
Fitting Moments with Weights 

Daniel R. Corro 

339 



F i t t i n g  M o m e n t s  w i t h  W e i g h t s  

Dan Corro 
National Council on Compensation Insurance, Inc. 

June, 2002 

Abstract: This note investigates ways to f i t  individual claim loss data to a 
prior known "'underlying severity level" by adjusting the relative 
importance, orweight, assigned to each claim. Here, "'underlying severity 
level" is measured by the weighted mean cost per case. The paper also 
generalizes the approach to accommodate fitting higher moments o f  the 
loss distribution, especially the variance. It establishes the existence o f  an 
optimal reweighting, but whose calculation may be too difficult for  
practical application. To address this, the paper describes two easier 
calculations, one designed to f i t  only the mean and another to f i t  both 
mean and variance. 

Section I: Setup and Notation 

Let X be any firfite set, by a weight on X we simply mean a non-negative 
real-valuedfunaion ~o:X ~[0 ,**) .  In this case will also refer to¢o asa 
weight andrefertotbepair(X,fo) is a weighted set. But we will oflen 
abuse this formality and just refer to Xas weighted by o~. For any finite 
set X ,  welet ~xl=munber ofelcanents in X.  When Xis weighted by to, 

we use the notation: 

IA~ = ~ o)(x), for any subset A c X. 
, t ed  

We note two simple properties that a weight to on X may or may not 
have: 

to ispositiveifandenlyif(o(x) >0 for everyx~ X 

6o is a probability weight if  and only if [A~w = l . 
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It is clear that the concept of  a discrete probability density on X exactly 
coincides with what we are here calling a probability weight. 

Nowlet X c IR be any fir6te set ofreal numbers and ¢oaweightonX. 
By comb'ming the weights of elements of  X tbat are equal, we can withont 
any loss ofgenexality writeX = {x~ < x  2 <. . .<  x,} as aseries of  n distinct 

ntmabers in ascending order. Thinkofthex s as representing the distinct 

loss amounts from the claim sample X,  arranged in increasing order to 

facilitate a size of  loss analysis. Now take any Z E R with x~ < z < x , .  

It is intuitively clear that there exits a weight t~ on Xfox which z is the 
weigh~ ~ :  

Ifwe define yet a third weight p on X by setting - ~ Thenwe 

can think of p as a multiplicative adjustment factor to the weight ~ that 
reweights the weighted set X to give it the given mean z while holding 
the total weight constant. 

Section II: Moments of  Finite Claim Samples 

This paper pursues the question of how to come up with an appropriate v .  
For this purpose, we introduce the formal  moments of X,  relative to any 

function 1) : X ----> R 

Iz k = lik ( X  , ~)  = ~"~-~'~xO(X)Xk , O < k < n -  l .  

Ixlv 
Observe that when 19 is a probability weight, this is just the usual first 
n - 1  moments ofthe claim sample X.  It tums out that for any veetor of  
potential formal moments of  X,  say m = (1,ml,..ran_l), there is a tmiquely 

defined function v ( m )  : X  ---> R suchthat: 

(*) m k = # k ( X , v ) ,  O < k < _ n - 1 .  
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To vefifythis, recall the n x n  Van der Monde matrix: 

I 
1 1 ... 1 ] 

-- xj x 2 "" X R 
v = v ( x )  - -  ~ : • . 

n-I  X2,-I  n-' 
X I . ' ,  X n 

whose detemainant: 

~ t ( v ) =  l=I(~, -x~) > o. 

provides a standard exercise in introductory linear algebra texttmoks. The 
vefificalion is by induction ( m n .  Case n = 1 holds 'vacuously and case 
n = 2  is dear. Regard the xt as constants and construct the n - l d e g r e e  
polymmial: 

Ii 111 p ( y )  = Det l x2 "'" X,_; 
• : : - . 

n - I  X n - I  - 1  
LXI n=l 'X2 """ n-I Y 

Note that substituting y by any of x~ ..... x,. 4 results in a malrix with two 

identical coltmans. But then clearly p(y)  has the distinct roots xa,...,x,_4, 

and we may write p ( y ) =  a I ' I  ( Y -  Xt), where the eonstant a is the 
ISl<n 

eoeflieient of y ' - ' .  But expanding the determinant along eohann n and 
invoking the induction hypothesis: 

i 1 .-. 1 / 
a = Det i x2 "'" x~-I _ : : ~ - 1 1 : , - - J ;  

• I11j<l~ n-I 
XI n-2 X2 n-2 "'" X n-2 

n-I ..I 
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Vv'hencc: 

Det(V)= p(x.) =a l i ( x  , -x,)= 1-I(x,- x) l- I(x. -x;)= l-I(x¢ -xs),. 
l~i<n l~j<l~n-I I$i<n I~ij<i~;n 

that completes the haduetion. 

Now we can naturaUy identify any function I) : X ----) R withtherow 

vector (o(x,),  o (x  2 ),...v( x ,  )) .  With this notation, observe that (*) is just 

thematxixequalion: Vo r = m  r . Sineetlcnmlxix Vis  no~ingul~,f l le  

fiacdon D : X ----> Rean be caleulated from v r = V-~mr, estab~shing 
bothexistene¢ and uniqueness of  o .  In theory, this provides a way of  
determining whefllcr a weight v exists on X that ¢w~ights the claims to 
fit the given set o f  n moments, and even provides a way to calculate i t  In 
practice, howevcx, the claim sample may be very large and this may not be 
very practical. 

More likely, we are only concerned with fitting the first few moments o f  
the claim sample X to  a set of  momem values derived from empirical data, 

say r~ =(n~ o = l , r~ , . . .~ , ) ,  k<- n .  The m o m ~ t s  must  be reasonable in 

relation to X ,  for example we clearly must have: 

x~mj <mj+~ <x mj l < j < k .  

Which would be assmed, say, if all lhe empirical claim costs fell within 
the range of  X .  

When k = 1 it is clear that the set o f ' ~ ) s s ~ l e "  moments over all 
probability weights on X is just: 

M , ( X )  = {(1,ml) I xl < ml < x~ }. 

The case k = 2,  which correslxmds to fitting both the mean and standard 
deviation, is more complicated and so we consider sub-cases. 
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Sub-case k = n = 2,  here fl~e reader can easily verify that: 

M2(X ) = {(l,m I ,m2) ]xt < ,.~ < x2, m 2 = x2(m 1 - x , )  +m,xa }. 

Sub-case  k = 2, n = 3 , he tc  w e  claim that 

~ ~ [  i x I <m, < x  3 < x a ( m , - x l ) + ~ x '  ] M2(X)=L(l'm"m31Max(x2(m,-x~)+m,x,,x3(m, -x2)+ m, x2) <m2 

To verify this, considex the set of  2 simultaneous equations: 

m, =o~x~ +o~x, +(1-o~ - o ~  
m 2 = ¢OlXl 2 +¢.02X ~ + (1-- O~ - ¢02)X ~ 

which may be rewritte~ as: 

~ , -~ - -  o~(~,-~)+o~(x,-~) 

Considering m~,~ as unknowns, we know from the above that theteis a 
unique solution to these equatiom, h fact, we let the reader verify that the 
solmi~ is: 

O~ __ ~q2 --  X32 "[" (X3 --  ml XX3 "~- x2 ) ,  _.~ x2 -/lq2 - ()£J --  r/~l XX3 "[" xi ) 

- ( ~ , - ~ , X ~ - ~ )  ~ (~ , -~X~, -~ , )  

Note too that 

x~-m~ -¢~-.~Xx~ +x,) 
+o~ = (~,-~X~-~) 
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Considering to~,o h as weights, we see that they define a probability 

density with moment vector ( 1, mj, tt h ) ~ M2 ( X ) exactly when 

to~ > 0,¢o 2 > 0 and to~ + to z < 1. Now the reader can easily check that: 

x2(mt-xl)+xxl<m2 ¢=~ (ol +0~ < 1 

x3(ml -x2)  +xx2 < m  2 ¢~ o h 2 0  

m2 < ~(/r~ - xj) +nltx t ¢:~ 0)2->0 

fi'om which our claim follows. There ren-zi~: 

Sub-case k = 2, n > 4, 

M~(x) ={O.~,m~)l a < ~  < x., ~.(,~ -~._,)+ ~ ._ ,  <m. <~.(~ -,q)+ ~a}. 

To prove this, let ( 1 , ~ , m 2 ) ¢  M 2 (X)  and let to(xl) = ~ be the 

conestmnding probability weight  As before, we consider the set o f  two 
simultaneous cquafiom: 

,~. - ~ =,~(x.  - ,~ )+o,~(,~. - ~)+. . .+o, ._,(x.  -x._,)  
x: - , ~  = @ :  - x: )÷ @ :  - ~ )÷... ÷~,._,(,,: - ,,:_,) 

Eliminating the"tmknown" to,_~ gives: 

~: - ~ - ( x .  ÷ x~ ,  Xx. - ~ , ) - - , ~  (~: - ~ ,~-  (x. + x._,Xx. - ~ )) 

+o,._~(x:-x~_~-(x. +x.~Xx.-x._~)) 
This can be rewritten as 
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Since the ixobability weights ¢o~ > O. this dearly implies that: 

m~ _> x. (m, - ~._,)+ re, x._, 

Observe too that 

It follows that rn 2 is maximized by assigning as rm~h weight as possible to 

x~, i.e. by making oh as big as possa~le. Now, for fixed weighted mean 

ma,themhkntma x~ gets maximmn weight when it is required to offset 

all by itsdfthe maximtma x.. Note that in that event: 

,n, = 6 x ,  + 0 - 4 ) ~ .  ~ - x ' - m '  
X n - -  X I 

From this, we see that: 

m2<-x.(m,-x~)+mtx,,.a+~,(x,,_,-xtXx,,-Xl) 
=x.(,,,,-x._,)+m,x._, +(x._,-x,E-,,,,) 

And we have shown lhat 

M~(X3 = {(1,m,.,,~) I ~ , ---~ <_x.,x.(m,-x._,)+,,,,x._, <,,,~ <_x.(m, - ~ ) +  ~ , } .  

Conversely. let ( 1 , ~ , % )  belong to the right hand side and let 

z~ = x  a < z  2 =x._~ < z  3=x . .  
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Than we find that 

~ ( ~  - zO+~ ~=x._, ( ~ - ~ )+~x, 

=~(,~ - ~_ , )+~ ._ ,  _< x~(~ - ~_, ~-,~ ~_ ,=~(~  - z ~ - ~ z ~  

<m 2 

-< ~( ,~  - ~ ) + , ~ = z ~  (.~ - zO+~z , -  

It then follows flora the ease n = 3 that (1, ml, rn 2 ) ~ M e (X) whence: 

{(1.mi,m2) I x ~ _<r~ <_x.,x.(m~ -x._t)+m~x._, <_m~<_x~(m~ - x 0 +  m~xi}c_ Me(X) 

and the proof is complete for the sub-ease k --- 2, n _> 4. 

That argamaent readily extends to: 

Case 3 < k < n :  

x~ <~_<x~ [ 

j x~ -~_~ Mk(X)c_, ',l,~ ..... m~l x~ _(x, _mt ~f )<  . I x  ~ -J "~ "~ < 
t.x.-x._~ ) ~ x . - x ,  ) 

To prove this, again let (1,~,m 2 . . . . .  m k ) ~ M k ( X ) and co(x,) = ~ be the 

corresponding probability weight. We have a set of k simultaneous 
equations: 

x.-m~ --,ol (x , - x, )+o,2 (x . - x~ ) + . . .  +o~..~ (x.  - x..~ ) 

x2 + + 12 2 - 2) "" ° 9 . - A x . - x . - l )  

k k k k 
Xn_mk = O ) l ( X n . X  )÷O)2(X: X k '  ÷ ' k - 5 )+ . - .  cO..lt~.-x~.,)  

Now fix j ,  1 _< j < n and define the function 
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f(,,) = x.~- x, -(x. - , , )g -~L,. 
x. - x,,_, 

Letting p =  x, >l ,weseethatforx~<x<x, ,_~:  
Xn.. I 

J --Xn_ xJw.I p J - - 1  
= _ j ~ .  + x. = _ j ~ _ ,  + = (1 + p + . . . + p - ) ~ : ~  - j ~ - ,  > o. 

d x  x .  - x._ I x.-i  p - I  

And so f ( x ) is an increasing fmcfaon on ( x~ , x .q  ) . Since f ( x._, ) = O, we  

see that 

0 < -f(x,, ._ 2 ) < - f (x ,_s )< . . .  < - f ( x  2 ) < - f ( ~ ) .  

E l m r ~ n g  the "unknown" ~o,_~ between the two equations involving m, 

and m j  giVe: 

X j -- X j n-2 
x j -mj-(x.-ma) . . . .  ' -ZO~ff(x,) 

Xn --  Xv,.- 1 i=-I 

m j  = xJ. - ( x .  - m , )  xj" - x j  "-' 
"-' + Z( -  f(~,))o,, 

Xn ~ Xn-I i=1 

This deafly implies that 

x ; - ( x . - ~  " "-' l ~ m  j.  

It follows, as before, that for any fixed m,, mj is maximized by assigning 

as much weight as possible to x~, i.e. by making o h as big as possible. 

And again, for fixed weighted mean mt, the rnhahrnanxi g ~  maximmn 

weight whenitis requited to otfset allbyitselfthemaximtma x.. Recall 
that: 

m, = ffhx, + (a - ~  )x" =~ dh = x" - m' 
X n - -  X I 

and from this, we see that: 
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mj  ~_~x j - ( x  n -ml) xnj -~-1 _4f(x~) 
X n -- Xn_ I 

_ ~ ~ - ~ _ , _  x .- ,~ x ~ _ g _ ( ~ _ x , ) X . - ~ . _ ,  
- x" - (x" -~ )x . - x . - ,  t. ~È-x~ k ~-~.-, 

_ J _  J 
-- X j ( X n fiql ~xJ  xJ ~ x j  IX ~ X~ X 1 
- . - / ~ l k  . -  ~ 1 -  . - t  . - m l A ~ /  k x. -x, ) k x. -x, ) 

We have shown that 

II, r~ ..... mD x ~ x~ <- m, <_ x, l 
Mk(X) ~ '  - (x  - nt ~1 ~"-7~-----2~[< m. < ~  - ( x .  - m  i 

"" '"V.-x.~ ) -  • kx.-x~ ) ! 
for 3 < k _< n ,  as required. 

The point of  this discussion, as regards using weights on a set X to fit 
pre-assigned moments, is that the number of  elements of  the set X lirnils 
the ntanber of  moments and the ~ and maxinaan values of the set 
X detemaines the allowable range of the moments. In p,~eular, it may 
be advisable to arrange for X to encompass outliers, even at the expense 
of X being representative of claims exlmience, especially since it will be 
reweighted anyway and by design such outliers do not "adversely" impact 
the mean. 

Section III: Finding the Weight 

On the other hand, now suppose that (X ,to) was built to be representative 

of the kind of claims we are investigating and so we want to stay as "close 
as possible" to weight r.o, in some sense. 
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Define the subset 

P=  (o~, ,¢o2, . . . ,o~, )10<w ~, o h = l  o R "  
.=  

that corresponds to probability weight functions. Note that this subset is 
closed, convex, and compact. Consider the (k + 1)xn matrix (of 
maximona rank): 

v ,=v , (X)  x, x~ 

x x 2 x .  

Suppose we are given a vector th = (1,th,...thk) presumably derived from 
empirical data, and we are assured (or we refer to a characterization of  
covered moment vectors, as above, and augment the range of X if 
necessary) that the solution set 

S =Pn{v~ R" I V,v" =@'} 
is not empW--in fact it is convex and compact. Since the norm fimetion is 

continuous, it then follows that there is some 190 E $ such that 

I1 o - ~0  II : M i n  ~ o  - v l i l y  ~ S } 

maldng 190 ¢ S in some seine an optimal reweighting of  X ,  inasmuch as 
it fits the required moments while staying as close as possible to the 
original weight ¢o. We have verified that there exists a well-defined "best" 
solution, not necessarily unique, to the task of reweighting (X,o~) to fit a 
given set of moments. 

Even though the set S is convex and compact and fairly well described, 

in ge~ml it is no picrtic finding DoE S that minimizes the distance to a 
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point. We conclude this paper with two simpler approaches that, while 
lacking in theor~cal appeal, are simple to implement. 

Approach 1: Suppose, as above, it remains a priority to use a weight as 
near as practical with the original weight co but we are only concerned 
with fitting the weighted mean to a given value lh ,  which we assume 
satisfies xt < n~ < x~. Consider the piecewise linear function: 

f(;t,t) = M a . ~ 0 , 2 f t t + l - f t )  2 ~  R , t ~  [0,1] 

Notice the following limits: 

f ( ~ , , t ) = J O  t ~ [ 0 , 1 )  
l im 

x--,+- l + ~  t = 1 

f ( ) ~ , t ) = / O  t ~  (0,1] 
l im 

x - , ~  ].+oo t =  0 

Consider the l-parameter family of  weights: 

Note that coo = ca- Define g (~,) = /6  (X, to x ). The reader can verify that 

g is a continuous, increasing function of  2 w i ~  

lim g(,~) =x~ lim g(~,) =x. 

It follows that there is a unique number  ;t o with g(20) = th. We remark 

that ;t o can be readily found in practice with the use of a binary search 

algonthr~ The w~ght ~ :  ~ , ~ 1 °  on Xhas the same to~  weight as the 
IXL~ 

original weight co with la~(X,v)=l.t,(X,co~.)=g(Zo)=A 

Approach 2: Suppose, we are concemed with fitting both the weighted 
mean and variance, but it is not a priority to use a weight near the original 

weight co. Suppose we are given a target mean ~ and variance ~2. This 
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approach exploits the Beta density, and we use the notation of[l].  We 
letx o = 0 < x~ and L = x, .  As in [1], the probability density function 

g(z)ofthe two-parameter Beta density of  mean rh and variance j2 on the 

interval (0,L) can be determined as: 

c=~-rn a =  Lc 2 /3 = >0 

Then define: 

We have: 

g(z )  = g ( . , # ; z )  z ~-' ( L -  z)P-' 
B(c~,~ff)L~+a+~ z~ (0,L). 

xj 

V(xj)= fg(z)dz l< j<_n. 
xj_, 

L 

j=l j=l  xl_t 0 

and so uis a probability weight on X.  We also have: 

n k j~ ~n xlf k E~x~(x)x'l~ Exj #k ltk(X,v) = g(z~az= ~ g ( z ~  

n xi L 
> E f zk g(z)dz = fz 'g(z)dz 

j= l  X/_l 0 

= {  th k = l  

th2+~ ~ k = 2  

Which indicates that while the weighted moments are greater, in most 
cases they should reasonably well approximate their target. 
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