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A b s t r a c t  
Traditional loss development techniques focus on estimating the expected ultimate loss but do 
not generally indicate the magnitude of possible deviation from this estimate. In a variety of 
circumstances, however, point reserve estimates are not sufficient. In particular, loss portfolio 
transfers, commutations, novations, and reserve margin securitization all typically require an 
estimate of the range of possible loss outcomes. 

By adjusting a paid loss model described in Foundations of Casualty Actuarial Science to 
incorporate a random fluctuation component, a stochastic differential equation model is obtained, 
This model is analogous to the stock price model used to develop the Black-Scholes option 
pricing formula. Furthermore, this differential equation has an explicit solution that yields 
Lognormal distributed development factors similar to the Lognormal link-ratio model published by 
Roger Hayne. 

A slight modification to the model for undiscounted reserves provides a differential equation that 
accounts for variation in both the amount and timing of loss payments. This equation does not 
have an explicit solution but can be solved numerically to yield the distribution of the present 
value reserve. 

The opinions expressed in this article are those of the author, not 
American Re Insurance Company. 

I n t r o d u c t i o n  
Traditional loss development techniques focus on estimating expected ultimate losses but do not generally 
indicate the magnitude of possible deviation from this estimate. Typically, a reasonable point-estimate reserve is 
selected after evaluating the range of estimates produced by several projection techniques. Barring significant 
calendar year effects, this approach is quite effective when reserves from many accident periods are combined 
into a single aggregate reserve. In this case, the development on any single reserve may be offset by 
development on the remaining reserves. 

In a variety of circumstances, however, reserve point-estimates are insufficient. In particular, loss portfolio 
transfers, commutations, novations, and reserve margin securitization often involve a single reserve. 
Furthermore, these contracts are typically priced on an economic basis. Economic pricing requires valuation of 
the uncertainty arising from both payment amount and timing. 

By adjusting a paid loss model described in Foundations of Casualty Actuarial Science to incorporate a random 
fluctuation component, a stochastic differential equation (SDE) for paid loss development is obtained, This model 
is analogous to the random walk stock price model used to develop the Black-Scholes option pricing formula. 
This differential equation has an explicit solution that yields Lognormal disldbuted development factors similar to a 
loss development model published by Roger Hayne. This distribution may be used to compute prediction 
intervals for the indicated reserve, and expected adverse deviation from the carried reserve. 

A slight modification to the model for undiscounted reserves provides a differential equation for discounted 
reserves. This equation does not have an explicit solution but may be solved numerically to yield the distribution 
of the presen~ value reserve. 
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Historical  Motivation for Model Approach 
The model developed here is a genera[ization of two models already familiar to the actuarial profession. The 
most straightforward model is the Lognormal Age-to-Age Factor model developed by Roger Hayne t . This model 
assumes that age-to-age factors are Lognormal distributed and uses the properties of compounded Lognormal 
variates to project ultimate losses. As we shall see later, this is an entirely appropriate model for loss 
development. Implementation of Hayne's model, however, is complicated by several limitations... 

Parameters are estimated for each development age using losses observed at each age. This dala 
becomes sparse at later development ages. 
Tail factors must be estimated. 
Two parameters must be estimated for each development age. This creates a significant polential for 
over-fitting. (i.e. the model has so much flexibility that it is fitting parameters to the noise in the data as 
well as to the underlying relationship of interest.) 

These issues, however, can be addressed by uniting the Hayne model with the Loss Function Model detailed by 
Renald Wiser 2. In this model, Wiser discusses loss rate functions that can be integrated to yield the expected 
incremental paid losses during any specified period. In general differential equation form... 

dP = m(t)dt  (I) 

...where dP is  the incremental paid loss over each time dt, P is paid losses and re(t) is the loss rate function. The 
choice of toss rate function is governed by incurred and repealing patterns, timing of salvage and subrogation 
recoveries, etc. In general, however, the loss rate function should tend to zero over time. Under this model, age- 
to-age factors are no longer a practical necessity. Once the parameters have been estimated tot the loss rate 
lunction, however, age-to-age factors may be computed directly by... 

J ' . l ( s ) d , ~  
() 

Age-to-Ago Factor(8,te) - ~ 

f m(s)ds  

(2) 

Typically, m(t) will have far fewer parameters than Hayne's model so there is less opportunity for overfitting. 
Furthermore, the model already incorporates an implicit tail factor so there is no need to estimate this separately. 
Note, however, that this tail factor is based solely upon the characteristics of the selected loss rate function. This 
model does not address the development variability that was the crux of Hayne's model. 

The technical question becomes, then, how can we modify Equation (1) to incorporate random variation. The 
statistical tool for accomplishing this is called stochastic differential equations (SDEs). SDEs allow us to write 
differential equations with random coefficients or constants. These equations have found application in a variety 
of engineering, biological and financial systems subject to "noisy growth". In an insurance reserving setting, paid 
loss development is an example of noisy growth. 3 By assumption, losses follow a "development pattern" and it is 
the actuary's charge to assess whether deviations from the development pattern are random or systematic. SDEs 
are one approach for quantifying the paid loss development pattern and statistically testing deviations from that 
pattern. 

Unfortunately, standard Riemann integration techniques cannot be used to solve SDEs. The next section details 
the basic technical apparatus required to specify and evaluate the equations used in this model. This 
explanation, however, should not be taken as either a general or complete presentation of the topic. 

I Roger Hayne, An Estimate of Stahstical Variation in Development Faclor Methods. t 985 Proceedinqs of the Casualty Actuarial Society, 
Volume LXXII 

2 Renard Wiser, Loss Reserving Foundalions of Casuaqt~u~lrial Science, Thnrd Edition 
3 By contrast, incurred loss development is subject to systematic manipulation by the actuary and does nol constitule noisy growth. 
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Stochastic Differential Equations 
The differential equation that forms the basis of this pro)ection method is an extension of Equation (1)... 

dP dP = fl(t)Pdt + a(t)PdB, . . . o r . . .  - -  = ll(t)dt + tY(t)dB~ ( 3 )  

P 
Here ,u(t) is the loss log-growth rate, dBt is a Brownian motion noise function (Brownian motion will be discussed 
in further detail below) and o'(t) is a noise scale factor. Solving this equation for P(t) is somewhat problematic as 
P is a stochastic process rather than a normal function. Was this a Riemann integral we would make the 
substitution... 

dP G(P) = I n ( P )  ==> dG(P) = -  (4) 
P 

This substitution would make the solution of Equation (3) relatively straightforward. When dealing with a 
stochastic process, however, we cannot so easily use the derivative "chain-rule" to go from G(P) to dG(P). The 
chain-rule for stochastic processes is given by [to's lemma. 4 Without proof, a form of this temma states... 

Let X, be an [to process given by dX, = u ( t , x ) - d t  + v ( t , x ) ,  dB, . Let Yr = g(t, X, ) 

be a twice continuously differentiable transformation of X, . Then Y, is also an Ito 
process and 

dY, = ( ~ u ( t , x ) +  dg(t,X)dt 4 21 d"g(t,X)v,(t,x)l.dt+v(t,x).dB z 

After applying this lemma, the log-transformation G(P) yields the following solution to Equation (3)... 

tpoj o 

(5) 

This model is called geometric Brownian motion and is frequently used in financial models: a famous example 
being the Black-Scholes option pricing formula. How do we interpret this result in a loss development context? 
The left-hand side of the equation may be interpreted as the log link-ratio between two development ages. The 

log link-ratio is equal to a fixed component given by the integral ot ~ ( t )  - ~ o ' " ( t )  over time, and a random 
i 

component given by the integral of o(t) over the random noise process. Although not required in theory, the fixed 

integral i( lz(t)- l~r~-(t)~l t shouldgenerallybefinitetoensureafiniteultimateloss. 

To understand the random component, we must first understand the basic behaviors of Brownian motion. 
Brownian motion is a continuous-time random walk process. Conceptually, this is a process that generates 
Normal random increments for each time increment dtand sums these increments over time. When a function 
such as a(t) is integrated over a Brownian motion path, we have what is called an/ to  integral. ]to integrals have 
two basic, statistical properties that we will use to understand Equation (5)5... 

4 For a complete discussion of Ito's )emma see Ot(sendal, Stochastic Differential Eauations. Chapter 4 
5 These properties only ho)d for "nice" functions o~t). For a complete discussion of erownian Motion and its relationship to ire Integrals see 

E~sendal, Stochastic Differentia I Eauationli, Chapter 3. 
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E [ ~  o ( t  )dB, )]= O (6) 

From these properties we can show that the random noise process is Normal distributed, has an expected value 

of zero, and a variance of fo'2(t)dt .6 This yields the following distribution model for Equation (5)... J 

', , -' " I ', 
(7) 

In other words, the link-ratios between any two ages are Lognormal distributed with the distribution parameters 
indicated in Equation (7). Using the results of Hayne, this also implies that the paid loss development between 
any two ages is also Lognormal distributed. A benefit to this approach is that once the model has been fit, 
development factors for any time inlerval may be computed regardless of the increment in the underlying data. 

Applying the Model 
The primary steps in applying the random walk model are verifying that observed age-to-age factors are 
independently, identically, Lognormal distributed; identifying appropriate functions for ,u(t) and o':(t); and 
estimating the parameters for those functions. Paid loss development data representative of non-standard, 
personal auto, bodily injury liability coverage is used to demonstrate the application of this model. 

Data  D iagnost ics  - Test ing  Model  A s s u m p t i o n s  
This section tests whether the data satisfies the assumptions underlying the random walk model. This is done 
using the raw data and prior to any model selection or fitting. Note that a violation of the model assumptions does 
not necessarily imply that the subsequent model fit will be poor. Rather, a violation of the model assumptions 
means that any statistical tests based upon the model results are biased. The magnitude of that bias depends 
upon the seriousness of the violation. 

The data are shown in Exhibit 1. This data has not been adjusted for any changes in reporting, claim handling, 
inflation, etc. so the first step is to verify that the age-to-age factors do not show any significant accident year 
trends. (i.e. that within each development age, the age-to-age factors are independently, identically distributed.) 
This is shown in Figure 1 below... 

6 For the interested reader, this entire derivation is presented in detail in Pliska, Mathematics of Derivative Securities. Chapter 1. 

243 



Figure 1 

Accident  Period Trends in Development Factors 
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Each line on this plot is the observed log age-to-age factor for a common development age. Although the early 
development periods (largest development factors) exhibit a slight downward trend in the first few accident 
periods, this is insignificant given the large, random fluctuations observed in later periods. Accordingly, we can 
reasonably assume that the development factors at each age are independent. Note, however, that these 
uncorrected trends will increase the volatility of projections made at early development ages. If these trends 
could be removed through "data-leveling", the precision of the ultimate loss projections could be greatly improved. 

A Q-Q plot was used to verify that the age-to-age factors at each age are Lognormal distributed. This is shown in 
Figure 2 below... 

Figure 2 

Log-Normal Q-Q Plot 

Sam ple Log Agl-to-Age Fnclor 
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This plot shows the sample log age-to-age factor and the theoretical sample quantile under the Lognormal 
distribution; a perfect distribution fit yields a straight line. Although this plot obscures the fit for individual 
development ages, we can readily see that the Lognormal assumption is quite reasonable. At later development 
ages (lower, left corner), however, the Lognormal assumption is generally poorer. There are several reasons for 
this... 

At later ages, the small number of observations makes the data less stable. 
For small samples, the sample quantile is a poor measure of the underlying distribution quantile. 
At later ages, the actual likelihood of favorable development arising from salvage and subrogation 
recoveries is smaller than predicted by a Lognormal model. 

The last point will be particularly important when computing reserve estimates; at later development ages, the 
lower prediction limit for the required reserve may be negative. In other words, the model recognizes that 
favorable development could reduce the ultimate loss below the current paid loss. This behavior is probably 
inconsistent with most lines of business. Fortunately, however, the lower limit is not typically of concern when 
evaluating reserve estimates. 

Curve Family Select ion 
The next step in the modeling process is to select appropriate families of curves for p(t) and a2(t). This is a non- 
trivial task: polynomial functions will generally not be appropriate and, consequently, standard sequential model 
selection techniques cannot be used. The following procedure is presented as a practical approach for 
streamlining the model selection process. Of course other more theoretically accurate, and computationally more 
difficult, approaches are possible. 

For this data, both/1(0 and a2(t) have the same restrictions imposed upon them: they must be positive, 
decreasing functions that tend to zero over time. This is shown graphically in Figure 3 below. These types of 
functions are generically referred to as "tail-functions". In this example, three classes of tail function were 
considered. These functions were... 

a - e  -1~1 (8.1) 
I 

~'. t -~ + y (8.3) 

In this example, these specific functions were selected because they encompass a wide range of tail decay rates. 
In practice, a varied catalogue of tail functions may be obtained by scaling the survival function of various 
statistical distributions. 7 The tail-functions given above correspond to the scaled tail functions for the Weibull, 
Generalized Extreme Value, and Power distributions respectively. Also in order, these functions vary from lightest 
to heaviest tailed. Selecting the most appropriate curve form is complicated by the fact that we cannot directly 
observe the rate functions p(t) and 02(0. Rather, we can only observe the integrated values of these functions 
(Le. the log age-to-age factors) as shown by the integrals on the right side of Equation (5). Furthermore, both the 
rate functions and the resulting log age-to-age factors vary by orders of magnitude. These complications, 
however, were exploited to develop a model selection procedure. 

First, least-squares estimation was used to estimate the parameters of each curve form by fitting each curve's 
integral to the mean and variance of the observed log age-to-age factors. Typically, the least-squares approach 
would be inappropriate for this data because the fitted values vary by several orders of magnitude; the least- 
squares approach fits parameters to the largest values and ignores the smallest values. This characteristic, 
however, was used to justify the curve family selection. A curve that is fitted to the largest values and 
coincidentally fits the smallest values, too, is probably capturing the true underlying relationship in the data. By 
placing the empirical and fitted log age-to-age factors on a log-plot, the curves may be evaluated at both the 

7 A concise relerence for statistical distributions, dislribution functions, transformations, etc. is Evans et al, Statistical Distributions 
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largest and smallest values. This is shown in Exhibit 2. Here the Generalized Extreme Value tail function 
generally provides the best overall fit for both ,u(t) and cr"(t). In general, however, the same tail function need not 
be selected for both components. The final parameterization of these curves is shown in Figure 3 below... 

Figure 3 

m > 

I 

100000 

1 0000 

0 1000 

00100 

00010 

Empir ica l  and F i t ted Log Age- to-Age F a c t o r •  

Mean  and S tandard  Devlot lon by D e v e l o p m e n t  I n t e r v a l  

i • ,~rp~'lcal Mean ] 

I t  I F'rlted Mean I 

o o- .... :., ! 

o 

0 " "  • 

~ v e l o p m e n t  Period 
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The least-squares parameters used to select the tail functions are not the parameters for paid loss projection; 
rather maximum likelihood estimation was used to select the parameters for the ,u(t) and o2(t) tail functions. The 
maximum likelihood estimation procedure allows the model to be tuned for long-term projections. 

With the case study data in triangular form, we can use the model to project the paid losses from each 
development age to the last reported value (Le. the last diagonal in the development triangle). We can then use 
the observed value, the projected value, and the projection distribution given by Equation (7) to compute a 
likelihood statistic for every such projection. The final model parameters, then, are selected to maximize the 
overall Nkeiihood that the observed losses could be generated by the modeled distribution. The maximum 
likelihood estimation procedure and the resulting projections are summarized in Exhibit 3 and in Figure 4 below_. 

Figure 4 

Projection ~rom Development Age to Last Report 
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In this application, maximum-likelihood and least-squares estimation differ in one key respect. Least-squares 
estimation seeks to minimize the volatility of the left-hand side of Figure 4 where the development factors are 
largest. This creates a large potential for overfitting if there is significant noise in this immature data. Maximum- 
likelihood estimation does not seek to minimize this volatility perse. Rather, maximum-likelihood seeks to ensure 
that the volatility conforms to an assumed distribution. To the extent that the assumed distribution model is 
correct, maximum-likelihood will also minimize volatility in the same fashion as least-squares estimation. If the 
assumed model is incorrect, however, the volatility will be increased due to the bias arising from the model mis- 
specification. 

The parameter estimation technique presented here was chosen for its tractability rather than its statistical 
properties. In fact, the parameters produced by this procedure will be neither unbiased nor minimum variance. 
More sophisticated estimation techniques incorporating censored data analysis would rectify these issues. 

M o d e l  R e s u l t s  
By subtracting the paid-to-date losses from the projected ultimate losses, we have the indicated reserve. A first 
test for the model is that the expected reserves should be consistent with the reserves indicated by traditional 
actuarial analysis. These results are shown in Exhibit 4 and in Figure 5 below... 

Figure 5 

Comparison of Indicated, Undiscounted Reserves 
(by Accident Period) 
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In this plot, the losses at each development age are projected to the last diagonal of the development triangle. 
Each line on the plot shows these projected values for a single accident period. If the model made perfect 
projections at each development age, this plot would consist of horizontal lines. In reality, however, early 
projections are relatively inaccurate but quickly converge within a few periods. 

- 8 

Average Link-Ratio Rmserve Estimate 

As expected the reserves indicated by traditional and SDE projection methods are similar. Although not readily 
apparent on the log-log plot above, the largest dollar deviation between the two methods occurs in the largest, 
least mature reserves. These deviations are consistent with the volatility component of the SDE model. Under 
the SDE model, large fluctuations are likely during immature development periods. Furthermore, due to the 
skewness of the Lognormal distribution, these are likely to be large upward fluctuations. This also results in large 
prediction intervals for the least mature reserves. This is the same effect that C.K. Khury modeled using an 
arbitrary reserve radius G-function. s This is depicted in Figure 6 below... 

8 C.K. Khury, Loss Reserves: Performance Standards, 1980 Proceedings of the CasualW Actuarial Society. Volume LXVII 
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Figure 6 

Expected Reserve Remaining and 95% Prediction interval 
Hypothetical $1 t000 Ultimate Loss 
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Here the ullimate loss is $1000 but at the time the reserves are set, this amount is unknown. We can, however, 
use the model to estimate the probable range of required reserves at each development age. In the plot, this is 
shown as an expected reserve that declines as losses are paid out, and a prediction interval that contracts as the 
ultimate loss becomes more certain. 

Finally, having a distribution for the required reserve allows calculation of the expected value of future adverse or 
favorable deviation from the selected reserve amount. The values are computed as tail expected values in the 
same manner as an excess pure premium or deductible savings is computed. In statistical terms...9 

Favorable Development = E[R ....... , - R . I R ........ , >_ R , J P [R  ....... . Z g . J  (9.1) 

Adverse Development = EIR.~.,., - R ...... . I R ...... . <- R..~,, J P [R  ...... . <_ R . I (92)  

These results are shown in Exhibit 4 on an undiscounted basis assuming that the carried reserve is set at the 
average link-ratio reserve. 
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Discounted Reserves 
A small modification to Equation (3) allows similar treatment of discounted (present value) reserves. To motivate 
this treatment, consider a continuous annuity that pays benefits at a varying rate bt and force of interest ,~.. 10 

f e -  '~ . b ,  • dt  

d E  = e  zt .b,  . d t  

d P  
Discounted loss reserves may be treated analogously if we treat the incremental loss development - -  as the 

dt 
"benefit". This is given by... 

p ~ t  
d V  = e -~" ' " • -'_L_ . d t  

dt  

d V  = e-'~'" '~'~ . d P  

d V  = ( p ( t ) - l ~ " ( t ) ~  -~" ' ~ P d t  + c y ( t ) e  ~"-'°~PdB, 

(10) 

..,where Vis the present value loss reserve and ~ is the force of interest used for discounting. Unfortunately, 
however, this expression does not lend itself to explicit solution in the same manner as Equation (3). Instead, 
numerical methods must be employed to compute the distribution of present value reserves. These methods can 
be somewhat difficult to implement. 11 To continue the example from above, the expected present value reserve 
and reserve volatility computed from Equation (10) are shown in Exhibit 4 and in Figure 7 below... 

Figure 7 

Implicit Margin in Average Link-Ratio Reserves 
(Losses Discounted at 7.0% per annum Continuous Compounding) 

Average Unk- 
Accident Ratio Reserve 

Period (Undlscounted) 

1996-1 O 
1996-2 19,948 
1996-3 45,365 
1996-4 12217t5 
1997-1 194,942 
1997-2 217,319 
1997-3 286,525 
1997-4 335,07.' 
1998-1 611,15( 
1998-2 1,183+35; 
1998-3 1.666,09-" 
1998-4 2.210,74{ 
1999-1 3.511,72~ 
1999-2 3,426,79( 
1999-3 5,729,00. c 
1999-4 5,078,4~ 
2000-t 71739,81~ 
2000-2 7,914,46 < . 
2000*3 13,337,784 

Expectsd 
Standard Expected Margin 

Expected Deviation of In Average 
Discouated SDE DIicounted SDE Link-Ratio 

Reserve Reserve Reserve 

48,252 32.262 
62,719 30.563 

128.511 52.979 
229.759 85,414! 
237,904 8 2 , 7 1 2  ~ 

281,997 93,894 
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601,721 191,80E 

1.024,669 323.29; 
1,362,136 426.18! 
1.700,183 526,11] 
2,802,555 851,00( 
2,805,902 824,19( 
4,984,688 1.385,32~ 
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*28130~ 
-17,354 

-5,796 
-34,82E 
-20,58.' 

4,52; 
-3,13' 
9,43 < . 

158,68~ 
303,95( 
510,56." 
709,16 <. 
620,89z 
744,321 
-68,28~ 

-1,042,31c 
-3,337,61E 
-1,578,92 c. 

53,631,298 56,706,985 -3,075,587 

10 8owers et al, Actuarial Mathematics, Chapter 5 

11 For more information on numerical solutions to stochastic integrals see Tave~la and Randall, pri~inQ Finan~:ial Instruments. 
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As this figure makes clear the overall margin is negative, and the positive reserve margins are quite small 
compared to the volatility of the underlying reserve estimates. Accordingly, there is little practical margin in the 
average link ratio reserves. This is due largely to the inherent characteristics of the business presented in this 
example... 

The extreme growth at early development ages makes early reserve estimates highly volatile. 
There is little development at later ages. This decreases the duration of immature reserves and 
consequently, the magnitude of the implicit margin in the undiscounted reserves. 
Similarly, the magnitude of the discount margin tends to be small at later ages because the indicated 
reserves are themselves small. 

Lines of business characterized by protracted development with significant payments throughout the life of the 
reserve should contain larger implicit margins. 

C o n c l u s i o n s  
The model presented here unites common actuarial practice with a basic financial model, and provides concrete 
justification for the utility of link-ratio techniques. As presented however, this model is relatively crude and there 
are several areas for enhancement and further research. 

Parameter estimation techniques with more statistically desirable properties (e.g unbiased, minimum 
variance, etc.) should be employed. 
The model treats each accident period separately. Ito's lemma, however, is easily extended to 
multiple dimensions. This would allow joint modeling of each accident period in the reserve, etc. 
Significant research, however, would be required to understand the correlation structure between 
accident periods. 
The model can only be applied to positive, non-zero paid losses. This issue cannot easily be 
addressed within the geometric Brownian motion framework. For lines with a significant payment lag, 
additive Brownian motion or Poisson jump (frequency-severity) process may be a more appropriate 
model. 
Adjusting the model for report lag, calendar-year effects, and other sources of volatility could 
significantly enhance the precision of reserve estimates made at early development ages. 

- Under the geometric Brownian motion model, all random deviations persist. In other words, an 
increase in the loss payment rate is always due to adverse deviation, never to accelerated claim 
payment. There are other stochastic differential equations that can accommodate claim payment 
volatility. 

- Having a distribution for the ultimate loss allows common derivative security pricing techniques to be 
applied to loss portfolio transfers, commutations, and reserve margin securitization. This is an 
important area for further research if traditional insurance is to remain competitive with the capital 
markets. 
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Exh ib i t  2 
Potent ia l  Curve Fami l i es  for Rate  Funct ions  

Leas t -Squares  Fit to Observed Log Age- to -Age  Factors  
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Exh ib i t  3 
Resu l t s  o f  Max imum-L l k l l hood  Pa rame te r  Es t ima t i on  

Genera l l=ed  Ex t r eme  Va lue  Ta i l  Func t i on  Pa rame te r s  ( fo r  Equa t i on  8.2)  

Max imum / I ke l i hooc l  Es t ima tes  
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Dewdo~z  Imarvml 
025 050 075 I00 125 150 175 200 225 250 275 300 325 350 375 400 425 45c( 

.05,0 .075 -100 *t25 -150 -175 .200 -225 .250 .275 -3o0 -325 -350 .375 -400 -425 450 -4 74 
234~) 10087 05104 02891 01767 01146 00782 00553 00403 0030~ 00~31 00~0 00143 00115 00094 00077 000r34 00~4 F~ed Me~ 

02830 01249 00~75 002,76 00137 00070 00037 00(~0 00011 00006 000(~1 0 GO~;P 00(~1 o (~)1 ooo~o ooooo o ~1~oo o ~xxx) 

Nega t i ve  Log -L i ke l i hood  S ta t i s t i c s  ( f r om  Equa t i cm  7)  f o r  P ro j ec t i on  f ron t  Deve lo4 lmen t  Age  t o  Las t  Repo r t  

A ~  
PlmkxI 025 050 075 1 ~0 I 25 1 50 1 75 200 225 25O 275 300 325 350 375 4 O0 425 4 50 4 75 
1995-1 2732. 03~. ~04234 

1~S-2 I ~LS37 -02Sl -1 01 

1~3  06731 02~ ~63~  

07 -oeao 199e.-4 ~97 

oe¢62 -07S4 e~63 
lSS7-2 o -0404 

I~7  3 O6122 -oe~5 -1 1031 

1997~4 0 024~ OL-~I 

1 ~J~l 4 4221 o 2~ .o 6767 

I gge-2 08801 ~73.4 .I 2131 

~P~e-3 097 -0 sTe 1 24 
19°.6-4 1 3o~41 -0 ~ -1 31 

199e-1 07295 -09e7 

1~-2  1 335 -~ 22C 

1909-3 0574 

19994 ~ S405 

2000-I 05 

200O-2 

2~3  Over all Negatwe L~g-L~keki',O00 -142 772t 

(1) Given a set of parameters and using Equation 7+ we can compute the negative log-likelihood of the observed devek)pment factors Above, the likelihoods for the development from 9ach age to the last 
reposed value (i e the last dmgenal in the 0evelopment triangle) are tabulated The values of p and o entering Equation 7 are generated by integrating Equation 8 2 over the appropriate time panod 

(2) The parameters for Equation 82  were generated by maximizing the likelihood (minimizing the negative log-likelihood) of the observed development factors 



Exh ib i t  4 
Indicated Reservss 

Discounted and Undiscounted Basis 
U n d l s c o u n t e d  R e s e r v o s  ( f r o m  E q u a t i o n  7 )  

A,*~mK)e 
A C ¢ ~ I  Last ~ d e ¢ l  Unk-RatJo 

LO~S Rlmlmrve 

~996-1 5,655,2H 
199¢~2 9,042,53~ 19.9481 
1996-3 5,410,51: 45.,~c'5~ 
19964 6.753+2'9( 122.7151 
t997.1 8,204+81 ( 194.9421 

19'97 2 5.098.2~, 217 3191 
1997-3 5,345,44~ 286.5251 
1997-4 4.5 t3,60: 335.0731 

1998-1 6 465 18; 51t.1EOI 

1 ! ~ 2  B.2g0,52! 1 1 8 3 , 1  1998-3 8.217159~ 1666, 
1991B-4 7.512,14 2,210,7 

1999-1 B.818,85( 3,51T,72 
1999-2 5.027,71; 3,426, 

lg99-3 6.550,86; 5,729, 
199~4 4.070, t 9; 5.078. 

2000-1 3,297,78; 7r7~,817 
2000-2 } ,3~30,31; 7 914,4(~ 
2C(X)-3 180,44)( 13337, 

53,631,298 

Lower SDE I)5% Utll~r 
Predlc~o~ Expe¢~d PrldlcUon 

~ l J  ~ In~r~l  

15082 48,783 t13.218 
2,972 64,126 1261531 

25,719 132.768 241 957' 

65,692 239,935 418,83~ 
80.5615 250.750 426 8,8~ 

104.PJ64 299,617 ~03.22, 

132,621 :)61776 604,47! 
242,61~ 647 t86 1,01~,94 

41 @,(X~I 1.10~,584 1,B65.21~ 

556,069 1.474,769 2,518.0~ 
~0,446 1.~.42,303 3,20~,6~ 

1,130,706 3.033,491 5.418,65~ 
1,128,044 3.~6,927 5 ,~7r~  
2,(X38,387 $,346,004 10,4~,~ 
2,~5,288 5.472,294 1 t,586,23~ 

3,533.966 9,217.365 22.403.69~ 
4,2~,492 11,674,815 36.888 92( 
4.870,474 15 853,918 85,620,11~ 

60,093.412 

(I} (2) 

F I ~  A d ~  

7578 3~,41: 
7,344 26,10e 

17,64(3 27,6g: 

2 1 . ~  .66,89~ 
23,272 -5670: 
34,374 ~7,46; 

36,570 ,6327: 
68.850 .104 ST, 

189,147 11237= 
317,999 - 126 67( 
5O~,489 -140 04( 

731,261 253 02t 
675,C~9 -275.23( 
985,5B9 -602,58z 
650237 1,04407; 

9()I 234 -2.378.78; 
783,212 4.543,55; 

2,0~.0r 744 "4,536 B7= 

7 ~0,~1 1 d.442,656 

D i s c o u n t e d  R e s e r v e s  a n d  i m p l i c | t  M a r g i n  in  A v o r a g e  L i n k - R a t i o  
( f r o m  N u m e r i c a l  S o l u t i o n  o f  E q u a t i o n  10 )  

t A ~  age 
Link-RMl~ 

~U:cm~*mt Last R*co~ed Ruerve 
Pedod LOSS (U~*counled) 

t996-1 5 6&5.21~ 
T 996- 2 9, 042 , 5~. 19,944 

1996 3 5 410,51: 45,3~ 
1996-4 5 753,29( 122 71~ 
1997-1 8.204.87 ~ 194 94; 

1997-2 6 ~96,29~. 217,31~ 
1997-3 5 345,4.=N 286,521 
1~9741 4.813,643; 335,07: 
1998-~ 6 465.t 8~ 611,164 

1998-2 8.290,52E 1,183,35 

1998-3 8,217,59a 1,666,6~, 
1998.4 7512141 2r210,744 
1999-1 881885( 3,511,72, 
1999-2 602771; 3 426,79( 
~999-3 6 850 8~ 5 7~J.00~ 
19994 4070, I 9) 5 078m45: 
2000-1 3,297,783 7 73~.81~ 
20(X~2 1,33~,31; 7 914.4~! 
~ 3  18040( 13 337,78~ 

53631.298 

R o l e r v o  

(3) 

Ibq=ect~l ~*'Qln 
8DE E~ i c~d  In A~,ler=ge 

IDIICOMntKI Link-Ratio 
RNer',,e Relen/i 

48.252 -29,30'4 

62,719 .17354 
t28 511 579E 
229769 34828 
237,904 2~58E 
281.997 4.527 
338,204 -3131 

601.721 9439 
I O24,669 t58 68~ 

I 362,136 303958 
1,700,183 51Q 5~ 
2,~,555 TO9 165 
2,805,902 620894 
4 , ~ 1 ~  744321 
5.146,741 ~ 2 8 8  
8 7B2,127 .1 042 31C 

11.252,088 -3.3371518 
14.916,718 1.578,929 

(1) Meas~  expected ( avo r~  ¢~eve lo~t  on Average IJ~.~at~) re~e+e a/r, ount 
S4~bar to a los8 a++~t~:)n val~ PICa.too Rese+e>Req+,~ Resencet • E(ICame0 Rese+e R++u, reo Rese~ei Ca reed Resm+e>Re.~ulre<J Re~+el 

(2} M414¢s~ e~p4K~ ~ ,S(~e ~,e ~ev 810~rYo~ Or~ AvO ~ge Link.Ratio rese~e ~ n l  
S4~larlolu~ e~cess pure pm~um PICa~dR~e~e<RequiredRe~j "E[(CamedReserve RequlredRese~e~C;~medRese~e<RequtredReserve 1 

(3) Paid ~ d l ~ n l e d  al 7 0'% C~tl~ou~ Compoundlr~ 
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