels out 
the additional tail dependence, keeping the overall correlation the same. 

Kendall's x is related to p by ~ = (2/~)arcsin(p). Also the right tail de- 
pendence measure R, defined as limit z o lPr(U>z IV>z), is given by: 

R/2 = 1-Fo+1 { [ (n+l )0-o) /0+p)]° . s} .  

Thus R can be expressed as a function of  ~ and n, as graphed below. Even 
zero ~ can give a positive tail dependence with this copula. The tail de- 
pendence can approach zero for any x by taking n large, thus approximat- 
ing the limit o f  the normal copula, which has tail dependence o f  zero. 

t-Copula Tall DePendence as a Function of Tau and n 
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The Multivariate t-Copula 

To define the multivariate copula, suppose there are m variates, and u is a 
vector o f  m probability values (numbers in [0,1]). Let s be the vector o f  
the univariate t-quanfiles of  u with n degrees o f  freedom, that is s=Fn'l(u) 
for each element of  s and u. Also let Y~ be an m x m correlation matrix 
with determinant d. Then the m-dimensional t-copula has density: 

C(U; n, E) = Km[1-Ii=lm(1 +si2/n)](n+l)/2(l+s ' E-Is/n)-( re+n)/2 

where I ~ =  F[(m+n)/2][F(n/2)lm-l[F(l/2 +n/2)l'-md-~/2. 

By starting with a Kendall's z coefficient matrix T, the correlation matrix 
needed here can be specified by Z = sin(Tg/2). Thus this copula has 
complete flexibility in its correlation structure. However there is only one 
n used, so the tail dependence will be determined by that n for all pairs o f  
variates. In the graph above, all the tail-dependence measures for all pairs 
o f  variates would fall on the same vertical cross section, determined by 
the value of  n used for the copula. Thus the pairs with higher x will have 
higher R as well. 

The univariate or multivariate t distribution can be characterized (and 
simulated) by a (possibly multivariate) normal distribution divided by a 
multiple of  the square root of  an independent univariate chi-squared 
distribution. When generating it in this way, if a low draw comes up for 
the chi-squared variate, large values o f  the t variate can be produced, even 
if the normal values were not particularly large. In the multivariate case 
then all the t variates can be jointly large even if they were not originally 
correlated. That illustrates why the tall-dependence can be somewhat high 
even with zero x. An example might be where the reciprocal o f  the t 
variate represents the inflation rate, which hits all the lines. This effect is 
sometimes called a common shock, i.e., the common shock of  a large 
inflation rate can induce a correlation among otherwise independent lines. 

More precisely, to generate a vector o f  probabilities from the multi-variate 
t-copula, first generate a mulfi-variate normal vector with the same corre- 
lation matrix, then divide it by (y/n) °-s where y is a number simulated 
from a chi-squared distribution with n degrees o f  freedom. This gives a t- 

220  



distributed vector, and the t-distribution F,  can then be applied to each 
element to get the probability vector. 

The ratio y /n  is a scale transform of  the chi-squared variate, so is a 
gamma variate. I f  the gamma density is parametetized to be proportional 
to xa-le -x/I~, then y /n  has parameters [3 = 2 /n  and ct = n /2 .  This is a dis- 
tribution with mean 1. It can be simulated easily if an inverse gamma 
function is available, as in some spreadsheets. 

Because a power of  the gamma deviate is a divisor, a factor is being ap- 
plied that is actually inverse transformed gamma distributed. The  inverse 
transformed gamma distribution in or, % 0 has density proportional to 
exp(_(0/x)~)/x a +1. The factor (n/y) °.s applied to the normal vatiates is 
distributed inverse transformed gamma in a = n, ~ = 2, and 0 = (n/2)1/2 . 
This has a mean greater than unity and an inverse power tail with power n, 
and so is a heavy-tailed distribution. Especially when n is small, this gives 
the possibility of  large values of  the factor occasionally being applied to all 
the normal draws, giving simultaneous large values of  all the variates. 

Example - Hurricane Losses 

Parameter estimation issues and applications can be illustrated by a sample 
of  losses simulated from a hurricane model. The simulation generated 
losses under three lines of  insurance: residential property (R), commercial 
property (C) and automobile (A). Naturally these are highly correlated 
losses, as hurricane losses from a stronger storm tend to be higher in all 
three lines. The strength of  the storm could be considered to be the 
common shock that correlates all the lines. Having a large generated sam- 
ple like this does not  require a fitted copula to be useful in loss estimation, 
so in practice there would be little need to fit a copula to it. It is a useful 
dataset for illustrating fitting concepts, however. 

The  empirical trivariate copula can be calculated at any 3-vector o f  
probabilities by counting the proport ion of  the sample triplets o f  em- 
pirical probabilities that  are less in each index. Each o f  the three bivari- 
ate empirical copulas f rom the three pairs of  variables can be calculated 
similarly. The  averages o f  the bivariate copulas give estimates of  the 
correlations by the relationship x = 4E(C) - 1, where E(C) is the ex- 
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pected value of  the copula.. This scaring of  the mean  value o f  the copula 
can be extended to define higher dimensional  analogues of  ~ by requir- 
ing that  "c = 0 for the independence case and "c = 1 for perfect  correla- 
tion. The  scaling for m-dimensions that does this is • = [2mE(C)- 
1]/[2 m- a-l] .  (There are other  possible multi-variate extensions o f  % 

but  they will no t  be used here.) For  the hurricane data, these z's are: 

AC A R  R e  AR C  

82.4% 84.4% 87.6% 84.8% 

The  bivariate x's provide estimates o f  the correlation p for each bivari- 
ate copula, and thus for the correlation matrix for the trivariate copula, 

using p = sin(xT/2). For  the sample, these are: 

AC A R  R C  
.96 .97 .98 

To estimate n, the tail behavior is key. One avenue might be to estimate R, 
the limit z _+lPr(U>z ] V>z). However this is difficult to estimate from data 
because the function R(z), defined as Pr(U>z]V>z) ,  can drop rapidly for 
z near 1, and there is less and less data to use the closet z gets to 1. 

Note that R(z)= Pr(U>z & V>z)/Pr(V>z).  Since Pr(V>z) = 1-  z = 
Pr(U>z), U and V can be switched in the definition of  R(z). A similar 
concept can be defined for the multivariate copula: 

R(z)= Pr(U>z & V>z  & W > z ) / z  = Pr0A>z & V>z  IW>z) 

Because of  the symmetry in the first equation, U, V, and W can be 
swapped around at will in the second equation. This function provides a 
measure of  the overall tail dependency of the three variates, and it can be 
generalized to higher dimensions. A similar tail dependency function can 
be defined for the left tail: 

L(z) = Pr(U<z & V<z & W<z) / z  = C(z,z,z)/z, and similarly in 
the bivariate case. The empirical versions of  these functions are graphed 
below. From the graph, the right and left tail functions are clearly not  
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symmetrical. This would rule out the t-copula, which is. However most 
issues concern the large loss cases, so a copula approximating the right 
side would be most appropriate, and the t-copula might work for this. 

~4  
0.1 0.2 ~3  ~4  Q5 R6 0,7 0.8 ~9  1 

One possibility would be to estimate the t-copula correlations and de- 
grees of freedom by maximum likelihood. The likelihood function for a 
parametric copula at a point in the sample is the density of  the para- 
metric copula computed at the empirical copula vector for that point, 
so can be readily calculated. 

However in this case, MLE is not likely to give the intended fit, in that 
it would be affected by the smaller claims that do not appear to mirror 
the large claims. So the sample correlations come back as a starting ref- 
erence point, even though they use the whole distribution. 

To test how well the sample correlations match the larger losses, a 
simulation can be performed With the sample correlations and a se- 
lected n, and the simulated R(z) compared to the sample's. The arbi- 
trary choice of  degrees of freedom most affects the extreme percentiles, 
so this comparison was initially cut off at the 85 th percentile, with a se- 
lected n=20. The bivariate comparisons are graphed below. 
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The AR R(z) comparison is very close by this measure, while the other 
two pairs do not fit very well. 

1 

Og~ 

O9 

0?  

Q~ 

l 

224 



°"t - -  

To see how much this is influenced by the choice of correlations, a few 
correlations were tested by this same methodology to see how well they 
work. The selections and fits are shown below, again with n=20. 

I AC AR RC 
Sample O .96 .97 .98 

Selected p .94 .97 .96 

z 
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While there are still some issues with the fits for smaller values o f  z, 
they are much better for the large losses, as intended. This case was not  
cut o f f  at 85%, and some simulation instability shows  for the larger val- 
ues O ~ Z .  
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Due to the symmetry of  the t-copula, R(z) = L(1 - z), and L can be cal- 
culated directly from the copula function. However, even though the t- 
copula is easy to simulate, the copula function is difficult to calculate, 
as the integration is difficult near 0. Numerical integration relying on 
simulation is often used for this. The graph below shows the L fimc- 

L-(z)~for ~o=94%, 96% & 9 7 ~ ~  
. . . . . . . .  

............. 

................ 

r ~  .;;>- 
/ ~  ....... 1 0  . 9 4  

- -  1 0  . 9 6  

- 1 0  . 9 7  

1 5  .94 

1 5  .96 

,=( 15 .97 
20 .94 

:I : ' 20 .96 
20 .97 

• 2 5  . 9 4  

• 2 5  .96 
25 .97 

0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1 

don for the O's fit above for a few values of n using this approach. 

It is only for small values of z that n makes a difference in the L and R 

functions, at least for these large values of  p. The 9 itself does affect 
the functions for all values of z. 

The graph below looks at L(z) for z <0.05 for these same p's and a few 
n's, It is on a log scale to illustrate the behavior of  L for very small z's. 
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L(z) for  rh0,,94%, 96%& 97%and  n=lO,  25, 50 and z = .05 and less 

-21 -19 -17 -15 -13 -tl -9 -7 -5 -3 
kin(a) 

For z in this range, which is shown down to In(z) = -20, n is at least as 

important as p in influencing the value of L(z). Also, the function de- 
clines very slowly even for n=50. With these values of  z the tails be- 

come less determined by p, but only in the very extreme tail, beyond 
the area of  practical concern. 

To select a value of n, the empirical R functions were evaluated at 
z=0.005 and z=0.01, and n's sought to best match. For the RC pair 

with 9 = 96%, the best n was 41.5. For the other cases, n=500 worked 
as well as anything, suggesting a normal case. The target and fitted 
R(z)'s are shown for each pair in the table below. The RC fit is best. 
The other two fit ok at z = 0.01, but drop off for smaller z. That  could 
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be a sample size problem at this level. 

Target/Fit I 94% (AC) 97% (AR) 96% (RC) 
0.005 I .54 / .61 .52 / .68 . 6 9 3 / .  695 
0.01 .61 / .64 .68 / .70 .718 / .715 

Only one value of  n is used in the t-copula, so a compromise  value has 
to be selected. Perhaps a value near 42 would be appropriate. This 
works for RC but  imposes too much tail association for the other  pairs. 
This is only in the extreme tail, however, so might no t  be problematic.  

S u m m a r y  

The functional form of  the t-copula is somewhat complicated, but most  
of  the key functions are readily available in spreadsheets and statistical 
packages. Simulating samples is quite easy, as this just uses a simple ad- 
justment to normal copula samples. 

Estimating parameters from data is more problematic. I f  the data is sym- 
metric, maximum likelihood would be a good choice. In that case, a com- 
parison of  the empirical and fitted R and L functions could be used to 
evaluate goodness of  fit. 

When the right and left tails are quite different the t-copnla would not  
usually be indicated, but if  only the right tail behavior is important in prac- 
tice, a fit to that could be sought. Finding parameters that match the em- 
pirical and fitted R function is a reasonable way to do that. In the sample 
data reviewed, finding a match for the correlation matrix was relatively 
straightforward, but finding the best n was more difficult. For the high 
correlations found in this sample, different values of  n affected R(z) only 
in the very extreme tail - even beyond where most  reinsurance interest 
would be. Since that is where the data is most  scarce, reliable fits are diffi- 
cult. However the choice of n is not too critical for the same reason. 

The main practical obstacle to the use of  the t-copula is that there is only 
one parameter - n - to control tail association, and different pairs of  vari- 
ates might have different indicated n's. Computationally the biggest prob- 
lem is calculating C for extreme values. This would be necessary only for 
trying to fit parameters to the extreme taft, however. 
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O N  T H E  O P T I M A L I T Y  O F  M U L T I L I N E  E X C E S S  O F  L O S S  C O V E R S  

A B S T R A C T  

It is well known tha t  diversifying the  risk between independent policies reduces the total 
risk in the  sense tha t  less deviations around the aggregate mean loss are expected. In other 
words, less capital has to be allocated due to the diversification effect. 
The  same effect can be obtained when an insurance company buys an excess of loss cover. 
Instead of buying independently covers for different lines of business, it is intuitively accept- 
able to believe tha t  the insurance company has interest in diversifying by buying a multiline 
excess of loss cover. 
In the  present paper I show how to deal with the  dependencies induced by such a model and 
using some risk measures we show on a numerical example the optimality of the multiline 
agreement. 

KEYWORDS 

Multivariate Panjer 's  algorithm, multiline excess of loss cover, s tandard deviation, Wang 
Transform, optimal reinsurance. 
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1. ~NTRODUCTION 

Multiline excess of loss covers are introduced in Ribeaud (2000). 
Walhin (2002) introduced the practical pricing of multiline excess of loss covers. To keep 
things simple, we will assume tha t  we have two lines of business : Fire and MTPL.  Let us 
define 

- X i  Fi~e as the  i th claim amount  of type Fire, 

- Z i  MTPL as the  i th claim amount  of type Motor Third Part  Liability (MTPL in short). 

It is assumed tha t  the  x F i ~ ' S  are independent and identically distributed as well as the  
x M T P L ' s .  XFire'S and x M T P L ' s  are assumed to be mutual ly independent. We also define 

- N as the number of claims of type Fire, 

- M as the  number  of claims of type MTPL.  

We assume tha t  N and M are independent and tha t  N and the X/F~rc's on the one hand 
and M and t h e  xiMTPL's  on the other hand are also independent. 
Let us define the  liability of the  excess of loss reinsurer for each claim : 

R Fi'* = min(L Fir~, max(O, X Fi'e - DFire)),  

R M T P L  = m i n ( L  MTPL,  max(0, X M T P L  - D M T P L ) ) .  

where 

1. D Fi~ is the  deductible for fire claims 

2. L Fire is the  limit for fire claims 

3. D M T P L  is the deductible for M T P L  claims 

4. L MTPL is the  limit for M T P L  claims 

Let us define the liability of the  ceding company for each claim 

Ci pire = Z Fire _ RFire, 

c ~ ' ~  = x ~ ' , ' ~  _ R ~ , ' ~ .  

Let us define the  aggregate liability of the reinsurer for each line : 

N 
S Fire = ~ R Fire 

i = l  
M 

S MTPL = ~ R MTPL 

i=1 
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Let us define the  aggregate liability of the  ceding company for each line : 

N 
T Fire = ~-~ CFire 

{=1 
M 

Z MTPL ~ C MTPL 
~ i 
i=1 

Now let us assume tha t  the ceding company buys a multiline excess of loss cover of the form 

Cover = max(0, S Fir~ + S MTPL - -  GAAD) 

where GAAD is a global annual aggregate deductible playing on both lines of business. 
In this paper we are interested in analysing the  retention's risk of the ceding company : 

Retention = T F~r~ + T MTPL -~- min(S F~r~ + S MTPL, GAAD). 

2. DEPENDENCIES  GENERATED BY THE MODEL 

Analysing and modelling dependencies is a subject  tha t  received great at tention during the  
last few years. Different methods have been proposed to tackle tha t  problem, e.g. the use 
of Fr~chet bounds  (see e.g. Dhaene et al. (2001)) or the  use of copulas (see e.g. Frees and 
Vaidez (1998). These methods do not recognize the exact dependency structure because it 
is often not possible to model it. 
In our case, there is clearly some dependency which does not allow an easy analysis of the 
problem. However the  dependency in our model is induced by the  model itself. We then 
have the chance to model the dependency exactly and possibly obtain exact calculations. 
The fact tha t  reinsurance induces dependencies has been observed by Walhin and Paris 
(2000) for the  analysis of the cedent's retention's risk when there are paid reinstatements,  by 
Walhin and Denuit  (2003) for the practical pricing of Top & Drop covers, by Walhin (2003) 
for the  pricing of exotic excess of loss covers. The present paper shows another dependency 
induced by the  model. 
Fortunately it is easy to make a modelization of our dependency : the random variables 
R~ ~ ,  C~ ir~ depend on X~ ir~ whereas R MTPL, C~ TPL depend on X ~  TPL. This means tha t  
even though N, M, X Fi~¢, and yFir¢ are mutually independent, S Fi~¢, S MTPL, T Five, T MTPL 
are not which makes the calculation of the distribution of Retention difficult. We need to 
obtain the joint distribution of 

( S Five ' S MTPL, T Fire ,  TMTPL ). 

In fact if we obtain the  joint distributions of (S f i~ ,  T Fi'~) and (S  MTPL, TMTPL), we have a 
solution to our problem because these random vectors are independent thanks  to the mutual  
independence hypotheses we made. 
An easy solution is available and is described in the next section. 
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3. BIVARIATE P A N  JERkS ALGORITHM 

Our problem fits exactly within the  framework of the multivariate Panjer 's  algorithm, de- 
scribed in Walhin and Paris (2000), or in Sundt  (1999). 
We jus t  need the  bivariate sett ing in order to obtain the joint distributions we need. 
Let us define : 

i f ( x , y )  = ~[R ~ = x , C  ~=y]  , i =  Fire ,  M T P L ,  

gi(s , t)  = ~[S ~ = s , T  i = t] , i =  Fire ,  M T P L .  

From now on we will not use the  superscript anymore. 
Let us assume tha t  N belongs to the  Panjer 's  family of counting distributions : 

FIN = n] b 
- a + -  , n _ > l .  

~[N = n - 1] n 

We have : 

where 

9(0,0) = v~(/(0,0)), 
1 s,t 

g(s,t) - (1-af(O,O))~[a+b~]g(s-x ' t -Y)Y(z'Y)  , s >  1, 
x , y  

s , t  

g(s , t )  - ( 1 - a f ( O , O ) ) Y ' ~ [ a + b  ] g ( s - x , t - y ) f ( x , y )  , t >  l, 
x , y  

s , t  min(s,m) min(t,n) 

Zg(~ ,y )  = ~ Z g(x,y)-  g(0,0), 
x ,y  x ~ O  y=0 

m = m a x ( x l f ( x , y )  > 0), 

n = m a x ( y l f ( x , y )  > 0).  

and qJN(U) denotes the  probability generating function of N : rwN(u) = E[uN]. 

It is clear tha t  the  above-mentioned algorithm is t ime-consuming. However we will take 
advantage of the  specific dependence structure in order to minimize the  computing time. 
Indeed the  random vector (R, C) has positive masses only along an S-shape. So we may 
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adapt  the  formula as : 

g(0, 0) = 

g(0, t )  = 

g(s,O) = 

g(~,t) 

g(~, t) 

~ N ( f ( 0 ,  0)), 

0 , t _ > l ,  

1 ~ x 
( 1 - a f ( 0 , 0 ) ) ~ _ _ l  [ a _  + b s ] g ( s - x ' 0 ) f ( x ' 0 )  , l < s < D ,  

1 
× 

(i - a f ( O ,  0 ) )  

a + b  g ( s - x , O ) f ( x , O ) +  a + b  g ( s - O , t - y ) f ( D , y )  
y=l 

l < s < D  , l < t < L ,  
1 

X 
(1 - ~ y ( o ,  o))) 

[a + bXlg(s - x, O)f(x, O) + ~--~[a + b ]g(s - D, t - y ) f (D,  y)+ 
y=l 

[ a + b ~ l g ( s - x , t - L ) f ( x , L ) ]  , s > D  , t > L .  
z=D+I  

4. NUMERICAL APPLICATION 

Let us make the following hypotheses for our numerical example : 

- the distribution of the fire claim amounts, X Fire, is limited Pareto with parameters 

A = 400, B = 2000 and c~ = 1.50. The distribution of the MTPL claim amounts, 
X MTPL is limited Pareto with parameters A = 700, B = 2000 and c~ = 2.50. Let 

us recall the cumulative density distribution of a limited Pareto distribution (X 
Pa(A, B, ce)) : 

Fx(x)  = 0 i f x < A ,  

A-~ _ x -~  
- i f A < x < B ,  

A-a  _ B-~  
= 1 , x > B .  

- the dis t r ibut ion of the  fire claim numbers ,  N is Poisson with parameter  A = 2.5. The 
distr ibution of the M T P L  claim numbers,  M is Poisson with parameter  A = 5. Let us 
recall the  probabil i ty function of a Poisson distr ibution ( N  ~ Po(A)) : 

e - A i  P [ N = n ] = p ( n ) =  n! ' n = 0 , 1  . . . .  

Working with Poisson distr ibutions allows us to work with the bivariate Panjer ' s  algorithm. 
Moreover, it simplifies the  use of the  algori thm as a = 0 in the Poisson case. 
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We note that the limited Pareto distribution is a continuous distribution whereas we need 
a discrete distribution in order to use the bivariate Panjer's algorithm. We therefore choose 
to obtain a discretization of our limited Pareto distributions by using the local moment 
matching method with one moment (see Gerber (1982)). It is not difficult to show that the 
discrete version of a limited Pareto distribution is given by 

(A+h) 1-a AI-~ B - ~ h  
fXdia(A) = 1 X-e~ 1--c~ 

h ( A - a  - B-C~) , 

fx,~,, (A + jh )  = 2(A + j h )  1-c' - (A + (j  - 1)h) 1-a - (A + (j + 1)h) 1-a 
h(1 - a ) ( A  -°' - B -a)  

B - A  
j = 1 , . . . , - - - 1 ,  

h 
fxa,~(B) = 1 - f x~ , , (A)  - f x~ , , (A  + h) . . . . .  f x d , , ( B  - h). 

where h is chosen such that ~ A  is an integer. 
Obtaining the expected retained loss is easily given by 

E R e t e n t i o n  = E T  Fire + E T  AcTPL + E min(S Fire + S MTPL, G A A D ) .  

As S Fir~ and S MTPL are independent, we do not need to apply the bivariate Panjer's algo- 
rithm. However as we will compute standard deviation and Wang Transforms of R e t e n t i o n ,  

we will need the distribution of R e t e n t i o n  and thus we will have to apply the bivariate Pan- 
jer's algorithm. We will also make the calculations with the false assumption of independence 
between S F~re and T Fi~e on the one hand and S MTPL and T MTPL on the other hand. 
Our aim is now to analyse different reinsurance structures in order to find optimal reinsur- 
ance agreements. We will therefore let the deductibles and limits vary as well as the global 
annual aggregate deductible. 
For each situation we are going to compute the following elements : 

1. E R e t e n t i o n  

2. or(Retent ion)  

3. WTo.9o( R e t e n t i o n )  

4. WTo.95( R e t e n t i o n )  

5. WTo.oo( R e t e n t i o n )  

where W T l _ ~ ( R e t e n t i o n )  denotes the Wang Transform of level a of the random variable 
R e t e n t i o n  (see Wang (2002)). Let us define 

1. F the cumulative density function of the random variable R e t e n t i o n  

2. if(.) the cumulative density function of the standard normal distribution 

3. a a security level 

4. ~ = , I , -~ (a )  
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Then the Wang Transform of level a is given by the expectation of Retention under the 
measure F* : 

WTl_~( Retention) = E*( Retention). 

A good situation for the insurer is when ERetention is as high as possible (in such a case, it 
means tha t  the  cession to the reinsurer is small which means in other words tha t  the  smallest 
expected profit is ceded to the reinsurer) and when the risk measure (either the s tandard 
deviation or the Wang Transform) is as small as possible (which means tha t  few capital has 
to be allocated). 

Let us first analyse the  following case, which we denote Treaty 1 : 

D Fire = 500, 

L Fire = 1500, 

D MTPL = 800, 

L MTPL = 1200, 

G A A D  = O. 

Table 1: Treaty 1 

We obtain the following quantities of interest : 

E(Retention) = 3949.617, 

~(Retention) = 1655.303, 

WTo.9o(Retention) = 6252.296, 

WTo.95(Retention) = 6971.925, 

WTo.99( Retention) ~ 8394.352. 

Table 2: Retained risk for Treaty 1 

Assume tha t  the ceding company does not agree with such a large cession. Then  a natural  
solution is to increase the  priorities of the  treaties. We then move to Treaty 2 : 
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D F~e = 800, 

L Fire = 1200, 

D MTPL = 1000, 

L MTPL = 1000, 

G A A D  = O. 

Table  3: Trea ty  2 

We ob t a in  the  following quant i t i es  of in teres t  : 

E ( R e t e n t i o n )  = 4642.687 

or(Retent ion)  = 1949,410 

WTo.9o(Reten t ion)  = 7355,088 

WTo.~5(Retent ion)  = 8202,904 

WTo.99(Reten t ion)  = 9878,696 

Table  4: R e t a i n e d  r i sk  for Trea ty  2 

Obvious ly  the  objec t ive  is a t t a i n e d  : t he  cession is now smaller .  However, on the  o ther  
hand  the  r i sk  level is higher  ( larger  s t a n d a r d  dev ia t ion  and  larger  W a n g  Transforms) .  Th is  
behav iour  is obvious.  Now let  us  move to Trea ty  3 which is the  same t h a n  Trea ty  1 bu t  w i th  
a global  annua l  aggrega te  deduc t ib le  : 

D Fire = 500, 

L Fir~ = 1500, 

D MTPL = 800, 

L MTPL = 1200, 

G A A D  = 1000. 

Table  5: T rea ty  3 

We ob ta in  the  following quant i t i es  of in teres t  : 
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E( Retention) -- 4756.575 

a( Retention) = 1822.765 

WTo.9o(Retention) = 7202.147 

WTo.95(Retention) --- 7939.854 

WTo.99(Retention) = 9381.442 

Table 6: Retained risk for Treaty 3 

We immediately observe tha t  this treaty is optimal with respect to Treaty 2 : the cession 
is smaller and the  retained risk is also smaller. So clearly Treaty 3 is a better choice than  
Treaty 2. 
Other situations may be described. For example, let us compare Treaty 4 with Treaty 5 : 

Treaty 4 Treaty 5 
D F~r~ 1000 500 
L Fire 1000 1500 
D MTPL 1200 800 
L MTPL 800 1200 
GAAD 0 2000 

Table 7: Treaties 4 and 5 

We obtain the  following quantities of interest : 

Treaty 4 Treaty 5 
E(Retention) 4946.616 5150.214 
a( Retention) 2103.647 2093.537 
WTo.9o(Retention) 7884.110 7921.404 
WTo.9~(Retention) 8804.185 8729.225 
WTo.99(Retention) 10626.00 10266.98 

Table 8: Retained risk for Treaties 4 and 

Here again, we observe tha t  Treaty 5 is optimal with respect with 
and smaller retained risk. 
Now let us compute the quantities of interest of Treaty 5 with 
independence. We obtain : 

5 

Treaty 4 : smaller cession 

the  wrong assumption of 
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E( Retention) = 5150.214 

or(Retention) = 1777.361 

WTo.9o(Retention) = 7584.320 

WTo.os(Retention) = 8332.368 

WTo.99( Retention) = 9800.117 

Table 9: Retained risk for Treaty 5 with wrong assumption of independence 

As explained above, the expected retention is the  same as in the exact model. However 
the  risk measures  are smaller in the  wrong model which is logical because the  wrong model 
ignores the  positive dependence tha t  is present in the  model. 
Using the  s tandard  deviation of the  WT0.99 as the  risk criterion, we may conclude tha t  Treaty 
5 is optimal with respect to Treaty 2. In fact, using the exact model, we immediately see 
tha t  we are not  allowed to give such a conclusion. This shows the danger of working with 
the  model ignoring the  dependencies. 

5. CONCLUSION 

We have analysed an actuarial situation where dependence is induced by the model. This 
kind of dependence was tractable by using the  multivariate Panjer 's  algorithm. We have been 
able to show, on our numerical example the danger of working within a wrongly assumed 
model where there is no dependence and we also have shown the optimality of the  multiline 
excess of loss cover. Some practical considerations are 

1. It may be the case tha t  the loading of the insurer and reinsurer are very different. 
Then  the  optimality should be studied with respect to the  expected gain and not with 
respect to the expected retention. 

2. We here have analysed the  large claims, tha t  are reinsured through an excess of loss 
treaty. Obviously we should account for the  small claims in order to compute the risk 
measures. 

3. This paper says tha t  it is better  for the  ceding company to buy excess of loss treaties 
with small priorities and with a global annual aggregate deductible. Administrative 
reasons may go against these solutions. Indeed, small priorities means tha t  large 
number  of claims are expected to hit the  layers, which makes lots of administrat ion for 
both the  insurer and the  reinsurer. This  is in particular true for long-tailed business 
like M T P L  where a stability clause is generally in use. 

4. In practice, the reinsurer would limit its annual liability through a global annual ag- 
gregate limit. 

5. When the priorities of the treaties tend to 0 and the limits tend to infinity, then the 
cover becomes a multiline stop-loss treaty. 
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The hypothesis of independence between the lines of business may be relaxedfor the case 
of umbrella covers where correlations exist between the covered lines of business. In such a 
case, copulas may help in order to price the cover. However, in order to analyse the retained 
risk of the cedant, only simulations would help and one should be aware of the fact that a 
huge number of simulations would be necessary in order to correctly catch the dependencies 
in the tails. 
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Abstract 

Index-based hedging instruments such as industry loss warranties are increasingly 

recognized as effective hedging tools for insurance and reinsurance portfolios. However, 

wider adoption of these instruments is inhibited by basis risk, the difference between the 

index-based payoff and the buyer's actual loss. This study presents a systematic approach 

for potential buyers to analyze and manage basis risk in order to take full advantage of 

the benefits offered by these instruments. 

We examine two measures of basis risk: (i) hedging effectiveness and (ii) conditional 

payoff shortfall. Many existing measures such as hedge volatility and correlation are 

special cases of  the hedging effectiveness measure. Next, we study the tradeoffbetween 

basis risk and the cost of  hedging. Finally, we present a robust numerical algorithm 

designed to optimize an index-based hedging program consisting of multiple index-based 

contracts. 

2 4 6  



1. Introduction 

In recent years, we have observed growing interest in index-based hedging instruments, 

especially in the areas of catastrophe risk reinsurance and securitization. Examples 

include industry loss warranty (ILW) contracts and index-based cat bonds. In contrast to 

a traditional indemnity-based reinsurance contract, an index-based instrument has a 

payoff that is not completely determined by the loss incurred by the purchaser ~. Instead, it 

is determined by an index that is positively correlated with the purchaser's actual loss. 

The index can be the industry loss or certain meteorological or seismic parameters related 

to a natural disaster event. The most frequently used industry loss indices used in the US 

are based on incurred insurance losses surveyed and published by the Property Claims 

Service. 

The main advantage of index-based instruments is that they are practically free from 

moral hazard, a major hurdle that discourages capital market investors from participating 

in insurance risk securitization, even though the natural catastrophe risk is an extremely 

appealing asset class from a portfolio perspective (Litzenberger et. al., 1996). The 

absence of moral hazard also suggests that an index-based instrument should command a 

lower margin than a comparable indemnity-based reinsurance contract (Cummings, et. al., 

2003), making it an attractive alternative to traditional reinsurance. Moreover, it is shown 

in Doherty and Richter (2002) that combining indemnity contracts with index-based 

instruments can ideally lead to efficiency gains for purchasers. 

However, index-based instruments pose a new challenge to the purchasers in the form of 

basis risk - the difference between the actual loss experienced by the purchaser and the 

payoff of the index-based contract. The difference is one of the primary factors that have 

kept many potential purchasers away from these instruments. A systematic, credible, and 

practical way to quantify and manage basis risk must be made available to the potential 

i Currently, the purchasers of index-based instruments are almost exclusively insurance and reinsurance 
companies. However, end users of insurance (e.g., corporations) have started exploring the use of this type 
of instruments. 
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purchasers before index-based instruments can gain recognition as a main stream risk 

management tool and become widely adopted. 

The task of quantifying and managing basis risk can be divided into two problems: First, 

given an existing portfolio of liabilities to be hedged and an index-based hedging 

program consisting of one or more index-based contracts, how best to quantify the basis 

risk associated with this hedging strategy? Second, given an underlying portfolio and a 

set of constraints reflecting the buyer's risk appetite and return requirement, how can one 

construct an index-based hedging program to achieve an optimal balance between cost 

and hedging effectiveness? 

This study focuses on these two issues. In Section 2, we state the assumptions and 

notations used in this study. Next, we develop an analytical framework to quantify basis 

risk in an effort to unify commonly used measures of basis risk (Section 3). In Section 4, 

we introduce an approach to construct an index-based hedging program that optimally 

balances hedging effectiveness and cost while satisfying certain constraints. Section 5 

summarizes the study. 

2. Assumptions and notations 

We do not assume any specific form of parametric distribution for the random variables 

such as losses and underwriting profits. Instead, we represent the randomness of the 

"state of the world'' using a large number of scenarios. This is because our primary 

interest is in hedging catastrophe risk and the outputs of most catastrophe models, which 

serve as inputs to our analyses, are scenario-based. In addition, although the numerical 

examples presented in this paper are realistic, they are hypothetical and are not based on 

any specific catastrophe model or actual company data. 

Furthermore, we make three simplifications. First, it is assumed that only one loss event 

occurs in a year, although the analyses presented can be extended to include multiple 

events on an annual aggregate basis without difficulty using existing dynamic financial 

analysis (DFA) tools. However, not including DFA allows us to simplify the equations 

and focus on basis risk analysis. For the same reason, we also ignore premium 
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reinstatement provisions frequently observed in actual transactions. Second, we do not 

consider the potential basis risk arising from the counterparty credit risk (i.e. the risk that 

the seller of the hedging contract fails to fully perform its contractual obligation). This 

permits us to focus on the discrepancy caused by the general lack of a one-to-one 

relationship between the actual loss and the index value. Third, we use binary ILW 

contracts in all examples. Nevertheless, the methodology developed can be applied to 

other forms of index-based instrument without substantial modification. 

Lower and upper case letters are used to represent deterministic and random variables, 

respectively. Let L be the actual loss and X be the payoff of a hedging instrument. X is a 

function of an index I: 

X = g ( I )  (1) 

For a binary ILW, I is the predefined industry loss for a region and given peril(s), and the 

payoff is defined as 

f l ,  I>-i t 
XI  = gl (I) = L tO, I < i, 

where l is the limit of the ILW and it is known as the trigger of the contract. Another 

special case is an indemnity reinsurance policy, where I = L and the payoff is defined as 

l ' ,L > r + l' 
X R=gR(L)= j  O,L<r 

~ L - r , r < L < l '  

where r and l' are the retention and limit of the reinsurance policy, respectively. 

The net post-hedging loss L* is then. 

L ° = L - X = L - g ( I )  

(la) 

(lb) 

(2) 
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It is possible that X > L. However, from an accounting point of  view, this will not be 

allowed if the buyer wishes to treat the hedging instrument as reinsurance. Hence, 

Equation 2 frequently takes the following form 

L ° = max[O, L - X] = max[O, L - g(I) ]  (2a) 

which forbids the buyer from claiming more than the actual loss. Specifically, we use L*l 

and L*R to denote the net loss after an ILW and an indemnity reinsurance policy, 

respectively: 

L~ : max[O, L - g,  (I)] 
(2b) 

L~ : L - g .  (L) 

3. Definition and quantification of basis risk 

3.1. The cause of  basis risk - a qualitative view 

With an indemnity reinsurance policy, the amount of  payoff is always precisely 

predictable given an actual loss, even though the actual loss itself is random (e.g., 

Equation lb). However, this is generally not true for index-based instruments. We 

consider a hypothetical insurer (Company A), which has a geographically diversified 

exposure in the region where it sells property insurance and is considering using an ILW 

to hedge its catastrophe risk. As shown in Figure 1, at a given level of actual loss (e.g., 

along the dashed horizontal line), the industry loss index cannot be uniquely determined a 

priori. As a result, if Company A buys an ILW (Equation 1 a) with a trigger represented 

by the vertical dashed line in Figure 1, the ILW payoff.can be either zero or l, represented 

by the scenarios to the left and the right of the vertical line, respectively. This 

randomness makes it impossible for a buyer to precisely predict the payoff as a function 

of the actual loss. Next, we attempt to quantify such randomness, which is known as the 

"basis risk". 
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F i g u r e  1. The loss to Company  A vs. the industry loss. Each point in the plot represents a loss scenario. 
The dashed horizontal  and vertical lines represent g iven levels o f  company and industry losses, respectively. 

3.2. Benchmarks for comparison 

Although basis risk is caused by the random difference between the index-based payoff 

(X1) and actual loss (L), it is not sensible to directly compare XI and L because rarely does 

a buyer expect the actual loss to be fully hedged. In the context of hedging catastrophe 

risk, the focus of the buyer is on reducing the severity of large losses. Hence, it is more 

meaningful to compare XI to the payoff of a benchmark indemnity reinsurance policy (Xn) 

or, equivalently, compare the net losses associated with the index-based instruments and 

the benchmark, i.e. L*I vs. L*R (Cummings, et. al., 2003). 

The choice of the benchmark is usually based on the risk management objective of the 

buyer. For example, Company A currently has an annual probability of  defauIt 2 of 1%; a 

2 For  il lustration purpose  here, the company is considered in default i f  the loss exceeds its surplus.  

251  



change in business environment requires this probability to be reduced to 0.4%. The 

traditional reinsurance approach to accomplish this is to purchase an indemnity 

reinsurance policy with the retention r = vo and the limit I '  = vl-vo, where Vl and vo are the 

99 th and 99.6 th percentile value at risk (VaR) of the underlying portfolio. Hence, its 

payoff (XR) and net loss after this reinsurance (L'R) can serve as the respective 

benchmarks for the payoff (XI) and net loss after an ILW (L*~). The cumulative 

distribution function of the toss of the underlying portfolio is shown in Panel I of Figure 2. 

Next, we attempt to use an ILW to accomplish the same objective stated above. We 

choose the 99 th percentile of the industry loss as the trigger and vl-vo as the limit, denoted 

it and l, respectively (Equation la). The basis risk of the ILW can then be defined based 

on the difference between L'~ and L*n. 

3.3. Definition and quantification of basis risk 

The cumulative distribution functions (CDF) of L*R and L*I are shown in Panels II and III 

of Figure 2. Since L*R and L'~ are random, we can compare their respective statistical 

summaries or evaluate the statistical summaries of their difference (L*R - L*I ). These 

comparisons lead to the definitions of two types of basis risk. 

Basis Risk Related to Hedging Effectiveness (Type I): In general, the purpose of 

purchasing a hedging instrument (reinsurance or ILW) is to reduce the risk of the 

underlying portfolio. The hedging effectiveness of the instrument can be measured by the 

amount of risk reduced. Let hr and hi denote the hedging effectiveness of the benchmark 

and the ILW. They can be defined as 

h r - ~ 1 - Y r / Y g  
(3a) 

h i - ~ l - y ~ / Y z  

where yg, yr, and Yl are the statistical measures of the risk of the underlying portfolios 

before any hedging, net of the benchmark, and net of the ILW, respectively. Frequently 

used risk measures include standard deviation, value at risk (VaR), tail value at risk 

(TVaR), and probability of default (POD). The choice of the proper risk measure has 
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been extensively discussed in the actuarial literature (e.g., Artzner et. al., 1999) and is not 

repeated here. 

The Type I basis risk (referred to as b~ hereafter) measures the hedging effectiveness of 

an index-based instrument relative to that of the benchmark. Hence, it can be defined as 

ba =-1-h~/h~ (3b) 

where we assume the benchmark hedging always reduces risk, i.e. hr > 0. 

Equation (3b) is obviously not the only valid definition. In fact, any bj that increases with 

decreasing hl/hr is a valid quantification of basis risk. Partially due to this reason, basis 

risk is not uniquely defined in previous studies. For example, Major (1999) uses volatility 

of hedging to represent basis risk, whereas Harrington and Niehaus (1999) and Meyers 

(1996) measure basis risk based on the linear correlation coefficient between the actual 

loss and index-based payoff. 

For Company A, the selected risk measure is the probability of default (POD), as 

reducing POD is its objective of hedging. Since the ILW does not reduce POD to the 

desired benchmark level, a substantial amount of basis risk exists (Table 1). 

Table l. Numerical values of hedging effectiveness and basis risk related to the ILW structure defined in 

Section 3 for Company A 

Underlying Net of indemnity Net of ILW 
portfolio reinsurance 

Probability of default (risk 1.00% 0.40% 0,60% 
measure) 

Hedging effectiveness 60.0% 40.0% 

b] 33.3% 
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Figure 2. The cumulative distribution functions (CDF) of the gross and net losses of the underlying 
portfolio of Company A: (1) without hedge; (1I) the thick curve: net of the benchmark; (111) the thick curve: 
net of the ILW defined in Section 3.2; (IV) the thick curve: net of the optimal ILW defined in Section 4.2. 
The thin curves in each of the panels (11), (IlI) and (IV) are the same curves as those in the previous panels 
for comparison purposes. The two horizontal dashed lines represent the 99% and 99.6% quantiles of the 
CDF. 

Basis Risk of Payoff Shortfall (Type II): In general, two hedging instruments that 

accomplish the same hedging effectiveness do not guarantee the same payoff. Hence, 

even if b/for an index-based hedging instrument is zero, it is still possible that the index- 

based payoffis less than the benchmark. To account for such discrepancy, we define the 

payoff differential (AL*) as: 

~* ~x, -xR =L~ -L~ (4) 
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where 2(1, XR, L'R, and L**, defined in Section 2, are the index-based payoff, reinsurance 

payoff, net loss after the benchmark reinsurance, and net loss after the index-based 

product, respectively. A negative value of AL* indicates that the buyer of the index-based 

instrument would recover more if the benchmark indemnity instrument were used instead 

(i.e. there is a payoff shortfall for the index-based instrument). This is another important 

aspect of basis risk in addition to its impact on hedging effectiveness. Because the 

purchaser is generally interested in protection against large losses, we examine the 

conditional cumulative distribution function of  AL* given the occurrence of  a loss severe 

enough to trigger the payoff of  the benchmark (i.e. XR>0). The conditional CDF is simply 

denoted as fb(s): 

fb (S) -~ prob(AL" < s ] XR > 0) (5) 

whereprob(.) stands for the probability that " . "  occurs. Examples offb(s) are shown in 

Figure 3. Since we are primarily interested in measuring the downside risk of  index-based 

instruments, we define the Type 11Basis Risk (referred to as b: hereafter) as: 

max(-s  ~ ,0) 
b 2 - - - -  (6) 

l' 

where s '~ is the a ~ quantile offb(s). Under this definition, b2 is the quantile of  the index- 

based payoff shortfall normalized by the limit of the benchmark indemnity reinsurance 

policy (l'). For the ILW structure defined above for Company A, selected values of b2 are 

listed in Table 2. The last row in the table shows that, for example, given the occurrence 

of  a loss greater than the benchmark retention (r), there is a probability of  0.05 that the 

index-based payoff shortfall will exceed 19.9% of the limit of the benchmark hedging 

program. 

Table 2. Selected values ofbz for the initial ILW structure defined in Section 3.2 and the optimal ILW 
defined in Section 4.2 for Company A. 

a b2 b2 
(initial) (optimal) 

0.004 43.4% 19.3% 
0.01 41.1% 17.7% 
0.05 19.9% 1.8% 
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Figure 3. the conditional CDF of payoff differentials. Panels I and I1: for the ILW structure defined in 
Section 3; the negative tail of the curve in I is a shown in I1. Panels 111 and IV: for the ILW structure 
defined in Section 3.2 (thin lines) and for the optimal ILW defined in Section 4,2 (thick lines); the negative 
tail of the curve in III is a shown in IV. The horizontal dashed lines in Panels II and IV represent the 0.4% 
and 1% quantiles of the conditional CDF. 

In summary, bl measures the hedging effectiveness of an index-based instrument relative 

to a benchmark, which is usually an indemnity reinsurance policy. Because this is 

directly related to the risk/return profile of the net post-hedge portfolio, we believe b~ 

should be the focus of the buyer in evaluating the benefit of index-based strategies. 

However, b2 is also important in practical decision-making as it measures the "probability 

of regret" for choosing an index-based instrument over a more traditional indemnity 

reinsurance policy. In this context, b2 does not reflect or give any value to the fortuitous 
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gain 3 available from the index-based instrument, which must be taken into account for the 

purpose of  designing an optimal index-based hedging program (Section 4). 

4. Optimizing an index-based hedging p rogram 

4.1. An overview 

When the basis risk associated with an index-based instrument exceeds a tolerable 

threshold established by the purchaser, the contract terms must be modified such that the 

basis risk is reduced to the acceptable level. Given an underlying portfolio, there are 

primarily two ways to accomplish this: (a) changing the index or indices used by the 

contract and/or (b) modifying the parameters associated with each index (e.g., trigger and 

limit). It is possible that the cost of the contract will increase due to these changes. An 

optimal contract best balances the cost and benefit while satisfying the constraints 

imposed on the buyer. The process of arriving at such an optimal balance is illustrated 

using a simple example (Section 4.2). A robust method for optimizing complicated real 

world index-based contracts is introduced in Section 4.3. 

4.2. A simple example 

We revisit the example of Company A. We assume that the company wishes to reduce 

the basis risk associated with the initial ILW defined in Section 3.2 by changing the limit 

and trigger of  the ILW. Specifically, it wishes to accomplish the following two objectives: 

(a) Reduce b / to  zero (i.e. it requires that the ILW has the same level of hedging 

effectiveness as the benchmark). In this ease, the task is to reduce the POD net 

of the ILW from 0.6% to 0.4%. 

(b) Achieve Objective (a) with the lowest possible cost, allowing the underlying 

portfolio to retain the maximum possible net expected profit. 

3 the fortuitous gain is referred to as the excess recover from an index-based instrument relative to the 
benchmark (i.e. when AL* > 0). Under reinsurance accounting, it is impossible for the buyer to recover 
more than its gross pre-hedging loss. 
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Hence, the optimal ILW in this case is one that maximizes the net expected profit of the 

underlying portfolio while keeping POD from exceeding 0.4%. 

We first plot how POD varies as a function of the ILW trigger and limit (the thick 

contours in Figure 4). The POD is represented by the contours of equal POD values. A 

point on a contour labeled x represents the trigger/limit combination of  an ILW contract 

net of  which the underlying portfolio has a POD ofx. We call such a contour the equal 

POD curve o fx  (e.g., 0.4%). All points located to the upper-left of the curve correspond 

to POD less than x, and vice versa. 

The initial ILW is represented by the solid square, which is located on the equal POD 

curve of 0.6%. For the POD to be reduced to 0.4% or less, the limit and trigger 

combination must be adjusted such that it is located on or to the upper-left of the equal 

POD curve of  0.4%. In fact, an ILW represented by any point on the equal-POD line of 

0.4% can achieve the first objective. 

We next examine the costs associated with different ILW contracts in order to 

accomplish the second objective. It is assumed that the premium for the contract is equal 

to five times the expected payoff, representing a typical profit margin of  this type of  

contract in the market. With this assumption, the net expected profit 4 is calculated and 

visualized as the thin contours in Figure 4. A point on a contour labeled y represents the 

trigger/limit combination of  an ILW contract, net of which the underlying portfolio has 

an expected profit ofy. We simply call such a contour the equalprofit curve ofy. All 

points located to the upper-left of the curve correspond to net expected profits less than y, 

and vice versa. 

4 Defined as the premium of the underlying portfolio minus the sum of(i) the cost of the ILW, (ii) the 
expected value of the net loss, and (iii) other expenses. These quantities are formally defined in Section 4.3 
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Figure 4. The probability of default (thick contour) and the expected profit (thin contour, in $M) net of 
ILW as a function of the trigger and limit. The solid square represents the initial 1LW defined in Section 3.2, 
of which the index trigger is equal to the 100-year industry loss and the limit is equal to the difference 
between the buyer's 250-year loss and 100-year loss. The solid circle represents the ILW with the optimal 
trigger and limit arrived at in Section 4.2. 

The point where the equal POD curve of 0.4% is tangent to an equal net profit curve is 

represented by the solid circle in Figure 4. The equal net profit curve represents a net 

expected profit of $350M. The solid circle represents the optimal ILW that accomplishes 

both objectives of the company because 

(a) Since it is located on the equal POD curve of 0.4%, the first objective is 

achieved. 

(b) All other points along and to the upper-left of the equal POD curve of 0.4% 

are also to the upper-left of the equal net profit curve of $350M. Hence, the 
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net profits associated with these points are less than that associated with the 

solid circle. Thus, the solid circle represents the trigger/limit combination 

corresponding to the greatest net expected profit, i.e. the combination that 

accomplishes the second objective. 

By definition, b~ is reduced to zero. The loss distribution function of the underlying 

portfolio net of the optimal ILW is shown in panel IV of Figure 2. b2 is shown in panel 

IV of Figure 3 and in Table 2. 

This simple example shows that, in general, the task of optimizing an index-based 

hedging program is essentially a problem of optimally balancing basis risk and costs. 

Once the buyer determines the amount of acceptable basis risk and, if any, other 

constraints, an optimal hedging program should maximize an objective function specified 

by the user. In the example above, the objective function is the net expected profit. Other 

commonly used objective functions include risk-adjusted return on capital, Sharpe Ratio, 

etc. (e.g., Zeng, 2000). The optimization problem is formalized and generalized in the 

next subsection. 

4.3. A robust method for optimizing an index-based hedging program 

A robust method for optimizing an index-based hedging program is needed to handle real 

world tasks primarily because the underlying portfolio frequently consists of exposures in 

multiple lines of business and geographical regions. Thus, the number of  indices involved 

is usually significantly greater than one. This makes the exhaustive search method used 

above impractical. In addition, it is not feasible to vary the limit and trigger continuously 

to create an ideal contract because only ILWs available in the market can be purchased. 

In fact, we can control only the amount to purchase for each contract. 

For the/d h contract available in the market (k = 1, 2, ..., m), where m is the number of  

different contracts available, we define the following 

I, the underlying index (e.g. industry loss index for a specific region); 

zk the amount purchased; 
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rl~Ik) the unit payoff function. 

pk the unit premium (i.e. cost per zk). 

The payoffand cost of  contract k are zkrlk(lk,) and zkpk,, respectively. They are partitioned 

into the product of  the amount of  contract purchased and their respective unit values 

because the amount zk is a decision to be made by the optimization procedure whereas the 

unit values depends on the contract itself, regardless the amount purchased 5. For a simple 

binary ILW, pk and zk are simply the rate on line and the limit purchased, respectively. 

The payoff (Equation 1 a) can be rewritten as 

=~1, I  k ->i~ 
r/k(Ik) ~0,i  k <i, 

z k = l (7) 

gl (Ik) = zk r/k (I~) 

The total payoff(X) and total cost (Pt) of the hedging program are 

X=~zkv~(I~) 
k= l  

m 

P, = ~ z k P k  
k=l 

Hence, the loss net of  the hedging program (L*, defined in Equation 2b) can be 

specifically rewritten as 

(8) 

L* = max[0, L - ~ ,  z~ qk (Ik)] (9) 
k=I 

The expected profit prior to hedging (EP) and the expected profit net of hedging (EP*) 

can be expressed as 

EP =qo - E L  (10) 

EP* = qo - P, - EL* 

5 The unit premium actually depends on the amount purchased due to the supply-demand balance; however, 
this dependency is not considered in the analyses to simplify the formulas. 
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where qo is the inward premium of the underlying portfolio net of expense 6. E is the 

expected value operator on a random variable. 

The goal of the optimization procedure is to find the set ofz  = {zl, z2, ..., zm} such that a 

general objective function ~ is maximized and a series of  constraints are satisfied. Most 

frequently used (0 is the expected profit of  the underlying portfolio scaled by a risk 

measure. For the example, it can be defined as 

EP" ~ = - -  O1) 
Y~ 

where E P *  is the net expected net profit andyi is some measure of  the risk of the 

portfolio net of hedging. The latter can be the standard deviation, value at risk, tail value 

at risk and/or other statistics of  the net loss L*. The constraints can be expressed as 

N c ( E P ,  p , . y , b ~ , b 2 )  ~ 0 
(12) 

c = 1,2,.,., n c 

where nc is the number of constraints. The constraints usually reflect limitations on the 

overall risk of  the portfolio and/or the total cost of hedging. It is possible that a constraint 

can completely satisfy the risk control need of the hedger; consequently, the objective 

function does not need to be scaled by a risk measure, as illustrated in the simple 

examples in Section 4.2. In this example, there is one single constraint requiring that the 

probability of default net of hedging (denoted POD*)  do not exceed 0.4%. The objective 

is to maximize the net profit subject to this constraint. The objective and constraint for 

this example can be expressed as: 

~o = EP* 

g"t = b~ = POD* - 0.4% -< 0 
(13) 

In general, given concrete expressions of ~o, ~uc, and Yl, which are chosen by the buyer of 

the hedging program, all the independent variables in Equations 11 and 12 are functions 

6 IfL only contains catastrophe losses computed by a cat model, then the expected non-cat loss should also 
be excluded from qo. 
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ofz only. Therefore, the values o f¢  and ~/c are functions ofz only. Then, the optimization 

task becomes searching for z such that ¢=¢(z) is maximized, subject to ~c=~(z) _< 0, 

c=l,. . . ,  nc. 

If~p and ~c were linear or other smooth functions of z, this optimization task would be 

relatively easy to handle using traditional numerical algorithms such as the ones based on 

the steepest descent. However, because of the payoff function used in real-world 

transactions (e.g., Equation 7) are nonlinear and inherently not smooth, traditional 

optimization algorithms frequently fail to reach the global maximum. 

In this study, an optimization procedure based on the genetic algorithm (GA) is used. 

Genetic algorithms are computing algorithms that simulate the mechanics of natural 

selection and natural genetics to "evolve" toward the optimal solution to problems. They 

are frequently applied to optimization problems where traditional approaches fail because 

of nonlinear, non-smooth, or discrete objective functions and constraints. A thorough 

discussion of GA is beyond the scope of this paper; however, interested readers can refer 

to, e.g., Goldberg (1989). The application of GA on index-based hedging is also 

introduced in Cummings, et .al. (2003). In this paper, we describe only the principle of 

this approach in the context of  our task. 

At first, randomly selected initial values are assigned to z to form the original generation 

(denoted zo). Multiple individuals of  the first generation (zlt, z~2,.., zip) are created by 

randomly perturbing zo, where p is the number of individuals; these p individuals are 

known as the population for this generation. A score for zlj, based on the objective 

function and the constraint functions, is calculated to measure how "good" zlj is. If any of 

the constraints is not satisfied, the score will be a large negative value (e.g., -1036). If all 

constraints are satisfied, the score will be equal to ¢(zrA. The next generation population 

is created by combining two randomly selected individuals from the previous generation 

plus some random variations. The p individuals with the highest scores are retained (z21, 

zzz,.., zzp). This process is repeated until a stopping condition is reached. For example, 

the stopping condition can be that the highest score among all populations in the current 

generation is very close to that in the previous generation. Upon stopping, the optimal z is 
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the Zgj (i.e. t he f '  individual in the gth generation) with the highest score (hence the 

greatest value of the objective function) among all individuals. It is the random 

combination of individuals that allows the optimization procedure to "escape" from local 

maximums and have a much better chance to reach the global maximum. 

We illustrate this approach using the following example. Company B has an underlying 

portfolio with exposure in two regions. It uses the 99 th percentile VaR to measure risk (Yi); 

its goal is to reduce y~ to a target level while maximize the objective function defined by 

Equation 11. The objective and constraint are listed in Table 3. The ILW contracts 

available in the market are summarized in Table 4. 

Table 3. Objective and constraint of optimizing an index-based hedging progrmn 

Inward Expected Expected 99 tn percentile ,~ 
premium annual loss ($K) profit ($K) VaR ($K) 

($K) 
underlying 10,000 2,305 7,695 54,861 14% 
portfolio 
objective of less than maximize 
hedging 30,000 

Table 4. Price and availability of ILW contracts 

region trigger ($M) 

3,500 

rate-on-line (pk) 

10% 

A 10,000 6% 

B 7,000 10% 

B 20,000 6% 

Capacity 
available ($M) 

amount 
purchased (z) 

20 zl = ? 

30 z2 = ? 

25 z~ = ? 

50 z4 = ? 

The task is to find the set ofz = {zl, z2, z~, z4} such that, net of the hedging program, the 

objective stated above is accomplished. In addition, the market data above impose 

another constraint: the maximum value of {z~, z2, z3, z4} cannot exceed their respective 

available capacities (i.e. maximum limits). This example represents real world problems 

closely except a very small number of available contracts is used (m = 4), which allows 

us to verify the results using exhaustive search (i.e. testing all possible combinations ofz~, 

z:, z3, and z4). Nevertheless, the speed performance of this approach for larger m is shown 

to be acceptable. Table 5 outlines the compositions of the hedging program 

recommended by GA and exhaustive search. The risk and return statistics of the portfolio 

net of the hedging programs are summarized in Table 6. Although the objective function 

264  



considers only one risk measure (VaR), two additional commonly used risk measures 

(TVaR and standard deviation) are listed in the table for comparison. 

Table 5. Optimal hedging program recommended by GA and exhaustive search. All values are in SK. 

Z1 Z2 Z 3 Z4 

Genetic 231 17222 24625 29563 
algorithm 
Exhaustive 0 17000 24500 29500 
search 

Table 6. Risk and return statistics of portfolio net of optimal hedging programs designed based on GA and 
exhaustive search. All values are in $K except the ratio 

Underlying 
portfolio 
Net of 
optimal 
hedging - 
GA 
Net of 
optimal 
hedging - 
exhaustive 
search 

Expected 99 th 99 th 
Inward Cost of annual Expected percentile percentile Standard 
premium hedging loss profit VaR ~o TVaR deviation 

14.0% 10,000 2,305 7,695 54,861 151,513 19,872 

10,000 5,270 1,312 3,419 14,419 23.7% 106,899 15,924 

10,000 5,240 1,317 3,443 14,641 23.5% 107,093 15,937 

The GA-based results are very close to the benchmark solution produced by exhaustive 

search. In fact, it is better than the exhaustive search, in which the incremental value ofz  

is only $500K. Although it is impossible to directly verify the results of  the GA-based 

results using exhaustive search for larger m due to computational constraints, we believe 

that the GA-based algorithm remain accurate because it does not rely on any assumptions 

about m. 

It is well known that most financial optimization procedures are subject to parameter risk, 

which can adversely affect the robustness of any optimal solution. For example, i f  TVaR 

is substituted for VaR as the risk measure in the objective function for the example of 

Section 4.3, the composition of the optimal hedging program will  be different from that 

using VaR as the risk measure (Table 5). Generally, the solution can vary greatly 

depending on the choice of risk measure (e.g., VaR, TVaR or standard deviation), the 
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parameter associated with the measures (e.g. percentile), or the mechanics of  the 

underlying loss model (e.g., catastrophe model). For example, the optimal solution based 

on VaR would not necessarily be optimal if TVaR were used as the risk measure. Given 

the complex nature of this issue, using a coherent risk measure alone would not solve this 

problem. Although the parameter risk discussed above is not caused by or directly related 

to our optimization algorithm, the robustness of the outcome would be greatly improved 

if parameter risk could be handled more effectively, which remains a challenging 

problem for actuarial researchers and practitioners. 

5. Summary 

Index-based hedging instruments such as ILWs are increasingly recognized as effective 

hedging tools for insurance and reinsurance portfolios. However, wider adoption of these 

instruments is inhibited by basis risk, the random difference between the index-based 

payoffand the buyer's actual loss. This study presents a systematic approach for potential 

buyers to analyze and manage basis risk in order to take full advantage of the benefits 

offered by these instruments. 

We examine two measures of  basis risk: (i) hedging effectiveness and (ii) conditional 

payoff shortfall. Many existing measures such as the volatility of hedging (e.g., Major 

1996) and R 2 (e.g., Harrington and Niehaus, 1999) are special cases of  special cases of 

the hedging effectiveness measure, which quantifies the cost-adjusted benefit of the 

index-based hedging program relative to a benchmark. Next, we study the tradeoff 

between basis risk and the cost of  hedging. The conditional payoff shortfall measures the 

probability that the buyer recovers less from an index-based hedging program than from a 

benchmark, reflecting the likelihood of "regret" for using the non-traditional hedging 

approach. In this study, a traditional catastrophe excess reinsurance layer is used as the 

benchmark. However, a wider spectrum of risk management products (such as 

proportional reinsurance, per risk excess reinsurance) is available. The methodology 

proposed in this paper is equally applicable to analyze these different benchmarks 

assuming the loss distribution of the underlying portfolio net of  these products can be 

calculated. 
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Finally, we present a robust numerical algorithm designed to optimize an index-based 

hedging program consisting of multiple index-based contracts by analyzing the tradeoff 

between basis risk and cost of a hedging program. Compared to a benchmark 

optimization procedure based on exhaustive search, the GA-based approach is shown to 

work effectively to maximize the return on risk of a reinsurance portfolio subject to 

constraints. Nevertheless, like most financial optimization procedures, the outcome of 

this approach is not immune from parameter risk. Effectively address this issue remains a 

challenging but potentially rewarding future research direction. 
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Martian Chronicles: Is MARS better than Neural Networks? 

by Louise Francis, FCAS, MAAA 

Abstract: 
A recently developed data mining technique, Multivariate Adaptive Regression Splines 
(MARS) has been hailed by some as a viable competitor to neural networks that does not 
suffer from some of the limitations of neural networks. Like neural networks, it is 
effective when analyzing complex structures which are commonly found in data, such as 
nonlinearities and interactions. However, unlike neural networks, MARS is not a "black 
box", but produces models that are explainable to management. 

This paper will introduce MARS by showing its similarity to an already well-understood 
statistical technique: linear regression. It will illustrate MARS by applying it to insurance 
fraud data and will compare its performance to that of  neural networks. 
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Martian Chronicles: Is MARS better than Neural Networks? 

The discipline of  artificial intelligence has contributed a number of  promising techniques 
to the analyst's toolkit. The techniques have names such as "machine learning", "genetic 
algorithms" and "neural networks". These techniques are collectively known as data 
mining. Data mining uses computationally intensive techniques to fmd patterns in data. 
When data mining tools are applied to data containing complex relationships they can 
identify relationships not otherwise apparent. These complexities have been a challenge 
for traditional analytical procedures such as linear regression. 

The casualty actuarial literature contains only a few papers about data mining techniques. 
Speights et al. (Speights et aL, 1999) and Francis (Francis, 2001) introduced the neural 
network procedure for modeling complex insurance data. Hayward (Hayward, 2002) 
described the use of  data mining techniques in safety promotion and better matching of 
premium rates to risk. The methods discussed by Hayward included exploratory data 
analysis using pivot tables and stepwise regression. 

In this paper, a new technique, MARS, which has been proposed as an alternative to 
neural networks (Steinberg, 2001), will be introduced. The name MARS, coined for this 
technique by its developer, Freidman, (Hastie, et aL, 2001), is an acronym for 
Multivariate Adaptive Regression Splines. The technique is a regression based technique 
which allows the analyst to use automated procedures to fit models to large complex 
databases. Because the technique is regression based, its output is a linear function that is 
readily understood by analysts and can be used to explain the model to management. 
Thus, the technique does not suffer from the "black box" limitation of neural networks. 
However, the technique addresses many of the same data complexities addressed by 
neural networks. 

Neural networks are one of the more popular data mining approaches. These methods are 
among of the oldest data mining methods and are included in most data mining software 
packages. Neural networks have been shown to be particularly effective in handling 
some complexities commonly found in data. Neural networks are well known for their 
ability to model nonlinear functions. The research has shown that a neural network with a 
sufficient number of  parameters can model any continuous nonlinear function 
accurately. 1 Francis (Francis, 2001) also showed that neural networks are valuable in 
fitting models to data containing interactions. Neural networks are often the tools of  
choice when predictive accuracy is required. Berry and Linoff (Berry and Linoff, 1997) 
suggest that neural networks are popular because of their proven track record. 

Neural networks are not ideal for all data sets. Warner and Misra presented several 
examples where they compared neural networks to regression (Warner and Misra, 1996). 
Their research showed that regression outperformed neural networks when the functional 
relationship between independent and dependent variables was known. Francis (Francis, 

A more technical description of the property is that with a sufficient number of nodes in the neural 
network's hidden layer, the neural network can approximate any deterministic nonlinear continuous 
function. 
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2001) showed that when the relationship between independent and dependent variables 
was linear, classical techniques such as regression and factor analysis outperformed 
neural networks. 

Perhaps the greatest disadvantage of neural networks is the inability of users to 
understand or explain them. Because the neural network is a very complex function, 
there is no way to summarize the relationships between independent and dependent 
variables with functions that can be interpreted by data analysts or management. Berry 
and Linoff (Berry and Linoff, 1997) state that "Neural networks are best approached as 
black boxes with mysterious inner workings, as mysterious as the origins of our own 
consciousness". More conventional techniques such as linear regression result in simple 
mathematical functions where the relationship between predictor and target variables is 
clearly described and can be understood by audiences with modest mathematical 
expertise. The "black box" aspect of neural networks is a serious impediment to more 
widespread use. 

Francis (Francis, 2001) listed several complexities found in actual insurance data and 
then showed how neural networks were effective in dealing with these complexities. This 
paper will introduce MARS and will compare and contrast how MARS and neural 
networks deal with several common data challenges. Three challenges that will be 
addressed in this paper are: 

1) Nonlinearity: Traditional actuarial and statistical techniques often assume that 
the functional relationship between the independent variables and the 
dependent variable is linear or some transformation of the data exists that can 
be treated as linear. 

2) Interactions: The exact form of the relationship between a dependent and 
independent variable may depend on the value of one or more other variables. 

3) Missing data: Frequently data has not been recorded on many records of many 
of the variables that are of interest to the researcher. 

The Data 
This paper features the application of two data mining techniques, neural networks and 
MARS, to the fraud problem. The data for the application was suppIied by the 
Automobile Insurers Bureau of Massachusetts (AIB). The data consists of a random 
sample of 1400 closed claims that were collected from PIP (personal injury protection or 
no-fault coverage) claimants in Massachusetts in 1993. The database was assembled 
with the cooperation often large insurers. This data has been used by the AIB, the 
Insurance Fraud Bureau of Massachusetts (IFB) and other researchers to investigate 
fraudulent claims or probable fraudulent claims (Derrig et al., 1994, Weisberg and 
Derrig, 1995, Viaene et al., 2002). Whilethetypicaldataminingapplicationwoulduse 
a much larger database, the AIB PIP data is well suited to illustrating the use of data 
mining techniques in insurance. Viaene et al. used the AIB data to compare the 
performance of a number of data mining and conventional classification techniques 
(Viaene et al., 2002). 
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Two key fraud related dependent variables were collected in the study: an overall 
assessment (ASSESS) of the likelihood the claim is fraudulent or abusive and a suspicion 
score (SUSPICION). Each record in the data was assigned a value by an expert. The 
value indicates the expert's subjective assessment as to whether the claim was legitimate 
or whether fraud or abuse was suspected. Experts were asked to classify suspected fraud 
or abuse claims into the following categories: exaggerated damages, opportunistic fraud 
or planned fraud. As shown in Table 1, the assessment variable can take on 5 possible 
values. In addition, each claim was assigned a score from 0 (none) to 10 (very high) 
indicating the expert's degree of suspicion that the claim was abusive or fraudulent. 
Weisberg and Derrig (Weisberg and Derrig, 1993) found that more serious kinds of 
fraud, such as planned fraud were associated with higher suspicion scores than "softer" 
fraud such as exaggeration of damages. They suggest that the suspicion score was able to 
measure the range of "soft" versus "hard" fraud. 

The database contains detailed objective claim information on each claim in the study. 
This includes information about the policy inception date, the date the accident occurred, 
the date it was reported, the paid and incurred loss doUars, the injury type, payments to 
health care providers and the provider type. The database also contains "red flag" or 
fraud indicator variables. These variables are subjective assessments of characteristics of 
the claim that are believed to be related to the likelihood of fraud or abuse. More 
information on the variables in the model is supplied below in the discussion of specific 
models. 

Table 1 
Assessment Variable 

Value Assessment Percent of Data 
1 Probably legitimate 64% 
2 Excessive treatment only 20% 
3 Suspected opportunistic fraud, no injury 3% 
4 Suspected opportunistic fraud, exaggerated injury 12% 
5 Suspected planned fraud 1% 

We may use the more inclusive term "abuse" when referring to the softer kinds of 
fraudulent activity, as only a very small percentage of claims meet the strict standard of 
criminal fraud (Derrig, 2002). However, misrepresentation and exaggeration of the 
nature and extent of the damages, including padding of the medical bills so that the value 
of the claim exceeds the tort threshold, occur relatively frequently. While these activities 
are often thought of as fraud, they do not meet a legal definition of fraud. Therefore, they 
will be referred to as abuse. Overall, about one third of the claims were coded as 
probable abuse or fraud claims. 

Nonlinear Functions 
The relationships encountered in insurance data are ot~en nonlinear. Classical statistical 
modeling methods such as linear regression have had a tremendous impact on the 
analysis and modeling of data. However, traditional statistical procedures often assume 
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that the relationships between dependent and independent variables are linear. 
Traditional modeling also allows linear relationship that result from a transformation of 
dependent or independent variables, so some nonlinear relationships earl be 
approximated. In addition, there are techniques specifically developed for fitting 
nonlinear functions such as nonlinear regression. However, these techniques require that 
theory or experience specify the "true" form of the nonlinear relationships. Data mining 
techniques such as neural networks and MARS do not require that the relationships 
between predictor and dependent variables be linear (whether or not the variables are 
transformed). Both neural networks and MARS are also considered nonparametric 
because they require no assumptions about the form of the relationship between 
dependent and independent variables. 

For this illustration, a dependent variable that is not categorical (i.e. values have a 
meaningful order) was selected. The selected dependent variable was SUSPICION. 
Unlike the ASSESS variable, the values on the SUSPICION variable have a meaningful 
range, with higher values associated with suspicion of more serious fraud. 

To illustrate methods of fitting models to nonlinear curves, a variable was selected which 
1) had a significant correlation with the dependent variable, and 2) displayed a highly 
nonlinear relationship. Illustrating the techniques is the objective of this example. The 
data used may require significant time to collect and may therefore not be practical for an 
application where the objective is to predict abuse and fraud (which would require data 
that is available soon after the claim is reported). Later in the paper, models for 
prospectively predictin~g fraud will be presented. The variable selected was the first 
medical provider's bill. A medical provider may be a doctor, a clinic, a chiropractor or a 
physical therapist. Prior published research has indicated that abusive medical treatment 
patterns are often key drivers of fraud (Derrig et al., 1994, Weisberg and Derrig, 1995). 
Under no-fault laws, claimants will often deliberately run the medical bills up high 
enough to exceed tort thresholds. In this example the relationship between the first 
provider's medical bill and the value of the suspicion score will be investigated. The AIB 
fraud database contains the medical bills submitted from the top two health care 
providers. If  more costly medicine is delivered to suspicious claims than non-suspicious 
claims, the provider bills should be higher for the suspicious claims. 

Figure 1 presents a scatterplot of the relationship between SUSPICION and the provider 
bill. No relationship is evident from the graph. However, certain nonlinear relationships 
can be difficult to detect visually. 

2 Note that Massachusetts PIP covers only the first $8,000 of medical payments if the claimant has health 
insurance. Large bill amounts may represent data from claimants with no coverage. Bills may also exceed 
$8,000 even if payments are lirnited. However, the value of medical bills on some claims may be 
truncated because reimbursement is not expected. 
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Figure 1 
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Neural networks will first be used to fit a curve to the data. A detailed description of how 
neural networks analyze data is beyond the scope of this paper. Several sources on this 
topic are Francis, Lawrence and Smith (Francis, 2001, Lawrence, 1994, Smith, 1996). 
Although based upon how neurons function in the brain, the neural network technique 
essentially fits a complex non-parametric nonlinear regression. A task at which neural 
networks are particularly effective is fitting nonlinear functions. The graph below 
displays the resulting fimction when the dependent variable SUSPICION is fit to the 
provider bill by a neural network. This graph displays a function that increases quickly at 
lower bill amounts and then levels off. Although the curve is fiat over much of the range 
of medical bills, it should be noted that the majority of  bills are below $2,000 (in 1993 
dollars). 

Figure 2 
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One of the most common statistical procedures for curve fitting is linear regression. 
Linear regression assumes the relationship between the dependent and independent 
variables is linear. Figure 3 displays the graph of  a fitted regression line of SUSPICION 
on provider bill. The regression forces a linear fit to SUSPICION versus the payment 
amount. Thus, rather than a curve with a rapidly increasing trend line that levels off, a 
line with a constant slope is fitted. If the relationship is in fact nonlinear, this procedure 
is not as accurate as that of  the neural network. 

Figure 3 
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When the true relationship between a dependent and independent variable is nonlinear, 
various approaches are available when using traditional statistical procedures for fitting 
the curve. One approach is to apply a nonlinear transformation to the dependent or 
independent variable. A linear regression is then fit to the transformed variables. As an 
example, a log transform was applied to the provider bill variable in the AIB data. The 
regression fit was of the form: 

Y = B o + B 1 l n ( X )  

That is, the dependent variable, the suspicion score, is assumed to be a linear function of 
the natural log of the independent variable, provider bill Figure 4 displays the curve fit 
using the logarithmic transformation. 
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Figure 4 
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Another procedure which is used in classical linear regression to approximate nonlinear 
curves is polynomial regression. The curve is approximated by the function: 

Y = B  o +B1X+B2 X2 +. . .+BnX n 

Generally, low order polynomials are used in the approximation. A cubic polynomial 
(including terms up to provider bill raised to the third power) was used in the fit. Figure 
5 displays a graph of a fitted polynomial regression. 

Figure 5 
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The use of  polynomial regression to approximate functions is familiar to readers from its 
use in Taylor series expansions for this purpose. However, the Taylor series expansion 
is used to approximate a function near a point, rather than over a wide range. When 
evaluating a function over a range, the maximums and inflection points of the polynomial 
may not exactly match the curves &the  function being approximated. 

The neural network model had an R 2 (coefficient of  determination) of  0.37 versus 0.25 
for the linear model and 0.26 for the log transform. The R 2 of the polynomial model was 
comparable to that of  the neural network model. However, the fit was influenced 
strongly by a small number of  claims with large values. Though not shown in the graph, 
at high values for the independent variable the curve declines below zero and then 
increases again. This unusual behavior suggests that the fitted curve may not 
approximate the "true" relationship between provider bill and suspicion score well at the 
extremes of the data and may perform poorly on new claims with values outside the 
range of the data used for fitting. 

Table 2 below shows the values of  SUSPICION for ranges of the provider bill variable. 
The table indicates that SUSPICION increases rapidly at low bill amounts and then levels 
off at about $3,000. 

Table 2 
Suspicion Scores by Provider Bill 

Provider Bill Number of Claims Mean Suspicion Score 
$0 444 0.3 
1 - 1,000 376 1.1 
1,001 - 2,000 243 3.0 
2,001 - 3,000 227 4.2 
3,001 - 4,000 60 4.6 
4,001 - 5000 33 4.2 
5,001 - 6,000 5 5.8 
6,001 - 7,000 12 4.3 

The examples illustrate that traditional techniques which require specific parametric 
assumptions about the relationship between dependent and independent variables may 
lack the flexibility to model nonlinear relationships. It should be noted, however, that 
Francis (Francis, 2001) presented examples where traditional techniques performed as 
well as neural networks in fitting nonlinear functions. Also, when the true relationship 
between the dependent and independent variables is linear, classical statistical methods 
are likely to outperform neural networks. 

MARS and Nonlinear Functions 
The MARS approach to fitting nonlinear functions has similarities to polynomial 
regression. In its simplest form MARS fits piecewise linear regressions to the data. That 
is, MARS breaks the data into ranges and allows the slope of the line to be different for 
the different ranges. MARS requires the function fit to be continuous, thus there are no 
jump points between contiguous ranges. 
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To continue the previous example, a fimction was fit by MARS. The graph below 
displays the MARS fitted function. It can be seen that the curve is broken into a steeply 
sloping line, which then levels off much the way the neural network fitted function did. 

Figure 6 
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MARS uses an optimization procedure that fits the best piecewise regression. Simpler 
functions may adequately approximate the relationship between predictor and dependent 
variables and are favored over more complex functions. From the graph, it can be seen 
that the best MARS regression had two pieces: 

1) The curve has a steep slope between bill amounts of $0 and $2,185 
2) The curve levels offat bill amounts above $2,185 

The fitted regression model can be written as follows: 

BF1 = max(0, 2185 - X ) 
Y =4.29 - 0.002 * BF1 

where 

Y is the dependent variable (Suspicion score) 
X is the provider bill 

The points in the data range where the curves change slope are known as knots. The 
• impact of knots on the model is captured by basis functions. For instance BF1 is a basis 

function. Basis functions can be viewed as similar to dummy variables in linear 
regression. Dummy variables are generally used in regression analysis when the 
predictor variables are categorical. For instance, the Provider bill variable can be 
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converted into a categorical variable by using amount ranges for the categories. We 
could have the following categories: 

Range 1 $0- $2,185 Dummy Variable = 1 
Rankle 2 >$2,185 Dummy Variable = 0 

A dummy variable is a binary indicator variable. It will have a value of I when the bill 
fails within the specified interval for the dummy. Here if the bill is $1,000, D1 will be 1. 
When it is $5,000 D1 will be 0. 

A regression with dummy variables has the form: 

Y = B0 + BI*D1 +B2 * D2 + B3*D3+ ...+ B, *Dn 

Since in this simple example there is only one dummy variable, the model is: 

Y = B0 + B~*D1 

The constant B0 captures the effect of the first or base group (greater than $2185). The 
dummy variable D1 captures the effect of its bill group relative to the base group. The 
coefficients for the above model when fitted to the AIB data were: 

Y = 4.28 - 2.89"D1 

This regression function indicates that the mean suspicion score is 4.28 for bills greater 
than $2,185 and 1.39 for bills less than $2,185. However, the use of categorical dummy 
variables (as opposed to basis functions) creates jumps in the level of the dependent 
variable, rather than a linear curve, when the range changes. 

Basis Functions and Dummy Variables 
Each basis function is a combination of a dummy variable with a continuous variable. In 
the regression function between suspicion score and provider bill: 

BF1 = max(0, 2185 - X ) 

Y = 4.287 - 0.002 * BF1 

BF1 can be rewritten as: 

BF1 = D1"(2185 - X) 

where D1 is a dummy variable, which takes on the value of 0 if the provider bill is 
greater than or equal to $2,185 and 1 if it is less than that value. 
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Finding the Knots 
As mentioned above, a knot is the point in a range at which the slope of the curve 
changes. Both the number of knots and their placement are unknown at the beginning of 
the process. A stepwise procedure is used to find the best points to place the spline knots. 
In its most general form each value of the independent variable is tested as a possible 
point for placement of a knot. The model initially developed is overfit. A statistical 
criterion that tests for a significant impact on a goodness of fit measure is used to remove 
knots. Only those that have a significant impact on the regression are retained. The 
statistical criterion, generalized cross-validation, will be described later in the paper. 

Fitting Smooth Curves 
The above discussion describes spline functions which are piecewise linear regressions. 
For such regressions there is a break in the slope of the curve at each knot. A smooth 
curve could be created by allowing for higher order terms in the regression, i.e. quadratic 
or cubic terms could be included. Often, when fitting smoothing splines the curve is a 
cubic curve. For cubic splines, there is a requirement that the first and second derivatives 
are continuous at the knot points. For the remainder of this paper we will use piecewise 
linear splines. Although cubic splines produce smoother curves, they do not, in general, 
(Steinberg, 1999) significantly improve the fit of the model and are more difficult to 
parameterize. 

Functions with Interaction Terms 
The illustrations shown so far demonstrate MARS's capability for modeling nonlinear 
relationships. Another complication that occurs when working with insurance data is 
known as "interactions". The relationship between a predictor variable and the target 
variable may depend on the value of a second variable. For instance, the relationship 
between the medical provider bill and the suspicion score may depend on the injury type. 
This hypothesis is supported by the results of fitting a neural network model for 
SUSPICION to provider bill and injury type (shown in Figure 7). (For presentation 
purposes, only some of the injury types are shown). It can be seen that the curves for 
injury type 4 (neck sprain), and type 5 (back sprain) increase faster than those of the other 
injury types and ultimately plateau at higher levels. 
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Figure 7 
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A MARS curve was  fit to the fraud interaction data. The results of the fit are shown 
below: 

Figure 8 
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It can be seen that, as with the neural ne.twork, injury type 4 (neck sprain), and type 5 
(back sprain) increase faster and have higher scores than the other injury types. The 
MARS fitted function was: 
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BF1 = max(0, 2185 - X ) 
BF2 = ( INJTYPE = 4 OR INJTYPE = 5) 
BF3 = max(0, X - 159) * BF2 
Y = 2.815 - 0.001 * BF1 + 0.685 * BF2 + .360E-03 * BF3 

where 
X is the provider bill 
1NJTYPE is the injury type 

There are three basis functions in the model. Basis function BF1 splits the provider bill 
into the range $0 to $2,185 and greater than $2,185. It is like the first basis function in 
the previous model o f  SUSPICION and provider bill. Basis function BF2 is a categorical 
dummy variable, based on the value of  injury type. I f  the injury type is 4 or 5, it takes on 
a value of 1, otherwise it is 0. In the model, the coefficient of  BF2 is 0.685. Thus, the 
regression constant value is increased by 0.685 i f  the injury is a sprain. Basis function 
BF3 captures the interaction between injury type and provider bill and increases the slope 
of  the curve for sprains. 

To create the BF2 basis function, MARS searches all the categories of  injury type. By 
recursive partitioning, or sequential splitting of the categories into two distinct groups, it 
groups together those categories with a similar effect on the dependent variable into basis 
functions. When there is more than one categorical variable, the procedure is performed 
on each one. Only those basis functions with a significant effect on the target variable, as 
determined by the improvement in the R 2, are included in the final model. 

Similarly, an automated search procedure is used to create basis functions that specify 
interaction effects. Combinations of  predictors are tested two at a time for two-way 
interaction 3. New basis functions may be created to capture the interaction effect. Thus, 
a different combination of  the injury types than those in BF2 could be associated with the 
interaction of  injury type and provider bill. For this model the injury types were the same 
for BF2 and BF3. 

This example illustrates one advantage of  MARS over other data mining techniques such 
as neural networks. MARS groups together related categories of  nominal variables. 
Many insurance categorical variables have many different levels 4. For instance, while the 
injury type variable in the AIB data has only 15 levels, injury type data often has 
hundreds or even thousands of possible values. Increasingly, the insurance industry is 
shifting to the use ofICD95 codes for injuries. There are in excess of  15,000 possible 

s Higher order interactions, such as three way and four way interactions are permissible. However, high 
order interactions are unlikely to be statistically significant in a database of this size. 
4 Note that another data mining technique, Decision Trees (also know as CART) can also group together 
categories with similar impacts on the dependent variable. 
5 ICD9 codes are the codes used by medical providers and health insurers to classify injuries and illnesses. 
The definition of the classes is standardized and there is widespread use of these codes. 
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values for ICD9, many of which are related to similar illnesses or injuries. A procedure 
that can group together codes with a similar impact on the dependent variable is very 
handy when so many values are available. The neural network procedure turns each of 
the possible values of a categorical variable into a binary dummy variable when fitting a 
model. Many of these categories contain a tiny fraction of the data, thus the parameters 
fitted to the categories of the categorical variables may be very unstable. Collapsing the 
categories into a smaller number, with each group having a similar impact on the 
dependent variable (perhaps when interacting with another variable) significantly reduces 
the number of parameters in the model. 

Missing Data 
Missing data occurs frequently when working with large databases. The software 
commonly used for applying statistical models (including neural networks) typically 
applies very crude rules when data is missing. Such rules include elimination of records 
where any value on any variable is missing and substitution of the mean of a variable for 
the missing value on that variable. More sophisticated methods for addressing missing 
values, such as data imputation and the expectation maximization (EM) algorithm, have 
been developed. However, these methods are not widely available in the major statistical 
software packages. Two significant problems occur with missing data. 

1. Because many statistical packages eliminate any record with a missing value on 
any variable, a lot of the data can be lost to the analysis. 

2. In order for the analysis to be valid, the analyst must assume that value of both the 
dependent and predictor variables is independent of the presence of missing 
values. 

MARS handles missing data by creating a basis function for any variable with missing 
data. This variable has a value of one when the data is missing on a given variable and 
zero otherwise. The search procedure can then determine if an interaction between 
missing data basis functions and other variables in the data are significant in predicting 
the dependent variable. Thus, other variables can act as surrogates for the missing 
variable. 

Neural networks were not developed with the treatment of missing data in mind. Many 
neural network software products automatically eliminate from the model any record 
with a missing value for any variable in the model. Nevertheless there are procedures 
that can be used to deal with this challenge. One approach is to assign a constant value to 
data missing on a variable. This value is often the mean for that variable, but this need 
not be the case. Because neural networks fit nonlinear functions, a value not in the range 
of the remainder of the data might be assigned to the missing data on a variable, allowing 
a different relationship between independent and dependent variable for this value than 
for the remainder of the data. In addition, a dummy variable can be constructed for each 
of the variables with missing data, and this can be used in the neural network model. 
Unfortunately, the sot'cware available for fitting neural networks does not provide an 
automated approach to addressing the missing data issue so significant additional 
programming effort may be required. 
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To illustrate the handl ing  o f  missing data, suspicion score is modeled  as a function o f  
total provider  medical  bill and  health insurance.  The total provider  medical  bill is the 
sum o f  the bills fi'om all providers.  Heal th insurance is a categorical  variable with values 
o f  yes (claimant has health insurance),  no (claimant does not have health insurance) and 
u n k n o w n  (missing). The table be low shows the distribution o f  each o f  these values in the 
data.  The variables in this example were  selected because they provided a good 
illustration o f  the handl ing  o f  miss ing values. That  is, the health insurance variable had a 
significant number  o f  miss ing cases (see table below) and  the total medical  b i l l ' s  
influence on the dependent  variable is impacted by  the presence/absence o f  missing 
values on this variable. 

Table 3 
Health Insurance 

Value Frequency Percent Cumulative 
Percent 

No 457 32.5 32.5 
Missing 208 14.9 47.5 
Yes 735 52.5 100,0 
Total 1400 100.0 

The fol lowing MARS model  was  fit: 

BF1 = max(0,  MP BILL - 2885) 
BF2 = max(0,  2885 - MP_BILL ) 

BF3 = (HEALTHIN * MISSING) 

BF4 = (HEALTHIN = MISSING) 
BF5 = (HEALTHIN = N) 
BF7 = max(0,  MP BILL - 2262) * BF5 
BF8 = max(0,  2262 - MP_BILL ) * BF5 
BF9 = max(0,  MP_BILL - 98) * BF4 
BF10  = max(0,  98 - MP__BILL ) * BF4 
B F l l  = max(0,  MP_BILL - 710) * BF3 
BF13 = max(0,  MP_BILL - 35483) 
BF15 = BF3 * BF2 

Y = -0.754 - 0.002 * BF1 + 0.967 * BF3 + 1.389 * BF5 - .808E-04 * BF7 
- .624E-03 * BF8 + 0.001 * BF9 + 0.016 * BF10  
+ 0.001 * B F l l  + .114E-03 * BF13 + .376E-03 * BF15 

where:  
M P  BILL is the_total provider  medical  bill 
HE&LTHIN is the health insurance variable 
BF1 -BF15  are the basis functions 
Y is the dependent  variable,  suspicion score 
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Note that there is no BF6, BF12 or BF14. Variables BF6, BF12 and BF14 were created 
by MARS, but as they were not found to be significant, they were not included in the 
final model. 

The MARS model created two basis fimctions for the missing values, one for the 
presence of  missing value s and one for the absence. It can be seen that the shape and 
level of  the curve depends on both the value of  the health insurance variable and whether 
it is missing. Basis functions BF3 and BF4 are the dummy variables denoting 
missing/not-missing values on the health insurance variable. I f  the health insurance 
information is missing, BF4 is one. I f  the information is not missing, BF3 is one. The 
model  indicates that the overall score is raised by .967 i f  health insurance information is 
present. Basis fimctions BF9 and BF10 are the interactions of  a missing value on health 
insurance with provider bill. Basis functions BF11 and BF15 are the interaction of  health 
insurance not missing with total provider bill. Thus, when the provider bill is less than 
$98 and the health insurance information is missing, the curve's  slope is increased by 
0.016. This causes the suspicion score to spike at low provider bill values. BF 11 
indicates that the slope of  the curve increases by .001 for values above $710 and BF15 
indicates that the slope of  the curve increases by 0.00038 up to bill values of  $2,885, 
when health insurance information is present. 

Figure 9 displays the curve fit by MARS. 6 The top graph is curve for health insurance 
(i.e. equal to "yes"), the middle curve is the curve for health insurance unknown 
(missing) and the bottom graph is the curve for no health insurance. The figure shows 
that suspicion scores are on average highest when the claimant does not have health 
insurance and lowest when the information about health insurance is missing. The graphs 
show that suspicion scores for ali  categories decline after values of  about $3,000. 

6 In the graph, suspicion scores of less than one were censored to have a value of zero. 
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Figure 9 

MARS Fit to Provider Bill and Health Insurance 

o lOOO 20o0 aooo ~ sooo sooo 7o0o aooo 
P~lder Bill 

A neural network was fit to the data using the dummy variable approach described above. 
That is, a dummy variable was created for the presence or absence of a value on the 
health insurance variable. Figure 10 shows a comparison of the MARS and the neural 
network fitted values. The curves fit by the neural network did not vary much over the 
different values of the health insurance variable. Moreover, for health insurance missing 
and health insurance equal to 'Y' the neural network scores are above the MARS scores 
for provider bills greater than about $1,000. In addition, the MARS model suspicion 
scores decline at high bill amounts, but they do not for the neural network model. Table 4 
presents average suspicion scores by bill amount categories for each of the values on the 
health insurance variable. This table indicates that suspicion scores are higher for 
claimants with health insurance information, and are highest for claimants with no health 
insurance. The table also indicates that the suspicion score declines at higher bill 
amounts, but the decline in the data seems to occur later than the MARS model indicates. 

Figure 10 

MARS and Neural Network Fit vs Provider Bill and Health Insurance 
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Table 4 
Suspicion Scores by Health 

Insurance Category 
Total Provider Bill Claim Count Y U N 
$0 65 0.3 2.1 0.7 
1 - 1,000 532 0.3 0.5 0.4 
1,001 - 2,000 140 1.2 3.1 1.9 
2,001 - 3,000 268 2.9 3.0 4.5 
3,001 - 4,000 149 3.1 2.9 4.2 
4,001 - 5000 85 3.4 4.8 
5,001 - 6,000 54 3.0 2.5 3.4 
6,001 - 7,000 25 4.4 5.1 
7.001 - 8,000 18 2.6 4.5 
8,001 - 9,000 12 2.8 4.0 
9,001 - 11,000 13 3.1 2.7 
> 11,000 39 1.0 2.5 

Total 1,400 1.6 1.5 2.8 

Both the MARS model and the neural network model had similar R 2 (around 0.37). The 
MARS software uses a statistical procedure to assess the significance of variables and 
rank them in order of importance. This procedure is described in a later section of this 
paper. The MARS procedure found the health insurance variable to be significant, but 
much less significant than the provider bill variable. By visual inspection, it appears that 
the neural network procedure found no meaningful difference in suspicion score by 
health insurance category. A more formal neural network procedure for assessing the 
importance of variables will be discussed in the next section of the paper. 

A simple procedure for comparing the accuracy of two models is to hold out a portion of 
the data for testing. Data is separated into training and test data. The model is fit using 
the training data and its accuracy is tested using the test data to determine how well the 
dependent variable was predicted on data not used for fitting. This test is relatively 
straightforward to perform. In the next section of the paper a more computationally 
intensive procedure will be presented. 

To compare the neural network and MARS models, two thirds of the data was used for 
fitting and one third was used for testing. The neural network had an R 2 of 0.30 
compared to 0.33 for the MARS model. The performance of the two models was also 
tested on subsets of the data containing only one value of the health insurance variable 
(i.e., health insurance missing, health insurance equal to yes and health insurance equal to 
no). MARS outperformed the neural network model on health insurance missing (R 2 = 
.26 versus R 2 = 0) and health insurance equal to no (R 2 = .31 versus R 2= .25). The neural 
network outperformed MARS on health insurance equal to yes (R 2= .43 versus R z = .32). 

This example suggests that MARS more accurately modeled the effect of the health 
insurance variable and the effect of a missing value for this variable on the dependent 
variable than did the neural network model. However, it would be desirable to assess the 
significance of the differences in the accuracy of the overall fit. 
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The square root ofR 2 is the correlation coefficient, which can be used in a test of 
significance. The distribution of a transform of the correlation coefficient can he 
approximated by a normal distributionT: 

Z = l l n  11+_-~- 

~z =Z~ 

1 
n - 3  

where r is the correlation coefficient and n is the sample size. 

The normal approximation was used to compute confidence intervals for each of the 
correlations. As shown in Table 5, the 95% confidence intervals around the Z statistic 
computed from the two correlations overlapped, suggesting that the difference between 
the fits of the two models is not statistically significant. 

Table  5 
Confidence Intervals for Correlation Coefficient 

Model R z r Z sd Lower 95% CI Upper 95% CI 
MARS 0.33 0.57 0.65 0.05 0.56 0.74 
Neural Network 0.30 0.55 0.62 0.05 0.52 0.71 

This example illustrates one of the great strengths of MARS: its automated procedures 
for handling missing data. While missing data was not a major issue with the AIB 
database, as most of the variables were fully populated, it is a common problem with 
most insurance databases. One possible use for MARS is to create basis functions for 
variables having missing values. These basis functions could then be used by other 
procedures such as neural networks. 

A More Complex Model  
The models presented thus far have been relatively simple one and two variable models. 
In this section of the paper, the results of a more complex model will be presented. The 
variables used in the model are described below. 

This section will present an example where MARS and neural networks are used for 
classification. The dependent variable for this model is ASSESS, the expert's assessment 
of the likelihood that the claim is a fraud or abuse claim. This variable was converted to 
a binary depefldent variable. The two categories were the value 1 (probably legitimate) 
versus 2 through 5 (the various kinds of suspected fraud or abuse). Thus, ifa claim is 
other than probably legitimate, it is treated as a suspected abuse claim. 

7 This formula is from Miller and Wichern (Miller and Wichem, 1977, pp. 213 - 214). 
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MARS can perform regressions on binary variables. When the dependent variable is 
binary, MARS is run in binary mode. In binary mode, the dependent variable is 
converted into a 0 (legitimate) or a 1 (suspected fraud or abuse). Ordinary least squares 
regression is then performed regressing the binary variable on the predictor variables. 
Logistic regression is a more common procedure when the dependent variable is binary. 
Suppose that the true target variable is the probability that a given claim is abusive, and 
this probability is denotedp(x) .  The model relatingp(x) to the a vector of independent 
variables x is: 

ln(l_~Pp ;x ) = B o + B j X  1 +... + B , X ,  

where the quantity ln(p(x)/(1-p(x))) is known as the logit function or log odds. Logistic 
regression can be used to produce scores that are between zero and one, consistent with 
viewing the score as a probability. Binary regressions can produce predicted values 
which can be less than zero and greater than one. One solution to this issue is to truncate 
the predicted values at zero and one. Another solution is to add the extra step of fitting a 
logistic regression to the data using the MARS predicted value as the independent 
variable and the binary assessment variable as the dependent variable. The fitted 
probabilities from the logistic regression can then be assigned as a score for the claim. 
The neural network model was also run in binary mode and also produced fitted values 
which were less than zero or greater than one. In this analysis, logistic regression was 
applied to the results of both the MARS and neural network fits to convert the predicted 
values into probabilities. 

Variables in the Model 
There are two categories of predictor variables that were incorporated into the models 
described in this section. The first category is red flag variables. These are primarily 
subjective variables that are intended to capture features of the accident, injury or 
claimant that are believed to be predictive of fraud or abuse. Many red flag variables 
represent accumulated industry wisdom about which indicators are likely to be associated 
with fraud or abuse. The information recorded in these variables represents an expert's 
subjective assessment of fraud indications, such as "the insured felt set up, denied fault". 
These variables are binary, that is, they are either true or false. Such red flag variables 
are often used to target certain claims for further investigation. The data for these red flag 
variables is not part of the claim file; it was collected as part of the special effort 
undertaken in assembling the AIB database for fraud research. 

The red flag variables were supplemented with claim file variables deemed to be 
available early in the life of a claim and therefore of practical value in predicting fraud 
and abuse. 

The variables selected for use in the full model are the same as those used by Viaene et 
al. (Viaene et. al., 2002) in their comparison of statistical and data mining methods. 
While a much larger number of predictor variables is available in the AIB data for 
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modeling fraud, the red flag and objective claim variables selected for incorporation into 
their models by Viaene e t  al. were chosen because of early availability. Therefore they 
are likely to be useful in predicting fraud and abuse soon enough in the claim's lifespan 
for effective mitigation efforts to lower the cost of the claim. Tables 6 and 7 present the 
red flag and claim file variables. 

Table 6 

Indicator 
Subject Variable 
Accident ACC01 

ACC04 
ACC09 
ACC10 
ACC11 
ACC14 
ACC15 
ACC16 
ACC19 

Claimant CLT02 
CLT04 
CLT07 

Injury IN J01 
IN J02 
IN J03 
IN J05 
IN J06 
IN J l l  

Insured INS01 
INS03 
INS06 
INS07 

Lost Wages LW01 
LW03 

Red Flag Variables 

Description 
No report by police officer at scene 
Single vehicle accident 
No plausible explanation for accident 
Claimant in old, low valued vehicle 
Rental vehicle involved in accident 
Property Damage was inconsistent with accident 
Very minor impact collision 
Claimant vehicle stopped short 
Insured felt set up, denied fault 
Had a history of previous claims 
Was an out of state accident 
Was one of three or more claimants in vehicle 
Injury consisted of strain or sprain only 
No objective evidence of injury 
Police report showed no injury or pain 
No emergency treatment was given 
Non-emergency treatment was delayed 
Unusual injury for auto accident 
Had history of previous claims 
Readily accepted fault for accident 
Was difficult to contact/uncooperative 
Accident occurred soon after effective date 
Claimant worked for self or a family member 
Claimant recently started employment 

Table 7 

Variable 
AGE 
POLLAG 
RPTLAG 
TREATLAG 
AMBUL 
PARTDIS 
TOTDIS 

Claim Variables Available Early in Life of Claim 
Description 
Age of claimant 
Lag from policy inception to date of accident s 
Lag from date of accident to date reported 
Lag from date of accident to eadiest treatment by service provider 
Ambulance charges 
The claimant partially disabled 
The claimant totally disabled 

LEGALREP The claimant represented by an attorney 

8 POLLAG, RPTLAG and TRTLAG are continuous variables. 
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One of the objectives of this research is to investigate which variables are likely to be of 
value in predicting fraud and abuse. To do this, procedures are needed for evaluating the 
importance of variables in predicting the target variable. Below, we present some 
methods that can be used to evaluate the importance of the variables. 

Evaluating Variable Importance 
A procedure that can be used to evaluate the quality of the fit when fitting complex 
models is generalized cross-validation (GCV). This procedure can be used to determine 
which variables to keep in the model, as they produce the best fit, and which to eliminate. 
Generalized cross-validation can be viewed as an approximation to cross-validation, a 
more computationally intensive goodness of fit test described later in this paper. 

l ~ryi -}(X/) l  2 
G C r  = -N iTl" 1 - k i N  " 

where N is the number of observations 
y is the dependent variable 
x is the independent variable(s) 
k is the effective number of parameters or degrees of freedom in the model. 

The effective degrees of freedom is the means by which the GCV error functions puts a 
penalty on adding variables to the model. The effective degrees of freedom is chosen by 
the modeler. Since MARS tests many possible variables and possible basis functions, the 
effective degrees of freedom used in parameterizing the model is much higher than the 
actual number of basis function in the final model. Steinberg states that research 
indicates that k should be two to five times the number of basis fimctions in the model, 
although some research suggests it should be even higher (Steinberg, 2000). 

The GCV can be used to rank the variables in importance. To rank the variables in 
importance, the GCV is computed with and without each variable in the model. 

For neural networks, a statistic known as the sensitivity can be used to assess the relative 
importance of variables. The sensitivity is a measure of how much the predicted value's 
error increases when the variables are excluded from the model one at a time. Ports 
(Potts, 2000) and Francis (Francis, 2001) described a procedure for computing this 
statistic. Many of the major data mining packages used for fitting neural networks supply 
this statistic or a ranking of variables based on the statistic. Statistical procedures for 
testing the significance of variables are not well developed for neural networks. One 
approach is to drop the least important variables from the model, one at a time and 
evaluate whether the fit deteriorates on a sample of claims that have been held out for 
testing. On a large database this approach can be time consuming and inefficient, but it is 
feasible on small databases such as the AIB database. 
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Table 8 displays the ranking of variable importance from the MARS model. Table 9 
displays the ranking of importance from the neural network model. The final model 
fitted by MARS uses only the top 12 variables in importance. These were the variables 
that were determined to have made a significant contribution to the final model. Only 
variables included in the model, i.e., found to be significant are included in the tables. 

Table 8 
MARS Ranking of Variables 

Rank Variable Description 
1 LEGALREP Legal Representation 
2 TRTMIS Treatment lag missing 
3 ACC04 Single vehicle accident 
4 INJ0t Injury consisted of strain or sprain only 
5 AGE Claimant age 
6 PARTDIS Claimant partially disabled 
7 ACC14 Property damage was inconsistent with accident 
8 CLTO2 Had a history of previous claims 
9 POLLAG Policy lag 
10 RPTLAG Report lag 
11 AMBUL Ambulance charges 
12 ACC15 Very minor impact collision 

The ranking of variables as determined by applying the sensitivity test to the neural 
network model is shown below. 

Table 9 

Neural Network Ranking of Variables 
Rank Variable Description 
1 LEGALREP Legal Representation 
2 TRTMIS Treatment lag missing 
3 AMBUL Ambulance charges 
4 AGE Claimant age 
5 PARTDIS Claimant partially disabled 
6 RPTLAG Report lag 
7 ACCO4 Single vehicle accident 
8 POLLAG Policy lag 
9 CLT02 Had a history of previous claims 
10 IN J01 Injury consisted of strain or sprain only 
11 ACC01 No report by police officer at scene 
12 ACC14 Property damage was inconsistent with accident 

Both the MARS and the neural network find the involvement of a lawyer to be the most 
important variable in predicting fraud and abuse. Both procedures also rank as second a 
missing value on treatment lag. The value on this variable is missing when the claimant 
has not been to an outpatient health care provider, although in over 95% of these cases, 
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the c la imant  has visited an  emergency  room. 9 Note that both medical  paid  and  total paid  
for  this g roup  is less than one third o f  the medical  paid and total paid for  c la imants  w h o  
visited a provider.  Thus  the TRTMIS (treatment lag missing) variable appears to be a 
surrogate  for  not  us ing an outpatient  provider.  The actual  lag in obtaining treatment  is not  
an  important  variable in either the M A R S  or neural  network models.  

Explaining the Model 
Below are the formulas for  the model  fit by  MARS.  Aga in  note that some basis funct ions 
created by  M A R S  were  found not  to be  signif icant  and are not  shown. To assist wi th  
interpretation, Table 10 displays a description o f  the values o f  some o f  the variables in 
the model.  

BFI = (LEGALREP = I) 

BF2 = (LEGALREP = 2) 

BF3 = ( TRTLAG = missing) 

BF4 = ( TRTLAG # missing) 

BF5 = ( INJ01 = I) * BF2 

BF7 = ( ACC04 = I) * BF4 

BF9 = ( ACCI4 = I) 

BFI1 = ( PARTDIS = I) * BF4 

BFI5 = max(0, AGE - 36) * BF4 

BFI6 = max(0, 36 - AGE) * BF4 

BFI8 = max(0, 55 - AMBUL ) * BFI5 

BF20 = max(0, I0 - RPTLAG ) * BF4 

BF21 = ( CLT02 = i) 

BF23 = POLLAG * BF21 

BF24 = ( ACCI5 = I) * BFI6 

Y = 0.580 - 0.174 * BFI - 0.414 * BF3 + 0.196 * BF5 - 0.234 * BF7 

+ 0.455 * BF9 + 0.131 * BFII - 0.011 * BFI5 - 0.006 * BFI6 + 

.135E-03 * BF18 - 0.013 * BF20 + .286E-03 * BF23 + 0.010 * BF24 

9 Because of the strong relationship between a missing value on treatment lag and the dependent variable, 
and the high percentage of claims in this category which had emergency room visits, an indicator variable 
for emergency room visits was tested as a surrogate. It was found not to be significant. 
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Table 10 

Variable 
LEGALREP 

IN J01 

ACC04 

ACC14 

PARTDIS 

CLT02 

ACC15 

Description of Categorical Variables 
Value Description 

I No legal representation 
2 Has legal representation 
1 Injury consisted of strain or sprain only 
2 . Injury did not consist of strain or sprain only 
1 Single vehicle accident 
2 Two or more vehicle accident 
1 Property damage was inconsistent with accident 
2 Property damage was consistent with accident 
1 Partially disabled 
2 Not partially disabled 
1 Had a history of previous claims 
2 No history of previous claims 
1 Was very minor impact collision 
2 Was not very minor impact collision 

The basis functions and regression produced by MARS assist the analyst in 
understanding the impact of the predictor variables on the dependent variable. From the 
formulae above, it can be concluded that 

1) when a lawyer is not involved (LEGALREP = 1), the probability of fraud or 
abuse declines by about 0.17 

2) when the claimant has legal representation and the injary is consistent with a 
sprain or strain only, the probability of fraud or abuse increases by 0.2 

3) when the claimant does not receive treatment from an outpatient health care 
provider (TRTLAG = missing), the probability of abuse declines by 0.41 

4) a single vehicle accident where the claimant receives treatment from an 
outpatient health care provider (treatment lag not missing) decreases the 
probability of fraud by 0.23 

5) if property damage is inconsistent with the accident, the probability of fraud or 
abuse increases by 0.46 

6) if the claimant is partially disabled and receives treatment from an outpatient 
health care provider the probably of fraud or abuse is increased by 0.13 

Of the red flag variables, small contributions were made by the claimant having a 
previous history of a claim l° and the accident being a minor impact collision. Of the 
objective continuous variables obtained from the claim file, variables such as claimant 
age, report lag and policy lag have a small impact on predicting fraud or abuse. 

Figures 11 and 12 display how MARS modeled the impact of selected continuous 
variables on the probability of fraud and abuse. For claims receiving outpatient health 

lo This variable only captures history of a prior claim if it was recorded by the insurance company. For 
some companies participating in the study, it was not recorded. 
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care, report lag has a positive impact on the probability of  abuse, but its impact reaches 
its maximum value at about 10 days. Note the interaction between claimant age and 
ambulance costs displayed in Figure 12. For low ambulance costs, the probability of  
abuse rises steeply with claimant age and maintains a relatively high probability except 
for the very young and very old claimants. As ambulance costs increase, the probability 
of  fraud or abuse decreases, and the decrease is more pronounced at lower and higher 
ages. Ambulance cost appears to be acting as a surrogate for injury severity. 

Figure 11 

Contribution of Report Lag to Predicted 
FC¢ Claims with TRTLAG missing 
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Figure 12 

Surface 1: BF16--CategoricakOrdinal Interaction 
TREATLAG_rnis 
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This section on explaining the model illustrates one of the very useful qualities of MARS 
as compared to neural networks: the output of the model is a formula which describes the 
relationships between predictor and dependent variables and which can be used to explain 
the model to management. To some extent, the sensitivity measure assists us in 
understanding the relationships fit by the neural network model, as it provides a way to 
assess the importance of each of the variables to the prediction. However, the actual 
functional relationships between independent and dependent variables are not typically 
available and the model can be difficult to explain to management.H 

Evaluating the Goodness of the Fit and Comparing the Accuracy 
One approach for testing the accuracy of models that is commonly used in data mining 
applications is to have separate training and testing samples. This approach was used in 
the previous example. Typically one half to one third of the data is held out for testing. 
However, when the database used for modeling is small, the analyst may not want to lose 
a large portion of the data to testing. Moreover, as the testing is performed on a relatively 
small sample, the goodness of fit results may be sensitive to random variation in the 
subsets selected for training and testing. An alternative procedure that allows more of the 
data to be used for fitting and testing is cross-validation. Cross-validation involves 
iteratively holding out part of the sample, fitting the model to the remainder of the sample 
and testing the goodness of the fitted model on the held out portion. For instance, the 
sample may be divided into 4 groups. Three of the groups are used to fit the model and 
one is used for testing. The process is repeated four times, and the goodness of fit 
statistics for the four test samples are averaged. As the AIB database is relatively small 
for a data mining application, this is the procedure used. Testing was performed using 
four fold cross-validation. 

Both a MARS model and a neural network model were fit to four samples of the data. 
Each time the fitted model was used to predict the probability of frand or abuse for one 
quarter of the data that was held out. The predictions from the four test samples were 
then combined to allow comparison of the MARS and neural network procedures. 

Table 11 presents some results of the analysis. This table presents the R 2 of the regression 
of ASSESS on the predicted value from the model. The table shows that the neural 
network R 2 was higher than that of MARS. The table also displays the percentage of 
observations whose values were correctly predicted by the model. The predictions are 
based only on the samples of test claims. The neural network model correctly predicted 
79% of the test claims, while MARS correctly predicted 77% of the test claims. 

Table 11 
Four Fold Cross-validaUon 

Percent 
Technique R 2 Correct 

MARS 0.35 0.77 
Neural Network 0.39 0.79 

u Plate (2000) and Francis (2001) present a method to visualize the relationships between independent and 
dependent variables, The technique is not usually available in data mining software. 
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Tables 12 and 13 display the accuracy of MARS and the neural network in classifying 
fraud and abuse claims. 12 A cutoff point of 50% was used for the classification. That is, 
if the model's predicted probability of a 1 on ASSESS exceeded 50%, the claim was 
deemed an abuse claim. Thus, those claims in cell Actual =1 and Predicted=l are the 
claims assessed by experts as probably abusive which were predicted to be abusive. 
Those claims in cell Actual=l, Predicted =0, are the claims assessed as probable abuse 
claims which were predicted by the model to be legitimate. 

Table 12 
MARS Predicted * Actual 

Predicted Actual 
0 1 Total 

0 738 160 896 
1 157 344 601 
Total 895 505 

Tab le  13 

Neural Network Predicted * Actual 
Predicted Actual 

0 1 Total 
0 746 127 873 
1 149 377 526 
Total 895 505 

Table 14 presents the sensitivity and specificity of each of the models. The sensitivity is 
the percentage of events (in this case suspected abuse claims) that were predicted to be 
events. The specificity is the percentage of nonevents (in this case claims believed to be 
legitimate) that were predicted to be nonevents. Both of these statistics should be high 
for a good model. The table indicates that both the MARS and neural network models 
were more accurate in predicting nonevent or legitimate claims. The neural network 
model had a higher sensitivity than the MARS model, but both were approximately equal 
in their specificities. The neural network's higher overall accuracy appears to be a result 
of its greater accuracy in predicting the suspected fraud and abuse claims. Note that the 
sensitivity and specificity measures are dependent on the choice of a cutoff value. Thus, 
if a cutoff lower than 50% were selected, more abuse claims would be accurately 
predicted and fewer legitimate claims would be accurately predicted. 

Table 14 

Model Sensitivity Specificity 

MARS 68.3 82.5 
Neural Network 74.8 83.4 

]2 These tables arc often referred to as confusion matrices 
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A common procedure for visualizing the accuracy of  models used for classification is the 
receiver operating characteristics (ROC) curve. This is a curve of  sensitivity versus 
specificity (or more accurately 1.0 minus the specificity) over a range of  cutoff points. 
When the cutoff point is very high (i.e. 1.0) all claims are classified as legitimate. The 
specificity is 100% (1.0 minus the specificity is 0), but the sensitivity is 0%. As the 
cutoff point is raised, the sensitivity increases, but so does 1.0 minus the specificity. 
Ultimately a point is reached where all claims are predicted to be events, and the 
specificity declines to zero. The baseline ROC curve (where no model is used) can be 
thought of  as a straight line from the origin with a 45-degree angle. I f  the model 's 
sensitivity increases faster than the specificity decreases, the curve "lifts" or rises above a 
45-degree line quickly. The higher the "lift", the more accurate the model. It can be seen 
from the graph of  the ROC curve that both the MARS and neural network models have 
significant "lift" but the neural network model has more "lift" than the MARS model. 

Figure 13 
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A statistic that summarizes the predictive accuracy of  a model as measured by an ROC 
curve is the area under the ROC curve (AUROC). A curve that rises quickly has more 
area under the ROC curve. Table 15 displays the AUROC for both models, along with 
their standard deviations and 95% confidence intervals. As the lower bound of  the 
confidence interval for the neural network is below the higher bound of  the confidence 
interval for MARS, it can be concluded that differences between the MARS model and 
the neural network model are not statistically significant. 
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Table 15 

Statistics for Area Under the ROC Curve 
Test Result Variables Area Std Asymptotic Sig Lower Upper 

Error 95% 95% 
Bound Bound 

MARS Probability 0.85 0.01 0.000 0.834 0.873 
Neural Probability 0.88 0.01 0.000 0.857 0.893 

Summary of Comparison 
The R O C  curve results suggest  that in this analysis the neural ne twork  enjoyed a modes t  
though not  statistically signif icant  advantage  over MARS in predictive accuracy.  It 
should be noted that the database used  for this study was quite small for a data mining 
applicat ion and  may  produce  results that do not generalize to larger  applications. 
Steinberg (Steinberg, 2001) reports  that  on other applications M A R S  equaled or exceeded 
the per formance  o f  neural  networks.  It should also be noted that some o f  the key 
compara t ive  strengths & M A R S  such as its ability to handle missing data were  not  a 
s ignif icant  factor in the analysis,  as all but  one o f  the variables were fully populated. 13 
In addition, M A R S ' s  capabil i ty  o f  clustering levels o f  categorical  variables together  was  
not  relevant to this analysis,  as no categorical  variable had  more  than two levels. 

A practical  advantage that M A R S  enjoys over neural networks  is the ease with which  
results can be explained to management .  Thus, one potential use for M A R S  is to fit a 
model  us ing neural  networks  and then apply MARS to the fitted values to understand the 
functional relationships fitted b y  the neural  network model.  The results o f  such an 
exercise are shown below: 

BF1 = (LEGALREP = 1) 
BF2 = (LEGALREP = 2) 
BF3 = ( T R T L A G  ~ missing) 
BF4 = ( T R T L A G  = missing)  
BF5 = ( INJ01 = 1) 
BF7 = ( ACC04  = 1) * BF3 
BF8 = ( ACC04  = 2) * BF3 
BF9 = ( PARTDIS = 1) * BF8 
BF11 = max(0,  A M B U L  - 182) * BF2 
BF12 = max(0,  182 - A M B U L  ) * BF2 
BF13 = ( ACC14  = 1) * BF3 
BF15 = ( CLT02 = 1) * BF3 
BF17 = max(0,  P O L L A G  - 21) * BF3 
BF19 = max(0,  A G E  - 41) * BF3 
BF20  = max(0,  41 - AGE)  * BF3 

13 One of the claims was missing data on the AGE variable, and this claim was eliminated from the neural 
network analysis and from comparisons of MARS the neural network model. Had more claims been 
missing the AGE variable, we would have modeled it in the neural network. 
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BF21 = ( INS06 = 1) 
BF23 = max(0, RPTLAG - 24) * BF8 
BF24 = max(0, 24 - RPTLAG ) * BF8 
BF25 = BF1 * BF4 
BF27 = ( ACC15 = 1) * BF8 
BF29 = ( INJ03 = 1) * BF2 

Y = 0.098 - 0.272 * BF1 + 0.334 * BF3 + 0.123 * BF5 - 0.205 * BF7 + 0.145 * 
BF9 - .623E-04 * BF11 + .455E-03 * BF12 + 0.258 * BF13 + 0.100 * BF15 + 
.364E-03 * BF17- 0.004 * BF19 - 0.001 * BF20 + 0.152 * BF21 + .945E-03 * 
BF23 - 0.002 * BF24 + 0.135 * BF25 + 0.076 * BF27 - 0.073 * BF29 

This model had an R 2 of  0.9. Thus, it was able to explain most o f  the variability in the 
neural network fitted model. Though the sensitivity test revealed that LEGALREP is the 
most  significant variable in the neural network model, its functional relationship to the 
probability of  fraud is unknown using standard neural network modeling techniques. As 
interpreted by MARS, the absence of  legal representation reduces the probability of  fraud 
by 0.272., even without interacting with other variables. LEGALREP also interacts with 
the ambulance cost variable, IN J03 (police report shows no injury) and no use of  a health 
care provider (treatment lag missing). The sensitivity measure indicated that the presence 
or absence of  a value for treatment lag was the second most important variable. As stated 
earlier, this variable can be viewed as a surrogate for use of  an outpatient health care 
provider. The use of  an outpatient health care provider (TRTLAG ¢ missing) adds 0.334 
to the probability of  fraud or abuse, but this variable also interacts with the policy lag, 
report lag, claimant age, partial disability, ACC04, (single vehicle accident), ACC14 
(property damage inconsistent with accident) and CLT02 (history of  prior claims). 

The MARS model helps the user understand not only the nonlinear relationships 
uncovered by the neural network model, but also describes the interactions which were fit 
by the neural network. 

A procedure frequently used by data mining practitioners when two or more approaches 
are considered appropriate for an application is to construct a hybrid model or average the 
results of the modeling procedures. This approach has been reported to reduce the 
variance of  the prediction (Salford Systems, 1999). Table 16 displays the AUROC 
statistics resulting from averaging the results of  the MARS and neural network models. 
The table indicates that the performance of  the hybrid model is about equal to the 
performance of the neural network. (The graph including the ROC curve for the 
combined model is not shown, as the curve is identical to Figure 13 because the neural 
network and combined curves cannot be distinguished.) Salford Systems (Salford 
Systems, 1999) reports that the accuracy of  hybrid models often exceeds that of  its 
components, but usually at least equals that o f  the best model. Thus, hybrid models that 
combine the results of  two techniques may be preferred to single technique models 
because uncertainty about the accuracy of  the predicted values on non-sample data is 
reduced. 
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Table 16 
Statistics for Area Under the ROC Curve 

Test Result Variables Area Std Asymptotic Lower Upper 
Error Sig 95% 95% 

Bound Bound 
MARS Probability 0.853 0.01 0,000 0.834 0.873 
Neural Probability 0.875 0.01 0.000 0,857 0.893 
Combined Probability 0.874 0,01 0.000 0.857 0,892 

Using Model Results 
The examples in this paper have been used to explain the MARS technique and compare 
it to neural networks. The final example in this paper has been a fraud and abuse 
application that used information about the PIP claim that would typically be available 
shortly after the claim is reported to predict the likelihood that the claim is abusive or 
fraudulent. The results suggest that a small number of variables, say about a dozen, are 
effective in predicting fraud and abuse. Among the key variables in importance for both 
the neural network model and MARS are use of legal representation, use of an outpatient 
health care provider (as proxied by TRTLAG missing) and involvement in a single 
vehicle accident. Due to the importance of legal representation, it would appear useful 
for insurance companies to record information about legal representation in computer 
systems, as not all companies have this data available. 

The results of both the MARS and neural network analysis suggest that both claim file 
variables (present in most claims databases) and red flag variables (common wisdom 
about which variables are associated with fraud) are useful predictors of fraud and abuse. 
However, this and other studies support the value of using analytical tools for identifying 
potentially abusive claims. As pointed out by Derrig (Derrig, 2002), fraud models can 
help insurers sort claims into categories related to the need for additional resources to 
settle the claim efficiently. For instance, claims assigned a low score by a fraud and 
abuse model, can be settled quickly with little investigative effort on the part of adjusters. 
Insurers may apply increasingly greater resources to claims with higher scores to acquire 
additional information about the claimant/policyholder/provider and mitigate the total 
cost of the claim. Thus, the use of a fraud model is not conceived as an all or nothing 
exercise that classifies a claim as fraudulent or legitimate, but a graduated effort of 
applying increasing resources to claims where there appears to be a higher likelihood of 
material f'mancial benefit from the expenditures. 

Conclusion 
This paper has introduced the MARS technique and compared it to neural networks. 
Each technique has advantages and disadvantages and the needs of a particular 
application will determine which technique is most appropriate. 

One of the strengths of neural networks is their ability to model highly nonlinear data. 
MARS was shown to produce results similar to neural networks in modeling a nonlinear 
function. MARS was also shown to be effective at modeling interactions, another 
strength of neural networks. 
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In dealing with nominal level variables, MARS is able to cluster together the categories 
of  the variables that have similar effects on the dependent variable. This is a capability 
not possessed by neural networks that is extremely useful when the data contain 
categorical variables with many levels such as ICD9 code. 

MARS has automated capabilities for handling missing data, a common feature of  large 
databases. Though missing data can be modeled with neural networks using indicator 
variables, automated procedures for creating such variables are not available in most 
standard commercial software for fitting neural networks. Moreover, since MARS can 
create interaction variables from missing variable basis functions and other variables, it 
can create surrogates for the missing variables. Thus, on applications using data with 
missing values on many variables, or data where the categorical variables have many 
values, one may want to at least preproeess the data with MARS to create basis functions 
for the missing data and categorical variables which can be used in other procedures. 

A significant disadvantage of neural networks is that they are a "black box". The 
functions fit by neural networks are difficult for the analyst to understand and difficult to 
explain to management. One of the very useful features of  MARS is that it produces a 
regression like function that can be used to understand and explain the model; therefore it 
may be preferred to neural networks when ease of explanation rather than predictive 
accuracy is required. MARS can also be used to understand the relationships fit by other 
models. In one example in this paper MARS was applied to the values fit by a neural 
network to uncover the important functional relationships modeled by the neural network. 

Neural networks are often selected for applications because of their predictive accuracy. 
In a fraud modeling application examined in this paper the neural network outperformed 
MARS, though the results were not statistically significant. The results were obtained on 
a relatively small database and may not generalize to other databases. In addition, the 
work of other researchers suggests that MARS performs well compared to neural 
networks. However, neural networks are highly regarded for their predictive capabilities. 
When predictive accuracy is a key concern, the analyst may choose neural networks 
rather than MARS when neural networks significantly outperform MARS. An alternative 
approach that has been shown to improve predictive accuracy is to combine the results of  
two techniques, such as MARS and neural networks, into a hybrid model. 

This analysis and those of other researchers supports the use of intelligent techniques for 
modeling fraud and abuse. The use of an analytical approach can improve the 
performance of fraud detection procedures that utilize red flag variables or subjective 
claim department rules by 1) determining which variables are really important in 
predicting fraud, 2) assigning an appropriate weight to the variables when using them to 
predict fraud or abuse, and 3) using the claim file and red flag variables in a consistent 
manner across adjusters and claims. 
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