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O N  THE P R A C T I C A L  MULTILINE EXCESS OF LOSS PRICING 

ABSTRACT 

More and more ceding companies are asking for global protections of their portfolios. One 
example is the protection by the reinsurer of two (or more) lines, e.g. fire and motor third 
party liability. Clearly this allows the insurance company to optimally balance its portfolio 
and to pay the lowest reinsurance premium. In this paper we analyse how to price an excess 
of loss treaty covering multiple lines. 
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1 .  [ N T I I O I ) U ( ' T I O N  

[IIFiUFalICC tolnpanie:-, are eorl)orat ion~, and. as sllch, they are williug to buy reillhllraltt'e |i.ll tilt' 
fialllC reasOllN that  corl)orationn buy insurmlcc. "l'llese retu-iOllN ill( ']lldc tilt! fact that  enti t ies 
are not able to diversi~v insnrat)le risk~. Tile3" will therefore dcnuuM some t:ompcll.~ation h)r 

their risk-aver,,,euess. Tiffs  COml)erLsatiolt nuty take diflk, ueut t~)tllts : 

- higher  wages for empl(vees  and mauager~ 

• lo'Lver lillt '~ ~}.)I" ('lieat~, 

- m o w  alh~cawd capital  I) 3 Ihe  shalehohlers  

- buying solu(' (rc}ills/trmtee. 

Tile lat ter  i~ obnt,lvrd on the  market  mid ~*x. will dis<'w,s in thi~ pap<,r thl' lnicing el  SOllle 
l )a l t i c i l l a r  rciltMili/ll('P Irealit'~,. 
3 lo re  al ld  lilt)It, illStllallcC Ct)lnl)anierl a l e  t ry ing to opti lmze tht!il leillNllritla'/ '  5tl itCtllre. Wh('y 
are looking for a global l)rotectiOll with their rcillMirl!lS. Olle  of  these  global solatiolls is to 
cover two lines simultalleously. Clearly this allows to take hei fer  a(1Valllilg(' of tilt? diver.'.ifi- 
cati~)u of au il~surmlce polttblio. Thus  a bet te l  rciusurance c<)w'l t\)llows. 
Let u>, lake an cXaml)h', AsNIIIIIp a fire tl(~at3 exiMing of thll 'e ]a3ers : 

kayrl  1 (Ki~ci~ : 25t/(I xs l{)l}0 with thlce leinstatem(,nts  at lll/P,/~. 

- Layer 2 (Kilt,} : 30011 x~, ;~1111(1 with lwt) l(,iilst;tl(!iia,llts ~It llll)~;~ 

- Layer 3 (Filv) : l(}(lO xs 600{) with one leiw, tat(,mcnt at I()()!/( 

Assume a M T P L  {Xl(mn Th i rd  Par ty  Liability) t lcaty existil~g of thlec layel~, : 

- Layer 1 (M'YPL) : 3 t ~ )  xs 2DO0 with  mflimited flee leillslalcln(.llls. 

- Layer 2 (MTPI , ]  : 500(I xs 5()0(1 with tutlimited tlc(, rt!iw, t;ttcmc~tt.',. 

- L6 ' e r  3 ( M T P L )  : -x_ xs  I(ItX)I} wi~h mdimih ,d  bee  lt,ill'41;tlelll~'llls. 

Nor th  Amer ican  r(,adels may be Sml)lisc(I r() see lay(~rs wilh mdimih 'd  fit'(' l(>iastat('lncals. 
~L,~ well a-'~ all uul imited layer. This  is ill fact (-t)lltllt()tt praclit( '  ill Ellr~)l)e. i~ll([ ill l)articulal ill 
Belgima,  at leiL~t t0r Motor 'l'hi~d Pa l ly  LiM>ili)3 (ov(,rs PIOp('lI~, ('o~.els at(! alwltys limih,d 
and General  Liabilit3 lOVely; ale usually limited. 
An a l ternat ive  solmion migh't be Io keel) Layers 2 ~lll(l 3 fi)r Fir(' and M T P L  ;ilia to c~eate a 
global t reaty with a l e , m a i t r e  Layer lbir. (Fire) and Layer Ibis ( M T P L )  : 

- Layer lbis  (Fire) : 25(10 xs 50(1 with unlimiltxl t'r~,e reiuntalemeuts.  

- Layer lifts ( M P T L )  : .|(1(10 xs [0(10 with unlimited tiee H,in~t;m,mrnts. 

wi th  a global anmtal  aggrega te  deductihle o[, say. l(}(l() (Rit)eaud (2(llltl} call~, it a ulttltilim~ 
aggrega te  deductible).  So, tb~ the working layer we combine Fi~c m . l  M T P L  and. a.s it is a 
working layer, we illlpOS(! a large allllllal ;tggrt!gat(! deductible il, ()rdcl t() avoid a }mgc amolmI 
of claims to be paid by the ~einsurer and high pit,rattans It) bc paid by Ihe in~ulv~. Note Ih~tt 
Layer Ibis  (Fire) and Layer Ibis ( M T P L )  ale one t~eaty. Om~ globM plt,miuul is ~ske(I till 
that  cover. We now hav.~ thrc(! tl(,aties : 

124 



- Fire wi th  two layers : 3000 xs  3000 and 4000 xs  6000. 

- M T P L  with  two layers : 5000 xs 5000 and oo xs 10000. 

- Global, which is affected by claims h i t t ing  Layer lb i s  (Fire) and Layer lb is  ( M T P L )  
wi th  a global (multi l ine) annual  aggrega te  deductible  of 1000. 

This  global t rea ty  is exact ly the  kind of t reaty we want  to price in this  paper .  
Th roughou t  tile paper  we will use a nmnerieal  example  in order  to apply the  models  and 
formulae tha t  will be derived. 
T h e  rout of the  paper  is organized as follows. Section 2 presents  the  general  model  we will work 
wi th  as well as the  par t icular  d is t r ibut ions  tha t  will be used in the  numerical  example.  Section 
3 recalls the  use of the  Pan je r ' s  a lgor i thm as well as the  use of lat t ice dis t r ibut ions .  Section 
4 presents  the detailed model  we will work with,  i.e. re insurance  liabilities wi th  potent ia l  
clauses. Section 5 shows how to mix both  lines and obtains  expected values required for the  
cash flow model  tha t  is presented in section 6. Section 7 discusses the  use of  clauses m a k i n g  
the re insurance  p r e m i u m  random.  Section 8 giv(;s the  conclusion. 

2. GENERAl.  MODEL 

lq'om now on we will adopt  the t radi t ional  convention tha t  t rea t ies  are yearly based,  which 

is c o m m o n  practice.  
We will work wi th in  the  collective risk model.  In this model,  c la ims arise anonynmusly  
from tile portfolio. I t  is assumed that  the  losses are identically d is t r ibuted  and mutual ly  
independent .  I t  is also assumed that  the), are imlependent  of the  number  of claims, which is 
a r andom variable  (typically a Poisson dis t r ibut ion) .  
Workiug wi th  tile collective risk model is not a l imitat ion,  as o ther  models  may  be nsed, e.g. 
tile individual  risk model.  In this model it is a s sumed  tha t  each risk has a (known) chance 
to produce  at lea.~t one claim dur ing  the coverage period. I t  is also assumed  tha t  the loss 
dis t r i lmtinn,  in c~.ue of a claim, is known for each risk. 
Let us define 

- X, as tile i th cla im amount  of type Fire, 

- Y~ as the i th claim amoun t  of type MTPL.  

It  i.~ assumed tha t  the  X~'s are independent  and identically d i s t r ibu ted  as well as the  Y/s .  
X / s  and }~'s are assumed  to be  mutual ly independent .  We also define 

N ~ts tile number  of c la ims of type Fire, 

- 3.1 as the  nunahcr of claims of type M T P L .  

We assume tha t  N and ,'tl are independent  and tha t  N and the  X i ' s  on the  one hand and h /  
anti the Y~'~ ou tim other  hand are also independent.  
Wc ale then able to build two collective risk models  : 

S = X ~ + . . . + X N ,  

T = Y I + . . . + Y M ,  

where ,5' ih~m)t(~s th(~ aggll:gaI(! fire claims and T denotes the  aggrega te  M T P L  clainls. 
L(~I us iL~snnm that  th[~ d is t r ibut ions  of X,  Y, N and M have been es t imated ,  possibly based 
(hi I)a~t (lat;~. ;L~ toll()ws 
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- the distribution of the fire claim amounts, X, is Pareto with parameters A = 400 and 
c~ = 1.50. The distribution of the MTPL claim amounts, Y is Pareto with parameters 
A = 700 and a = 2.50. Let us recall the cumulative density distribution of a Pareto 
distribution ( X  ~ P a ( A , a ) )  : 

F x ( x )  = 0 i f x < A ,  

= l -  if x >  A. 

- the distribution of the fire claim numbers, N is Poisson with parameter X = 2.5. The 
distribution of the MTPL claim numbers, M is Poisson with parameter ), = 5. Let us 
recall the probability function of a Poisson distribution ( N  ~ Po(X))  : 

PIN = n] = p(n)  = e - ~ n  n[ n = 0 , 1 , . . .  

3. PRACTICAL CALCULATIONS FOR THE REQUIRED DISTRIBUTIONS 

In general, the actuary knows the behaviour of the claims losses. He has fitted, based on past 
data, a continuous distribution for X and Y. Furthermore, he assumes that N and M are 
Poisson distributed because he chose to work within the collective risk model. 
First we have to obtain a discretization of the claims distributions. Indeed we will use Panjer's 
algorithm (see Panjer (1981)) that works with lattice distributions. For the distribution of S, 
we have : 

f s (O)  = e -~(1-yx(°) ) ,  
s . 

fsCs) = A Z ~ f x C i ) f s ( s - i )  , s =  1,2 
i=l 

where f x  (resp. f s )  denotes the probability density function of X (resp. S) and A is the 
parameter of the distribution of N. We observe that the Panjer's algorithm needs a discrete 
distribution. Therefore a continuous distribution may not be used as such and has to be 
discretized. Moreover it will be most convenient to obtain a discrete version of the continuous 
distribution which win be of lattice type, that is with non-negative masses on points of the 
type x = kh ,  k = O, 1 . . . .  with h > 0. h is called the span. Wtmn the span is different from 1, 
a simple change of morley (divide losses by h) allows to use the Panjer's algorithm optimally 
with respect to computing-time. 
We immediately observe that the smaller the span, the better the precision of the discretiza- 
tion. However, the salaller the span, the longer the computing-time. The nser should make a 
choice regarding the step in order to obtain a good precision and a sufficiently low computing- 
time. There are various methods for obtaining a lattice distribution from a general distribu- 
tion. I choose to work with the easiest method : the rounding method (see Gerber and Jones 
(1976)). Let us choose a span h. The rounding method simply accumulates the original mass 
of a random variable X around the mass points of the lattice distribution (Xdi~) as follows : 

Ix.,.(0) = F x ( h - o ) ,  

h b 
f x d , ( x h )  = F x ( x h  + .~ - O )  - F x ( x h -  ~ - O )  , x = 1 , 2  . . . .  
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For the part icular  case of a Pareto  distribution ( X  ~ P a ( A , a ) )  we obta in  

+x + , = - ) ° ( A + - :  ) ° = = , . . . .  

We choose to work with a lattice step h = 20. 
The  first masses points of the lattice distributions for our numerical  example  are 

x 400 425 450 475 500 525 . , .  
•[X = x  I 0.0451 0.0807 0.0699 0.0611 0.0537 0.0475 . . .  

~p[  y~ 700 725 750 775 8 0 0 8 2 5 . . .  
Y =  0.0433 0.0790 0.0702 0.0626 0.0560 0.0503 . , .  

Table 1: Latt ice version of the original distr ibutions 

Using the Pan jet 's  a lgori thm we are able to obta in  the aggregate  claims distr ibutions of  S 
and T :  

z]z 0.09109 25 50 75 100 125 I 
P[S 0.0185 0.0179 0.0174 0,0169 0.0164 

[ ~ [ T = x ]  0.0084 0.0033 0.0036 0.0039 0.0041 0.0044 

Tablc 2: Aggregate claims distr ibutions 

Note that  these distributions concern tile ceding company whereas we are interested in the 
l)ricbJg of reinsurance covers. This  will be di.scus~ed in the next  section. 

4. DETAILED MODEL 

,1. [. ATTACHMENT POINTS AND COVERS 

Let us now define the liability of an excess of lo,'~s reinsurer i.r.o, the claims, Let ns denote 

- Pl~'ire = 500 as the deductible of the Fire claims, 

- PMTPt, = 1000 ~Ls the deductible of tire M T P L  claims, 

- LFwe = 2500 as the cover of the Fire claims, 

- LMTpt.  = 4000 ~ the cover of tim M T P L  claims. 

We obtain tire reinsurer 's  liability for the individual claims as follows : 

X [  ~" = min(Lt.o.~, max(0, Xi - PFi,-e)), 

~lCe = rnin(LMTPL, max(0,  X i -- PMTPL)). 

The  aggregate  liability of the reinsurer is : 

s.~ = x ~  + . . . +  x'~., 
"r"" = r , " ~ + . . . + r ~ ,  ~. 
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The  dis t r ibut ion of the  reinsurer 's  liability for the  individual  claims and for the  aggrega te  
c la ims is 

x ]  0 25 50 75 100 125 

P [X = x ]  0.3105 0.0475 0.0423 0.0379 0.0340 0.0307 . . .  
PlY = x ]  0.6026 0.0235 0.0216 0.0199 0.0183 0.0170 . .  
P [ S = z ]  0.1784 0.0212 0.0201 0.0192 0.0183 0.0175 . . .  
P [ T = x ]  0.1371 0.0161 0.0158 0.0154 0.0151 0.0148 . . .  

Table 3: Reinsurer ' s  claims and aggrega te  claims dis t r ibut ions  

4.2. LONG-TAILED BUSINESS AND INFLATION 

We now have to introduce the  fact tha t ,  in an  insurance context,  claims are not paid outr ight .  
Especially in excess of loss reinsurance where large claims are involved, it may be very long 
before a c la im is finally settled. Thus ,  we have to introduce this  notion and  a companion 
thereof  : the  fu ture  inflation. We will follow the presentat ion of Walhin et al. (2001). 
We will a s sume  tha t  the  payment s  of the claims occur at  t imes  t 0 , t 2 , . . . ,  t,, according to a 
given claims paymen t  pa t t e rn  : CFire(tO),... ,CFire(tn) o r  CMTPL(tO),... ,CMTPL(tn) where 
tn is the  t ime  of final set t lement .  We will fu r thermore  assume tha t  the payments  arise, on 
average, in the  middle  of the  year,  i.e. t i = j + 0.5,  j = 0 , 1 , . . . ,  n. 
T h e  c la ims paym en t  pa t t e rn  is supposed to be es t imated  by using past  d a t a  and adjus ted  for 
potential  changes in the  fu ture  payment  pat terns ,  e.g. due to changes  in legislation or in the 
c la ims management .  
Let  us  a s sume  tha t  the  M T P L  claims are compl~e ly  settled in n = 7 years  whereas  the  fire 
c la ims are  completely sett led in two years. We use the following paymen t  pa t te rns  : 

t 0 1 2 3 4 5 6 7 

c r , ~  50% 40% 10% 0% 0% 0% 0% 0% 
C~ir¢ 50% 90% 100% 100% 100% 100% 100% 100% 

eMTFL 5% 10% 10% 10% 25% 25% 10% 5% 
CMTP L I ]  5% 15% 25% 35% 60% 85% 95% 100% 

Table 4: Payment patterns 

where c E denotes the cumulative claims pattern payment. 
Moreover the future payments will undergo future inflation. Indeed the losses Xi are assumed 
not to include any future inflation. Let us define an inflation index : infF,re(to),..., infFir~(t,,) 
and z?IfMTPL(to),... , ~fMTPL(tn). The future payments for a loss X, or Y, then read : 

X i ( j  + 0.5) . . . .  infFi~e(t j )  

. . . . .  i n IMTPL( t i )  
Y , ( j  + 0.5) = ( : M T P L t L 2 ) , , ~  j = O, | . . . .  , u. 

tn]MTPL(tO) 

The  fu ture  inflation will be  modelled by a geometr ic  growth and we fur thermore  assume the 
fu ture  inflation index to be constant  between t~o  t imes  ts = j ,  j = 0, 1 . . . .  , n : 

in f r t~¢( j )  - 1 = 3%, j = 1,2 . . . . .  n, 
i n fF i re ( j  - 1) 
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infFi~e(j  + 0.5) 

i n I M T P L ( j )  -- 1 

in IMTPL (J - 1) 

i n f M T e L ( j  + 0.5) 

= i n f F , ~ e ( j ) , j = O , l  . . . . .  n, 

= 3.5%,  j = 1 , 2 , . . . , n ,  

= i n f M T p z ( j ) ,  .) = 0, 1 . . . . .  n. 

Future  claims paymen t s  then read 

t : 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 

X,  
X~(t) 400 200.00 164.80 42.44 0 0 0 0 0 

425 212.50 175.10 45.09 0 0 0 0 0 
450 225.00 185.40 47.74 0 0 0 0 0 
475 i 237.50 195.70 50.39 0 0 0 0 0 

r, 
Y,(~) 700 35.00 72.45 74.99 77.61 200.82 207.85 86.05 44.53 

725 36.25 75.04 ~ 7 . ~  80.38 207.99 215.27 89.12 46.12 
750 37.50 77.63 80.34 83.15 215.16 222.69 92.19 47.71 
775 38.75 80.21 83.02 85.93 222.33 230.11 95.27 49.30 

Table 5: Future  c la ims payments  (inflation only) 

As we are  interested in large losses, i t  is commonly  observed on the  marke t  tha t  this  ca tegory  
of losses undergoes  a higher  inflation than  usual. One  speaks  of  the  supe r imposed  inflation. 
For the  future  payments ,  it is then more  adequate  to use another  index, including inflation 

and supe r imposed  inflation : sup in fF i re ( to ) , . . . ,  SUpinfFire(tn) or 
snpinf.~lTet.( to) . . . . .  supinff t tTl ' l . ( tn) .  T h e  future  payments  for a loss X i  or  1I, then  read 

X i ( t j )  c ' t  ' X  supinfF~r~(tj) 
: F,re~ S) *supinfF,r~(tn) j =O,  1 , . . . , n ,  

- , ,  ~ supinf~. tTPL(ti)  
~1~,(t:) = C - M T P L k ~ 2 ) x , ~  j = 0 , 1  . . . . .  r/. 

Let  us assume tha t  the future inflation and super imposed  inflation is model led by a geometr tc  
growth : 

supinfFi , .e( j)  1 = 3%,  j = 1,2 . . . . .  n,  
sup in fF , . e ( j  - 1) 

supin fFire( j  + 0.5) : supinf~-,~e(j) ,  j : O, 1,2 . . . . .  n, 

s n p i n f ^ t T V L ( j )  - 1 = 5 % , j =  1 ,2 , . .  . ,n ,  
s u p i n f M V P L ( j -  1) 

s n p i n f M T P L ( j  + 0.5) : s u p i n f M T p L ( j ) ,  j : O , l , 2 , . . .  ,n ,  

that  is we a s sume  no super imposed  inflation for the fire c la ims and 1.50% of super imposed  
inflatiou fur the  M T P L  claims. 
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Future  c la ims paymen t s  then  read 

t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 

x ,  
Xl(t) 400 200.00 164.80 42.44 0 0 0 0 0 

425 212.50 175.10 45.09 0 0 0 0 0 
450 225.00 185.40 47.74 0 0 0 0 0 
475 237.50 195.70 50.39 0 0 0 0 0 

Yi 
Yi(t) 700 35.00 75.50 77.18 81.03 212.71 223.35 93.81 49.25 

725 36.25 76.13 79.93 83.93 220.31 231.33 97.16 51.01 
750 37.50 78.75 82.69 86.82 227.91 239.30 100.51 52.77 
775 38.75 81.38 85.44 89.72 235.50 247.28 103.86 54.53 

Table 6: Future  claims payments  (including super imposed  inflation) 

It  is also interes t ing to define the cumulat ive  payments  for a lo~s X~ or )~ ~.s : 

i 
X,E(3 -}- 0.5) -- ~ - - ' X i ( k + 0 . 5 )  j = O ,  1 . . . . . . . .  

k~O 
2 

Y,c(j+0.5)  = y ~ Y , ( k + 0 . 5 )  j = 0 , 1  . . . . .  ~. 
k=0 

T h e  evolution of the  cumulat ive  payments  for the  reinsurer  for a loss X ,  or Y, then reads : 

Xt~ne(j + 0.5) - min(LF~re,max(O, X ~ ( j  + 0.5) - Pr'~re)) j - 0, 1 . . . .  ,n ,  

y ERe(j + 0 . 5 )  = nlin(LMTPL,max(O, YtZ(j + 0 . 5 )  -- PMTPL)) , J 0, 1 . . . . .  71. 

1 3 0  



Within our numerical example we have 

t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 

Xi 

X~(t) 500 250,00 456.00 509.05 509.05 509.05 509.05 509.05 509.05 
525 262.50 478.80 534.50 534.50 534.50 534.50 534.50 534.50 
550 275.00 501.60 559.95 559.95 559.95 559.95 559.95 559.95 
575 287.50 524.40 585.40 585.40 585.40 585.40 585.40 585.40 

Y, 

) '~( t)  3000 150.00 465.00 795.75 1143,04 2054.67 3011.88 3413.91 3624.97 
3025 151.25 468.88 80738 1152.56 2071.79 3036.98 3442.36 3655.18 
3050 152,50 472.75 809.01 1162.09 2088.91 3062.08 3470.81 3685.39 
3075 153.75 476.63 815.64 1171.61 2106.03 3087.18 3499.25 3715.60 

Xi 
X~n~(t) 500 0 0 9.~1 9.04 9.04 9.04 9,04 9.04 

525 0 0 34.50 34.50 34.50 34.50 34.50 34.50 
550 ~ 0 1.60 59.95 59.95 59.95 59.95 59.95 59.95 
575 0 24.40 85.40 85.40 85.40 85.40 85.40 85.40 

E 

Yyn~(t) 3000, 
3025 
3050 
3075 ~ 

0 0 
0 0 
0 0 
0 0 

0 143,04 1054,67 2011.88 2413.91 2624.97 
0 152.56 1071.79 2036.98 2442.26 2655.18 
0 162.09 1088.91 2062.08 2470.81 2685.39 
0 171.61 1106.03 2087.18 2499,26 2715.60 

Table 7: Cuumlative insurer's and reinsurer's payments 

'5,k, show tile evolution of tile figures from 500 for Fire claims and from 3000 for MTPL claims 
iu order to sce figures different from 0 for the reinsurer's payments, 
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4.3. TECHNICAL RESERVES 

In an  ideal s i tuat ion the  claims manage r  is able to calculate exact  reserves for a loss X i  or Y~: 

n x , ( 3 + 0 . 5 )  = X,~(,~ +O.5)-  X y ( j  +0.5) j ~ l ) , l  . . . . .  n, 

~ Y , ( j + 0 . 5 )  = Y , ~ ( n + o . 5 ) - r , ~ ( j + 0 . 5 )  , j = O , l  . . . . .  ,~. 

With in  our  numerical  example,  we have 

t 
X~ 

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 

nX~(t) 0~ 259.05 53.05 0 0 0 0 0 0 
272.00 55.70 0 0 0 0 0 0 

550 284.95 58.35 0 0 0 0 0 0 
575 297.90 61.00 0 0 0 0 0 0 

nY~( t )  3000 3474.97 3159.97 2829.22 2481.93 1570.30 613.1)9 211.07 0 
3025 3503.93 3186.31 2852.80 2502.62 1583.39 618.20 212.82 0 
3050 3532.89 3212.64 2876.38 2523.30 1596.48 623.31 21,1.58 0 
3075 3561.85 3238.97 2899.95 2543.98 160956 628.42 216.34 0 

Table 8: Ideal reserves 

However there m a y  be sys temat ic  deviat ions from these exact  reserves. Let  us assume tha t  
we have observed a pa t t e rn  of deviat ion of the incurred loss (overs ta tement  or understate-  

ment)  : dF*re(to) . . . .  , dfire(t~) or dMTPL(tO),..., dMTPL(t~,) where d(tj) = 100% if there is 
no deviat ion of reservation at t ime t j .  T h e  incurred loss and tile outs tanding,  for a loss Xi  
or Y~, may  now be defined as follows : 

IX i ( j+0 .5)  = d ~ ' i T ~ ( j + O . 5 ) X ~ ( n + 0 . 5 )  , j = 0 , 1  . . . . . .  ~, 

RX,(3 + 0.5)  = ~ x , ( j  + 0 .5)  - x ~ ( i  + 0 .5)  , j = o, 1 . . . . .  n,  

I Y ~ ( j + 0 . 5 )  = dMTPL(j+O.5)YzE(n+0.5) j = 0 , 1  . . . . .  n, 

R Y , ( j + 0 . 5 )  = IYa(j+0.5) Y~E()+0.5)  j = 0 , 1  . . . . .  n. 

1 3 2  



Let us assume tha t  the overstatement pat tern is given by 

t t 0.5 1.5 2.5 3.5 4.5 5.5 
dFire 100% 100% 100% 100% 100% 100% 

dMTPL 125% 125% 125% 125% 105% 105% 

6.5 
100% 
100% 

Table 9: Overstatement pat tern  

We then have the evolution of the outstanding and incurred losses : 

L 100% 
100% 
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t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 
Xi 

lXi ( t )  500 509.05 509.05 509.05 509.05 50905 509.05 50905 509.05 
525 534.50 534.50 534.50 534.50 534.50 534.50 53450 534.50 
550 559.95 559.95 559.95 559.95 559.95 559.95 55995 55995 
575 585.40 585.40 585.40 585.40 585.40 58540 58540 585,40 

RX,( t )  500 259.05 53.05 0 0 0 0 0 0 
525 272.00 55.70 0 0 0 0 0 0 
550 284.95 58.35 0 0 0 0 0 0 
575 29790 61.00 0 0 0 0 0 0 

Y, 

lY,(t)  3000 4531.22 4531.22 4531.22 4531.22 3806.22 3806.22 3624.97 362497 
3025  4568.98 4568.98 456898 4568,98 3837.94 383794 3655A8 3655.18 
3050 4606,74 4606.74 4606.74 4606.74 3869.66 3869.66 3685.39 3685.39 
3075 4644.50 4644.50 4644.50 4644.50 3901.38 3901.38 371560 3715.6~ 

RY,(t) I3000 4381.22 406622 3735.47 3388.18 1751.55 794.34 211.07 o 

1 3025 4417.73 4100.10 3766,59 3416.41 1766.15 80096 212.82 1) 
3050 4454.24 4133.99 3797.72 3444.65 1780.75 80758 214.58 0 
3075 4490.75 4167.87 3828,85 3472.88 1795,34 81420 21634 0 

Table 10: Insurer 's  reserves and incurred losses with over.~tatcnltuit 

From the evolut ion of the incurred losses, i t  is ~xow possihlc to derive 11~c e\ 'ohltiou tff dw 

incurred losses for the excess of loss reinsurer : 

I X f f e ( j + 0 . 5 )  = min(Lv~re,max(O, l X i ( 2 + O . 5 ) - P F i , , , ) )  j = 0 . 1  . . . . .  n. 

IYzrte(5 + 0.5) = min(LMTPL,ma-x(O, IY~(j + 0.5) - P.',ITI'L)) J = 0, 1 . . . . .  . .  

With in  our numerical example we have 
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t I 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 
xi 

0 9.04 9.04 9.04 9.04 9.04 9.04 9.04 9.04 
25 34.50 34.50 34.50 34.50 34.50 34.50 34.50 34.50 
50 59.95 59.95 59.95 59.95 59.95 59.95 59.95 59.95 
75 85.40 85.40 85.40 85.40 85.40 85.40 85,40 85.40 

~y,n'(t) 

Y, 

3O00 
3025 
3050 
3075 

3531.21 3531.25 3531.25 3531.25 2806.22 2806.22 2624.97 2624.97 
3568.97 3568.97 3568.97 3568.97 2837.94 2837.94 2655.18 2655.18 
3606.73 3606.73 3606.73 3606.73 2869.66 2869.66 2685.39 2685.39 
3644.50 3644.50 3644.50 3644.50 2901.38 2901.38 2715.60 2715.60 

Table 11: Reiusurer's incurred losses 

Our  aim is to obtain the distribution of the paid claims and the distribution of theloss reserves 
at  times j + 0.5 , j = 0, 1 , . . .  ,n .  This will allow us to obtain average values and so a cash 
flow model will be built in order to find the net present value of the business. This will allow 
us to determine if the business is worth the value or not. However before obtaining these 
distributions, we first have to consider some clauses tha t  may affect the claims individually 
or in the aggregate. 
It should be clear that  the extension to multiple insurance lines is immediate. However, for 
educational purposes, we will limit ourselves to the methodology for two lines only. 

4.4. STABILITY CLAUSE 

If the a t tachment  point {P) of the treaty is fixed, the reinsurer will take all future inflation 
during the development of the claim for his own account. Indeed once the loss is exceeds the 
a t tachment  point, all future increases (except the par t  of the loss exceeding the cover of the 
treaty) due to inflation are borne by the reinsurer only. In order to protect  themselves against  
this kind of possible moral hasard,  reinsurers have introduced the stability clause. With  this 
clause the reinsurer is willing to optimally share the future inflation between the ceding 
company and himself. There are several variants of the stability clause (see e.g. Gerathewoh[ 
(1980) for details). In this paper, and in part icular  in our numerical application, we will 
work with the so-called "da te  of payment" stability clause. When this clause is applied, the 
a t tachment  point and /o r  the cover of the treaty are indexed each year with the following ratio 

sum of actual payments 
ratio = 

sum of adjusted payments'  

where adjusted payments means that  each payment is discounted to the inception of the 
treaty with use of a conventional index, let us say the inflation index. The interested reader 
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is referred to Walhin et M. (2001) for further details. 
We thus arrive at future attachment points and covers : 
PFi.e(to), P.'ri,-e(h) . . . . .  Pl~=~(t.), PMTPL('L1), P~.ITpL(t~) . . . . .  P~tTpL(tn) ,  
Lrir~(to), LFire(tl ) , .  . . , LFire(tn) and LMTPL( t l ) ,  LAITPL(t2) . . . . .  LMTPL(I , , )  instead of sin- 
gl~ PFire, PMTPL,  LF*re and LMTPL.  
In accordance with the hypotheses on inflation, we will assume that PF~re(J +0.5) = PF,,'~(3), 
P M T P L O + 0 . 5 )  = PMTPL( j ) ,  LFire(j+O.5) = LFire0) and LMTPL( j+O.5 )  = L M T p L ( j ) ,  j = 
0 , 1 , . . . , n .  
The evolution of the cumulative paid loss and incurred loss, for a loss X, or )~. flu' the reinsurer 
uow reads : 

x,~R'( j  + 0 .5 )  = m i n ( L F , ~ 0  + 0 . 5 ) , m ~ × ( 0 ,  X~, : ( j  + 0.5)  - P ~ , , ~ ( j  ÷ 0 . 5 ) ) )  , j ~ 0, I . . . . . . .  

Yz~R'(j+0.5) = min(LMrPL( j+O.S) ,max(O, i ;E( j+0.5)  PMTPL(J+05) ) )  • ) = 0 .  I . . . . .  ~,. 

IX,n~(j + 0.5) = min(LF,~(j 4 0.5),max(0,1X,(j + 0 5 ) -  PF,,~(J + 0.,5))) . j ~: O. [ . . . . .  r~, 

IY~a*(j+0.5) = min(LMTpL(j+O.5),max(O, IY , (3+0.5)  Pt,~v,oc(j+O.5))) . ) = 0 . 1  . . . . .  n 

When the claim is finally settled, both situations leaxl to the same repartitio~ of the lo~,s 
between the insurer and the reinsurer. The only difference is in the evolution of the c,xsh 
flows. 
Let us assume that the date of payment stabifity clause is applied to the attachment point 
and to the limit of the MTPL claims with a margin of 10%, i.e. the payments will be adjusted 
only if the claims index shows an evolution larger than the margin (see SValhin et aI. (2001) 
for formulae details or Gerathewohl (1980) for further general details on the subject). The 
selected index is the claims index. It is also assumed that the application of the stability 
clause is based on incurred losses, that is, outstanding losses are used, and discounted as if 
they were payments. The attachment point and linfit for the Fire claims are fixed, which is 
not illogical since Fire is not long-tail business. The evolution of t he attachment point and 
limit for the MTPL claims is the following : 

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 
1000 1000 1000 1086.58 1108.74 112433 1129.9,1 113t99 
4000 491)0 4000 434630 4434.96 4497.32 .1519.75 1527.!)5 

Table 12: Evolutiou of the MTPL layer with stability clause 
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The payments and incurred losses of the reinsurer now read 

t 
x~ 

Y, Em(t)  ~ 3oo0 
3025 
3O5O 
3075 

X, 

IY, R~(t) 3000 
3025 
3050 
3075 

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 

0 0 0 56.46 945.93 1887.55 2283.97 2492.98 
0 0 0 65.99 963.05 1912.65 2312.42 2523.19 
0 0 0 75.51 980.17 1937.75 2340.87 2553.40 
0 0 0 85.03 997.29 1962.84 2369.32 2583.61 

3531,21 3531.25 3531.25 3444.64 2697.48 2681.89 2495.03 2492.95 
~3568.97 3568.97 3568.97 3482.40 2729.20 2713.61 2525.24 2523.19 
3606.73 3606.73 3606.73 3520.16 2760.92 2745.33 2555.45 2553.40 
3644.50 3644.50 3644.50 3557.92 2792.64 2777.05 2585.66 2583.61 

Table 13: Reinsurer's payments and incurred losses with stability clause (MTPL only) 

4.5. INTERESTS SHARING CLAUSE / LOSS ADJUSTMENT EXPENSES CLAUSE 

When the claims development is long, it is expected that legal interests will have to be paid. 
The longer the claims development is, the higher the legal interests are. Once again for 
moral hazard reasons it may be tempting from the reinsurer's point of view to share the 
legal interests proportionnally between the cedent and the reinsurer. This is the aim of the 
interests sharing clause which is common practice, e.g. in Belgium. 
The interests sharing clause states that the legal interests have to be shared between the 
ceding company and the reinsurer according to the pro rata liability of the reinsurer in the 
total liability of the loss excluding the legal interests. This means that the legal interests 
have to be excluded from the incurred loss before the application of the treaty. Afterwards 
they are divided between the ceding company and the reinsurer in accordance with the pro 
rata liability of both parties in the loss. Let us assume that on average a proportion 6Fire 
or ~MTPL of the incurred loss represents the interests. Note that it is reasonable to assume 
that this proportion is a function of the loss. However, in practice, it is extremely difficult 
to estimate the average proportion of tile legal interests in such a way that it does not seem 
necessary to assume a varying proportion. Nevertheless it is possible to work within an 
extended model. The interested reader is referred to V~'alhin et al. (2001) for further details, 
A common practice on North American markets is that loss adjustment expenses undergo 
the same treatment as the legal interests in Belgium, i.e. they are also shared on a pro rata 
basis between the insurer and the reinsurer. These expenses may thus be treated exactly as 
are the legal interests, within the los~ adjustment expenses clause. 
We will assume an interests sharing clause only for the MTPL claims and we assume that the 
portion of interests in the losses is 6 = 15%. 
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The payments and incurred losses of the reinsurer now read 

t ' 0.5 1.5 2.5 3,5 4.5 5.5 6.5 7.5 

~ ( t )  

x, 

3OOO 
3025 
3050 
3O75 

0 1 2 3 4 5 6 7 

0 0 0 0 750.27 1689.14 2084,57 2293.22 
0 0 0 0 767.39 1714.24 2113.02 2323.43 
0 0 0 0 784.51 1739,33 2141.47 2353.~1 
0 0 0 0 801.63 1764.43 2169.92 2383.85 

IY/u(t) 

X~ 

3O00 
3025 
3050 
3O75 

3354.74 3354.74 3354.74 3252.89 2501.82 2483.48 2295.63 2293.22 
3392.50 3392.50 3392.50 3290.65 2533.54 2515.20 2325.84 2323.43 
3430.26 3430.26 3430.26 3328.41 2565.26 2546.92 2356.{}5 2353.64 
3468.02 3468.02 3468.02 3366.17 2596.98 2578.63 2386.26 2383.85 

Table 14: Reinsurer's payments and incurred losses with interests sharing clause (MTPL only) 

4.6. LATTICE DISTRIBUTIONS 

Most probably the random variables derived above are not of Lattice type. So it is necessary 
to make a rearithmetization of them. This is done again with the rounding method. 
With the lattice version of the payments and incurred losses, we will be able to apply Panjer's 
algorithm in order to obtain the aggregate claims / incurred losses for e~tch development year. 

138 



As an  example ,  here are some rear i thmet ized  d is t r ibut ions  : 

e t x y ' N t )  = ~] 

P [ i x : , ( t )  = ~] 

Pi~Y,"~(t) = xl 

t 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 
2: 

0 0.752 0.400 0.310 0.310 0.310 0.310 0.310 0,310 
25 0.017 0.038 0,048 0.048 0.048 0,048 0.048 0.048 
50 0.015 0.034 0,042 0,042 0,042 0,042 0.042 0.042 
75 0.014 0.031 0.038 0.038 0.038 0.038 0.038 0.038 

0 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 
25 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 

50 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 

75 0.038 0,038 0.038 0.038 0.038 0.038 0.038 0.038 

0 0,999 0.997 0,990 0.981 0.919 0.802 0.733 0.686 
25 0.000 0.000 0.0131 0.001 0.005 0.009 0.014 0.017 
50 0.000 0.000 0.000 0.001 0.002 0.008 0.000 0.016 
75 0.000 0.[3(}0 0.0[30 0.001 0.004 0.008 0.013 0.000 

0 0.255 0.255 0.255 0.407 0.626 0.648 0.686 0.686 
25 0.056 0.056 0.056 0.000 0.022 0.000 0.017 0.017 
50 0.000 0.00(3 0,000 0.040 0.020 0.020 0.016 0.016 
75 0.050 0.050 0.050 0,037 0.0013 0.018 0.000 0.{300 

Table 15: Rear i thmet ized  re insurer ' s  paymen t s  and  incurred losses d is t r ibut ions  

4.7. CLAUSES LIMITING THE LIABILITY OF THE REINSURER 

The re  are two clauses which may  limit the  liability of the  re insurer  in an  excess of loss treaty.  
T h e  annual  aggrega te  l imit  (AalFire or AalMTPL) on the  one hand  is the  ma x ima l  agg rega t e  
loss the  re insurer  will pay. The  annual  aggrega te  deduct ible  (AadFire or AadMTPL) on the  
o ther  hand is a deduct ible  on the  aggrega te  loss of the  reinsurer.  Both annual  clauses m a y  
coexist.  In such a case the  aggrega te  loss of the  re insurer  reads  : 

N 

S x~n~(J + 0.5) = min(AalF~re,max(O,Z X~Re(t  + 0 . 5 )  - AadFire)) , j = 0,1 . . . . .  n, 
i=l 

M 
Sy~n,(t + 0.5) = min(AalMTPL,max(O, ~ Y, ERe(t + 0.5) - AadMTpL)) , j = 0, l . . . . .  n,  

i=l 
N 

SlXn~(t + 0.5) = min(AalFire,max(O,Z IXi~( t  + 0.5) - Aadf i r e ) )  , j = 0,1 . . . . .  n,  
i=l 

M 

S i y , ~ ( t  + 0.5) = min(AalMrPL, max(0,  Z IYi~(t  + 0.5) - AadM'rPL)) j = 0, 1 . . . . .  n. 
i=l 
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Let us a s sume  tha t  there is no annual  aggrega te  deduct ible  and no annual aggregate  limit for 
the  sepaxate t reat ies  : 

AadFtre  = O, 

A a d M T P L  = O, 

AaIFtre ~ 0¢. 

A a l M T P L  ~ oc. 

We have the  following dis t r ibut ions  

0.5 

P [ S x n , ( t ) = x  ] 0 !0.538 0.223 0,178 0.178 
,25 , 0.023 0.021 0.021 0.021 

50 0.021 0.020 0~020 0.020 
75 0.019 0.019 0,019 0.019 

P [ S L , ~ a , ( t ) = x  I , 0 0.178 0.178 0.178 0.178 
!25 0.021 O r a l  0021  0.021 

5o 0.020 0.020 0.020 0.020 
75 !0.019 0.019 0,019 0.019 

P[Sy~ , ( t )  = x }  0 0.999 0.987 0.953 0.908 
25 0.000 0.001 0,002 0.005 

150 l i fO00 0.001 0,0[)2 0.003 
75 0.000 0.001 0,0/)2 0.004 

P [ S t v a , ( t ) : z  ] 0 0.024 0.02-1 0,02,1 0.051 
, 25 0.007 0,007 0.007 fr0(0) 

50 0.001 0.001 0.001 0.011 
175 0.006 0.006 0.006 0.010 

Table 16: Reinsurer ' s  aggrega te  payments  

1.5 2.5 3.5 4.5 5.5 6.5 7.5 

0.178 0.178 0.178 0.178 
0.021 0.021 0.021 0.021 
0.020 0.020 0.020 0.020 
0.019 0.019 0.019 0.019 
0.178 0.178 0.178 0.178 
0.021 0.021 0.021 0.021 
0.020 0.020 0.020 0.020 
0.019 0.019 0.019 0.019 

0.667 0.371 0 2 6 3  0.208 
0.017 0,017 0.018 0.(t18 
0.008 (I.(116 (I.001 01117 
0.015 0.015 0.017 0.001 

(l.151 0A72 0.208 0.208 
0.017 0.1)01) 0.018 0,018 
(k016 0.017 0.017 0.(117 
0.(X)2 t1.016 0.1~4)1 0.001 

and i l lcmred losses 

5. GLOBAl,  D[STRIBUTIONS AND GLOBAL FXPFCTED VALUFS 

As we ~,re interested in a global t rea ty  combin ing  Fire mid M T P L  claims, wv have tt) obtain 
the global d is t r ibut ions  of : 

S ( x + v ) ~ a , ( j  + 0.5) = min(Aal ,  max(O, Sx~,,.(3. + 05)  + S~,,:,, () + 05)  .4ad)l . j - 0 1 . . . .  , .  

S ( t x + J y ~ , ( j  + 0.5) = min(Aal, max(0, S t x , ,  (J + () 5) + S t i , ,  ( j  -r 0.5) .4od)) . i t). 1 . . . . .  ;,. 

where A a l  is a mult i l ine annual aggrega te  limit aud A a d  is a multi l ine annual a g g w g a t e  
deductible.  

We  will a s sume  tha t  there is an annual aggrega te  deductible on t im ghfi}al tr('a~y (muhi lme  
aggrega te  deductible)  : 

A a d  = 1000, 

A u t  ~ ~c. 
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Note that  Ribeaud (211tX)) used the terminology "Multi l ine aggregate  deductible" / "Multi l ine 
agg, re~,at(, limit". 
These  dist l ibutions i~,l'e e,q.sily obt;~int'd [)v ('onvohltions beca'ase for our model  we assumed 
lulll IIHI ilnlel~end(!n('i(?s . 
Not(, thai ill case uf dellendencies bet'tvetql t he  claim amounts  or between tile claim frequencies, 
alg~nqt hms exist, giving the joint distributious of (Sx::m, S!,.~:,, ) or (S Ix , , ,  Str.,~). See e.g. 
\ \h lh in  aud Paris (2000a) tot the til'st case of dependency and V~'alhin and Paris (2000b) for 
the s(woud (-~tsc ot dependency. |t~lviug tile joint distributions, it then becomes in)mediate to 
obtniu tile distributious of S V~:I¢. + S,~ ~u, or Sixn,  + S]~,'R~. 
Within our numerical example  we obtain 

~[Sx,:.. (t) + St,:., (t) = z] l  

?[S~x,:,,, (t) + S ~  . . . .  (t) = x] 

t 0.5 

0 0.537 
25 0.023 
50 0.021 
75 0.019 

100 0.018 
125 0.016 

0 0.004 
25 0.(102 
50 0.001 
75 0,002 

100 0.002 
125 0.001 

1.5 2.5 3.5 4.5 5.5 6.5 7.5 

0.221 0.170 0.162 0.119 0.066 0.047 0.037 
0.021 0.021 0.020 0.017 0.011 0.009 0.008 
0.020 0.019 0.019 0.015 0.011 0.006 0.008 
0.019 0.019 0.018 0.016 0.011 0.008 0.005 
0.018 0.018 0.018 0.014 0.010 0.008 0.007 
0.017 0.017 0.017 0.015 0.010 0.008 0.007 

0.0(14 0.004 0.009 0.028 0.031 0.037 0.037 
0.002 0.002 0.001 0.006 0.004 0.008 0.008 
0.001 0.001 0.003 0.006 0.007 0.008 0.008 
0.002 0.002 0.003 0.004 0.1306 0.005 0.005 
0,002 0.002 0.002 0.006 0.007 0.007 0.007 
0.001 0.001 0,003 0.006 0.007 0.007 0.007 

Table 17: Global payment  and incurred losses distr ibutions 

As we will use a cash flow model  tha t  is introduced in section 6 ( investment  decision process) 
we are interested in obtaining the expected values of the  future payments  and outs tanding.  
The  incremental  payments  are 

Paid(0.5) = S(x.y)~n.(O,5), 
Paid( j+0.5)  = SL~+y)~:n,(j +0.5)-S{x+),i~n~(t.7_o.5) , j = 1,2 . . . .  ,n ,  

and tile loss reserves are 

Reserve(j  + 0.51 = S(ix+tY}n,(.1 + 0.5) - S(x+y)t:ne(j + 0.5) , i = 0, 1 . . . . .  n. 

This is the situation where the reinsurer follows the information given by the  cedent.  Another  
si tuation might  be tha t  the reinsurer books the u l t imate  loss in such a way tha t  he avoids 
overs ta tement  and / or  unders ta tement  of the ceding company ' s  reserves. In this case the 
loss reserves read : 

Reser've(j + 0.5) = S(x +y)~ne (n + 0.5) S(x+y)~n~ ( j  + 0.5) 3 = 0, 1 . . . .  ,7t. 
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We are now able to obtain the average aggregate payments  and average aggregate  reserves 
for the reinsurer : 

- paid losses : 

- reserve : 

PL( j+0.5)  = - E P a i d ( 3 + 0 . 5 )  , j = 0 , 1  . . . . .  n. 

RES( j  + 0.5) = EReserve(j + 0.5) j = 0, l , . . . , n .  

Let us assume tha t  the share of the reinsurer in the t reaty  is 20%. It is indeed common 
practice tha t  several reinsurers take a share in a given treaty. Unless the ceded risk is really 
small, a cedent would not accept to work with only one reinsurer for solvency reasons. 
T h e  following table gives the expected aggregate payments  and loss reserves of the reinsurer 
(for a share of 20%). We assume tha t  the reinsurer follows the reserves of the cedent. Fur- 
thermore  we will assume tha t  all cash flows related to losses happen  in the  middle of the year. 

t ] 0,5 1.5 2,5 3.5 4.5 5.5 6.5 7.5 [ 

] -PL( t )  27.19 59.78 21.70 5.78 35.10 76.38 49.29 30.04 
RES(t) 533.50 473.72 452.01 387.61 192.03 110.69 30.41 0 

Table 18: Expected  aggregate payments  and loss reserves of the reinsurer 

Let  us assume tha t  the est imated premium income is 50000. This  inlormation is impor tant  
as the reinsurance p remium is usually expressed as a percentage of the cedeut 's  p remium 
income. One  traditionally speaks of a rate. 
By adding up the payments  we immediately arrive at  the technical rate (TR)  : 

305.25 
TR = = 3.05%. 

20% x 50000 

This  ra te  is not satisfactory because it does not take into account the investment income the 
reinsurer can obtain on loss reserves. On  the other  hand neither does it take into account the 
cost of  reserving (in part icular  when there is overstatement) .  Finally, it does not take into 
account the fact tha t  the total payment  is a sum of different cash flows. This  is the reason 
why we introduce the following cash flow model. 
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( ) .  T H E  ( ' A S H  FI.O\V .XlOI}I£L 

Thi~  sec t ion  is a d a p t e d  tionz W a l h i n  t't al. (20(11). 
~Wh~,ll H I't'ill.*.itll(!F M,'allt5 Ill writ( ,  btlnine~-;~-, he has  to  I)lt)vidt! a nolvelwy illillgill, or  %Olltl, 

a l loca ted  cap i t a ]  : C .  Le t  us  it~,Sllllll , t ha t  tilt! I( ' t l I l l |  a f t e r  t ax  w h i ( h  Ill(' sh~lelllddt ' l '~ dtqllaltd 
f r m u  th i s  ( ' ap i ta l  is co+'. \Ve call  ¢'o¢' tilt, ('or.t ot  Calntal.  It ('HI| I)(, dl,rixa,<l e , g  v ia  tilt '  ( ' A P 3 1  
( C a p i t a l  A.',.~et Pr i t ' i l Jg  Mode l .  +tn, e.g. B r v . h , y  a n d  M y e r s  (2C~JO)) will , i t '  i'o¢' - J'~, -.~ ~PI?+ t I 

is t he  r i sk- f ree  r a t e  a n d  PIt is tilt '  r i sk  t)rt?lllimll o[  t]l{' lllal'k('t. .$ ill('+lSlllt ~, tilt '  n3"ntenta~il 
r isk,  i .t!.  m a r k e t  ~et ls i t ivi ty,  as,socmt(al to  tilt? ilP.'t'Stlltt'llt. 
|11 thc  pre:.cellt pal)e(" "~.x! ,~L'~Stlltt(' (It(' Salll(' ((JNt (J~" ('it|)it*ll tt'lli(t("~'('l" tiC(' t3"l)(' o f  bI|NilL(~:~N i '~, 
Thi~  is c lear ly  a Mml) l i fy ing  hyltOt heni~;. Ore '  m a y  I)(, Wml>t(,d to  w o r k  wi th iH a m ~ r e  geue l a l  
lllOd{!l W|I~21"I? t 'a('h Jill(? o[  [lllSill(,~;~ hHs i ts  o w n  ('ost o f  cap i t a l .  For  t'Xall|l)]t' it in ('lOll IhHl t'HI 
bn.sint:~,n h m ' d l y  c o r r e l m e d  w i t h  tb l '  m m k v t ,  imply i J lg  tha t  t hv  t'o~,t tff t ' ap i t id  h n  ~'al b.~ilJ~,s~ 
s h o u l d  bc a b o u t  t i le rink fie( '  vail ' ,  l n d e p t ' n d e z : l y  tilt, r l 'qui l t 'd  c ap i t a l  tor w l i t i l l g  f a t  bU~mC'~s 
is l a rge  d u e  to tilt '  h i g h  w)latiiit: , '  of  thin killd of  bu~,ilt('ss al ld tit(' r i sk  of  l a rge  dt 'viat ioll~.  
In ou r  t'att4e we hahn, two t y p e s  of  bu~itlt,s~ to i~llal3xt, : 31OtOl" T h i r d  P a r t y  Liallil ir  3 H|lti Fi~e. 

E','t!II if  we h a d  two  diffvrell t  cos t s  (if t 'al)ital,  it is rea l ly  Ilot ( ' lear how 'a'e couht  usc  thorn. A~ 
tA'(! llliX b o t h  tyl)t!s of  I)llsillt,~.s. Wt' llavt, It) l i s t  OllP i't~st t)f cal) i tal ,  pos s ib ly  ~Olllt' (wt , ighted)  
a v e r a g e  of  t i le  ~ll)ovt,-lllOlllioll(,d t 'osts  o[' cap i ta l .  T h e  l~re~,llt lllultililll '  ( 'ovt'r sht;gv~, a lhllitalit~lt 
o f  wl l rkiHg w i t h  tliff0reltt t'ost:-i o1' cap i t a l .  T i l t ' i f  in ch ' a r ly  I't)Olll |k)l f l tr tht ,r  lest,: trch al this 
I>o i l t t ,  

T r a d i t i o n a l l y  we say  tha t  tilt, bllSilll,ss it4 Wol | h  till.' valllt, if" tilt '  Ii('t |)l'('s('llt vilhl(, O [  itll f'/l|lll'(' 
t'~-'~h flows, i n c l u d i n g  Calfiial  a l lo t 'a t i tm alld I~,h,at4e. is I~t)',itivc. A nil va lue  inll>lit~ t h a t  tilt '  
I(,tltlil(,lll('llt~; ~}f lilt '  s h a l e h u h h , r s  a~t, .lll'~l ftdfilh'tl. A l~onitivt ' valtlt, imp l i e s  s o m e  t ' lcat iol l  of 
vahlt,  flit t h e  sl tal t ' la~hlt '~.  In the  [a~tt'l t-ant ~vl, ]lave tilt '  f i l l lowing iuet lual i ty  : 

( ' F ( t l )  
0 < 2_., (1 + cog')t, ' 

W e  will u~,e t h e  i ' ash  f l . w  m,~dl,I ia  (lib, way  m i d  say  tha t  a t t ' t 'a ty is ace t .p tah le  if Ill(' uet  
l)l('n¢ll! v;dllt, ot  all fll l l l l t '  i'~lsll ttowt4, i n c h l d i n g  t h e  var ia t io l l s  ill a l lot 'a tec |  cap i t a l ,  it4 l)o~,itivt'. 
Let  u~ Hole t h a t  if  t h e  f i lm  it4 uot hllallcoll t 'x l 'hls ively t h l o u g h  oqu i ty  c ap i t a l  bu t  also t h r o u g h  
sonic  t lebt  tit hyl}lid cap i t a l ,  co~" I~t't'l~ltit'~ a wt ' ight t ,d  a v e r a g e  t'tl~t o f  c a p i t a l  (set, e.g,  Bl'ealey 
a m l  M y e r s  (211{10) Ib~ dr,tail(4). T h i s  Im~x,ver  is ol}viousl.v not  vt,ry i n t p o r t a n t  for insurer ' s  a n d  
l'Pillnlll't'lS w h o  a l l '  ens l 'mia l l3  tillltlltt,d t h lo l l gh  tXtllitv cap i t a l ,  V~'e will assltlllO t i le  COSt o f  
capita] to bt, :'o:' : 119~. 

~,W{, h a v e  tlll'tw tyl}('s of  cikt4[l thlws r t ' la ted ttl Ittsst's : 

- p a i d  h~st4t's 
P L ( j + { I . 5 )  : EP, id ( j+11 .5 )  , j = 0 , 1  . . . . .  t~. 

- v a r i a t i o n  ~ff tht. loss rt,st, lvt.  : I ' R ( j  + 0 .5 ) .  ) = O. l . . . .  o : 

RESt . )  + {I.5) - ERc.,,crvc(j + {I.5) j = {}. 1 . . . . .  n.  

I ' R ( I I . 5 )  - - R E S t 0 . 5 ) .  

I ' R ( j + t l . 5 )  - R E S ( j + I . 5 )  R E S ( j + 0 . 5 )  j = l . 2  . . . . .  , .  
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- inves tment  income on reserve : IR(j  + 0.5),  j = 0, 1 , . . . ,  n : 

1n(0.5)  = 0, 

IR(j+0.5) = rRES( j -0 .5 )  y -  1 . . . . .  n. 

We logically a s sume  tha t  investment  income on the reserves are paid wi th  a one year 
delay. We will a s sume tha t  the interest ra te  obtained on the loss reserve is r = 5%. We 
observe a l imitat ion of our model. I t  is not possible to account for two different interest  
ra tes  on the  loss reserves (note that  it would be possible if there were no clauses on the  
global distr ibution,  which seldom is the  case). 
"vVe can now define the aggrega te  cash flow at  the middle of the  year  : 

CF( j+O.5)=PL( j+O.5)+VR(2+O.5)+IR( j+0 .5 )  , j - 0 , 1  . . . . .  ,l. 

We will a s sume tha t  all the  other  cash flows occur at the beginning [if the ) 'ear : t 3 = 
j ,  j = 0 , 1 , . . . ,  n + 1. These  cash flows are : 

- commercial premium (CP(j)). 
The premium may be thought to be incepted at time O. This is aot always the 
case. Often there is a m i n i m u m  deposi t  p remimn at  t ime  O. The  balance is paid at 
t ime  1. We do not take into accolmt (but  it is not difficult to do so) the fact that  
the  m i n i m u m  deposit  p r emium is often paid in different ins ta lments  (tree quar ter  
every three months  or one half  every six months) .  Moreover we will see m section 
7 tha t  p r em ium ad jus tmen t s  may be necessary. Thus  p r e m i u m  cash flows at t imes 
other  than  0 and 1 are not excluded. V~'e will assume tha t  there is a m i n i m u m  
and deposi t  p r emium of 80% of the expected commercial  re insurance premium.  
By deposi t  we mean  tha t  80% of the  p r emimn  is paid  at t ime  t = I} whereas  the  
balance is paid at t ime  t = I. By min imum we mean  that  at  least the  reinsurance 

ra te  t imes  80% of the  p remium income (es t imated by the cedent) will be paid. 
In case the  actual p r emium income is lower than  80% of the es t imated  p remium 
income, the  m i n i m u m  and deposit  p r emium is due. Vee assume that  the es t imated  
p r em ium  income will be the  actual one. 

- brokerage (B(j)). 
Brokerage,  if any, is tradit ionally a percentage of the commercial  p remium.  It  will 
thus  be deducted at t imes  p remiums  are paid. We will a s sume that  brokerage is 
10% 

- retrocession (R(j)). 
Cost of retrocession, if any, is not  the  p remium paid to the  retrocessionnaire bu t  
ra ther  the  expected value of this  p r e m i u m  minus  the  aggrega te  loss paid by the  
retrocessionnalre.  A possible modelizat iou is a percentage of the cmnmercia]  pre- 
m i u m  minus  a fraction of the paid losses. The  first percentage  is the  t radi t ional  
ra te  demanded  by the  retrocessionnaire on commercial  premiums.  The  lat ter  frac- 
tion represents  the  share  of the average claims the  retrocessionnaire is expected to 
pay. We will assume tha t  retrocession costs (p remiums)  are 3% of the cmnmercial  
p remium.  We assume tha t  on average 2% of the losses are paid by the retrocession 
(this  is assumed to be es t imated  wi th  the  developped model).  In other words we 
cede 2% of the  losses to the retrocession and the  p remium we are asked for that  
r isk is 3% of the commercial  p remium.  
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- administrative expenses (AE(j) ) .  
Administrative expenses may be of two types : fixed expenses and proportional 
expenses. The fixed expenses represent the fixed costs of the reinsurer (including 
the fixed costs of the priced treaty) whereas the proportional costs represent the 
costs directly associated with the management of the treaty. We assume that 
these proportional expenses are based on the paid losses (note that this is just 
an assumption that can be easily modified). It  is not illogical to admit that the 
expenses will be paid during the course of the treaty (think of the accounting and 
claims management of the treaty). So there may be a cash flow of expenses for 
all times j.  We will assume that administrative expenses ace 5 for the fixed part 
and 4% of the paid losses each year (the proportional administrative expenses are 
assumed to be paid at the end of the year). 

- variation in the allocated capital (VC(j)) .  
As announced in the previous section, some capital has to be allocated in order to 
run the business. However, at last at the end of the development, this allocated 
capital is released to the shareholders. In practice, the allocation rule may be such 
that the allocated capital is given back after x years or in function of the evolution 
of the loss reserves. So there will be variations in the allocated capital, exactly as 
there are in the loss reserves. Within our numerical example the allocated capital, 
C( j ) ,  j = 0,1 . . . .  ,n  + 1 is assumed to be 1.25 times the standard deviation of 

the ultimate aggregate claims, i.e. ~/Var(l  -7)S(X+y)Ea+(n + 0.5) where 3' is 

the fraction of the claims paid by the retrocessionnaire. We assume e.g. that 
the capital allocation is based on the standard deviation premium principle (see 
Walhin et al. (2001) for further details). We make the hypothesis that capital has 
to be allocated during three years. See Vv'alhin et al. (2001) for further details on 
capital allocation. 

- investment income on the allocated capital ( IC(j ) ) .  
As allocated capital is mobilized, an auto-remuneration of this capital is possible. 
Indeed the mobilized capital will be invested and will produce an investment in- 
come. Moreover one might think that this auto-remuneration is higher than the 
remuneration on the loss reserves because the latter axe probably invested in risk- 
free assets. So, while capital is allocated there is a cash flow of investment income 
on it at a return rate l = 7%. 

We are then able to define the cash flows at integer times : 

C F ( j )  = C P ( j )  + B(3) + R( j )  + AE( j )  + VC(3) + IC( j )  , j =O, 1 . . . . .  n + l. 

The problem of taxes remains to be treated. In order to find the tax we first have to 
define the taxable profit at times j and j + 0.5 : 

T a x P r o f i t ( j )  = CP( j )  + B( j )  + R( j )  + AE( j )  + IC( j )  , j = 0,1 . . . . .  n + 1, 

T a x P r o f i t ( j  + 0.5) = PL(3 - 0.5) + V R ( j  - 0.5) + I R ( j  - 0.5) j = 0, 1 , . . . ,  n. 

The tax cash flows are then 

Tax( j )  = r T a x P r o f i t ( j )  , j = 0,1 . . . . .  n +  1, 

T a x ( j + 0 . 5 )  = r T a x P r o f i t ( j + 0 . 5 )  , j = 0 , 1  . . . .  ,n. 
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where r = 30% is an average tax rate. It assumes all cash flows, including financial 
return, to be taxed at the same rate. This is obviously not always true and specific 
corrections are easy to include in the model according to the tax regime of the reinsurer's 
domicile. 
The treaty will be acceptable if 

n ~-~ CF(j)  - Tax(j) + ~ CF( j  + 0.5) - Tax(j  + 0.5) 

~ + ~ c ) 3  3=0 (1 + coc)J+o.a > O. 

The following table gives the cash flow model with the technico-finanrial premium. This table 
takes into account a reinsurer's share of 20%. 

t 0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 
T F P  294.69  0 0 0 0 0 0 0 0 

PL 0 -27.19 -59.78 -21.70 -5.78 -35.10 -76.38 -49.29 -30.04 
VR 0 -533.50 59.78 21.70 64.40 195.59 81.33 80.28 30.41 
IR  0 0 26,67 23,69 22.60 19.38 9.60 5.53 1,52 

CF(j) 294.69 
CF( j  + 0.5) 0 -560.69 26.67 23.69 81.22 179.87 14.56 36.53 1,89 

294.69 0 0 0 0 0 0 0 0 
C F  j + 0 . 5  

0 -532.18 22.81 18.25 56.37 112.46 8.20 18.54 0.86 

N P V  0 

Table 19: Cash flow model for the technico-financial premimn 

The technico-financial premium (TFP) is 294.69. 
The technico-financial rate is thus given by 

294.69 
T F R  - 2.95%. 

50000 x 20% 

It may seem surprising that the technico-financial premium is so close to tile technical pre- 
mium. This is due to the fact that there is a lot of overstatement by tile ceding company 
and that overstatement is followed by the reinsurer, We will make some sensitivity analysis 
on this aspect. 
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W e  now o b t a i n  t h e  c o m m e r c i a l  p r e m i u m  : 

j 0 I 2 3 4 5 6 7 8 
3 + 0 . 5  0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 

CP 
AE I 

It 
PL 
VR 
IR 

VC 
IC 

384.22 96.05 0 0 0 0 0 0 0 
- 5  - l . 0 9  -2 .39  -0 .87  -0 .23  -1 .40  -3 .06  -1 .97  120 

-38 .42  -9 ,61 0 0 0 0 0 0 0 
-11 .53  -2 ,34  1,20 0.43 0.12 0.70 1.53 0.99 0 6 0  

0 -27 .19  -59 .78  -21 .70  -5 .78  -35 .10  -76 .38  - 4 9 2 9  - 3 0 0 4  
0 -533,50 59.78 21.70 64.40 195.59 81.33 80.28 30.41 
0 0 26.67 23.69 22,60 19.38 9,60 5.53 1.52 

-497.94 0 0 497.94 0 0 0 0 0 
0 34.86 34.86 34.86 0 0 0 0 0 

CF(j)  -168 .67  117.88 33.66 532.36 -0 .12  -0 .70  -1 .53  -0 .99  -0 .60  
CF( j  + 0.5) 0 -560.69 26.67 23.68 81.22 179.87 14.56 36.53 1.89 

TaxPr(j )  329.27 117.88 33.66 34.42 -0 .12  -0 .70  -1 .53  -0 .99  -0 .60  
TaxPr( j  + 0.5) 0 -560.69 26.67 23.69 81.22 179.87 14.56 36.53 1.89 

Tax(j) 98.78 35.36 10.10 10.33 -0 .03  -0.21 -0 .46  -0 .30  -0 .18  
Tax(j + 0.5) 0 -168.21 8.00 7.11 24,36 53.96 4.37 10.96 0.57 

- o7 -267.45 74.34 19,12 381.71 -0 .05  -0 .29  -0 .57  -0 .33  -0 .18  

CF(j+OS~ 0 -372.53 15.97 12.77 39.46 78.72 5.74 12,98 0.61 [l+~oc} o 

NPV 0 

T a b l e  20: C a s h  flow m o d e l  for t h e  c o m m e r c i a l  p r e m i u m  

T h e  t o t a l  c o m m e r c i a l  p r e m i u m  is t h e n  

384 .22  + 96 .05  = 480 .27 ,  

w h i c h  p r o d u c e s  a r a t e  of  
4 8 0 . 2 7  

4.8O%. 
5 0 0 0 0  × 2 0 %  

S u m m a r i z i n g  we h a v e  t h e  fo l lowing  r a t e s  

T F R  2 . 9 5 %  

C R  4 . 8 0 %  

T a b l e  21: R a t e s  
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It is now easy to provide some sensitivity analyses. Let us compare the rates for different 
multiline aggregate deductibles (MAD). We will also give the rate in the ease where there is 
no overstatement for the MTPL claims : 

with overstatement without overstatement 
M A D  T R  T F R  C R  T R  T F R  C R  
1000 3.05% 2,95% 4.80% 3.05% 2.56% 4.35% 
2000 1.90% 1.89% 3.55% 1.90% 1.58% 3.18% 
3000 1.13% 1.13% 2.69% 1.13% 0.92% 2.40% 

Table 22: Sensitivity analysis 1 

We observe the effect of the overstatement on the technico~financial rate. The effect of the 
multiline aggregate deductible is equally important. Note that it would be difficult to obtain 
these rates without the comprehensive model we use. 

Let us now assume that there is an annual aggregate deductible for the MTPL and Fire claims 
of AadF,r¢ = AadMTPL = 500. To compensate, the multiline aggregate deductible becomes 
And = 500. We obtain : 

Table 23: Sensitivity analysis 2 

7. SPEC1AL CLAUSES 

It is often observed in excess of loss treaties that the reinsurance premiunl is a function of 
the excess of loss amounts. In these situations, governed by typical clauses, tile reinsurance 
premium is a random variable : 

PRe : plnit  + pRand. 

where pinit denotes the initial premium, which is not random whereas pn~,d denotes the 
random part of the premium. 
The clauses are 

- Paid reinstatements 

- Sliding scale premium 

- Profit commission. 

The practical pricing proceeds in two steps. The first one is easy : we merely calculate the 
commercial premium necessary to cover the treaty if there is no "random" clause. We then 
obtain the evolution of paid losses, loss reserves, investment income on loss reserves, allocated 
capital, investment income on allocated capital and administrative expenses. There is no 
reason to believe that these elements will be different in the cash flow model with "random 
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clause". We now move to the second step, i.e. the cash flow model  with the  " r a n d o m "  
clause. The  previous elements are fixed. Other  elements may  vary : p remiums,  brokerage, 
retrocession, and taxes. T h e  process will be iterative. ~,s a first guess we choose an initial 
p remium (or one limit of the scale in the case of a sliding scale). According to the evohttion 
of the incurred losses, this p remium will be split in several p remiums  in the future, i.e. 

- CP(O) = p t n ~  (or, more exactly, the min imum and deposit  p remium,  the balance 
of it which will be paid in t = 1) for a t reaty with paid reinstatements .  C P ( ) )  = 
future adjus tments  for re instatements  due to incurred losses hi t t ing the layer for 3 = 
1 , 2 , . . . , n +  1. 

- CP(O) = pt,~*t = P,n,~ (or, more exactly, the min imum deposit  p remium,  the balance of 
which will be paid in t = l) for a treat) '  with sliding scale. C P ( j )  = future adjus tments  
for j - rrl, m + 1 , . . . ,  n + 1 where m is the first year for which a p remium adjus tment  
is contractually agreed. 

- CP(O)  = p t m t  (or, more  exactly, the min imum deposit p remium,  the balance of which 
will be in t = 1) for a treat) '  with profit commi~ion .  C P ( 3  ) = future adjus tments  fur 
profit commission for j = m, rn  + 1 . . . . .  n + I where m is the first year for which a 
p remium adjus tment  is contractually agreed. 

With  this pa t te rn  of p remium pa) 'ments,  we immediately  obta in  the'  pa t te rn  of brokerage, 
retrocession and as a result the pa t te rn  of t&x. We are then able to calculate the  net present 
value of the business. If  it is positive we try a new p remium lower than  the previous one. If it 
is negat ive we try a new p remimn higher than  the previous one. The  trial and error  scheme 
is continued until the net  present value of the business is 0. 
Tile interested reader  will find more details in Walhin et al. (2001). 
We now present the pricing for the case of a sliding scale. We a/ways a.ssume the same 
conditions. The  sliding scale has a min imum rate R,m,~ = 3.75%, a loading f = ~ and we 
look for the m a x i m u m  rate  R,,~,,j,. 'We also assume that  the first p remium adjus tement  is 
foreseen after  three years. The  solution is given by Rma.r = 5.91%. The  following table gives 
the cash flows related to tile commercial  p remium : 

[ ~ ' P  ~ 0 t 2  3 4 5 6 7 -0 .18 0 
300.00 75.00 0- 180.28 -10.08 -29.6l  -1.51 -7.42 

Table 2,'1: Cash flow related to the commercial  p remium with a sliding scale 

We observe the part icular  pa t te rn  of p remium payment .  At t ime t = 0, 80% of the nf inimum 
premium is paid. At t ime t = 1, 20% of the minimal  p remium is paid. The re  are no 
adjus tments  tmtil t ime t = 3. At tha t  t ime a huge positive adjus tment  is needed after which 
smaller negative ad jus tments  follow. This  shows an impor tan t  fact for the sliding scale : a 
fraction of the p remium may  be paid late and this must  have all influence on the pricing. 
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lu the next table we give R,,.,j m fluwt ion of R,.,,, and the first t ime toe p remium adjustments  
( , . ) :  

• I.50E/ i 1.98~ 5.01~ 5.12'~ 5.21'~ 5.31'){, 
1.25~ !5.12~ 5.2P~ 5.39'~ 5.55t~. 5.75~ 
.1.00'~ 15.2T~ 5.1PX 5.65~)~ 5.89tX, 5.1TY,, 

I 
L_ 3.75'~ ] 5..IPX 5.61¢~ 5.9P~ 6.21'~. fi.60~ 

Table 25: Sensitivity amdy,is  3 

This  table confirms what  wm, said above. We observe a dramat ic  effect of dw variable first 
year of p remium adjustment .  Thi~. a-sl)ec! is however tnMitiomdly m,glemcd 10" reinsmers 
when pricing sliding st'Me c~we~s. 
.Many more sensilixity amdyses are possible : ~ee Walhiu i'~ a l  (21101) fin laoltr almlyses iu 
Ihe %mgle hram-li priehxg. 

8. CON(tI,Ut410N 

We have shown ill this pal>er that a t 'Ollll)lehell~;ive nwthodology is of gleat hel l) when Iniciug 
exee:~50[ Ill:is lrealJe<%, e'¢ell l l l t l | ' t i l i l le t l 'elt l ien. 

All the elements of a pricing are couibiuc~.l in a unique tool : acttlarial elements (lhe severities 
X.Y.  . . . .  tile freqneucit's N. Al . . . . .  lhe  clauses, the vetlot'v,,,sion}, hmm~ial e lemems (the 
finall¢ ial advala  age whelt (']ailns are paid loug aftei lilt' preuliuut illSl ahneut,  t he le l l l l l l lOla[ iOll  

Ot +~he <%hlil>t'[l{}llit'l ~, ~J{ t i le  t.,i)s[ of  eikl~itaL t i le  list, I}f a e[lsll ~Io'lv lilul.{l?[), e~'ollolllic e l en t en t s  

(inflation. superildlaliem) amt commeicial  elenieuts (brokelage. adal iuis tndive Cxl)eltses ). 
"['lie Paujer ' s  algo l i t ln l t  in a powerf l t l  tool x~e of leu tint, ( iu tlwt as umuy t imes its t l ie le are 
periods betweel l  cl : i i l l l~ l )ay l l le l l l5  i l l  Ollr I l lOde[) hi  Old l ! l  tit [ l l ld  ihe ag, g legi l t { '  ~, i tnnthnl o f  Olll' 
l i l le i l l  the fu{ l l l t  > ( )bv iously this ha~i it eonl l) t l t i l lg cost which i~ real ly low llOWa/lil~.'bl. 'Fhe 
aggregate claims d iM l i l n l t i o l i  o f  lhe ln l i l t i l ine is 'ihlllJlY oblai i ied t)y convohl l ion,  
The i lot io l l  of  coM of (a l l i l a l  h~ts boon used in order to provide a t'air llriee tbi the shareholdels, 
A lot of parameters  are i lecosbary ill order  to rilll ()Ill" lllOdel, N o t e  1|1;11 lht!ble ])alallle[ers would 
also be lleCe,ssary within a simplified Illode]. ]11 case 50111e |)itlallletels are dilficuh to eSlilllate, 
ol ir  n iethodology provides a sohit iol i  i l l  the SellSe that i t  e~t~il3 allows tor sensit iv i ty alililvses. 

A (  J K N O',,V I ,I,: 1)( i :',11," N T S 
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