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ABSTRACT

This paper applies a risk-adjusted return on capital (RAROC) framework to the financial
analysis of the risk and performance of an insurance company. A case study is presented for
a diversified insurer with both property & casualty and life insurance business segments.
The approach first quantifies the probability distributions of the different types of risk the
institution faces: non-catastrophe liability risk, catastrophe risk, life risk, asset-liability
mismatch (ALM) risk, credit risk, market risk, and operating risk. These risk type
distributions are then aggregated to create an integrated risk distribution for the institution.

Economic Capital and RAROC are then calculated using this risk distribution in conjunction
with income statement analysis to produce performance metrics and insights at both the line
of business and total company level that support strategic as well as tactical decisions.
Exhibits providing the case study numerical examples accompany the discussion of
methodology throughout the paper.
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1. INTRODUCTION

1.1 Economic Capital and RAROC applied to the P&C industry

Insurers bear a responsibility both to shareholders and policyholders to maintain solvency
throughout a variety of potential adverse events. Economic Capital, or the amount of capital
required to support ils risks to a given level of solvency, is an emerging standard in the insurance
industry to help management fulfill this responsibility. The Economic Capital framework also
lends itself to performance evaluation as the denominator of the Risk-Adjusted Return on Capital
(RAROC) metric. With these tools, any financial institution can measure where its capital is
invested, how much it is earning, how much capital it needs to hold to maintain a given debt
rating, making risk-return tradeoff decisions as well as many other strategic decisions.

Economic Capital can be defined more precisely as the difference between the mean and the n
percentile (i.e. the “solvency standard”) of the value distribution for the entire company, where
the value distribution represents the mark-to-market available capital, taking into account all
risky assets and liabilities. The solvency standard, or probability of ruin, is typically linked to
agency credit ratings, for example those from S&P or Moody’s, e.g. an S&P rating of “AA”
corresponding to an average default probability of 0.03%. As a result, an insurer thal wishes to
target a “AA” rating can quantify the capital to support its risks as the difference between the
0.03 percentile and the mean of its overall value distribulion (see Figure 1-1).

Figure 1-1 -- Economic Capital in Relation to the Value Distribution'

Probability

Probability linked to
solvency standard

Economic Capital

While quantifying the overall risk of the company is important for strategic management, it is the
allocation of overall economic capital back to the individual business units that enables the
linking of tactical decisions with strategic goals, such as ROE targets. True insight into the
economic performance of the organization comes only through linking risk and capital.

' Throughout this paper we represent all distributions as value distributions. This means that negative
values represent an adverse outcome and positive values represent a favorable outcome.
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1.2 Case Study Overview

The focus of this paper will be on the methodologies used to evaluate the risks an insurer faces.
In order to facilitate the discussion, a case study insurer was created to provide a concrete
example of the potential applications of the methodology. The case study company is a
diversified insurer with both property & casualty and life insurance business segments. To keep
things simple, the insurer has only five insurance business units in addition to an investments
unit. We have selected business units in such a way as to illustrate the potential breadth of
exposures an insurer may face. Table 1-1 illustrates the structure of the company and the risks to
which each of the business units is exposed.

Table 1-1- Overview of Case Study Company

Segment Business Unit Non-Cat  Cat Life ALM Credit Market Operating

P&C Homeowners X X X

P&C General Liability X X

Specialty  Credit & Surety X X

Life Term-Life X X
Survival-Contingent

Life Annuities X X X

Investments Investments X X X
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2. RISK QUANTIFICATION

2.1 Non-Catastrophe Liability Risk

Non-catastrophe liability risk is a measure of the uncertainty in the amount and timing of
insurance claims. The model used here incorporates process, parameter and systematic risks. The
approach used is based on the volatility of loss-development factors, which are calculated using
paid loss triangles.

The method involves back-casting ultimate loss estimates (ULE) based on a given paid loss
triangle. First, the link ratio (or age-to-age factor) from one development year (DY) to the next is
calculated. A cumulative development factor (CDF) for each DY is derived from the link ratio.
By multiplying the CDF for each DY by the corresponding paid losses in the triangle, a triangle of
ultimate loss estimates is generated.

The volatility of the ULEs and the change in ultimate estimates from one DY to the next within an
accident year (AY) are used to calculate development factor volatility (a measure of process risk),
and loss estimale uncertainty volatility (a contributor to parameter risk). In addition, systematic
volatility is calculated as another indicator of parameter risk. Economic capital requirements are
then calculated for the selected line after incorporating the diversification benefits resulting from
AY and DY correlations. A lognormal loss distribution is assumed for each individual line of
business. Finally, the individual loss distributions for each line are aggregated together while
incorporating line-to-line diversification benefits using a line of business correlation matrix.

Table 2-1 — Paid Loss Triangles and Initial Loss Estimates (ILE) by Accident Year (AY)

Homeowners (HO)
Cumulative Paid Loss by DY
AY ILE 1 2 3 4 5
1997 115,000,000 28,000,000 79,000,000 88,000,000 98,000,000 120,000,000
1998 110,000,000 31,000,000 73,000,000 89,000,000 92,000,000
1999 107,000,000 18,000,000 72,000,000 103,000,000
2000 100,000,000 22,000,000 101,000,000
2001 93,000,000 23,000,000

General Liability (GL)

Cumulative Paid Loss by DY

AY ILE 1 2 3 4 5
1997 48,000,000 6,000,000 9,000,000 25,000,000 32,000,000 39,000,000
1998 70,000,000 4,000,000 23,000,000 35,000,000 45,000,000

1999 72,000,000 7,000,000 15,000,000 30,000,000

2000 63,000,000 3,000,000 4,000,000

2001 55,000,000 10,000,000
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Table 2-2— Cunulative Development Factoer (CDF) from One Development Year to the Final
Development Year
DY | 1to5 2to5 3to5 1to5 5t05
HO CDF ‘ 5.3938 1.6430 1.3144 1.2245 1.0000

GL CDF 7.6373 2.9950 1.5641 1.2188 1.0000

The back-casting of ultimate loss estimates uses a blended Chain-Ladder/Bornheutter-Ferguson
approach:

1
ULE,, ,, = [1 _TT’) ILE ., + CDF,,”PAID,, ,, (1)
Y

D

where CDF,, is the cumulative development factor from DY to final based on the link-ratio
methad, IL.EA,. is the initial expected ultimate, i.e. premium times initial expected loss ratio, and
v is the degree of reliance on historical losses vs. initial expectations. The value of parameter y is
between zero and one, with zero resulting in the Bornheutter-Ferguson (BF) method, and one
resulting in the pure chain-ladder method:

¥y > 12 ULE,, py = CDF, PAID,, 1, @

1 .
y—>O0=>ULE,, = (1 _Z‘—D—F;y—j ILE, +PAID,y oy ®

This blended approach is used to allow for flexibility in the relative importance of initial
estimates versus observed results. The BF approach places greater weight on initial loss estimate
(ILE) predictions. This solves the most significant problem with long-tailed triangles, namely
that the initial development years exhibit dramatic percentage variations in paid losses magnified
by CDF extrapolation. In this instance, we use ¥ = 0.67 for Homeowners and vy = 0.33 for General
Liability, since GL is a much longer-tailed line. The BF approach requires the additional inputs of
premium and loss ratio in order to derive the ILEs.

2.1.1 LDF Volatility (Process Risk)

The volatility of loss development is measured by taking a weighted standard deviation of
observed results according to standard methods. Let Xu denote the change in back-cast
ultimate loss from development year i-1 to i for business from accident year j:

_ULE,,
YT ULE

(=

“)

Let w, , denote the relative weight of accident year j in development year i:
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Let Y be the random variable denoting change in ultimate loss from one year to the next, and let

0’2_),,7 represent the LDF volatility for development year i. O‘%F is computed from the basic

definition of standard deviation:

oty =EP T (B = [Ew X (z wx] ©

Expanding w; and X, we arriveat:

ULE,,, (ULE,

ULE,

O i

i = ZZULE,_,,,,LULE
k

| S )
~ Y ULE,,, ULE
k

J -1, i-1,)

Simplifying gives us:

2
ULE?
B iJ — Z 1 ULE,J (8)
J ZULEl—I,k
k

1
oior = SULE,,, x[; ULE,
J

i-1,j

And, finally:

TuE,
J

; 1 ULE}
oD = x (A 9
P QULE, (Z ULE, J > ULE, ®
J J

J i-1,j i-1.f

This method will produce 7n-1 O’L'g,,- values, one for each column of the loss triangle that has
more than one year of data. It is desirable to apply this method to n+1 different accident years,
however: the n years embedded in the loss triangle, plus the current accident year, for which no
losses have yet been recorded. To generate the last two values, O'L"))F and 0'{”0;3) , we compute a
decay factor from the best-fit exponential curve through O'EBF,-“,O'}J";,,}) using a weighted log-

linear regression.

Let @ be the weight for development year i in the regression:
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_Nn-i+l

P (10)
gﬁ

The independent variable X in the regression corresponds to the development year index i, and
the dependent variable is the natural log of the loss development factor volatility,
In (O'EIE),F ), - ln (0’,(77; )) The moments for the regression are:

=Yia an
Zln(ogp) ) (12)
E(Xz)zzliz»a), (13)
E<Y2)=i(ln<a&))’az a9

Zl ln(oﬁfb) ) (15)

From the moments, we can calculate the slope and y-intercept of the log-linear regression line:

E(XY)-E(X)-E(Y)
CE(x)-E(xY (16)
b=E(Y)-m-E(X) 17

The decay factor d is defined as:

d=¢e" (18)

Finally, we use the decay factor to compute 0‘;}),_ and O'("H)

ol =d- o (19)
ol =d" olp) (20)
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Table 2-3 — Loss Development Factor (LDF) Volatility

DY | 0to1 1te2 2t03 3tod  4t05  5to6
HOLDF Vol | 01176 02205 00973 00343 00230 00154
GL LDF Vol 00931 01634 00958 00012 00004  0.0001

2.1.2 ULE Volatility (Parameter Risk)

Given an estimate for the mean level of ultimate loss, 0, represents the volatility of the actual
loss outcome around the mean. However, there is additional uncertainty embedded in the
estimated ultimate loss. “Ultimate Loss Estimate Volatility”, or “Parameter Risk”, represents the
standard deviation of the mean loss estimate.

I'l general, given a random sample of a variable X, the standard deviation of its mean estimate

X is:

2h

where Si, is the sample variance of X. In this case, the sample variance corresponds to LDF
volatility, and the estimation error of X corresponds to ULE volatility:

st=0gl, (22)
% =0 (23)

Let O'EI)E represent the volatility of ultimate loss for development year i. 0',(}25 reduces to:

(1)
g,
Oty =25 24)
n-1

Here, n is the number of observations (i.e. Accident Years) in the loss triangle at development
year i. This risk is assumed to be independent of LDF volatility.

Table 2-4 — Ultimate Loss Estimate (ULE) Volatility

DY | Otol 1to2 2t03 3tod 4to5 S5to6
HO LDF Vol 0.0588 01273  0.0688  0.0343  0.0230 0.0154
GL LDF Vol 0.0466 00943 00678  0.0012 0.0004  0.0001
2.1.3 Systematic Risk

In addition to volatility that is observable in historical loss triangles, there is a risk that
unforeseen and unprecedented systematic changes in legislation or market factors will have a
negative impact on future results. This risk is intended to capture that which is unobserved in
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historical data; by definition it falls outside the realm of estimation from historical loss triangles
and must be parameterized separately.

We begin by assuming that systematic risk is independent of process and parameler risk (LDF
volatility and ULE volatility). That is, non-systematic factors provide no insight into the
systematic risk faced by a given line of business. Also, we assume that systematic risk is, at the
outset of development for a given accident year, proportional to ultimate loss. We further
assume that, since it is proportional to ultimate loss, systematic risk can be pmportionally be
attributed to two sources: 1) the absolute level of ultimate loss; and 2) the unpaid portion of

ultimate loss.

The formula for systematic risk is derived trom these broad assumptions. Let q be the proportion
of systematic risk attribulable to unpaid ultimate loss (0 < q < 1). 1 - g is the proportion of
systematic risk attributable to the absolute level of ultimate loss (the non-decaying portion). If
O, is the total systematic risk, then the portion attribulable to the level of ultimate loss is

Oy x(1-9¢) (23)

This gives us one of the two components of systematic risk. The remaining component is built
from the amount of unpaid ultimate loss. Let CDF: be the cumulative development factor for
developmenl year i. By definition, |/( DI is the percentage of total ultimate loss that has been
paid at the end of development year i. Thus, (l - l/(‘[)[‘;) is the percentage of ultimate loss that
remains unpaid. With g as defined above - the proportion of systematic risk attributable to
unpaid ullimate loss - the amount of systematic risk attributable to unpaid ultimate loss is:

T XX (1-YCDE ) (26)

Combining equations 25 and 26, we arrive at the formula for atlocating total systematic risk to
development year i:

9 |
O, = Oy X| g% I—F[);;_ +(l-q) 27

where O, is the total systematic risk and g is the percentage of O, attributable to the unpaid
portion of ultimate loss. CDF; is the cumulative loss development factor at development year i.

O';l, is assumed to be perfectly correlated with O"\:;, for any j, and uncorrelated with O'EBF and
(1) )

Olis -

Assuming O, =0.05and g4 =09:
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Table 2-5 — Systematic Risk Volatility

DY | 0to1 1102 2103 3to4 4t05 Sto6
HO Sys Vol 00500 00417 00226 00158 0.0133 0.0050
GL Sys Vol 00500 0.0441 00350 00212 00131 0.0050

2.1.4 Total Development Year Volatility
Let O; represent the total volatility for development year i. Assuming independence between
the three components of total volatility, we compute @, in the standard fashion:

o = \/(oﬂ),p)z +(ole )2 +(o5, ) (28)

Table 2-6 — Total Development Year Volatility

Homeowners
DY Otol 1to2 2to3 3to4 4to5 5t06
LDF Vol 0.1176 0.2205 0.0973 0.0343 0.0230 0.0154
ULE Vol 0.0588 0.1273 0.0688 0.0343 0.0230 0.0154
Systematic Vol 0.0500 0.0417 0.0226 0.0158 0.0133 0.0050

Overall Volatility 0.1407 0.2580 0.1213 0.0511 0.0351 0.0223

General Liability
DY Oto1l 1to2 2t03 3t04 4to5 5to6
LDF Vol 0.0931 0.1634 0.0958 0.0012 0.0004 0.0001
ULE Vol 0.0466 0.0943 0.0678 0.0012 0.0004 0.0001
Systematic Vol 0.0500 0.0441 0.0350 0.0212 0.0131 0.0050

Overall Volatility 0.1155 0.1938 0.1225 0.0213 0.0131 0.0050

2.1.5 Development Year Correlation

The total volatility O for the line aggregates the O; from each year, taking into account
correlation between development years. These correlations are derived from the total
development year volatility and systematic volatility.

Let X% and X% be random variables denoting the loss distribution in development years i and j,

respectively. Let Py denote the correlation between X and X0. By definition, Py is:

o,
2 29
h=os @)

O; and O ; are known; they are the total volatilities for X® and X% respectively, as computed in

equation 28. To calculate Py we need to compute Oy the covariance of X and X0, @, i, by

definition:
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o, =E[(X“’ _)?m)(Xm _)?m)] (30)

where X and X are the expected values of X and X@, respectively. Within an Economic
Capital framework, we are primarily concerned with the distribution of change in value relative
to expectations. Thus, we set the loss distributions to have mean 0. This leaves the following:

o, =E[ XXV ] 6D

We assume that volatility is composed of 3 elements: LDF volatility (Process Risk), ULE volatility
(Parameter Risk) and Systematic volatility. Thus, X and X% can be thought of as the sum of

three random variables:

o) y® ) ¢
XV =X+ Xye + XSysI (32)
0 — vy ) )
XV =X+ X + X Syst (33)
Substituting, we have:
- (n (1) n 1)) ) 93]
Oy —E[(XLDF +Xiie +XSy.u)(XU)F +Xie +XSysr):| (34)
This expands to:
(1) €3] [ ) (1) 53]
XiopXipr + Xete Xige + X guX e +
() 93] (1) 92
_ XiorXige + Xppr X sy T
a’-’ =£ xXo xyw Xo xtn (35)
e ot Ao X ga t
() [6)] (1) 93]
X Syle e+ X Sy:lX g

Because we have assumed independence between all non-systematic factors, all terms in equation
35 have expected value 0, with the exception of the systematic term:

o, =E[X§.X§)] (36)

The correlation between systematic factors is assumed to be 1, giving:

— W)y | = ) ()
Uy =E [X Syle S;:r :| - O.S;'slo-.szl (3 7)

Thus, returning to the original definition of O, , we have:
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() ()
g; =O'b),,0'sﬂ,

py=—t (38)
o0, 00,
Table 2-7 — Development Year Correlations
Homeowners
0 1 2 3 4 5
0 1 0.0574 0.0662 0.1097 0.1341 0.0795
1 0.0574 1 0.0301 0.0499 0.0609 0.0361
2 0.0662 0.0301 1 0.0576 0.0703 0.0417
3 0.1097 0.0499 0.0576 1 0.1165 0.0691
4 0.1341 0.0609 0.0703 0.1165 1 0.0844
5 0.0795 0.0361 0.0417 0.0691 0.0844 1
General Liability
0 1 2 3 4 5
0 1 0.0985 0.1236 0.4316 04325 04327
1 0.0985 1 0.0650 0.2269 0.2274 0.2275
2 0.1236 0.0650 1 0.2847 0.2853 0.2854
3 04316 0.2269 0.2847 1 0.9960 0.9965
4 0.4325 0.2274 0.2853 0.9960 1 0.9987
5 04327 0.2275 0.2854 0.9965 0.9987 1
2.1.6 Line of Business Loss Distribution
We compute the total volatility o using the year-to-year correlation matrix:
o, -ULE, rf 1 pi,z o pl.:n-fl o, -ULE,
o’= : pf" o ' : (39)
. n+)
an+l (jLEnﬂ p’”“ s p’"lm 1 an+l l]LEnH

We assume that losses within each line of business follow a lognormal distribution, with mean
equal to the sum of the most recent ultimate loss estimates for all accident years (Z ULE, ) and
standard deviation equal to O .

Table 2-8 - Line of Business Correlations

| HO GL
HO 1 0.1
GL 01 1
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Table 2-9 — Non-Cat Line of Business Change in Value Distribution

Probability HO Value  GL Value
0.001% -221,332,923 87,407,075
0.010% -206,669,526  -84,871,664
0.030% -184,790,686  -69,960,747
0.050% -170,505,552  -69,006,709
0.070% -161,768,432  -65,435,595

99.930% 110,192,339 46,787,530
99.950% 113,192,983 48,752,368
99.970% 118,178,053 50,504,321
99.990% 126,805,831 55,164,647
99.999% 135,965,877 57,136,264

2.1.7 Total P&C Non-Catastrophe Loss Distribution

To compute the overall loss distribution, we convolve the individual loss distributions from each
line of business (see section on aggregation). This requires an inter-line of business correlation
matrix that is estimated using management judgement or from loss histories. (See upcoming
paper from Weimin Dong and Jim Gant.)

Table 2-10 — Non-Cat Change in Value Distribution

Probability  Value
0.001%  -248,982,536
0.010%  -218,554,051
0.030% -197,119,667
0.050% -185,022,543
0.070% -177,305,526

99.930% 127,100,263
99.950% 130,506,877
99.970% 135,547,274
99.990% 145,131,462
99.999% 161,932,821
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2.2 Catastrophe Risk

Catastrophe Risk quantifies the potential financial loss due to severe natural catastrophes. To
provide a complete view of the potential losses from such events, it is desirable to use a statistical
model, such as RiskLink from Risk Management Solutions, for developing a complete loss
distribution, rather than traditional metrics such as average annual loss or probable maximum
loss. Typical software packages use a Monte Carlo simulation approach with stochastic loss
events to generate a full range of possible losses.

2.2.1 AEP vs. OEP

It is important to draw a distinction between the two varieties of loss distributions associated
with catastrophe risk models. One variety is the “occurrence exceedance probability” or OEP
curve, and the other is the “aggrepate exceedance probability” or AEP curve. An OEP curve is
the cumulative loss distribution for any one occurrence in a given year. It shows the probability
that losses from a single event will exceed a given amount. In contrast, an AEP curve is the
combined cumulative loss distribution from all possible events in a given year. It shows the
probability that total losses will exceed a given amount.

The method takes as input an AEP curve from one of the standard catastrophe modeling
packages as the loss distribution for catastrophe risk. The AEP curve is converted it into a value
distribution, which is then aggregated with the value distributions derived for other risk pillars.

In our case study company, the only line of business exposed to natural cat is Homeowners. The
tables below illustrates this line’s AEP curve and corresponding value distribution.

Table 2-11 - Cat AEP Curve

AEP Loss
0.001% 341,143,958
0.010% 234,864,033
0.030% 183,122,205
0.050% 164,242,079
0.070% 149,441,501

30.000% 24,160,338
50.000% 14,989,184
70.000% 7,682,240
90.000% 823,453
99.999% ]
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Table 2-12 — Cat Value Distribution

Probability Value
0.001% -341,143,958
0.010% -234,864,033
0.030% -183,122,205
0.050% -164,242,079
0.070% -149,441,501

99.930%
99.950%
99.970%
99.990%
99.999%

(=R = = N =

2.3 Mortality Risk

Mortality risk is defined as the volatility of contract value resulting from unexpected changes in
mortality rates. This includes changes in current year mortality rates as well as expected future
mortality rates. A subset of the contracts often exposed to mortality risk includes term life, whole
life, and annuities.

Mortality risk is quantified through a Monte-Carlo simulation of portfolio value under various
mortality scenarios. The resulting distribution of values constitutes the risk profile of the
contracts. The simulation is achieved in the following stages:

« Identification of distinguishable sources of mortality risk
e Assignment of these risks to factors impacting mortality rates

* Re-evaluation of contract net present value under simulated factor scenarios

2.3.1 Sources of Mortality Risk
We may separate mortality risk into the following set of underlying risk drivers:

¢ Short-term systemic shocks

¢ Long-term changes in mortality expectations
e Parameter misestimation (Parameter Risk)

* Process volatility (Process Risk)

Short-term systemic shocks are the result of events that have a temporary impact on death rates
across an insured population. For example, a particularly bad flu season will result in death rates
increasing systematically across the enlire life book for the coming year. They will not, however,
necessarily change expectations of future death rates. Since economic capital is calculated on a
one-year time horizon, only cash flows maturing within the coming year experience this risk.
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Long-term changes in mortality expectations have an impact on multi-year products priced at the
beginning of a term. Examples of long-term changes in mortality expectations include both
positive impacts to mortality expectations (e.g. cure for cancer) and negative impacts (e.g. new
diseases). Long-term systematic risk can impact expected future mortality rates (e.g. long-term
impact of AIDS) and, to a lesser extent current year mortality {e.g. immediate impact of a new
disease).

Parameter Risk results from a misestimation of the expected death rates of an insured population.
Typically this is because the insured population differs from the population used to derive death
rate estimates. A large portion of this risk derives from adverse selection of the insured
population.

Figure 2-1 - Mortality Risk Taxonomy

Mortality
l Systematic
Expectations

{ Short-term | Long-term Parameter Process
« Calamity » Change in mortality * Wrong table and/or * Number of deaths

—Epidemic table multiplier relative to vs. conditional

—Natural disaster —~Prevalence of population due to expectation

disease mis-estimation of (assume approx. zero)
—~Medical selection factor

technology

Process risk derives from the difference between actual death rates and the true death rate mean
adjusted for all the factors described above. For most books of policies, this is quickly diversified
away; within our framework it is generally assumed to be zero risk".

2 Consider a portfolio of N insured parties with an expected death rate of 20 basis points (0.20%).
Each individual has a probability of dying within the next year of 0.20%, with standard deviation
given by:

o =[px(1- p) =V0.2%x99 8% =4.47%

Assuming each individual in the portfolio is independent, the total volatility due to Process Risk
is:
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2.3.2 Mortality Rate Factors

The above risks may be incorporated into a model via a set of risk factors. The factors are
simulated random variables of a given distribution and correlation structure. When a factor is
multiplied to an existing mortality rate, the resulting value represents a new hypothetical
mortality rate. Our model uses a single “mortality occurrence” factor and a set of three

“mortality expectation” factors to capture the above risks.

We can evaluate the impact of mortality risk on an institution via financial statements. When
viewing from a one-year time horizon, unexpected changes in mortality can either create loss
through higher benefits paid for the current year, or through an increase in reserves for future
years. Volatility in benefits paid is captured in a mortality occurrence factor. This volatility is
driven primarily by short-term systemic shocks but also captures parameter risk, long-term
systematic risk and process risk.

An increase in reserves for losses in future years is captured with a set of three mortality
expectation factors. These factors capture long-term systematic risk, parameter risk and process
risk. The mortality expeclation factors do not include the risk of short-term shocks since these
shocks do not imply a change in mortality expectations for future years. Three factors are used to
capture the varying degree of volatility and correlation between mortality changes within
different age groups.

Table 2-13 — Risk Factors

Factor Volatility Age Min Age Max
Occurrence Factor 0.05 n/a nfa
Expectation Factor 1 0.10 0 40
Expectation Factor 2 0.09 41 60
Expectation Factor 3 0.05 61 120

o-f‘rm‘ess -

If we assume that N is 1,000,000, then we find:

z 0
s =y 247% < 6.005%
N 1000

O process 18 sall and decreasing as N grows.
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Table 2-14 — Factor Correlations

Expectation Expectation Expectation Occurrence

Factor 1 Factor 2 Factor 3 Factor
Expectation Factor 1 1 0.4 0.2 0.0
Expectation Factor 2 04 1 0.4 0.0
Expectation Factor 3 0.2 0.4 1 0.0
Occurrence Factor 0.0 0.0 0.0 1

The variance of each of the mortality rate factors can be expressed as the sum of the variance due
to systematic risk, parameter risk and process risk since we expect no correlation between these
risk types.

‘to ‘+o, 0

parameter process

o= G:ysmnanc
Systematic variance is attributable to volatility in industry-level mortality rates. In the case of the
mortality expectation factors, systematic variance is determined by the annual volatility in
expected mortality rates at the industry level. In the case of the morlality occurrence factor, the
variance is the annual volatility of the difference between expected mortality and actual
mortality. Parameter risk is specific to the institution and can be determined by comparing the
historical systematic variance in industry level mortality rates with those at the institution level.
Any difference is attributable to parameter risk. For a portfolio of a sizeable number of
policyholders, process risk is negligible.

2.3.3 Mortality Sensitive Contract Value

Analogous to bond contracts, a mortality sensitive contract may be divided into a series of
mortality sensitive cash flows. The nominal value of each cash flow is dependent on some set of
mortality rates, either current or future. Changes in the nominal value of the cash flows result in
a change in the mark-to-market value of the contract.

Let us define surv(x,y,c) as the percentage of policyholders of type ¢ (here type can be gender,
smoker status, country of residence, etc...), of age x at time zero expected to survive y years. We
can see that surv(x, y =0,¢) =1 and that lim surv(x, y,c) =0.

yoe

Let us also define mort(z,y,c) as the percentage of policyholders of type ¢, of age z at time y-1 years
that are expected to experience mortality by time . We can then express the expected present
value of the cash flows as:

B4
—Zrmn(xw—l.u,c)

a a = a
o = ——— X SUI(X, V), C) = ><| I 1—-mont(x+i-Lic)|= Xe ™
(1+ry ») Q+ry .=1[ ( ) a+ry
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A+ry

where a is the survival-contingent cash flow,b is the mortality-contingent cash flow and 7 is the

discount rate.

Fo=?®
Qq+ry

1=l

-1
xmort(x+y~-1,y,e)x[ [[1-mort(x+i-1,i,c)] =

ry

Table 2-15 - SCA (Survival-Contingent) Cash Flows

Initial Age =

xsurv(x, y ~L,cyxmort(x+ y—-1,y,¢) =

——-l-)—yxmort(x+y~l,y,c)xe et

1+

Yrs
Forward 38 48 58 68 78
1 15,384,101 30,636,617 13,659,966  -2,681,184 -1,209,09
2 13,707,161 27,297,081 11,977,123 -2,758,095 -1,243,779
3 12,213,016 24,321,570 10,490,364  -2,802,538 -1,263,821
4 10,881,739 21,670,403 9,179,712  -2,815391 -1,269,617
5 9,695,578 19,308,227 8,026,954  -2,798,224 -1,261,876
43 0 0 -54,030 -102,901 -46,404
44 0 0 49,438 -94,154 -42,459
45 0 0 -45,235 -86,151 -38,850
46 0 0 -41,390 -78,828 -35,548
47 0 0 -37,872 -72,128 -32,526
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Table 2-16 — Term Life (Death-Contingent) Cash Flows

Initial Age ->
Yrs Forward 38 48 58 68 78
1 -5,021,260,205 -6,044,688,217 -1,222,039,843 -46,565,844 -20,999,141
2 -4,426,324,162 -5,328,492,931 -1,078,678,335 -43,771,893 -19,739,192
3 -3,943,833,850 -4,747,661,948 -962,108,661 -40,926,720 -18,456,145
4 -3,513,937,269 -4,230,144,295 -858,072,447 -38,061,850 -17,164,215
5 -3,130,901,453 -3,769,038,519 -765,218,074 -35,207,211 -15,876,899
43 0 0 -635,650 -1,210,598  -545,926
44 0 0 -581,620 -1,107,697  -499,523
45 0 0 -532,182 -1,013,543 457,063
46 0 0 -486,947 -927,392 -418,213
47 0 0 -445,556 -848,563  -382,665

The above equations for contract value hold true for simulated scenarios with the modification of
an appropriate factor multiplier applied to the mortality rate. For cash flows within one year, the
mortality occurrence factor is used. For all other cash flows a mortality expectation factor is used
dependant on the age of policyholder at the time of the cash flow. Table 2-16 displays the death-
contingent cash flows, or the theoretical value of the portfolio if all insureds were to die at once.

Table 2-17 — Overall Change in SCA Cash Flows

Initial Age >
Yrs
Forward 38 48 58 68 78
1 -4,746 -14,547 -14,677 7,393 7,288
2 -12,201 -52,593 -52,167 15,249 14,572
3 -19,511 -97,150 -99,343 25,951 24,527
4 -29,600 -129,867 -101,246 35,692 32493
5 -36,932 -153,014 -100,468 44,227 38478
43 0 0 479 178 16
44 0 0 379 139 12
45 0 0 299 108 10
46 0 0 236 84 7
47 0 0 186 66 6
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Table 2-18 — Overall Change in Term Life Cash Flows

Initial Age
Yrs
Forward 38 48 58 68 78
1 -1,553,679 -2,882,886 -1,326,378 -131,830  -134,368
2 -2,581,646 -7,770,124 -3,574,737 -124581  -119,355
3 -2,799,860 -9,878,489 -5,000,067 -158,700  -157,033
4 -3,957,926 -8,505,959 1,360,273 -135,274  -118,190
5 -3,421,007 7,325,814 -1,156,653 -114,575 -87,290
43 0 0 929 394 37
44 0 0 745 308 29
45 0 0 595 240 22
46 0 0 474 187 17
47 0 0 376 146 13

Table 2-19 — Life Value Distribution

Probability Value
0.001% -180,137,977
0.010% -95,730,237
0.030% -83,398,815
0.050% -77,266,350
0.070% -75,215,197
99.930% 56,811,041
99.950% 57,837,631
99.970% 60,174,618
99.990% 64,999,847
99.999% 74,015,472

2.4 Asset-Liability Mismatch Risk

Asset-liability mismatch (ALM) risk is the volatility in the value of the enterprise due to
fluctuations in interest rates. Modeling ALM risk involves characterizing the portfolio of interest-
rate sensitive positions on both the asset and liability side of the balance sheet, generating a set of
change in rate scenarios, revaluing the enterprise under each scenario and finally generating a
value distribution from the simulation results. This framework is analogous to typical Monte-
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Carlo-based VaR models and is general enough to handle positions ranging from simple
contractual cash flows to complex structured instruments.

2.4.1 Characterization of interest rate position

Interest-rate positions are classified into those that can be broken up into a series of deterministic
cash flows, such as uncallable corporate bonds, and more complex instruments which are
characterized using a tabulated rate versus value function. Cash flows positions are described by
sets of cash flow amount, maturity pairs. Tabulated rate versus value data can be obtained from
sources such as the Office for Thrift Supervision, or from an interest-rate sensitivity analysis in a
spreadsheet or popular analytics packages.

Table 2-20 — Net Cash Flow Table 2-21 — SCA Rate vs. Value
Maturity (Yrs) Net Cash Flow A Rate A Value
1 -500,000,000 -3.0% -85,000,000
2 -250,000,000 -2.0% -53,000,000
3 -150,000,000 -1.0% -21,000,000
4 -50,000,000 0.0% 0
-25,000,000 1.0% 6,000,000
7 200,000,000 2.0% 8,000,000
10 1,100,000,000 3.0% 9,000,000

2.4.2 Structure of the interest-rate simulation model

The interest-rate simulation seeks to generate scenarios corresponding to hypothetical changes in
the yield curve. This is accomplished by characterizing a yield curve as a collection of rates
which are themselves functions of the interest-rate factors. In this paper we have used a four-
factor interest rate model with approximately N=50,000 simulations. The four-factors, the
change in one-year rate, the change in the spread of the 10-year rate over the one-year rate and
the change in the spread of the 30-year rate over the 10-year rate and the change in spread of the
mortgage rate over the 10-year rate, are normally distributed and related via a Pearson
correlation matrix.

Combined with the assumption of linearity of rate spreads between these three points, this
suffices to determine the change in rate for all points along the yield curve. A Box-Muller
approach is used to generate a set of correlated random draws for each of the N ilerations.

Specifically, an N x m matrix of interest rate changes is calculated, where m represents all the
relevant maturities. The change in rate for a particular maturity, Ar, , is determined by the
following formulas:
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Arndl+(m_lijrnd3 ms10
m—10
Ar, = Arnd, + Arnd, + X Arnd, ,m>10 (40)
Amd, + Arnd.. + Arnd, ,m = morigage

where Amd, is the randomly generated change in interest rate factor i.

Table 2-22 — Rate Curve Shift Simulations

A Rate

Rate (Yrs) Simulation 1 Simulation 2 Simulation N
1 041% -0.26% -0.29%
2 041% -0.24% -0.23%
3 0.40% -0.22% -0.18%
1 0.40% -0.20% -0.12%
5 0.39% -0.18% -0.07%
7 0.39% -0.13% 0.04%
10 0.37% -0.07% 0.20%
30 -0.22% 0.17% -0.36%

Mortgage 0.11% -(0.26% -0.38%

2.4.3 Valuing the Portfolio
Given a set of Ar,’s for a simulation, the change in value for a cash flow CF,, at maturity m is
calculated as:

PV(CE,)=CF, e "+ (1)

Table 2-23 — Change in Cash Flow Values for Simulations

A Value
Maturity (Yrs)] Simulation 1 Simulation 2 Simulation N
1 1,989,39% -1,251,786 .... -1,380,780
2 1,877,409 -1,101,431 ... 1,070,782
3 1,592,850 -864,523 ... -705,514
4 664,214 -330412 ... -207,173
5 387,654 S174739 .. -68,776
7 -3,801,707 1,342,731 ... -385,740
10 -24,087,944 4,727,527 ... 13,066,148

For all instruments in the value-rate table, the change in value is found by looking up the specific
Arm in the rate column, using linear interpolation.
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Table 2-24 — Change in SCA Values for Simulations

Simulation A Rate A Value
1 041% 2,473,200
2 -0.26% -5,428,500
N -0.29% -5,987,100

Finally, the change in value to all cash flows and instruments is calculated for each scenario and
summed to yield the total change in value.

Table 2-25 — Overall Change in Value for Simulations
Simulation  Probability Total A Value

1 1/N 18,904,928
2 1/N -3,081,133
N 1/N -22,872,013

After each scenario is assigned a total change in value, the results across all simulations are
sorted producing a cumulative probability distribution of change in value, with each scenario
being equally probable with probability mass 1/N. This distribution is then used for risk
aggregation and capital allocation.

Table 2-26 — ALM Value Distribution

Probability Value
0.001% -247,325,565
0.010% -206,414,145
0.030% -185,755,073
0.050% -179,171,451
0.070% -175,236,860

99.930% 154,883,438
99.950% 159,731,919
99.970% 168,262,875
99.990% 181,303,688
99.999% 202,926,237
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2.5 Credit Risk

Credit risk is defined as the risk that a party to a contract, in most instances a borrower, defaults
on an obligation, causing a loss of all or part of the replacement value of ongoing contracts.
While default does not necessarily mean legal bankruptcy, it signals an inability or unwillingness
of the party to fulfill its contractual obligations. Credit risk also includes the possibility that the
obligor's credit quality weakens (ie. the likelihood of default increases) causing a loss in value of
abligations that are discounted for credit risk. For insurance companies, credit risk normally
arises in a portfolio of bonds or loans, credil insurance, reinsurance recoverables, surety and

financial derivatives.

The risk within a credit portfolio can be separated into three different types: systematic risk, non-
systematic (or idiosyncratic) risk, and non-default economic loss risk. Systematic risk refers to
the risk of default common to all counter-parties due to underlying economic factors that affect
an industry, geography, etc. Idiosyncratic risk is specific to a particular company, for example
fraud, and is slatistically independent of sub-portfolio relationships. Non-default economic loss
risk is the risk that the value of a credit changes over lime even if the rating stays constant. For
example, due to the credit cycle, a BBB credit may not be as credit worthy next year as a BBB
credit is today, resulting in a loss of economic vatue, This type of risk captures the effect of credit
movements over time on a systematic basis. The economic “mark-to-market” effect depends
upon the maturity of the credit and the volatility of credit quality.

2.5.1 Characterization of credil exposures
Credit positions are bucketed into sub-portfolios constructed according to geographic, industry
or other criterion.  For cach sub-portfolio, a credit matrix is constructed that groups credit

obligations according to their credit quality (rating) and exposure size, as illustrated below:

Figure 2-2 — Illustration of Rating-Exposure Matrix

Exposure Size

1 11171
2 INEEN
o 3 IR ER
£ 41~ Loan
5 s
x g_.__Coum
8
9
10 s

T . Sub- |
portfolio

The credit risk for a single obligation depends upon the exposure at time of default, the
probability of default (linked to the risk rating), the recovery rate in the event of default, the
volatility of the recovery rate, the maturity of the obligation (for those obligations which are not
systemalically re-priced when credits weaken), and the correlation of the abligation to the rest of
the sub-portfolio to which the position belongs. Correlations are specified between obligations
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within a sub-portfolio as well as between sub-portfolio types. For a portfolio of bonds or loans,
correlations determine diversification benefits.

Table 2-27 — Mapping of S&P Ratings to Expected Default Frequency (EDF)

Rating EDF
AAA 0.01%
AA 0.03%
A 0.07%
BBB 0.18%
BB 0.93%

B 446%

Table 2-28 — Corporate Bond Sub-portfolio Size Ranges

Size Range Size Range Size Range Size Range Size Range

1 2 3 4
Minimum 0 6,000,000 11,000,000 20,000,000 25,000,000
Maximum 6,000,000 11,000,000 20,000,000 25,000,000 100,000,000
Average 2,500,000 9,000,000 14,000,000 21,000,000 26,000,000

Table 2-29 — Corporate Bond Sub-portfolio Rating-Expesure Matrix

Bond Count
Size Range Size Range Size Range Size Range Size Range

Rating 1 2 3 4 5
AAA 60 15 2 2 3

AA 10 15 5 5 0

A 10 10 5 5 0

BBB 0 5 2 1 0

BB 0 0 0 0 0

B 0 5 2 0 0

2.5.2 Expected loss

Credit loss can be described as the product of three terms:
Loss = Default - Exposure - Severity (Ong 94)

Loss is the amount that an institution is contractually owed but does not receive because of the
borrower or borrower defaulting.

Default is the binomially distributed Bernoulli random variable that measures whether a
borrower has defaulted or not, i.e., has fallen 3 months into arrears. It takes the values of either
one in the case of default, or zero otherwise.

Exposure is the total amount of the institution’s liability to a borrower.
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Severity is the fraction of the exposure that is actually lost given a default of that borrower.

Table 2-30 - Corporate Bond Sub-portfolic Parameters

Parameter Value
Recovery rate 50%
Recovery volatility 25%
Average maturity (yrs) 6
Intra-sub-portfolio correlation 05

Table 2-31 — Corporate Bond Sub-portfolioc Exposure Summary

Size Range Size Range Size Range Size Range Size Range
5

EDF 1 2 3 4
0.0001 150,000,000 135,000,000 28,000,000 42,000,000 78,000,000
0.0003 25,000,000 135,000,000 70,000,000 105,000,000 0
0.0007 25,000,000 90,000,000 70,000,000 105,000,000 0
0.0018 0 45,000,000 28,000,000 21,000,000 0
0.0093 0 0 0 0 0
0.0446 0 45,000,000 28,000,000 0 0

Total Exposure ($) 1,225,000,000

The expected credit loss is the average annual loss rate over the course of a business cycle:

EL = E(Loss) = E(Default Frequency - Exposure - Severity) = E(Exp) - E(Sev) - E(DF) (Ong 94)
The expected loss for a portfolio is the sum of the ELs of the individual exposures.

2.5.3 Unexpected loss

Unexpected loss is the standard deviation of credit losses. There is typically little volatility in the
size of the exposure amount (because the loan size is known upon origination), sod;;p =0.
Exposure, default frequency and severity are treated as independent random variables. The
standard deviation of default-based credit losses associated with an individual transaction is:

2 2 2
UL =0, =/I&pJ}DF ‘Mzt Hpp O, (Ong 113)

The unexpected loss for a portfolio requires loss correlatlions between all pairs of borrowers. Let
pij be the loss correlation between borrowers i and j, then

” n
ULPory‘gbo = Z ZUL,ULJ P (Ong 133) where UL, is the UL for loan i
d:s] I

106



In order to facilitate the calculation of the portfolio UL, the sub-portfolio UL can be divided into
two components: a systemalic piece and a non-systematic piece.

2.5.4 Systematic and idiosyncratic risk

The allocation of systematic risk and idiosyncratic risk is accomplished by splitting apart sources
of variance in the ULsubponioio @quation. Since a subportfolio is made up of a group of borrowers,
the equation for ULsubpontolio is analogous to the formula for ULponglioc (Where the borrowers are
those specific to the subportfolio). Then, we have:

ULyt = 2, ULUL, p, = > UL> + 3 S ULUL p,

=l j=1 =l =l i
where pj; is the loss correlation between borrowers in the industry®. The first term represents
borrower-specific risk (if borrower defaults were independent, this would be the total risk) and
the second term represents additional risk owing to the correlation between borrowers within a
subportfolio. As a result, the second term is purely systematic risk and the first term can be
thought of as having systematic and idiosyncratic portions. It can be easily shown that UL, (the
UL for borrower i) can be split into a systematic portion, ULS;, equal to:

ULS, = \[p,UL,

and an idiosyncratic, or non-systematic portion, ULN,, equal to:

ULN, =(J1=p, UL,

where p, is the loss correlation between 2 borrowers in the same industry (the industry for

borrower i) each having probability of default equal to the probability of default for borrower i
(i.e. the loss correlation between homogenous borrowers with the same credit rating). Therefore,
the subportfolio non-systematic risk is calculated as:

ULN,, = i(,/l—p, Jur?

i=]

and the systematic portion is calculated as:

ULS,, = \/Z pUL’ +zn:Z":UL,.ULjpij .

il iml i

2.5.5 Non-default economic loss (“spread”) risk
In addition to default risk over the 1-year time horizon, there is also the risk that longer-term
loans (loans with maturities > 1 year) lose value resulting from changes in credit quality. More

*The loss correlation for loans in the same industry, P; ;- s calculated using the Merton model of default.

The calculation is a function of an industry asset correlation and default probabilities for borrowers 1 and j,
as will be explained in more detail later in the document. Though the Merton model produces a default
correlation, the assumption that loss correlation is approximately equal to default correlation is made since
the majority of loss volatility is due to default volatility.
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precisely, there is the risk of changes in the expectation of future losses that represents a risk to
the value of the portfolio (analogous to a change in the “market value” of a loan). To model this
risk, market parameters are used. Using yield spreads to risk-free securities, the non-default
economic loss risk can be calculated analogously to interest rate risk for a bond.

The expected change in value is zero and the spread risk UL is assumed to be linear in maturity
(making the effective maturity equal to the remaining maturity after 1 year, and weighted by
principal payments). The volatility of spread is estimaled using historical spreads on a universe
of rated bonds. It is observed that the spread has a roughly constant coefficient of variation equal
to 31%, making

o
_ spread _ . _
VOUF r0at) = Frpregd X2t = G g With 1y = %FL .

spread

To be more exact, the spread loss variable for a loan is the product of a non-default indicator

Dand a spread loss variable P, L = bl’:(l-[))f’. We have that its mean is zero, so:
E[L,]= F[[) Pl=u E[P]=0, and E[P]=0. Then, assuming independence of D and P,
D

we can write Var(L,)=0 E[Pf +u 0,7 =(1-1u,)0,". So, the unexpected loss owing to
D D

spread risk in a sub-portfolio is:

UL s = Jl-edf XELXO oy X (T —1)xTerm _ Percent

where T is the Average Tenor (the quantity (T-1) is used for maturity to reflect the fact that
spread risk is related to the remaining maturity after 1 year has passed, and the Term Percent is
used to apply spread risk only to those loans with remaining maturities > 1 year). Since

,[l—edf is approximalely one, the term is dropped and the equation simplifies to

UL =LlLxo

sreaa X (T —1)xTerm _Percent .

spread

2.5.6 Portfolio unexpected loss
The equation for the portfolio UL as a function of systematic, non-systematic and spread risk
components is:

ULy = [[ \/ZZUL&”, XULse, % p, =3 (UL, )’ ]+ZULW,] +3 (ULse, ) +3 (UL, )’

where {Ls. is equal to the systematic portion of risk for industry i, ULuwss, is the non-systematic
and hence idiosyncratic portion of risk for industry i, {/Lgms, is the spread risk for industry i,

and p, , is the correlation between industries i and j.
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Table 2-32 — Sub-portfolio Correlations

CorpBonds GovtBonds MBS Creditlns Suretylns
CorpBonds| 1 0.0 0.5 05 0.5
GovtBonds| 0.0 1 0.0 0.0 0.0

MBS 0.5 0.0 1 05 0.5
CreditIns 0.5 0.0 0.5 1 0.5
Suretylns 0.5 0.0 0.5 0.5 1

Since systematic risk is perfectly correlated within an industry, ULs«is computed as

ZULS”“ where k is a subportfolio of type i. Since idiosyncratic risk is uncorrelated between all
kei

loans, UlLunsa, is computed as ’Z ULM,.S,«}2 where k is a subportfolio of type i. Since spread
kei

risk is perfectly correlated between all loans, ULsn, is computed as ZULS,M,P where k is a
kei

subportfolio of type i.

Non-systematic risk and systematic risk are by definition independent. Systematic risk and
spread risk are assumed to be perfectly correlated and therefore additive. A correlation matrix
between the subportfolios is required to capture the diversification effects of being exposed to
different industries/ geographies. Since only systematic volatility between subportfolio types is
correlated, the total UL for the entire portfolio is a function of the independent nonsystematic
volatilities (assuming they are independent of all other volatility), and correlated systematic
volatilies and credit spread risk (assuming that they are correlated according to the correlation
matrix and perfectly correlated to the credit spread risk).

Table 2-33 —~ Sub-pertfolio Level Results

CorpBonds GovtBonds MBS Creditins  Suretylns
Loan count 162 180 153 4,572 8,535
Exposure 1,225,000,000 832,500,000 592,000,000 875,000,000 1,603,000,000
Expected Loss 1,885,900 33,450 11,840 787,500 7,453,950
Unexpected Loss - Systematic 3,793,515 17,775 53,296 1,938,542 13,219,292
Unexpected Loss - Idiosyncratic 3,473,965 532,212 237,163 807,546 1,667,388
Unexpected Loss - Spread 3,507,774 51,848 55,056 244,125 2,310,725
Total Unexpected Loss 8,085,620 536,746 260,742 2,327,265 15,619,270
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Table 2-34 — Portfolio Level Results

As a% of

Total Exposure
Expected Loss 10,172,640 0.1984%
Unexpected Loss - Systematic 19,022,419 0.3710%
Unexpected Loss - [diosyncratic 3,979,980 0.0776%
Unexpected Loss - Spread 6,169,527 0.1203%
Total Unexpected Loss 21,074,259 0.4110%

2.5.7 Credit Loss Distribution

The final step of defining the Credit Loss Distribution is to assign a functional form to fit the
characteristics of the distribution given the mean (EL) and standard deviation (UL). While there
are several different ways to do this, the specific assumptions underlying our model lead to a
natural choice. Because default is modelled as Bernoulli, the sum of a correlated portfolio of
loans follows a Beta distribution. In mathematical terms, Beta is the continuous approximation to
the distribution for a sum of Bernoulli random variables. While similar to the Gamma
distribution, it is preferred because it does not allow firms to default repeatedly without curing.
Between 0 and 1, the Beta distribution has a probability density function:

where I"(z) = I: tedt

The mean (EL) and standard deviation (UL) of the beta distribution, as a percent of exposure, can
be solved through integration:

Mean=EL% = .l[x f(xa, B) dx
- ' a
) a+p (Ong 166)
Variance = UL%? = ‘]"x: -B(x.a, B) dx~%EL
- B :
(a+B) (a+p+1)] (Ong 166

Rearranging for r and g
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UL%
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o =(1-EL%) ( j ~EL%
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EL%

ﬁ:

o

The parameters ct= 0.23 and B =115.98 can be used to generate the Credit Loss Distribution,
which we translate into a value distribution.

Table 2-35 — Credit Risk Change in Value Distribution

Probability  Value

0.001%  -330,343,848
0.010%  -262,402,716
0.030%  -220,935,812
0.050%  -201,767,149
0.070%  -189,209,719

99.930% 10,183,4%
99.950% 10,183,496
99.970% 10,183,496
99.990% 10,183,496
99.999% 10,183,496

2.6 Market Risk

Market risk is the risk associated with changes in the value of an investment portfolio or foreign
exchange positions to market fluctuation. Market positions, henceforth called “sub-portfolios”,
are characterized by their current value and their £ and tracking error relative to well-known
market indices or individual securities. The potential for loss to tradable financial instruments
resulting from unfavorable markel movements is quantified by using a parametric model to
calculate the Value at Risk (VaR) of the total investment portfolio. (Crouhy 198}

Table 2-36 — Tracking Indices

Tracking
Index Index Name Volatility
SPX S&P 500 Index 0.1986
BBREIT Bloomberg REIT Index 0.1023
DH1 Direct Holding 1 0.2000
DH2 Direct Holding 2 0.2500
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Table 2-37 - Investment Sub-portfolios

Tracking Tracking
Subportfolio Exposure Index B Error
Equity Portfolio 1 100,000,000 SPX 1.05 3.2%
Equity Porttolio 2 30,000,000 SPX 1.10 5.0%
Direct Holding 1 50,000,000 DH1 1.00 0.0%
Direct Holding 2 50,000,000 DH2 1.00 0.0%
Real Estate 100,000,000 BBREIT 1.03 3.0%

2.6.1 Systematic and idiosyncratic risk

The volatility of each sub-portfolio’s value is calculated in terms of a tracking index used as a
benchmark. Once the amount of exposure in each index is determined, the systematic risk (due
to the underlying movement of the index) and the idiosyneratic risk {due Lo the tracking error of
the portfolio versus the index) are calculated.

Systematic risk is the volatility in the portfolio that arises from the fluciuations in the value of the
underlying indices that the sub-porttolios are tracking. Systemalic risk is calculated aggregating
the S-weighted market values by index and calculating the total covariance:

Cperman = MV oMLy g g g
t ‘ i /v./ i ’ i

Table 2-38 — Systematic Market Risk by Index

B-weighted Systematic
Index Exposure Volatility Risk
SPX 160,000,000 0.1986 31,776,000
BBREIT 103,000,000 0.1023 10,536,900
DH1 50,000,000 0.2000 10,000,000
DH2 50,000,000 0.2500 12,500,000
Total 363,000,000 41,971,271

Idiosyncratic risk is calculated by assuming, independence across the idiosyncratic risks of each
sub-porttolio:

Clomyniratc= ‘[Z MV -Trackingbrror”,

where MV, is the markel value of the position, and the index i represents sub-portfolios. Note
that conventionally, tracking error is derived from the r? slatistic (i.e. unexplained variance)

obtained from a linear-regression of the sub-portfolia against ils index.



Table 2-39 ~ Idiosyncratic Market Risk by Sub-portfolio

Market Tracking Idiosyncratic

Sub-portfolio Value Error Risk
Equity Portfolio1 100,000,000 3.2% 3,200,000
Equity Portfolio2 50,000,000 5.0% 2,500,000
Direct Holding 1 50,000,000 0.0% 0
Direct Holding 2 50,000,000 0.0% 0
Real Estate 100,000,000 3.0% 3,000,000
Total 350,000,000 5,048,762

Finally, we need to combine the idiosyncratic risk and the systematic risk, assuming
independence between the two:

Orotal = [ Oldiosyncratic 2 + Osystematic 1J1/2

Table 2-40 — Portfolio Level Results

Total Systematic Risk 41,971,271
Total Idiosyncratic Risk 5,048,762
Total Risk 42,273,841

While it is accepted that the return on an individual security typically follows a log-normal
distribution, there is some debate over whether a normal or lognormal distribution is appropriate
for the value of a diversified portfolio. In this instance, we fit a normal distribution to the total
volatility of $42,273,841.

Table 2-41 — Market Risk Value Distribution
Probability Value

0.001% -180,317,267
0.010% -157,236,263
0.030% -145,080,5%
0.050% -139,101,189

0.070% -135,053,401

99.930% 135,053,401
99.950% 139,101,189
99.970% 145,080,596
99.990% 157,236,263
99.999% 180,317,267

Allocation of market risk capital to all of the activities that generate market risk is done using
their contribution to total covariance.
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2.7 Operating Risk

Operating Risk is used here to refer to the non-financial risks that arise in the course of running a
business. Non-financial risks can be divided into two categories: event risks, which are one-off
incidents that can cause large losses, and business risks, which are the risks associated with
business decisions which relied on the wrong assumptions. Event Risk includes losses from
systems failure, errors & omissions, fraud, uninsured damage to plant and equipment, and the
impact these events have on customer behavior. Business Risk includes losses due to changes in
the competitive environment or events that damage the franchise or operating economics of a
business. Business Risk impacts the company through variation in volume, pricing, or costs.

An analog approach is used to quantify operating risk capital. The capital of analog non-financial
companies is used as a proxy for their operational risk. “Pure-play” analog companies that have
business processes subject to specific operating risks also faced by financial institutions were
selected. Because these companies do not have significant financial risks, their economic capital
supports only operating risk. These institutions’ level of capital, along with their credit quality,
yields an inferred estimate of the level of risk they face. Because these companies are more
transparent, there is direct discipline from markets and rating agencies with respect to the
amount of capital that they hold. We assume that these capital levels should be roughly
equivalent to the levels of operating risk capital in similar business units of financial institutions.

2.7.1 Analogs
Table 2-42 describes each analog group and gives examples of companies in each analog.

Table 2-42 - Description of Operating Risk Analog Types

Analog Type Description Examples
Retail Services o Fee-based services to consumers « Auto rental
¢ High fixed costs due to many outlets ¢ Hair salons
¢ Low elasticity of demand * Travel agencies
Business-to- ¢ Long-term relationships ® Insurance brokers
Business Services ¢ No inventory * Advertising agencies
* Low fixed costs
Data Processing e Process and track data, records, « ADP
payments, etc. « EDS
* Heavy investment in fixed cost systems, o Fisery
plant, and personnel « First Data
Broker/ » Transaction-based earnings from market- ¢ PaineWebber
Dealer making and customer fees * Legg Mason

¢ Analogs selected have limited
proprietary risk-taking activity

Corporate Trust ¢ Performs similar roles as data processing ¢ Northern Trust
companies but with added fiduciary e US. Trust
responsibilities
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2.7.2 Non-interest expense

The scale factor for calculating Operating Risk is an institution’s non-interest expense (NIE). NIE
has the benefit that it is the only common measure of size and scope between financial and non-
financial companies, Therefore, for each analog group, we determined the Capital / NIE
Multiplier adjusted for credit rating. We then apply these multipliers to financial institutions
based on how their business units are divided between the five analogs’ business lines.

Table 2-43 — Line of Business Contributions

Line of Business NIE Retail BtoB D.P. B/D C.T. Contributiontoo
Homeowners 30,000,000 0% 30% 70% 0% 0% 4,650,000
General Liability 15,000,000 0% 30% 70% 0% 0% 2,325,000
Credit & Surety 20,000,000 0% 30% 70% 0% 0% 3,100,000
Term Life 15,000,000 0% 40% 60% 0% 0% 2,250,000
SCA 7,500,000 0% 40% 60% 0% 0% 1,125,000
Total 87,500,000 13,450,000

Table 2-44 - Operating Risk Value Distribution

Probability  Value
0.001% 57,370,402
0.010% -50,026,865
0.030% -46,159,374
0.050% -44,256,944
0.070% -42,969,084

99.930% 42,969,084
99.950% 44,256,944
99.970% 46,159,374
99.990% 50,026,865
99.999% 57,370,402

2.8 Risk Aggregation

In order to measure overall capital adequacy and derive accurate capital contributions, the “total”
risk that an institution faces must be computed from the value distributions that describe its
component risks. Since the underlying risk distributions for each risk type do not necessarily
follow a particular distributional form (e.g. property catastrophe risk is frequently an empirical
distribution), it is necessary to do a numerical integration or simulation in order to combine
them. The method described here uses a numerical integration approach to “convolve” the
underlying linearly correlated risk distributions.

The distribution aggregation method takes N distributions, specified as discrete cumulative
density functions (i.e. a set of tables listing possible losses due to credit, market risk, etc. with the
associated probabilities for exceeding that loss). To avoid simulation, the problem is parceled into
a series of two-distribution convolutions, the result of each one subsequently convolved with the

115



next input distribution, i.e. a “pair-wise roll-up” (e.g. aggregating market risk and credit risk, and
then aggregating the resulting distribution with operating risk). This scheme generalizes to as
many distributions as are desired with approximately linear cost in computational intensity, as
opposed to multi-dimensional calculations or simulations that are exponential in computational
cost.

Figure 2-3 - Tabular Discrete Density Functions in the Two-Distribution Case

X prob(xl) Y prOb(yl)

x,  prob(x;) ¥ prob(y:)
Al : and B:| :

X, prob(x,.) Yo PTOb(Y,)

x,  prob(x,) Ym  prob(y,)

Convolution requires an assumption as to the form of the copula (the joint probability density
function for the set of outcomes from multiple random variables, with each variable’s outcome
expressed in terms of it's marginal cumulative density function). The method assumes a
multivariate normal copula¥.

The method for aggregating two distributions consists of first converting the input distributions
to “Normal space” (using the cumulative density function) and using the bivariate normal
density function to compute the probabilities for each possible combination of losses. This yields
the desired resulting cumulative density function for the aggregate distribution (after sorting by
loss and cumulating probability mass):

4y prOb(Zl.l) 1
- prob ( z, . )

2y -1 Pr"b(zx,mq )
Zm prob(z]_m)

Z=
E prob(z.,)
222 pr()b(z:_z) ‘
Z 1 prOb(zm,m-l )
| Zom prob(zm'm) J
where 2 =5 X ¥ +_—__}’, MR and

“ 2 2

* see Wang, “Aggregation of Correlated Risk Porifolios”, Proceedings of the Casualty Actuarial Society,
Volume LXXXV, Number 163, Page 887
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Eb{ rob (%, )} Frorm{ Prob{7,a))

prob(z,_j)= I I S(X, Y, Prom ) dxdy .

Fiom{prob(x,)) Fitn(prob(y,))

Fr;lm is the inverse normal cumulative density funclion and f(x,y,pnam) is the bivariate normal
function defined by:

Y 2p eyt
1 3

f x’y’pnorm = pm——Xe =
( ) 21\f1-p%,

Prorm is calculated iteratively such that the equivalent correlation poy, defined as

[ T :ff(x,y,pnom)xFA" (From (X)) E5" (From ()’))]—ﬂ,; Xty

Pou =77 .

o O X0y
is approximately equal to p , the input correlation between distributions A and B, where
Sf(x,Y,pnom) is the bivariate normal probability density function and Faum is the standard normal

cumulative density function.

Note that because the combined distributions are described by discrete cumulative density
functions of m elements, and the algorithm evaluates each possible combination, the resulting
convolution will be a tabulated cumulative density function containing approximately m?
elements. To keep the subsequent calculation tractable, the result must be reduced in size by
mapping to the given probability schedule; this is done with standard linear interpolation.
Finally, this process is repeated, convolving the new distribution Z with the next input
distribution and so on.

The total diversified economic capital is found by looking up the desired solvency standard on
the aggregate distribution, then subtracting the mean of the distribution from the loss value.

Table 2-45 — Overall Risk Value Distribution
Probability Value

0.001% -580,173,921
0.010% -522,774,051
0.030% -464,762,707
0.050% -430,156,396

0.070% -411,064,239

99.930% 324,707,743
99.950% 334,632,692
99.970% 349,823,731
99.990% 378,717,198
99.999% 416,390,625
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The mean of the above distribution is: -6,790,062.

Table 2-46 — Overall Risk Value Distribution

EDF Required Economic Capital

0.01% -515,983,989
0.03% -157,972,646
0.07% -404,274,177

2.9 Capital Allocation
The total diversified economic capital value must be attributed to the different risk types.
Contributory capital for each risk type is calculated with a covariance and excess-skewness

approach.

Let EC be the total economic capital at the desired solvency standard § and NormEC be the
equivalent normal economic capital for the output distribution:

EC=F"(1-8)-u
NormEC = £5, (1-8,0)

F"(I—S) is the inverse of the output distribution at the desired solvency standard,
Fjw)m[_l (l —S,O‘) is the inverse normal function, # is the mean of the output distribution and o
is the standard deviation. SkewFC, the portion of economic capital that is due to shape

(skewness), is defined as:

SkewEC = EC — NormE(C

Let EC; be the contributory economic capital of the ith input distribution. Let SAC; be the stand-
alone capital of the ith distribution. This is defined as:

SAC, =F(1-8)-u

where g is the mean of the ith input distribution, and E—'(l—-S) is the inverse of the ith
distribution at the desired solvency standard. Let NormSAC, be the equivalent stand-alone
normal economic capital for distribution i:

NormSAC, =F,, (1-8,0,)

norm

where @ is the standard deviation of distribution ¢ and F, (1-5,0,) is the inverse normal
function evaluated at the desired solvency standard S. Let SkewSAC: be the portion of stand-

alone capital for distribution i that is due to shape (skewness), defined as:
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SkewSAC; = SAC, — NormSAC,

Contributory capital for distribution i is calculated as:

0,Y.0,%p, SkewSAC, %y SkewSAC, % p,
EC, = NormEC X| -t |+ SkewEC x| —— =
> o %o xp, 3" SkewSAC, x SkewSAC; X p,,
k=l j=1 k=] jml

where 7 is the number of input distributions and p; is the Pearson correlation coefficient between
distributions { and j.

Table 2-47 — Risk Pillar Correlations

NonCat Cat Life ALM Credit Market Operating
NonCat 1 0.0 0.0 0.2 0.0 0.0 0.2
Cat 0.0 1 0.2 0.0 00 0.0 0.2
Life 0.0 0.2 1 0.0 0.0 0.0 0.2
ALM 0.2 0.0 0.0 1 0.3 0.2 0.2
Credit 0.0 0.0 0.0 03 1 0.2 0.2
Market 0.0 0.0 0.0 0.2 0.2 1 0.2
Operating] 0.2 0.2 0.2 0.2 0.2 0.2 1

Table 2-48 — Capital Allocation to Risk Types

Risk Type u o SAC; NormSAC; SkewSAC; ECi Allocation
Credit 0 21,082,000 -220,935,812 -72,351,814 -148,583,998 -84,949,758 19%
Market 0 42,279,492 -145,080,596 -145,099,991 19,395 -78,817,041 17%
NonCat 1,453 45,822,431 -197,121,120 -157,259,086  -39,862,034 -88,335,717 19%
ALM -6,730,902 51,350,562 -179,024,171 -176,231,209 -2,792,962-125,935,017 27%
Operating 0 13,451,798 -46,159374 -46,165,544 6,171 -22,612,131 5%
Cat 0 19,853,644 -163,190,513 -68,136,192 -95,054,322 -38,943,801 9%
Life 0 20,423,027 -83,398,815 -70,090,270  -13,308,545 -18,379,180 4%
Total -457,972,646 100%
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3. RETURN QUANTIFICATION

Risk-Adjusted Return on Capital (RAROC) is the metric used to quantify the level of performance
of line of business. For a given line of business, RAROC is defined as the following:

UW+IC+CB

EC
where UW represents the calendar year underwriting result, IC is the investment credit, CB is the
capital benefit and EC is the economic capital. RAROC can be compuled either on a pre- or post-
tax basis, with the components of the quotient adjusted accordingly. In all cases, economic
capital in both instances must be measured on a contributory basis.

RAROC =

Frequently, economic capital is not equal 1o actual available capital. While RAROC is the return
on equity, (ROE), that would result from holding an amount of capital equal to economic capital,
under-capitalized companies have inflated ROE, while overcapitalized companies usually have a
depressed ROE, except where the internal transfer rate on invested surplus is in excess of
company-wide RAROC.

3.1 Calculation and Allocation of Investment Returns and Capital Benefit

Insurance lines of business generate reserves and surplus that earn an investment return. A
portion or all of this return should be allocated back to the business that supplies the funds, as
the reserves and surplus are on deposit with the investments unit. While there is a spectrum of
opinion between allocating a risk-free rate of return or the entire investment return, the RAROC
approach typically involves setting an internal cost of funds for the total amount supplied by the
business.

The internal cost of funds rate should reflect a fair return for an investment that bears no credit,
market or interest-rate risk. It should also reflect a premium for a guarantee of liquidity in the
case of a sudden need to pay a large claim. Along with this, credit, market and interest-rate risk
are managed by the investments unit, generating a need for economic capital. Investment returns
in excess of the cost of funds are retained by the investment manager.

The total investment return is calculated as the sum of realized and unrealized gains, investment
income, dividends, less expenses. The risk-adjusted income for the investments unit is the total
investment return less the product of the cost-of-funds rate and the total invested assets. Because
the investment credit and capital benefit reflect an internal transfer, the amount subtracted from
the investment unit’s return should be equal to the total added to the total investment credit and
capital benefit allocated to the insurance lines of business.
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Table 3-1 — Income Statement and Required Economic Capital by Line of Business

Other Economic
Lines NEP Revenue Losses Expenses  Reserves Capital

Homeowners 150,000,000 -97,500,000 -50,000,000 150,000,000 121,535,269
General

Liability 90,000,000 -67,500,000 -30,000,000 250,000,000 17,470,615
Credit & Surety | 115,000,000 -90,000,000 -38,000,000 175,000,000 62,470,270
Term-Life 100,000,000 -80,000,000 -30,000,000 200,000,000 21,603,260
SCA 45,000,000 -35,000,000 -15,000,000 200,000,000 32,210,652
Investments 100,000,000 202,682,580

Econ. Capital
Excess Capital

500,000,000 100,000,000 -370,000,000 -163,000,000 975,000,000 457,972,646

117,027,354

Total

500,000,000 100,000,000 -370,000,000 -163,000,000 975,000,000 575,000,000

3.2 Adjusting the Underwriting Result

The calendar year underwriting result can be adjusted to bring it closer to a true economic view

of profitability. Specific adjustments are made to remove development in reserves for past

accident years, allocate overhead expenses and reverse one-time special charges:

AdjUW = LIW- AReserves + Overhead — One-Time Charges

Subtracting the change in reserves due to reassessment of prior accident years removes the
“misdeeds of the past” to produce better forward-looking figures. Adding in corporate overhead
ensures that the result uses “fully-loaded” expenses - it is not unheard of for a new business to

launch a “profitable” product but manage to lose money every year. There are many theories of

how to allocate corporate overhead, however we have found that the process can be contentious
as it can affect P&L statements. Nevertheless, typical methods involve sizing the benefit received
by each line of business from each cost center. Finally, true one-time charges are removed.

Table 3-2 — Return Adjustments and RAROC Calculations

Post-Tax Post-

Investment Capital  Adjusted Tax  Adjusted  Tax
Lines UW Result  Credit Benefit UW Result RAROC Rate UW Result RAROC
Homeowners 2,500,000 7,005,000 5,675,697 15,180,697 12% 35% 9,867,453 8%
General Liability  -7,500,000 11,675,000 815,878 4,990,878 29% 35% 3,244,071 19%
Credit & Surety  -13,000,000 8,172,500 2,917,362  -1,910,138 -3% 35%  -1,241,590 -2%
Term-Life -10,000,000 9,340,000 1,008,872 348,872 2% 35% 226,767 1%
SCA -5,000,000 9,340,000 1,504,237 5,844,237 18% 35% 3,798,754 12%
Investments 100,000,000 -72,385,000 9,465,276 37,080,276 18% 35% 24,102,180 12%
Econ Capital 67,000,000 -26,852,500 21,387,323 61,534,823 13% 39,997,635 9%
Excess Capital 5,465,177 5465177 5% 35% 3,552,365 3%
Total 67,000,000 -26,852,500 26,852,500 67,000,000 12% 35% 43,550,000 8%
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4. EVALUATION OF RISK-ADJUSTED RETURN ON CAPITAL

4.1 Alternative Views

There are two different views of economic capital and RAROC in an insurance context. The first
is “Calendar Year” RAROC, which is the approach taken in this paper. Calendar Year RAROC
looks at the risk and return of a company’s full balance sheet over the course of the next calendar
year. The second view is “Accident Year” RAROC, which examines the lifetime risk and return

of new business put on in the coming year.

4.1.1 Calendar Year RAROC
Calendar Year RAROC is the ‘standard’ approach to measuring risk and return, and was the
method outlined in this paper.

4.1.2 Accident Year RAROC

Accident Year RAROC is an alternative to the Calendar Year approach. Rather than considering
all business that has been written in the past - and therefore can’t be changed - the Accident Year
view focuses only on the risk and lifetime value embedded in new business.

In practice, the calculation of Accident Year RAROC for Non-Cat risk is very similar to the
method outlined in this paper. It is equivalent to hypothesizing that the current accident year
represents the firm’s steady state; that is, all previous years are identical to the current in both
volume and division between business units.

The computation of economic capital differs only in equation 39, where each ULE, is just the
initial loss estimate for the accident year in question,

The computation of risk-adjusted return is similar to the Calendar Year approach as well. The
only difference is in the calculation of investment credit on reserves. Let Ri denote the expected
reserve for the current year’s contracts in development year i. The total reserve R for crediting

investment returns is:

R, (42)

v
i

The total reserve R is credited at the firm’s cost of funds. This can be interpreted as crediting the
specified accident year with all internal transfer income that will be accrued over the course of
the contracts’ lives.

The Accident Year vs. Calendar Year distinction is largely applicable only to P&C Non-
Catastrophe risks. Other risk pillars, such as Credit, Markel and Operating risks have no
comparable notion of ‘tenure’. Depending on the intended applianlion, however, it may make
sense in context to change the assumptions relating, to these risks (e.g. amount of invested assets)
to mirror the ‘steady-state’ view of the Accident Year Non-Catastrophe risk calculation.

122



4.1.3 Comparison

Both the Accident Year and Calendar Year approaches have important uses and interpretations.
Accident Year RAROC is a measure of the lifetime value of new business. The true value of long-
tailed insurance contracts is highly dependent on investment returns on reserves earned over the
very long term; long-tailed lines can look extremely unprofitable during periods of growth as
high loss ratios dominate relatively small levels of reserves (and therefore investment returns),
even if the expected long-term profit is very high. Accident Year RAROC credits new business
with this long-term income to clarify the tradeoff between underwriting profit and investment
returns. Therefore, Accident Year RAROC is most useful for applications such as setting pricing
targets and performing strategic planning,.

In contrast, Calendar Year RAROC is a measure of realistic expected shareholder returns over a
one-year period. It is the metric that is most closely comparable to budgeted financials. For this
reason, it is the more useful measure for performance assessment and shareholder
communication. Also, the Calendar Year methodology should be used for determining capital
adequacy. It measures a company’s true capital requirements in the short term. The Accident
Year methodology captures the cumulative lifetime capital requirement of new business, which is
not truly actionable in any reasonable manner.

4.2 Other Applications

The RAROC framework lends itself to several applications including pricing, risk transfer
evaluation and mergers & acquisitions analyses. In the pricing framework, economic capital and
the hurdle ROE set the cost of risk that must be offset by the risk load. For evaluating the
performance of reinsurance for risk transfer, RAROC is an effective risk-return metric that can be
used to compare the efficiency of reinsurance across dissimilar lines of business. For M&A,
RAROQC enables a quick and straightforward calculation of the value of the potential target
within the context of the acquirer’s business portfolio. RAROC's versatility is a very compelling
factor that is driving the adoption of the framework.

421  Risk-Based Pricing

The pricing cycle is an inevitable outcome of a pricing strategy that relies heavily upon observed
market price-points rather than economic risk-based pricing. When capacity is plentiful, prices
are reduced relative to the competition, trading current profitability for market share.
Shareholder value destruction is a frequent result of this behavior, compounded by the rarity of
explicit calculations of the economics of this trade. However, we can look to the banking
industry for a way to escape this cyde. The answer is to know the economic break-even point by
computing an appropriate risk load based on a hurdle RAROC that can be determined from
market analysis and CAPM theory, and on the capital required to support the marginal risk of
new business.
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Figure 4-1 — The ¢

ponents of risk-based pricing
Premiums, Fees,
Return on Surplus

Excess Profit

How do you charge Risk Load
for risk in a leveraged *  Reflectsrelative cost due to variabilty in claim frequency and
severity

financial institution? = Depends on current portfolio concentrations and reinsurance

Expected Loss

Direct Expense and Overhead

For example, by setting a 12% hurdle RAROC, prices that result in a lower return can be
considered to destroy shareholder value, while prices that result in “Excess Profit” as shown
above create shareholder value. Armed with this information, company management can assess
the strategic value of market share initiatives relative to the near-term value destruction of ultra-
competitive pricing. If uses for the excess capacity are found to be value destroying,
management can and in many cases should decide to return that capital to shareholders for
investment in other opportunities.

422  Reinsurance and M&A Evaluation

Evaluating reinsurance is never an easy task, but choosing between two programs in different
business areas is a challenge that has proven elusive. Consider the case where the choice is
between buying treaty reinsurance for a General Liability portfolio versus buying treaty
reinsurance for a D&O Liability portfolio. The hypothetical company has a pre-treaty RAROC of
15% on $100 million in Economic Capital, with a hurdle rate of return of 15%.

E 1 Risk- Ec . Intrinsi Shareholder-
;‘“‘P € Adjusted C°‘“?::‘l‘° RAROC ’;, al“"‘ Value
reaty Return aps 2€ Added
Gross $15.0 MM $ 100 MM 15.0% $1000MM  $0.0MM
10x 10onD&O  $ 14.0 MM $ 90 MM 15.6% $95.0 MM $5.0MM
15x 5 0n GL $14.5 MM $95 MM 15.3% $97.5 MM $2.5MM

The D&O program results in higher RAROC and shareholder value creation despite the greater
reduction in Risk-Adjusted Return. While this would technically “shrink” the business, it is
more valuable than the alternatives

Evaluating Mergers & Acquisitions would involve a similar framework of computing the net

reduction in total Economic Capital of the combined entity relative to the two standalone entities,
and calculating the shareholder value creation for the acquirer.
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5. CONCLUSION

5.1 Strategic Recommendations

The case study company is under-performing as its current RAROC of 9% is well below the
hurdle, or target, return on capital of 15%. However, a glimmer of hope exists in the 19%
RAROC posted by the General Liability business. Because General Liability consumes only 4% of
total economic capital, there is room to grow the business without worrying about excess
concentration risk. Conversely, Credit & Surety, which accounts for 14% of total economic
capital, should be reigned in until its profitability can be addressed through a risk-based pricing
initative, as described in section 4.2.1.

Additionally, we see in Table 3-1 that the company is overcapitalized by $117 MM, or about 25%
(5117 MM/ $575 MM in total capital). This drags the actual ROE down from 9%, were it
adequately capitalized, to 8% in its overcapilalized state. Note that only the additional
investment return on the excess capital prevents the ROE from dropping even further. For this
particular company, capital could be redeployed in the following ways:

* Redeploy capital from Credit & Surety to General Liability
* Return capital to shareholders via share buyback or increased dividends

¢ Expansion into new businesses that earn an adequate return

Table 5-1
Economic % of Post-Tax
Line of Business Capital (EC) Total EC RAROC

Homeowners 121,535,269 27% 8%
General Liability 17,470,615 4% 19%
Credit & Surety 62,470,270 14% -2%
Term-Life 21,603,260 5% 1%
SCA 32,210,652 7% 12%
Investments 202,682,580 44% 12%
Total Economic 457,972,646 100% 9%

As these recommendations demonstrate, the Economic Capital and RAROC framework are
designed around supporting specific decisions and strategic insights. The philosophy is to
produce best results possible in a timely fashion, but with neither “perfect” accuracy nor
excruciating detail. It is not intended to generate stochastic multi-year financial projections, set
reserve requirements or model the particulars of a specific complex insurance policy. The
adoption of RAROC as an industry standard in banking was predicated upon its ability to
accommodate diverse risk types and businesses. RAROC's ease of use and cross-industry
capabilities make it an emerging presence in the insurance industry.

125



REFERENCES

Bornhuetter, RL.; and Ferguson, R.E., “The Actuary and IBNR,” Proceedings of the Casualty Actuarial
Society LIX. Casualty Actuarial Society. Arlington, Virginia, 1972

Cooper, Warren P., “The Actuary and IBNR [Discussion],” Proceedings of the Casualty Actuarial Society LX.
Casualty Actuarial Society. Arlington, Virginia, 1973

Crouhy, Michel, Dan Galai and Robert Mark. Risk Management. McGraw-Hill. New York, New York,
2001.

Durfee, Don. “Strategic Risk Management: New Disciplines, New Opportunities,” CFO Publishing
Corp. Boston, Massachusetts, 2002.

Fabozzi, Frank J. Fixed Income Mathematics, Revised Edition. Probus. Chicago, Illinois, 1993.

Kelly, Mary V. “Practical Loss Reserving Methods with Stochastic Development Factors,” Casualty
Actuarial Society Discussion Paper Program. May, Vol 1. Casualty Actuarial Society. Arlington, Virginia,
1992.

Litterman, Robert and Jose Scheinkman. "Common Factors Affecting Bond Returns," Goldman Sachs
Financial Strategies Group Report. September 1988.

Mango, Donald F. “An Application of Game Theory: Property Catastrophe Risk Load,” Casualty
Actuarial Society Forum. Spring Edition. Casualty Actuarial Society. Arlington, Virginia, 1997.

Newsome, J. Paul, et al. “Risk-Adjusted Capital, An Emerging Positive Secular Trend,” Lehman Brothers
Global Equity Research. September 2000.

Ong, Michael K. Internal Credit Risk Models. Risk Books. London, United Kingdom, 1999.

White, Hugh G., “The Actuary and IBNR [Discussion],” Proceedings of the Casualty Actuarial Society LX.
Casualty Actuarial Society. Arlington, Virginia, 1973

126



