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Abstract: 

Actuaries have long since recognized the value of  survival analysis for calculating case 
reserves. While there is also a patent connection between setting case reserves and loss 
development, the tools of  survival analysis have been largely ignored in building loss 
development models. This may be explained in part from history: data storage and 
computation limitations have traditionally restricted loss development models to 
aggregated data unsuited to the analysis of  individual lives. Until fairly rece'ntly, 
actuarial mathematics has followed an unnecessarily restrictive interpretation of  survival 
analysis. 

The thesis of  this paper is that comparatively recent advances in data processing and in 
survival analysis theory can be exploited to provide an alternative approach to loss 
development. Computerized insurance data files now enable automatic production of  
loss and premium "triangles" directly from individual claim and individual policy rating 
class exposure data. That suggests building development models directly from micro- 
data. Moreover, much of  that data is transactional, making it a natural fit to survival 
analysis models. 

The idea is to regard paid losses on open claims as "right-censored'" along the lines in 
which incomplete information is handled in the accelerated failure time models o f  bio- 
statistics and engineering. It is no longer the claimant that represents a "life" but the 
claim itself with "death" or 'failure" corresponding to claim closure. Also, the paper 
discusses the use of  paid dollars--as well as time--to parameterize the progression from 
claim emergence to claim closure. 

The discussion argues that, under this setup, the "expectation of life "plays the role of  
"case reserve ". The paper considers the application of  this case reserve to "develop" 

paid losses to "ultimate incurred losses ". The main result o f  the paper is the proof that 
this "ultimate loss" model has the correct mean, namely the same mean as the 
accelerated failure time model, but without the complicating presence of censored 
observations. 

282 



!. Introduction 

Actuaries have long since recognized the value of survival analysis for calculating 
reserves for lifetime pensions or related benefits. This is consistent with the usual 
identification within actuarial mathematics of a "life" with the life of the beneficiary-- 
this paper argues that that is an unnecessarily restrictive interpretation of survival analysis 

While there is a patent connection between setting case reserves and loss development, 
the tools of survival analysis have been largely ignored in building loss development 
models. Loss development models are built from "triangles" of aggregated premiums or 
losses. Historically, that aggregation represented a necessary interim step in devising a 
model to track how premium and loss data "matures". With the advent of computerized 
data files, it is possible to build the triangles on demand directly from individual claim 
and exposure data. That same capability opens the door to building other development 
models directly from micro data. 

Recent advances in loss development modeling take advantage of weighted regression 
models. In fact, the more convincing argument in favor of using regression methods for 
loss development is more algebraic than conceptual. ]'he models successfully unify 
traditionally different loss development formulas. They also enable a more systematic 
review of "residuals" and provide confidence intervals about the factor estimates. That 
ability to attach a confidence interval is clearly very important. It has, however, led some 
to promote regression based loss development models as inherently superior due to the 
ability of(weighted) OLS (ordinary least squares) regression to deal with uncertainty. 
That argument would be more convincing if the models actually were built from 
modeling an underlying stochastic process. It is not at all apparent that the "uncertainty" 
of loss development estimates is the same as that customarily measured in OLS. Indeed, 
the loss development regression equations make no pretense of including all the requisite 
explanatory variables. It is probably more accurate to regard the information provided by 
the residuals and the statistical tests of the model parameters as measuring goodness of fit 
rather than of occult uncertainty. 

For the purpose of this paper, there are two noteworthy points as regards the use of 
regression models t'or loss development: (I) the inability of the loss development 
regression models to incorporate explanatory variables and (2) the inability of OLS to 
handle censored data. 

The last thirty years has sccn significant advancements in survival analysis, much of it 
focussed on improving its ability to handle explanatory variables within survival time 
models. While not the focus of the discussion, the model presented in this paper is 
readily adapted to include explanatory variables and/or to group the underlying data into 
strata. 

The second point is more central to this paper. The very reason that reported loss figures 
require development is the fact that the underlying premium or loss data is incomplete. 
Survival analysis is designed to handle censored observations. This paper shows how a 
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survival time model can be used to determine a "case reserve" for all "censored", i.e. 
open, claims. It is proven that this reserve provides a means to "develop" each loss and 
that the resulting "uncensored" distribution has the same expected value (average cost per 
claim) as that specified by the survival time model. From this perspective, it is the 
uncensored "developed" loss data that is more naturally suited to OLS models. 

This suggests that while using (weighted) OLS models to develop losses can unify the 
calculations it does not attack the heart o f  the issue, which is the presence of  immature 
data. It also ignores the fundamental fact that computerized insurance data files now 
enable automatic production of  loss and premium "triangles" directly from individual 
claim and individual policy rating class exposure data. That capability argues for 
building development models directly from micro-data. Moreover, much of  that data is 
transactional; making it a natural fit to survival analysis models. 

The idea is to regard paid losses on open claims as "right-censored" along the lines in 
which incomplete information is handled in the survival time models used in bio-statistics 
and engineering. It is no longer the beneficiary who represents a "life" but the claim 
itself, with "death" or "failure" corresponding to claim closure. Of  course, one can still 
use time to track the claim from its reporting to closure. In that case the survival time 
models can be used to study claim duration. This paper also suggests the use o f  paid 
dol lars--as  an alternative to t ime-- to  parameterize the progression from claim 
emergence to claim closure. Under that setup, the "expectation of  life" plays the role of  
"case reserve". 

The paper considers the application of  this case reserve to "develop" paid losses to 
"ultimate incurred losses". The idea is to begin with censored data, i.e. claim data that 
includes paid to date on both open and closed cases. The paid amounts on open cases are 
converted to their ultimate incurred value as the sum o f  payments to date plus the case 
reserve with claim status changing from censored = "open" to uncensored = "closed". 
This yields a data set o f  uncensored claim data. The main result o f  the paper is the proof 
that this "ultimate loss" model has the same mean cost per case as the survival time 
model but without the complicating presence of  censored observations. In particular, 
aggregate reserves can be derived from simple aggregation of  the case reserves. These 
aggregate reserves must conform to historical loss development patterns and are readily 
allocated to any claim subset, in particular to any sub-line o f  insurance or rating class 
group. The details are worked out in two generic cases: Section II handles discrete data 
and Section llI presents a continuous model. Section IV concludes with some general 
comments and suggestions for future study. 

II. Discrete Model.  

Let 0 < t~ < t 2 < ... < I N < 1 be a series of  discrete "times". Assume there are 

f ,  observations at time t, o fwhich  fo.i are "censored" and fij are observed "failures". We 
N 

have fi = fo.i + fl.i. 1 <_ i ~ 6/ and let n = y~ , f  be the number o f  all observations. 
i-I 
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For the purpose of  this paper, there are two examples to keep in mind, in both the 
censored observations represent open claims and the failures represent closed claims. In 

one interpretation the t, represent duration in time from either report date (or perhaps the 
accident date) to a current evaluation date for open claims and to the date of  closure for 
closed claims. This interpretation is appropriate when studying claim duration. In the 

second interpretation, thet, represent the paid loss at a current evaluation for open claims 
and the final incurred loss for closed claims. The second interpretation is the one 
promoted for using a survival time model to assign case reserves and to model loss 
development. 

These interpretations require that all paid amounts be indexed to a common--presumably  
the current--purchasing power (inflation adjustment). In the case when the coverage 
terms may vary over the time frame, duration and paid amounts should also be adjusted 
to a common--presumably  the current and applicable--terms of  coverage (benefit on- 
level adjustment). One of  the purported advantages of  age to age factors are typically 
derived from losses arising under common (or nearly common) coverage terms and so the 
on-level adjustment can be is assumed to cancel out. There is also the question o f  whether 
and how to deal with any trend over and above inflation or changes in coverage. While 
key to any practical application of  the method, these issues lie beyond the scope of  this 
paper. 

We first make some general observations and develop our notation ignoring the ability to 

identify censored data. Begin by recalling the usual survival function S ( t , ) .  For this, set 

f0 = to = 0 and define: 

i-  I N 

s t a r t , = n - Z f i = Z f  j ,  O < i < N + I  
.IOO j~i 

s topi  = start~+, O < i < N 

Note that s tar t  o = s t a r t )  = stoPo = n, s tar t  N = fN and stop.~ = s tar t  x+ I = O. Set 

S(O)  = S ( t o )  = 1 and define recursively: 

s lop ,  
S( t~)  = S(t ,_ I )Pi  where p~ = - -  

Slglrl i 

which is the usual survival function, inasmuch as the ratio represents the empirical 
probability that an observation "survives" the i-th interval conditional upon its surviving 
to the beginning o f  the in tervalI ignoring all censoring and interpreting all observations 
as observed "failures" or "deaths". 

Observe that S ( t , )  = stop~ ; indeed S ( t o )  = I = - ,  and by induction on i: 
n F/ 
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S( t , )  = S(ti_, ) . - -  
stop, stop,_) stop~ _ start, stop, stop~ 

s t a r t  i rl s I a r t  i rl s tart~ n 

as claimed. Let T denote the random variable of  the distribution of  the (uncensored) 

"failures" at timcs t,. It is well "known that the expected value o f t  can be determined 
from the survival function: 

1 " ^' N - I  

E(T) =/~ = - Z f ,  t, = Z S(t,_,).(t, -t,_,) = t, + y 'S( t i ) . ( t , . ,  - t , )  
n i=1 t=l t=l 

In this case, this is readily verified directly; indeed, for any normegative integer k: 

~--a N u s lop ,_ ,  k I k 
~_S( t ,_ , ) . ( t , '  - t ,_,  k ) =  . ( t ; ' - t , _ ,  ) = - ~ s t a r t , . ( t ,  - t ,_ ,k )  : 
i=1 i=l F/ n i=1 

-=Izzf,.(t,'-t;.,')=-- f,.t, + Zf,.t,_,' 
/~ i=1 I=l 1 j ~ l  I~/.j£N 

jZ* 

(z ) • t, + ~ " f j . t ,  k 1 = ~ h , , . j j  ' = ,~,.i~, --£..~i., f ,  .t, = E(T ~) 
\j~.~ j>~ 

Consider next what this implies when restricted to those observations with time > t, for a 

fixed observed time t i . Using transparent notation, for that subset o f  observations with 

times [~ = t,. k we have: 

S)(tk) = S(t,+~) k = 0 , I , . . . / ~  = N - i 
S(t , )  

l N :;' 

~ = s ~ a r t .  j ~ . , f / j .  , . ,  =/'o + )-'~S(t'k)(/',,.r - t ,_ . ) .=  t~ + p ,  

- ~ S(t'+k )(t u~ S(tj)  
where p, - ~ S(t, ) " ,.k., - t,+k ) = ~., S-~j )  ( t j ,  - t  s ) 
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Here, p, can be interpreted as the "expectation o f  life". We make the convention that 

t^,.~ = t  N ; n o t e t h a t  Pu = 0 a n d P 0 = P .  

We now take into account the ability to identify censored data, which in the two 
interpretations amounts  to taking into account claim status. The survival time model is 
constructed using probabilities of  failure determined based on observed failures. 
Censored observations are regarded as survivors up to their observed time of  departure 
and are ignored in the subsequent intcrvals (heretofore they were indifferently handled 
the same as any other failure). 

Analogous to the above, we define: 
N N 

s topu  =star t i  - q , i  = Z f j  - f l , i  =fo,i + Z f i  ~o,i + start i+l 
j=i  j=,+l 

3'larll. , = starl,  

As before set S t (0) = S, (t 0 ) = I and define recursively: 

stoPl.i stop|.i 
Sd t i  ) = Sd t i -1 ) "  ,-72"C~ = S l ( t i_ l  )" Pt l  where Pt i  = 

start1.'-'- ~ ' ~larh,, 

Motivated by the above, we further define 

N St ( tJ ) r t  " 
P'"  = / ' ~ - - i ~ '  1+' - t  j )  

Now clearly the function S~(ti) can be viewed as the survival function for a survival time 

model with random variable denoted here by T .  With transparent notation, we have in 
particular that: 

Pl,o = E(T) = ~7 

This survival time model takes into account the censored nature o f  the data and so for our 
in terpretat ions  this mean  is a better estimate o f  claim duration or average  claim costs than 
could normally be obtained from simple descriptive statistics derived from the claim data. 
This  mean corresponds to the expected claim duration or cost at claim closure. When the 

t, are interpreted as paid costs, this mean corresponds to paid at closure, i.e. incurred, and 

this survival time model can be regarded as a,formula for paid loss development.  

There is another evident way to use this model to "develop" paid losses to incurred 
losses. Define 
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S,  (t  j )  . ~-~ 
t ' , = t , + P , . i = t , + ) .  --7-7---7. . (t,+, - l j ) < t ,  + Z( t j+ ,  - t j ) = t  N <1 

:., b I ( t , )  " j.~ 

It is natural to consider the effect o f  replacing the f0:  censored observations with time 

t i with the same number  o f"uncensored"  observations at (usually later) time 7 i . This 

results in a distribution with random variable we denote by 7 ~ . The main result o f  this 
section is: 

Proposi t ion  1.1: For this discrete model ~ = 

Proof. We have: 
1N . 1N 

- .  : ,  + f , : ,  fo : ,  + r , : ,  

1 :¢ ~ 1 # 1 #-I  
= - ( Z f o . i ( t ' l  - t i ) +  f l . i ( t i - t , )  = - Z f o . i  .p,.i = - Z f o . i  .p,.i 

A simple induction on q=O, 1,2, ...,N-i shows that: 

q s'(t" ' )  = f-l st°p'"" l i p , , . ,  
Sl(ti)  ~d  starq , ffi .i+ k-I  

It then follows that 

S , ( t , )  N-,-, ~ (, ~ ^'-~-, q ~1  "l+q ) p,., =~(t,÷,-t,)= Z --w-:~.. (t,.,., -t,.,,) = Z Hp,.,,(,,÷,+, -t,-,) 
q.0 ,31 (t,) q~,o k.i 

and so 

] N - I  I N - I  N - I - t  q 

i-I '" i-I  q-O - 

On the other hand, both ~ and/a  can be determined from their corresponding survival 
functions, which implies: 

N N N 

- .u = Z S, ( t ._ , ) -  (t o - to_ ' ) - ~ S(to_, ) .  ( t .  - t._, ) = Z (s ,  ( t ._ , )  - s ( t . _ ,  ) ) .  (to - to_ , ) 
o=1 affil a=l 
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Set d .  = S I ( t  o )  - S ( t . )  then we have: 

d o = S I ( t o )  - S ( t o )  = p , . o S ,  (to_ ' ) - p o S ( t o  - 1) = s t ° p l ' "  S ,  (to_ t ) - s t o p .  S ( t .  - 1) 
M a r l  a s l a r l  a 

:=> s t a r t o d .  = s t o P l . .  (do_ I + S I (t._ i )) - s t o p : S ( t  = ) = s t o p l . . d . _  I + S I ( t  , ,_ i ) ( s toPl .o  - s t o p .  ) 

= s t o p i . . d . _ ,  + SI  (t._,)fo.o = s t o p i . o d . - ,  + s t o p . . j  f o . .  = s t o p , . . d . _ ,  + s t a r t ,  fo.,, 
gl #i 

fo.o 
d o = p i . . d . _ i  4 - - -  

n 

We claim that: 

Since d o = Othe formula holds vacuously for a = Oand for a = 1 

. - A . ,  - - f ,  _ Z - f , . ,  _ fo., d ,  = S ,  ( t , )  - S ( t , )  = p , . ,  - p~ - - -  
#'1 n Iq Iq 

Proceeding by induction on a, assuming  the formula holds for a - l :  

fo.o ( 1 o-1 ,,-I "] fo.~ 
do=p,.oao_,+ )+ 

n \ n b. i  . _ . . , i  p l ' <  n 

.=7.,, 
as required. We find that: 

" ± ( ° - "  °' / 
= -Zfo. I-Ip,.< (,o-,o-,) 

,ol i . t  t n t,-i c-,',+t J 

N a - I  a - I  1 N - I  N a - I  

= nZZ/o.b 1-I Pl.= . ( , , 1  -'--') ='SZ Z Sos, liP,.< .(t,-t,_l) 
a=l b-I  ¢=h+l r l  b=l a-b+l  c=b+l 

making the change o f  index variables: 

q = a - b - 1 ,  q = O , I  ..... N - b - l ;  k = c - b ,  k = l , 2 , . . . , a - b - l = q  
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1 N-1 N-h-I f l  
~-,u =n~-'~, ~ fo.b P,.h+* "(t~+b*,--/q+t,) =./~--./'/ 

b=l q~O k=l 

completing the proof of Proposition I1.1 

II1. Continuous Model. 

Let f ( t )  denote a positive, real-valued (Lebesgue) integrable function on (0,I) 
satisfying: 

I 

f f ( t ) d t = l - p  where O < p < l  
0 

and define: 
t 

S(t) = I - f f ( s ) d s  ; note that 1 = S(O) > S(t) > S(I) = p for t ~ (0,1). 
0 

To eliminate some uninteresting degenerate cases (which can be readily avoided by 

rescaling t), we assume that 1 > S(t) > p for t E (0,1). 

As is customary,  we refer to S(t) as the survival function, f ( t )  as the probability density 
fi~nction [PDF] and t as "time". We also let Tdenote  the random variable tbr the 

distribution o f  survival t imes and /J = E(T) the mean duration. Survival analysis refers 
to the following function: 

h(t) = f ( t )  t ~ (0,1) 
S(t) 

as the hazard rate function or sometimes as the force of  mortality. The hazard rate 
function measures  the instantaneous rate o f  failure at time t and can be expressed as a 
limit o f  conditional probabilities: 

h(t) = lim Pr{t < T < t + At l T >_ t} 
~ o  At 

There are many well-known relationships and interpretations o f  these funct ions- - refer  to 
Allison[l ] for a particularly succinct discussion. It is convenient to recall that setting 
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t 

g(t) = fh(s)ds then S(t) = e -~'c'~ for 0 < t < I. 
o 

We will make extensive use of  the following: 

Proposi t ion I l l . l :  For anypositive integer n. 
I 

• E(T") = n Sl"- 'S(t)dt. 
0 

Pro@ The proof is a straightforward integration by pails: 

u=-S(t )  du=f(t)dt; v=t" dv=nt"-Idt 
I I I 

I,"1(,)a, + f,,,h, + i, =,,v];- I,,dv+ , ,  
Q 0 0 

I I I 

= -  ,"S(/)]'o +nft"-'S(,)d,+ p=-p+nf.i""S(t)a, + p=,ft"-'S(,)d, 
o o o 

completing the proof. 

Fix t and restrict attention to values o f  time w > t. From Proposition Ill. 1, the 
expectation o f  life at time t, given survival to time ¢, is just: 

I 

fS( w)dw 
~[S(w) dw = ' 

p(O = ; s(t) ,s'(t) 

and observe that 

p ( O ) = / a , p ( l ) = O  and t<t+p(t)<lfort~(O,1).  

For the case o f  interest in this paper, we regard some observations as "censored" (e.g. 
open cases); more precisely, assume that the PDF can be split into two continuous 
functions: 

f ( t )  = f,, (t) + f l  (t) where f ,  (t) = censored and fl (t) = uncensored on [0,1] 

The two associated survival time models, taking into account the prescnce o f  censored 
data, are most  readily defined via their hazard functions: 
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f,(t) hi(t ) = " ~  , i e {O,I}, t ~ (O,I) and so h = h 0 + h , .  

This  symmetry  illustrates that censored data can be viewed as being subject to a double 
d e c r e m e n t - o n e  decrement as "failure" and a second as "censure". Define 

t 

g, (t) = fh,  ( w ) d w  with survival function Si (t) = e -~''(') for 0 < t < 1 and set p, = Si (1). 
o 

Note that S = SoS ~ , in particular p = PoP~. 

Recall that in one o f  the model interpretations suggested here, the "censored" 
observations are open claims with paid  loss = t and the observed "failures" are closed 
claims with pa id  Ioss=incurredloss  = t. The survival time model with i=1 presents a 
convenient  way o f  specifying that, as with the discrete case, case closures make up the 
numerator  o f  the conditional probability used to specify the hazard rate function. In 

particular the probability p~ measures the likelihood of  the (normalized and limited) 
incurred cost o f  a claim equaling the per claim loss limit value 1, taking into account the 
presence o f  open claims. Define 

I 

~S i ( w)dw 

p~ (t) = ' 
S~ (t) 

For the survival t ime model with i=1, this can be regarded as a case reserve applicable to 

open claims with paid  loss = t. Indeed, let T denote the random variable o f  the 

distribution defined by the survival function S t . From Proposition II.1, the mean is 
I 

= E ( ~ )  = SS, ( t)dt  
o 

which can be regarded as an estimate for the average incurred cost per claim. 

As in the discrete case, we are interested in what happens if we replace all the open 
claims with their estimated incurred loss, traditionally defined as paid plus case reserve: 

/' = t + pj (t). 

Let 7 ~ denote the corresponding random variable and observe that under this construction 
the expected incurred cost per case is: 

I 

f.t = E(Tf) = S( fo ( t ) t  + f t ( t ) t ) d t  + p 
o 
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The key point is that the 7~ distribution is uniformly subject only to one decrement, 
"failure" = case closure, i.e. involves no censored data, making it a preferable candidate 
for conventional statistical analysis, in particular OLS cost models. It is reasonable to 
expect that ~ = ~ ; indeed, we have: 

Proposi t ion 11.2: For this continuous model ~ = fa 

Proof" The proof is similar to that for the discrete case. Begin with the observation that: 

I I 

/~ - / 2  = J(fo ( t ) ( i  - t )+  fj(t)(t -t)dt + ( p - p )  = ~fo(t)p,(t)dt 
o o 

On the other hand, note that: 

dS, de -~' dg, - f , S  I 
- -  = = - e  - x '  - -  = - S ~ h ~  = - -  

dt dt dt S 

and so: 

and we findthat:  

d t  S, = S ,  l J 
S i n c e S ( 0 ) = S l ( 0 ) = l t h e F T C ~  1 -  ( t )=  f f ° ( W ) d w  

gS,(w) 

' ' ( ' ' 
- g = S(S, - S)dt = fS,  I - S dud'  = ~udv =[uv]' o - ~vdu 

o o ~ L s , )  g g s , ( , ~ )  o o 

where 

u(t)="t"/Jv(W)d w u ( 0 ) = 0  d u =  fo ( t )  dt 
'o S,(w) s~(t) 

I 

dv = Sl( t)dt  v(t) = - S S l ( w ) d w  v(I) = 0 
i 
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It follows that 

] ) S, (t) 0 

completing the proof. 

An alternative notation setup is sometimes helpful; suppose the P D F f > 0  on (0,1), then 
we can define the ratio of  censored observations as a function of t :  

a (O  = fo( t)  
f ( t )  

We then have: 

fo (t) = a ( t ) f ( t )  fl  (t) = (I - ct(t)) f( t)  
By the intermediate value theorem for integrals, we may define a function ( ( t )  (not 
necessarily unique) satisfying: 

t t 

~ct(w)h(w) dw = ct((( t))~h(w) dw 0 <- ( ( t )  <_t <- 1 
o o 

and it is readily verified that 

So( t )  = S(t)  "(¢<'~) S, (t) = S(t)  ~-"(¢(')) 

The following examples may help put the notation and results into perspective. 

Example  I11.1 Consider first what happens when the proportion of  censored obscrvations 
is constant for all values of t :  

fo (t) = a f ( t )  fl (t) --- (I - ct) f ( t )  for some constant a ~ (0,1) 
then 

h o ( t ) = ~ ( t )  h l ( t ) = ( I - a ) h ( t )  S0( t )=S( t )  ~ S t ( t )=S( t ) ' - "  

It follows that the survival models for both censored and uncensored decrements are 
related as proportional hazard shifts from the pooled data and, for that matter, from one 
another. 

It is instructive to consider a very simple concrete example: 

Example  111.2 Consider the case: 

f ( t ) ~ l  p = 0  f o ( t ) = t  
The reader can readily verify, in turn, that: 

f , ( t )  = l - t  

S ( t ) = l - t  hL(t)---I S ) ( t ) = e - '  S 0 ( t ) = e ' ( I - t  ) 

I + e I-~ - - 2  
po (t) p, (t) = 1 - e'-' 

I - t  
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1 
,u = ~ ~ = ~t = 0.632 

2 

~ ( f ' )  = 0.528 > 0.520 = E( / ' : )  

E(T 3) ~ 0.482 > 0.461 ~- E(7 ~3 ) 

We have proven that in this setup, the distribution determined from applying a case 
reserve to "develop" or "uncensor" the data has the same mean as that of  the survival 
time model distribution. The above example shows that in the continuous model, that 
technique does not produce the same distribution as the survival time model. 

The percentage of  censored observations increases with t in Example 111.2, which is 
counterintuitive for the insurance models in which failure refers to case closure and t 
represents payment duration or losses paid to evaluation. Thc symmetry of the setup 
makes it easy to provide an example in which the percentage of  cases closing increases 
with duration or payment amount: 

Example  !11.3 Switch roles ofccnsorcd and uneensorcd in Example 111.2: 

f ( t ) - = l  p = 0  f 0 ( t ) = l - t  f ~ ( t ) = t  
The reader can readily verify, in turn, that: 

1 
/ l = ~  ~ = ~ 0 . 7 1 8  

E(T 2) ~ 0.563 > 0.548 ~ E( f  "2) 

k,'(T ~ ) ~ 0.465 > 0.432 ~ E(7 ~~ ) 

As a final note, the Appendix provides some additional findings, mostly directed toward 

how the higher moments of  T and i" compare. We have just observed in the examples 
that they are diffcrent. 

Sect ion  IV: F u r t h e r  S tudy  

The paper provides a straightlbrward blueprint for using micro-level paid claim data to 
determine case rcscrves and, by aggregation, bulk reserves. Conversely, it is clear how to 
itemize the resulting bulk reserve by line or rating class by reference to the classification 
of  the individual claims. Obviously, thez?e are a number ofmissirig items that this 
simplistic approach does not address (IBNR for example, as well as the issues of  
inflation, covcrage changes and trend that were noted above). Nevertheless. there are 
thrce natural applications: (1) as a potential test for reserve adequacy and (2), conversely, 
as a way to assign case reserves and also (3) as an ahcrnativc to loss development 
triangles when incorporating information on open cases. 
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As to (1), the basic point is that the method does not demand any assumptions as regards 
the structure of the survival function. Moreover, the implied loss development pattern is 
based on "objective" paid data and in particular does not rely on case reserves. This 
would seem to provide an objective test, one that is self-correcting over time and whose 
demanding data and computational requirements are now met by current technology. The 
basic result of this paper is that the suggestion is unbiased, in a technical sense ( ,~ = ~ ), 
and therefore has potential application for testing the adequacy of loss reserves. 

As to (2), it was noted that significant advancements have been achieved fairly recently 
in the area of survival time models, especially as regards their ability to handle stratified 
data and to incorporate explanatory variables, including "time"-dependent interventions. 
The approach here focuses on aggregate loss levels, as that is the more relevant to loss 
development. The paper does not consider how good a case reserve p~ (t) is on an 
individual claim basis. Incorporating claimant demographics and other claim 
characteristics into the survival time model may provide a convenient and useful 
alternative to more traditional tabular reserve methods. This is an area worthy of future 
study. 

Application (3) simply reiterates the method of the paper: exploit the ability of survival 
time models to accept censored data to "develop" an uncensored claim data model. This 
developed data may be better suited for claims analysis using traditional statistical 
analysis, including OLS. On the other hand, the ability of survival time models to 
accommodate explanatory variables suggests their potential for providing more than just 
a simple fit to data points and for revealing relationships that may genuinely help explain 
loss development patterns. 

As a final observation, we have presented two survival time models for claims analysis, 
one based on time and measuring claim duration and a second based on dollar payments 
and estimating costs. An advantage of age-to age paid loss development factors is that 
they not only provide the ability to develop available paid data to estimate its ultimate 
cost, they in fact provide the pay-out pattern which produces that estimate. For many 
purposes, e.g. portfolio management and rate of return analysis, this is key. This paper 
has focussed separately on building time and money survival curves. However, it is likely 
that the same insurance files would be used to build one data set underlying both survival 
curves. In theory, then, the time and money survival curves can be correlated. We 
challenge an interested reader to determine whether, and if so how, the mechanical 
approach to loss "development" described here can be refined to yield age-to-age 
development factors. 
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A P P E N D I X  

As regards higher moments k=2,3.., for the continuous case, we have, as before: 

' ( ' ' 
E ( T * ) - E ( T * ) = k  ~t*-'S,(t) 1- d t=k  ~P- 'S, ' '  rfo(w) 

o ~, S~ ( t ) )  o (t)Jos ~ (w) d~4v_lt 

I t I I 

= k [t ' - 'Si  (t) [ fo (w) dwdt = k ~udv --k [uv]'o - k ~vdu 
o ~ o~s,(TM) o o 

(w) 
u(t) = ?-' / "° dw 

o~S, (w) 
u(O) = 0 

a.  :_. L u )  I-'do(W) . ].._ 
- - =  + - - a w  t K - l ) / k - 2  
• <,, LJ ,<w> J 

I 

dv = S,( t)dt  v(t) = - ~ S  I (w)dw v(1) = 0 
t 

o o , ,  . s , (o  gt. :  JLgm.(w) I 

I 

, JS~(w)dw . . 
= k ~fo(t)p,(t)l'-idt + k(k-I)[ ~--'--~(St (t)X I-S(~t).It'-2dt 

o g s , ( t )  "t, s , ( o ;  
I I 

= k ~fo (t)p, (t)t k-'dt + k(k - I) ~p, (t)t k-2 (S, (t) - S(t))dt 
0 0 

On the other hand, 

I I 

E(¢*)  - E(r*)  = ~(io (,)(i* - , ' )  + z (,)(,' - , *  )a, + ( p -  p) -- fyo (,)((, + p, (o)* - ,* )~, 
0 0 

= I ° I \.lk=o\k,, I I k-j - )d l=  1 [k- l t 'k '  

I I (k-2 : k 2~1 ") 
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' I < , -2,~ 2>, I )) => E ( T I ' )  - E ( 7  "~ ) = k ( k  - ] ) l p i ( i ' )  / ' - 2 ( S l ( / ) i S ( i ' ) ) - S o ( O / ~ ~ , ' p , ( , )  ~- ' - ,  dt 
t, ,:o J!t~ - J) .  

In parlicular: 

I 1 ~'--~':(E(T')ij')I(E(TZ)I~Z):E(TI)IE(T'):2~.,(').~,(')--S(') io('~'(')<' 
For the discrete case, consider the distribution with the same f~.~ but with the t~ replaced 

with t~ 2 The survival probabilities depend only upon the fi., and so the proof o f  

Proposition I.l shows that 

I ,v ,v_~ S' t~ "~ 
E ( T  ~') - E ( T ' )  = - Z f 0 . , g g l :  where opt. i = z.., ¢ - - ~ ,  ~,  i*i - t ,  2) 

FI i~, i°I ~'lt . ' i l  

On the other hand, 

N N 

- -  + z = "__~)' f . . , p ) .12 t  + p i . |  . , . , ~  , , E('F2)-E(T2) = l ff~fo.,(t, PI.,) -12'- 
YI t=l n t=] 

[ N [ N 
= ~-~2"-~,:o.'("+:'.')~-"2";~ ,., ,. 

S, ((,) 
Define o-i. ] = Sl(ti) 

that 

0 < i < j < N.  We leave to the interested reader the verification 

,%, 

Pl,i = - I ,  + '~ , (O' l . i_  I -10" )t]  
- i ) l  

and that 
] '%' 

<~2 _5.2 = ~ f 0 . , a ,  

where 

~,  = :PI., - 2Pl.;1i  4I PI.i 2 

N 2 

: ~ ( O ' i . / .  I " ' (~i . j ) ( | - - (~i . j i i  "t'ffi. l ) t  i - - 2  Z( i~ i . j _ , - -O ' , . i ) (O ' i . k_  I - - f f l . k ) t J k  
j . l ~ l  t+i~l<k~N 

299 



In the examples,  observe that if2 > 6.2. The author would appreciate a direct proof of" 
this along the lines o f  the calculations presented in the paper. Intuitively, this makes 
sense since replacing the unknown, but presumably variable, lifetimes o f  observations 
censored at age x with a single value = x+ expectation o f  life at age x should result in a 
population with smaller variance. This is a consequence o f  the following: 

Proposi t ion A.I: Let {% ,...xm, x,,+, ..... x,  } be any set o f  real numbers and ~ , -/'2 ...... f ,  } 
± n 

be a set o f  positive real numbers with f~ = I and # = ~ fi% 
i - I  # - I  

Let ct be any real number and define 

n 

~f,x, 
n 

i) . = Z . f 3 ,  ~' p="'*'° 
'" Y'.Z 

i-m÷l 

:~i=1% I < i < m  then 
ta m+l<n 

n n " n  

i~) .=Z);,:~, =y'/;,(~,-/.,)~ ~yy;,(x,- / .) '  
I - I  i=l  i=l 

?roof." 0 

~f,x, n i i  n n n n 

/J=Ef,;~,  ¢:~-~.fjx, = ~ f . ~ ,  ¢:> ~f~xi = ~-~J,.;~, = p E f,. ¢~p=" ' " .  

i . m + l  

n 

~Zx, 
i/) Consider first the case p = i=,.., = ~..f~% = 0 ,  then clearly: 

/a#l-} I 

n n m m 

t - i  1" I  i ~m÷ l  J -m÷ ]  

Observethat.=~_~fix,=~"~fix,+ ~_~fix,=~_~f,% + O=~"~fix~ : 
i - I  i - I  i -m÷ l  l - i  l=i 

rn  m 2 m m 

~T~f~(x, _ . )2=  ~-'~,f~(x,'-2/ax, +/t2)= Zf~x, - 2 .  Z f ,  x, +/.t 2 ~--~.f, 
i -m+l  i -m÷ l  i -m÷ l  l -m÷l  i=m÷l 
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m 2. 2 m rn 

-- E / ,  x, +~ Y.Y, z~ ~ E / , - -  E / , c k - ~ ¢  
i * m + l  i -m÷l  i . ta+l i l t a + l  

which establishes the resuli in the case p = O. For the general case, let 

~f~x, 
fl='"" , y, =x ,  -fl,~,, =2~ - f l  n 

imm÷l 

then 

g ,y, ± ,lx,-pl 
i-nl+l - -  i . m ÷ l  - -  i m m + l  i . n J + l  ~ i - m + l  t-m+l 

/ - m + l  l .m+l t - m + l  l~m+l 

- 0  

and we conclude that 

n n ~ n n 

Y~Zy, = ~ , -p  = ~ f , i ,  = Y~f,(~,-~,~= = E / , ~ , -  (~,_ p))2-< E f x y , -  b , -  P)) 2 = ~ / , ( x ,  _~,)2 

completing the proof. 
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