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Abstract 

The catastrophic losses caused by Hurricane Andrew and the Northridge Earthquake 

are leading many actuaries to reconsider their pricing formulas for insurance with a 

catastrophe exposure. Many of these formulas incorporate the results of computer 

simulation models for catastrophes. In a related development, many insurers are using 

a geographic information system to monitor their concentration of business in areas 

prone to catastrophic losses. Wh’l i e insurers would like to diversify their exposure, the 

insurauce-buying public is not geographically diversified. As a result, insurers must 

take on greater risk if they are to meet the demand for insurance. This paper develops 

a risk load formula that uses a computer simulation model for catastrophes and 

considers geographic concentration as the main source of risk. We then show how this 

risk load formula can be used to develop a coherent strategy for managing the 

catastrophe risk. 
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1. Introduction 
Hurricane Andrew and the Northridge earthquake have caused unprecedented 

catastrophic losses to the U.S. insurance industry and its reinsurers. These events have 

revealed significant weaknesses in insurance practices in the United States. This paper 

will discuss a way to correct some of these weaknesses, It will focus on risk 

management practices from the point of view of the insurance company and suggest 

where these practices may lead. 

Hurricane Andrew and Northridge earthquake revealed that some insurers have been 

doing a poor job of diversifying their exposure to catastrophic losses. In response to 

this, a number of firms with sophisticated geographic mapping software have entered 

the market and are being kept very busy by insurers seeking to diversify their 

exposures. 

However, the insurance-buying population itself is not geographically diversified. 

Therefore, insureds who live in densely populated areas will find it harder to obtain 

insurance, and hence the price of insurance will be higher for densely populated areas 

than for lightly populated areas. Since an insurer assumes a higher risk in writing 

geographically concentrated business, the portion of the price that varies by population 

density could well be called a “risk” load. This paper will propose a formula for 

calculating such a risk load. This formula will be called the Competitive Market 

Equilibrium (CME) risk load formula. 

_..- 

AS we develop this risk load formula, it will become clear that an insurer who 

follows the strategy of geographically diversifying its exposure will have lower capital 

needs. However the administrative expense involved in such diversification may 

discourage all but the very ‘large insurers. Reinsurance can provide an economical 

alternative to direct diversification for smaller insurers. This paper will analyze the 

effect of various reinsurance strategies. Also, this paper will illustrate the use of some 

alternatives to reinsurance. 

“‘- 

The insurance problems discussed here are certainly old ones, but this paper will 

cast new light on these problems because of the use of geographic mapping technology, 

and the resulting risk load formula.’ 
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2. Geographic Information Systems and Insurance Ratemakiug 
Catastrophic events happen so infrequently that the traditional actuarial 

methodology of extending past experience into the future is largely irrelevant. For 

example, no hurricane has made a direct hit on Miami in recorded insurance history. 

The same is true for Orlando. However, since Miami is on the coast and Orlando is well 

inland, no reasonable insurer would charge the same windstorm rates for the two cities. 

Moreover, data from past hurricanes is of questionable relevance since building practices 

have changed and the population density in coastal regions has increased in recent 

years. One can imagine making rates based on insured losses from the X311-1812 New 

Madrid Earthquake, or the 1906 San Francisco Earthquake. 

Recently, a number of firms have attempted to combine meteorological information, 

geological information, engineering expertise and insurance loss information to make 

insurance rates. The results usually take the form of computer simulated events. 

Exhibits 2.1 and 2.2 show the kind of information that typically goes into such an effort. 

A geographic information system is a comprehensive database of geographical 

information. Typically, a geographic information system operates by taking an address 

and estimating its latitude and longitude. With the latitude and longitude, the system 

can link the address to such other information as distance to the ocean or distance from 

known geological fault lines. 

The computer simulated events can be combined with geographic exposure 

information provided by the insurer to produce a size of loss distribution for the 

insurer’s book of business. Th IS information can be used to evaluate its riskiness, price 

potential reinsurance contracts and, as this paper will demonstrate, calculate a risk 

load. 

‘Schnieper[l992] addresses many of the same problems as this paper. However, Schnieper assumes 
that the losses of individual insureds are uncorrelated. Many of the results of this paper reduce to 
Schnieper’s results for uncorrelated losses. 
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EXHIBIT 2.1 

MODELING THE EFFECTSOF EARTHQUAKES (SHAKE DAMAGE) ON INSURED LOSSES 

CHARACTERISTICS OF 
EARTHQUAKES 

* magnitude 
* focal depth 
l location of quake canter 
* rupture length 
l rupture orientation 

CHARACTERISTICS OF 
PROPERTY SITES 

* distance from focus 
* soil conditions 
* geology 

SHAKE-RESISTIVE 
CHARACTERISTICS OF 
INSURED PROPERTIES 

* commercial and industriil 
buildings designed, constructed, 
and maintained to 
- resist lateral forces 
- bend rather than break 
- resist swy 

+ residential structures built so that 
- frame is tied to foundation 

chimneys and firepfaces 



MODELING THE EFFECTS OF HURRICANE WINDS ON INSURED LOSSES 

CHARACTERISTICS OF 
HURRICANES 

l central pressure difference 
* radius of maximum winds 
l forward speed 
* location of landfall 
* path 

r * ateofenergyloss : 

CHARACTERISTICS OF 
PROPERN SITES 

* position of site with respect 
to path 

* land roughness 

I 

WIND-RESISTIVE 
CHARACTERISTICS OF 
INSURED PROPERTIES 

* design and construction of 
roof, walls, foundation and 
connections, including 
maintenance 

* protection of glass 
* insured I 

WIND SPEED 
REDUCnON DUE TO 

Ia 
-r J h.16 of properties 

* maximum wind speeds 
* duration of high wind 



3. Assumptions about the Insurance Environment 
The CME risk load formula makes the following assumptions about the insurance 

environment. 

1. Insurers are subject to risk-based capital requirements. The CME risk load formula 

is derived from the assumption that the amount of capital needed to support an 

insurer is a function of the variance of the insurer’s total insurance portfolio. TO 

write an additional insurance contract, the insurer must raise additional capital. 

However, the amount of capital that must be raised for a particular insurance 

contract may vary by insurer. 

2. Each insurer will choose to write whatever insurance contract that will maximize the 

return on its required additional (or marginal) capital. 

3. Insurers operate in a competitive market. The price for a particular insurance 
- 

contract will be the same regardless of who insures it. 

The CME risk load is then defined as the cost of the marginal capital needed to 

write the insurance contract. 

-i 

- 
The assumption of risk-based capital requirements is consistent with the goal of 

mathematical ruin theory, as well as the licensing requirements of many jurisdictions. 

The assumption that these requirements are a function of the variance of the insurer’s 

total portfolio deserves some discussion. Consider, for example, the risk-based capital 

requirements the National Association of Insurance Commissioners (NAIC) has 

implemented. These requirements do not specify risk-baaed capital as a function of the 

variance of the insurer’s total insurance portfolio. However, one can argue that the 

NAIC risk-based capital requirement and Assumption #l are both reasonable attempts 

to approximate the proper amount of capital for an insurer. Thus one should expect an 

insurer operating under Assumption #I to behave similarly when following the NAIC 

risk based capital formula. 

These assumptions fit well within the range of standard economic theories about 

insurance operating in a competitive market. Like all economic theories, they should 

only approximate the underlying economic realities, The justification of these 

assumptions lies in the usefulness of the results they imply. 
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4. The Insurer Behavior Assumptions 
In the course of doing business, an insurer gets the opportunity to expand its 

business by adding any one of a number of insurance contracts to its portfolio. For each 

contract it adds, it must add a given amount of capital. Let R be the risk load 

associated with a given contract. Since the insurer wants to maximize its marginal rate 

of return on capital, it will choose the contract for which 

(4.1) 

is a maximum. 

Since the required capital is assumed to be a function of the variance of the total 

portfolio we can rewrite Equation 4.1 to obtain: 

R AVariance 
AVariance l ACapital (4.2) 

is a maximum. 

Let the capital ins a function of variance be given by C(Variance). If the marginal 

capital required for the insurance contract is small compared to the total variance, we 

can write: 

ACa?ital k C’(Variance). 
AVariance 

Then we can approximate Equation 4.2 by: 

R 1 
AVariance l C’(Variance) (4.3) 

is a maximum. 

The increase in the variance of an insurer’s portfolio brought on by the addition of 

an insurance contract could depend upon the other contracts in the portfolio. Thus we 

allow this marginal variance to vary by the insurer. The amount of capital required for 

a given insurer should also depend on other factors, such as the quality of its assets and 

the variability of its loss reserves. The other uses of capital should not present any 
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diffkulties if we allow the function C(Variance) to differ by insurer. 

At this point, we derive a general expression for the marginal variance due to an 

individual insurance contract. 

Let: Xi = random losses for the ith group of existing contracts; and 

Y = random losses for the additional contract under consideration. 

Consider the following covariance matrix. 

cov[x,,yl 

n 

. . . 
Cov[Xn,Yl 

Cov[Y,X,] . . . cov[y,&l1 ]j jlCuvlY.Y]l 111 
-._. 

The variance of the sum of random variables is the sum of the covariances in the 

covariance matrix of the variables. The sum of the covariances in the single framed box 

represents the total variance before introducing the new contract. The sum of the 

covariances in the double framed boxes represents the marginal variance of the new 

contract. Thus: 

. 

- 

AVariance = Var[Y] + 2. ‘$ Cov[Xi,Y] 
i=l 

(4.4) 

Since covariances are additive, the marginal variance does not depend upon the 

grouping of the Xi’s 
;;;;I 

Combining Equations 4.3 and 4.4 yields the choice of insurance contracts for which ,, 

R I---- 

‘~[‘I + 2 ’ ~ Cov[xi,y] “‘(Variance) 
(4.5) 

i=l 

is a maximum. 
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5. The Effect of Geographic Concentration 
Suppose an insurer wants to start writing property insurance in areas with a 

catastrophe exposure. In accordance with Equation 4.1, a simple strategy would be to 

find the area where the marginal rate of return is the highest, and write as much as it 

can in that area. In this section, we argue that insurers will not do this. Instead, we 

argue that an insurer can maximize its marginal rate of return by spreading its writings 

geographically. 

To illustrate, suppose one area has prospective insureds subject to a random loss, 

u,, u,, . . . Suppose further that another area as prospective insureds subject to a 

random loss, Vl, V2, * . . We assume that all the U’s are independent of the V’s Let 

the risk loads for writing a contract in the two areas be R,, and R, respectively. 

According to Equation 4.5, an insurer with no contracts in either area will decide to 

write its first contract by comparing2 

RIJ Rv 
~ and var[vll. VaGJd 

Suppose the that writing the U’s gives the greatest return on marginal capital, and 

so the insurer writes the first U. Now let’s suppose the insurer proceeds to write n U’s. 

To decide what to write for it’s n+lst contract, the insurer compares 

%J RV 

V4J,+J + 2*i~~Q4Ji~TJ,,+,I and Var[V11 

Since all the U’s are in the same area, we should expect them to have similar 

experience when a catastrophe hits. Thus Cov[Ui,Uj] will be positive for any i and j. As 

a result, the marginal rate of return will decrease as the insurer writes more U’s Thus, 

for some n, the marginal rate of return will be greater when writing a V. 

2We need not consider the term l/C’(V ariance) since it will hc the same for each comparison. 
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We can extend this argument to many areas and lines of business, with the 

consequence that the insurer will seek to write the insurance contract that gives the 

greatest marginal rate of return. The process continues until: 

A c?pital = A Vt=knce l c’(Vdiance) = K (5.1) 

for all prospective insurance contracts, 

K is the rate of return on the marginal capital to write the latest insurance contract. 

One should expect K to vary by insurer. If the insurer is new to the business, K could 

initially be very high. But a high K will attract more capital, enabling the insurer to 

expand its writings. As the insurer expands, it will eventually increase its concentration 

in all the areas in which it writes. As described above, the insurer’s return on marginal 

capital will eventually decrease. When the insurer’s volume has reached the point 

where it can no longer attract new capital, it will stop expanding. 

Assume that K is the lowest rate at which the insurer can attract capital. It will 

then compete to write an insurance contract with risk load R and random loss Y if: 

II 

,,, 

_- 

Var[Y] + 2 .~~COVIXi.Y] l CYV~i-9 L K 
(5.2) 

In a world of perfect competition, the needs of an individual insurer do not set the 

risk load, R. Instead, it is set by the insurance market. However, the insurer can 

control is its concentration of business in a given area and concentration is the relevant 

variable for the insurer seeking a competitive rate of return on marginal capital. 

Back in the real world, insurance regulators have some influence on the insurance 

market. In addition to their traditional regulation of rates, some insurance regulators 

are putting restrictions on insurer’s withdrawal of coverage. 

=- 

Equation 5.2 may provide an adequate description of insurer behavior for a given 

risk load, but it gives no hint about what an appropriate risk load might be. We now 

turn to that question. 
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6. The Competitive Market Assumption 
As almost everybody knows, any attempt to predict the behavior of the insurance 

market is filled with danger. We make no claim of immunity from these dangers. We 

offer this treatment under the rationale that thinking about the problem is better than 

not thinking about the problem. 

Suppose m insurers are competing for a given insurance contract. Let: 

Y = random losses for the insurance contract under consideration 

Xij = random losses for the existing contract of insurer j in group i 

R = risk load for the insurance contract, which we assume to be equal for 

all m insurers 

Aj = Kj . C’(Variance.) for insurer j 
3 

From Equation 5.2 we have 

pbr[Y] +2. ~COVIXij,Y]. 
1 i=l 

Summing over the m insurers and dividing by m yields 

Var[Y] + 2.2 Cov[Xi,Y] 
i=l 

(6.1) 

where x= 1, 

A’,2 4 

and?+-$2 Xij. 
j=l 

Equation 6.1 is the competitive market equilibrium risk load formula.3 

i; is called the risk load multiplier. As a consequence of Equation 5.2, the risk load 

multiplier is a function of the marginal rate of return, measured by Kj, and the 

marginal capital, measured by C’(Variancej), of each competitor.4 The risk load also 

depends upon how the business written by competitors is related to, or covaries with 

the contract under consideration. 

3This formula gets its name from Meyers [lQQl] although, on the surface, the derivation appears 
quite different. It was Heckman [I9921 who showed that the original Meyers formulation is equivalent 
to the return on marginal capital formulation used in this paper. 

4Kreps [lQQO] presents an alternative way to derive risk loads from marginal capital. 
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7. The Risk Load Multiplier 
Equation 6.1 shows that the risk load multiplier, 5;, depends upon the competition. 

NOW it might be difficult for an insurer to obtain the “j of each of its competitors so, in 

practice, more informal competitive considerations might well be used. In this section 

we propose a formula to aid in the of selection a risk load multiplier. 

Let Kj = expected total return of the jth insurer; and 

C. = capital of the jth insurer. 
J 

We now make two additional assumptions about the competing insurers: 

1. The marginal return on capital is the same for all insurers. That is, Kj q K. 

2. Cj = C(Variancej) = T. J=?ziq* 

From the definition of A., we obtain 
J 

,ij = K . C’(Variancej) 

2 

=v 

It follows from Equations 6.1 and 7.1 that 

wheree=m. ECj. 
j=l 

=m.K.T2 

2. ECj 
j=l 

=K.T’ 
2.c ’ 

(7.1) 

(7.2) 
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Thus under the additional assumptions of this section, it follows that the risk load 

multiplier is a function of: 

K - the annual rate of return (before taxes); 

c - the average capital of the competitors; and 

T - the coefficient of the capitalization function. 

K and c can be estimated from publicly available data. 

One possible way to choose T is so that S times the required capital is equal to Z 

standard deviations of the total loss distribution. That is: 

S’Cj =Z .p-, 

which yields 

In the illustrative examples below, we will set K = 20%, c = $500,000,000 2 = 2 and 

S = 20%. This yields X = 2.10-*. 

Here are some important caveats on our choice of the risk load multiplier. 

1. While the capitalization function given in Assumption 2, above, is mathematically 

convenient, by no means is it universally recognized as the best. Other possible 

capitalization functions are based on the “probability of ruin” and the “expected 

policyholder deficit5”. 

2. An insurer must hold capital to write an insurance contract as long as potential 

liabilities remain. One year is usually sufficient for property insurance contracts, 

but for longer tailed lines of insurance, insurers must often hold some capital for 

several years. In this case, some modifications must be made to the formula for 

calculating the risk load multiplier. This paper does not cover these modifications. 

Suffice it to say that the risk load multiplier should be higher for long tailed lines. 

~5See, for example, Daykin, PentikBinen and Pesonen [lQ94], p. 157, and the American Academy of 
Actuaries Property/Casualty Risk Based Capital Task Force [1993], p. 123. 
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8. Calculating the Catastrophe Risk Load 
As described in Section 2 above, computer models can generate prospective 

catastrophe losses. To calculate the CME risk load, the information obtained from such 

a model should be organized in the following manner. Let 

h denote the natural event causing the catastrophe indexed from 1 to s, and let 

i denote the insured group indexed from 1 to n. Each group will have a class of 

business such as homeowners - wood frame houses, and a geographic unit such a.~ 

ZIP code, associated with each i. (An alternative is to use two indices instead of 

one.) The class of business should be sufficiently homogeneous and the geographic 

unit should be small enough so that all properties in the insured group will have 

similar loss experience for a given event. 

For each h and i let: 

ph = the probability of the event h happening in a given year; 

dhi~ the loss per unit of exposure for insured group i, caused by event h; and 

pi = the average number of exposure units in insured group i. This average is to be 

taken over all insurers competing for the insurance contract under 

consideration. 

_,,.w 

We assume that: (1) each event is independent of the other events; and (2) each 

event can happen at most one time in a given year. These assumptions seem reasonable 

in light of the time needed to repair the property damage caused by a catastrophe, the 

shortness of the hurricane season and the physical properties of earthquakes6. Let: 
- 

Nh= The random number of occurrences (either 0 or 1) of event h; and 

yh= The damage caused by event h to the property being insured. 

Define the random variables 

Y= kyh.Nh and 
h=l 

pi = ~ dhi l p. Nh. 
h=l 

6Alternatively, we could give Nh a Poisson distribution. But since catastrophic events are rare, the 
results would hard to distinguish from the chosen binomial model. 
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We now go on to derive the formula for the catastrophe risk load. 

VI =h$IYh*Ph. 

Var[Y] = 2 yi l Var[Nh]. 
h=l 

= 2 y%*ph’(l-Ph). 
h=l 

COV[~i,Y] = ~ cov[~ii’h] 

h=l 

S 
= C yll. dhi .~i l Cov[Nh, Nh] 

h=l 

S 

= C Yh’d~li’“i’Ph’(l-Ph). 
h=l 

(8.1) 

(8.2) 

(8.3) 

Combining Equations 6.1, 8.2 and 8.3 yields 

R=X. ~y~.ph.(l*ph)+2*~ eYh*dhi*‘i*Ph*(‘-Ph) 
> 

(8.4) 
h=l i=l h=l 

as the formula for the catastrophe risk load. 
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9. An Illustrative Example 
This section gives an example to illustrate some consequences of the risk load 

formula. Later, we will use this example to formulate hypotheses about the catastrophe 

exposure and propose ways to manage the catastrophe risk. It will require further work 

with a validated catastrophe model and real exposures to verify these hypotheses and 

justify the proposals. 

We begin with a description of an imaginary state and the hurricanes that inflict 

damage on the property of its residents. 

The State of Equilibrium is a rectangular state organized into 50 territories. It has 

an ocean on its east side and is isolated on its remaining three sides. Its property 

insurance is spread among various insurers that compete for business in every territory. 

Exhibit 9.1 provides a schematic map giving the average number of exposure units per 

insurer ($1,000’~ of insured value). Exhibit 9.1 shows that this state has a reasonable II 
array of metropolitan areas, suburbs, and rural areas. The average number of exposure 

units per insurer is 2,500,OOO. 

The State of Equilibrium is exposed to hurricanes that move in a westward path. 

Hurricanes occur at a rate of one out of every two years and come in various strengths. 

The damage caused by the hurricane can span a width of either one or two territories. 

Each landfall has the same probability of being hit. The losses due to each hurricane 

decrease as the storm goes inland, with the loss cost decreasing to 70% of the loss cost 

of the territory bordering on the east. The overall statewide average loss cost is $4 per 

$1,000 of insurance. 

The appendix gives the parameters, ph and dhj, of the hurricanes. 

Using Equation 8.4, risk loads were calculated for a $100,000 property for each 

territory. The risk load multiplier, 1, was set equal to 2 x lo-*. Exhibit 9.1 shows these 

risk loads expressed as percentages of the expected losses. 
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Exhibit 9.1 
Map of the State of Equilibrium 

Key 
!a xxxxxx Ww = Territory 

xxxxxx = Total Number of Exposure Units 
Number of Insurers 

Yyy ZZZ.ZZ% nT = Expected Loss for ZZZ.ZZ% = 
------------- 100 Exposure Units E$:e!?:oss (%I 

Inland #4 

1 25000 
169 85.74% 

Inland #3 

2 75000 
, 242 85.74% 

Inland #2 Inland #l Landfall Ocean 

3 75000 4 25000 5 25000 \/\/\I 
345 85.75% 493 85.75% 704 85.76% \/\/\I 

_______----___--____-------------------------------------------------- 
6 25000 7 75000 8 75000 9 25000 10 25000 

169 101.10% 242 101.10% 345 101.11% 493 101.11% 704 101.12% 
\I\/\/ 
\/\/\I 

----_____--____---______________________------------------------------ 
11 25000 12 25000 13 25000 14 25000 15 25000 

169 78.15% 
vwl 

242 78.16% 345 78.16% 493 78.17% 704 78.17% \/\/\I 
-----____--____-_-______________________------------------------------ 

16 25000 
169 144.26% 

----------___ 
21 25000 

169 256.26% 
---------____ 

26 25000 
169 144.26% 

17 25000 18 25000 19 25000 20 25000 \/\I\/ 
242 144.26% 345 144.26% 493 144.27% 704 144.28% \I\/\/ 

--____---__________-____________________---------------- 
22 25000 23 25000 24 225000 25 225000 

242 256.26% 
\/\/\I 

345 256.26% 493 256.27% 704 256.28% \/\/\I 
______-___---------_____________________~~~~~~~~~~~~~~~~ 

27 25000 28 25000 29 25000 
242 144.26% 345 144.26% 493 144.27% 

--__---_______--________________________--------------- 
31 25000 32 25000 33 25000 34 25000 

169 100.61% 242 100.61% 345 100.62% 493 100.62% 
----___-______----------------------------------------- 

36 125000 37 25000 38 125000 39 125000 
169 179.41% 242 179.41% 345 179.41% 493 179.42% 

____---_______-____-____________________--------------- 

41 125000 42 25000 43 125000 44 125000 
169 183.21% 242 183.21% 345 183.21% 493 183.22% 

____________--___--_----------------------------------- 

46 25000 47 75000 48 25000 49 25000 
169 94.70% 242 94.70% 345 94.71% 493 94.71% 

---________---__________________________--------------- 

30 25000 vvv 
704 144.28% \/\/\I 

-----_------_- 

35 25000 vvv 
704 100.63% \I\/\/ 

---_---------- 

40 25000 vwi 
704 179.43% \/\/\I 

-------------- 

45 25000 w/v 
704 183.23% \/\I\/ 

_------------- 

50 25000 vwl 
704 94.72% \/\/\I 

_----------_-- 
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Here are some general comments about these risk loads. 

1. Higher risk loads are associated with the more densely populated territories. For 

example, Territory 25 has a higher risk load than Territory 15, even though the 

expected loss for a single exposure in each of these two territories is the same. 

2. Proximity to a densely populated territory increases the risk load. For example, 

Territory 20 has the same population density as Territory 15, yet Territory 20 has a 

higher risk load than Territory 15. This is because some hurricanes hit both 

Territories 25 and 20, but no hurricanes hit both Territories 25 and 15. 

3. Distance from a densely populated territory does not guarantee a lower risk load. 

For example, Territory 21 has a higher risk load than Territory 11, even though 

each territory is geographically isolated from a major population center. This is 

because Territory 21 is behind Territory 25, and these two territories are exposed to 

the same storm paths. 

4. The risk load decreases slightly as a percentage of expected loss, as we move inland. 

Equation 8.4 shows that we can divide the risk load into two parts: 

- 
,,I/ 

.,., 
‘:::I 

X.Var[Y] and x l 2.2 COVIXi’Y] 
i=l 

The risk load percentage due to the first part decreases from 0.03% to 0.01% as we 

move inland. The risk load percentage due to the second part remains the same as 

we move inland. 

The magnitude of the risk loads in this (made up) example are much larger than the 

customary “cost of capital” provisions property (primary) insurance rates. The overall 
W-M 

xi! 
average risk load for this example is 172% of the expected cost. We devote the 

remainder of this session to a discussion of what one should expect as the overall 

average magnitude of the risk load. 

Probably the most debatable part of the formula comes with the selection of the risk 

load multiplier. The risk load multiplier used depends on admittedly arbitrary risk 

based capital requirements presented in Equation 7.3. But, as Section 7 above shows, 

the risk load multiplier also depends upon the properties of the competitors, the return 

on marginal capital, and the amount of time the insurer must hold capital to fulfill the 
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obligations of the insurance contract. Unless the set of competitors differs noticeably by 
line of insurance, the risk load multiplier should not depend upon the line. 

We now argue that a catastrophe exposure can have a much larger overall risk load 

than a normal exposure. To do this we will compare the variance added by a well- 

diversified insurer in the above example with the variance added by fire insurance. 

For the insurer with exposures equal to those given in Exhibit 9.1 expected JOSSES is 

%10,000,000 and variance of the loss is 4.28 x 10 I4 . Consider a claim severity distribution 

with an expected loss of $8,000 and a standard deviation of $24,000. This claim severity 

distribution is typical of that for fire insurance. 7 If the insurer expects 1,250 claims, the 

expected loss will be equal to $10,000,000. For simplicity, assume both the hurricane 

losses and the fire losses are independent of the other losses the insurer anticipates. 

Then the the relative risk load between the hurricane and fire exposures equals the 

quotient of their respective variances. 

Parameter 
Risk 

Table 9.2 
Fire Insurance 

Variances 
Relative Cat/Fire 

Risk Load 

None 8.00 x 1011 535 

Low 2.80 x 1012 153 

Moderate 4.80 x lOI 89 

If these examples are anywhere near realistic, one would must conclude that either 

fire risk loads should be near zero, or that catastrophe risk loads are very large. In 

practice, the catastrophe risk loads could be significantly smaller -- or larger -- than the 

risk loads in this example. 

‘This distribution is from the “Total” Column of Exhibit 5 in Ludwig [1991] and scaled to a 
homeowners policy with $100,000 of insurance. The mean and standard deviation of the distribution 
are rounded to the nearest $1,000. 

*These variances are calculated with Equation 4.4 in Meyers [1991], using b=O and c=O.OO, 0.02 
and 0.04 respectively. 
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10. The Problem Restated 
The following summarizes the situation that the insurance industry now faces with 

respect to catastrophe losses.g 

1. Insurers had enjoyed a relatively long period free of major catastrophes that lasted 

until 1989. Since then we have had Hurricanes Hugo and Andrew, the Northridge 

earthquake, and a number of other events that resulted in record catastrophe losses 

in recent years. 

2. There has been a major buildup of new property in catastrophe prone areas. 

3. Computerized models capable of simulating the effect of major catastrophes are 

being utilized by many insurers to analyze their exposure to catastrophic risk. 

4. While individual insurers have not been required to release the results of these 

analyses, observed market behavior is consistent with a new realization of possible 

problems in capital adequacy. Many insurers are attempting to reduce their 

exposures in catastrophe prone areas. 

Now the primary insurance market is subject to a large degree of price stickiness. 

This might be attributed to regulatory constraints, or simply to inertia. The 

reinsurance market has fewer price constraints, but still, reinsurance premiums are 

limited by the corresponding primary insurance premiums. 

If the insurance market is inadequately capitalized, it should come as no surprise 

that the cost of adequate capital -- that is, the risk load -- is higher than one might 

expect given today’s marketplace. So far, the insurer response has been mainly to 

reduce exposure. As the discussion related to Equation 5.2 argues, this is an - 

economically justifiable response. The problem is that this response leaves many 3: 

property owners without insurance. 
- 
- 

Reinsurance, and other instruments of insurer risk spreading, has been largely absent 

from our discussion of risk. We now turn to a discussion of these practices. Our 

restated problem now becomes: Can insurer risk management practices, such as 

reinsurance, be used to cover the catastrophe risk at more reasonable price? We will 

use the CME risk load formula as a tool to explore this question. 

‘See the publication The Impaci of Catastrophes on Properfy Insurance, IS0 [1994] for more 
details. 
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11. Managing the Catastrophe Riik 
To compete effectively in the insurance market, an insurer must provide its product 

for the lowest cost. This cost includes the cost of capital, which is provided by the risk 

load. As seen above, the catastrophe risk load is a function of the concentration of 

business written by all competing insurers. This section examines how insurers and 

reinsurers may work together to provide coverage for the least cost. 

Case 1 - “Local” Reinsurance 

By ‘Iocal” reinsurance, we mean that the primary insurers and the reinsurers are 

operating in the same market. Since all reinsurers are competing for the same insurance 

contract, we assume that each of them uses the same risk load multiplier. 

Let 

where Yk is the amount paid by the kth reinsurance contract. 

As a matter of convenience, we will only consider contracts for which 

cov[yktyj] _ > 0. This is true for the popular reinsurance contracts. 

We have 
R g k-l 

‘dyl =k~lVar(Yk] + 2 l kg2 j~lCOv~yk~yjI 
> 2 var[Yk]. 

k=l 

Thus the variance part of the risk load, 

1. Var[Y], 

is reduced when the loss, Y, is distributed among the g insurers. 

We also have 

for all i. 

COV[~i,Y] = ~ COv[Xi,Yk] 
k=l 

(11.1) 

(11.2) 

(11.3) 
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Thus, the covariance part of the risk load, 

2*Si. -jycov~i,Y] 
i=l 

(11.4) 

is & reduced when the loss, Y, is distributed among the g insurers. 

We now examine how much the risk load can be reduced by sharing the loss among 

g insurers. Suppose an insured faces a random loss Y. If splitting the loss Y equally 

between g insurers instead of keeping exclusively with a single insurer, the total risk 

load is reduced by 

X.(Var[Y]-g*Var[g])=X.Var[Y]*(l-i). (11.5) 

We will now argue that Equation 11.5 represents the theoretical maximum that the 

variance part of the risk load can be reduced by sharing the loss among g insurers. We 

begin this argument by considering the case of g=2. We have 

Var[Y] = Var[Yl] + 2. Cov[Y1,Y2] + Var[Y2] 
- 

= Var[Yl] + 2. p . JVar[Yl] . Var[Y2] + Var[Y2] ) (11.6) 

where p is the coefficient of correlation between Y, and Y,. Let p = dm, 

Y; = pm Y, and Yi = (1 -p) . Y. We have Var[Yi] = Var[Y1], and the coefficient of 

correlation between Y; and Yi is 1. Since Equation 11.6 must hold for Yi and Yi, we 

must have that Var[Y$] 5 Var[Y2]. Th us we can replace any shared contract by a 

proportional contract with a total risk load at least as small. 

Thus, the maximum reduction of risk load will occur with a proportional sharing 

contract of the form Y, = pa Y and Y, = (1 -p) . Y. In this case the reduction is 

2.p.(l-p)aVar[Y]. (11.7) 
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This expression is maximized when p = l/2. Thus the maximum reduction in the 

risk load is: 

V4Yl 
2 

(11.8) 

If g > 2, any two insurers with different liabilities can get together and reduce their 

joint share by each taking l/2 of their joint liability. If each insurer takes l/g of the 

total liability, no reduction in the total risk load can occur. Thus Equation 11.5 gives 

the theoretical maximum reduction in the risk load by g insurers.‘O 

In theory, the variance part of the risk load can be eliminated entirely by increasing 

g indefinitely. In practice, g will not be increased indefinitely because of the transaction 

costs involved in reinsuring. If the transaction costs of adding a reinsurer exceed the 

corresponding reduction in the risk load, it will not be economical to write the 

reinsurance contract. The expense of reducing the risk load will exceed the cost of 

capital needed to bear the risk. 

We now continue the illustrative example started in Section 9. Suppose an insurer 

wants to reinsure all its property insurance in the State of Equilibrium. The following 

exhibit gives the expected losses and the risk loads for various books of business when a 

single reinsurer takes all the business. 

Exhibit 11.1 
Reinsurance Prices for Sample Books of Business 

In the State of Equilibrium 

Exposure 
Book Distribution 

Expected Total Percentage Variance Covariance 
Loss Risk Load Risk Load Risk Load Risk Load 
(000) (OW 

1 Industry 2,500 4,696 187.8% 16.5% 171.3% 

2 Territory 25 2,500 8,741 349.6 93.4 256.3 

3 Uniform 2,500 3,717 148.7 11.9 136.8 

4 Industry 5,000 10,219 204.4 33.1 171.3 

5 Industry 1,250 2,245 179.6 8.3 171.3 

“The variance part of the risk load is the same as the variance principle for calculating premiums. 
The analogous result for the variance principle is well known. See Daykin, PentikBinen and Pesonen 
[1994, Chapter 61 for a standard reference on this subject. 
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The first book of business consists of 6,250,OOO units of exposure, distributed among 

the territories in proportion to the entire industry. The total risk load for reinsuring the 

entire book of business equals 187.8% of the expected loss. The variance part of the risk 

load equals 16.5% of the expected loss. The second book consists of 3,549,523 units of 

exposure concentrated in Territory 25. The third book consists of 6,398,443 units of 

exposure, uniformly spread over the 50 territories. We chose these exposure levels so 

that the expected loss is the same for the first three cases. 

Books 4 and 5 illustrate the effect of changing the overall exposure level while 

maintaining the same relative concentration as Book 1. The covariance risk load is a 

constant percentage of the expected loss. However, the variance risk load, expressed as 

a percentage of the expected loss, increases directly with the overall exposure level.” 

Thus, an insurer may expand more efficiently by moving into other geographic regions 

or to other lines of business. Such a decision will depend upon the other costs of doing 

business. 

The single (or direct) reinsurer arrangement described in Exhibit 11.1 may not be 

the most efficient one available. In fact, most catastrophe reinsurance is done through 

the brokerage market. To continue our example, assume that the reinsurance broker 

charges an additional commission (above that of the direct reinsurer) equal to 10% of 

the expected loss. Assume also that each reinsurer involved in the contract incurs an 

additional expense equal to 0.5% of the expected loss. Then the minimum risk load 

plus transaction cost occurs when 

Broker’s Commission% + Variance ysk Load % + 0.5. g (11.9) 2 
is a minimum .,m.* 

For the least concentrated example, Book 2 of Exhibit 11.1, the minimum variance 

risk load plus brokerage expense is 10 + 11.9/5+2.5 = 14.9%. This does not compare 

favorably with the 11.9% original reducible risk load and so the contract will stay with 

the direct reinsurer. 

“Part of this effect may be an artifact of this example. Here we assume that each hurricane 
inflicts damages on all properties in a territory in a constant, non-random manner. A more detailed 
model might include some random effects of hurricanes on the property in a given territory. 
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In Book 1, the insurer follows the industry concentration. The minimum reducible 

risk load plus brokerage expense is 10 + 16.5/6 + 3.0 = 15.8%. This is slightly lower than 

the 16.5% original reducible risk load, and so further investigation is called for. In 

practice, reinsurers rarely use this optimal contract. (Could it be that reinsurance 

underwriters don’t believe actuarial theory?) Reinsurers usually require the primary 

insurer to retain a certain proportion of the loss, to assure diligence in adjusting claims. 

The remaining losses are parceled out in various layers. Suppose that the broker comes 

up with the agreement described in the following exhibit. 

Exhibit 11.2 
Sample Reinsurance Arrangement for Book 1 - Industry Exposure Distribution 

Layer 

Ol 2,000,000 , 

6,000,OOO ( 

12,000,000 ’ 

20,000,000 ) 

30,000,000 > 

Primary Insurer Retains 10% of All Losses 

Expected Total Percentage Variance Covariance 
Loss Risk Load Risk Load Risk Load Risk Load 

755,870 706,169 93.4% 1.8% 91.7% 

723,195 1,154,388 159.6 4.8 154.8 

489,581 1,181,366 241.3 8.4 232.9 

247,524 797,542 322.2 11.1 311.1 

33,830 133,824 395.6 7.7 387.9 

Total 2,250,OOO 3,973,288 176.6% 5.3% 171.3% 

With this agreement, the total reducible risk load plus brokerage expense is 

10+5.3+0.5.5 = 17.8%. This does not compare favorably with the original 16.5% 

reducible risk load, so the contract will stay with the direct reinsurer. 

In Book 2 of Exhibit 11.1, all the primary insurer’s business was in Territory 25. 

The minimum variance risk load plus brokerage expense is 10 +93.4/14+ 14.0.5 = 

23.7%. This compares favorably with the 93.47 0 original reducible risk load, so further 

investigation is necessary. Suppose that the broker comes up with the agreement 

described in the following exhibit, 
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Exhibit 11.3 
Sample Reinsurance Arrangement for Book 2 - All Exposure in Territory 25 

Primary Insurer Retains 10% of All Losses 

Expected Total Percentage Variance Covariance 
Layer Loss Risk Load Risk Load Risk Load Risk Load 

4,000,000 O} 227,184 474,078 208.7% 6.7% 201.9% 

12,000,000 > 454,369 978,807 215.4 13.5 201.9 

24,000,OOO > 
546,325 1,391,386 254.7 19.3 235.4 

40,000,000 > 552,566 1,655,379 299.6 25.5 274.1 

60,000,OOO > 390,499 1,393,837 356.9 30.1 326.8 

84,000,000 1 79,057 331,920 419.9 24.3 395.6 111 
,, ,/ 

Total 2,250,OOO 6,225,408 276.77, 20.4% 256.3% 

With this arrangement, the total variance risk load plus brokerage expense is m- 

10+20.4+6 l O.5 = 33.4%. This compares very favorably with the original 93.4% 

variance risk load, so the brokered contract is sold. Note that the cost of the brokered 

contract differs from that of the optimal contract. The broker may be able to come up 

with a better contract. 

As these examples show, “local” reinsurance helps very little when the insureds are 

geographically diversified, but it can help when the insureds are geographically ,- 

concentrated. But does it help enough? We move on to the next case. ;;;i 

..im 
Case 2 - “Global” Reinsurance 

By “global” reinsurance, we mean that the reinsurer’s market covers a much larger 

area than the primary insurer’s market. This case is certainly closer to the norm for 

catastrophe reinsurance. 

As Section 6 shows, the risk load depends upon how the business of competitors is 

related, or covaries, with the contract under consideration. Global reinsurers should 

have a very diversified book of business. A fairly large portion of the business should be 
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independent of the primary insurer’s business. We now illustrate this effect with the 

examples described in Exhibits 11.2 and 11.3, with one change. The average exposure 

in the State of Equilibrium of the competing reinsurers is lower by a factor of five. The 

remaining exposures of the competing reinsurers have losses independent of the losses in 

the State of Equilibrium. We assume no change in the capital requirements or the 

average size of the competing reinsurers. Thus the risk load multiplier remains the 

Exhibit 11.4 
Sample Reinsurance Arrangement for Book 1 - Industry Exposure Distribution 

Primary Insurer Retains 10% of All Losses 

Expected Total Percentage Variance Covariance 
Layer Loss Risk Load Risk Load Risk Load Risk Load 

2,000,000 Ol 
755,870 151,866 20.1% 1.8% 18.3% 

6,000,OOO 
> 723,195 258,660 35.8 4.8 31.0 

12,000,000 > 
489,581 269,020 54.9 8.4 46.6 

20,000,000 > 
247,524 181,511 73.3 11.1 62.2 

30,000,000 1 33,830 28,851 85.3 7.7 77.6 

Total 2,250,OOO 889,909 39.6% 5.3% 34.3% 
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Exhibit 11.5 
Sample Reinsurance Arrangement for Book 2 - All Exposure in Territory 25 

Primary Insurer Retains 10% of All Losses 

Expected 
Layer Loss 

0. 

4,000,000 ) 227,184 

12,000,000 > 454,369 

1 546.325 
24,000,OOO ’ ’ 

> 552,566 
40,000,000 

> 390,499 
60.000,000 . 

) 79,057 
84,000,OOO 

Total 2,250,OOO 1,612,883 71.7% 20.4% 51.3% 

Total 
Risk Load 

107,076 

244,801 

362,621 

443,874 

372,777 

81,734 

Percentage Variance 
Risk Load Risk Load 

47.1% 6.7% 

53.9 13.5 

66.4 19.3 

80.3 25.5 

95.5 30.1 

103.4 24.3 

Exhibit 11.6 

Covariance 
Risk Load 

40.4% 

40.4 

47.1 

54.8 

65.4 

79.1 

Sample Reinsurance Arrangement for Book 3 - Uniform Exposure Distribution 

Primary Insurer Retains 10% of All Losses 

Expected Total Percentage Variance Covariance 
Layer Loss Risk Load Risk Load Risk Load Risk Load 

Ol 823,024 153,419 18.6% 1.7% 16.9% 
2,000,000 

> 776,838 248,637 32.0 4.4 27.6 
6,000,OOO 

> 578,988 274,577 47.4 8.2 39.2 
12,000,000 

> 71,151 37,899 53.3 4.7 48.5 
20,000,000 

Total 2,250,OOO 714,532 31.8% 4.4% 27.4% 

Here we see that “global” reinsurance can have a dramatic effect on the overall risk 

load. By comparing Exhibits 9.1 and 11.1 through 11.3 with Exhibits 11.4 through 11.6, 

it would appear that an insurer could compete far more effectively with the aid of a 

“global” reinsurer. 

- 
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Case 3 - Embedded Options on a Catastrophe Index 

A relatively recent development in catastrophe risk management is the sale of 

options based on the industrywide underwriting results of property insurance. Here is a 

simplified description of the idea. 

An exchange, such as the Chicago Board of Trade, constructs and index proportional 

to the industrywide loss ratio. A reinsurer purchases an option on the index which 

entitles the reinsurer to receive 

Max(0, Final Index Value-Strike Price) 

at the end of the index period. The strike price is selected by the reinsurer. As the 

effective period of the index begins, the reinsurer can purchase an option at a price 

determined by the market. 

The sellers of these options are motivated by profit. The price of the options can 

be viewed as the expected cost plus a provision for risk. However, one should not 

expect the insurance version of a risk load to apply directly. The sellers are likely to 

have a different set of investment opportunities. 

One possible use of these options is to embed them within a reinsurance contract. 

To illustrate, suppose a primary insurer purchases a reinsurance contract. The reinsurer 

purchases a set of options to offset the primary insurer’s loss with the result that: 

Net Reinsurer Loss = Primary Insurer Loss -Gain on the Options 

The reinsurer then calculates the price for the reinsurance, both expected loss and 

risk load (using Equation 8.4), on the basis of the net reinsurer loss. 

We now illustrate the operation of embedded options on the reinsurance contracts 

described in Exhibits 11.4 through 11.6. Let the index be the total industry losses 

divided by the number of exposure units in $1,000~ of insurance. Let the strike price be 

$4, the expected loss per $1,000 of insurance. Suppose the reinsurer buys 562,500 

options in each of three examples. Two components of the cost of the reinsurance 

contracts with embedded options are given in Lines 3 and 4 of Table 11.7. 
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Table 11.7 
Embedded Options 

Books of Business 

Industry Territory Uniform 
Exposure 25 Only Exposure 

1. E[Reinsurer Loss] 2,250,OOO 2,250,OOO 2,250,OOO 

2. Risk Load on Net Reins. Loss 709,886 2,233,262 566,464 

3. Min Reinsurance Cost (l)+(2) 2,959,886 4,483,262 2,816,464 

4. Standard Reinsurance Cost 3,139,909 3,862,883 2,964,532 

5. Difference (4)(3) 180,023 (620,379) 148,068 

6. E[Gain on Options] 401,803 401,803 401,803 

7. Value of Options to Reinsurer (6)+(5) 581,826 (218,576) 549,871 

8. Value of Option Contract (7)/562,500 1.034 (0.389) 0.978 -31 

Now we do not know the provision for risk (that is the profit) that the option sellers ..- 

demand. However, the reinsurance cost should be at least the sum of Lines 1 and 2. ” 

This minimum reinsurance cost is on Line 3. We can compare this minimum - 

reinsurance cost with the standard reinsurance cost from Exhibits 11.4 through 11.6. 

The standard reinsurance cost is on Line 4. The difference between Lines 4 and 3 is the 

largest profit the reinsurer can provide the seller. Otherwise, the reinsurer will not buy 

the options. Line 6 is the expected value of the gain on the option package. Then the 

most the reinsurer would be willing to pay for the entire option package is the sum of 

Lines 5 and 6. This maximum is called the value of the option package to the reinsurer - 
and it is on Line 7. Line 7 is then expressed as a price per option contract and is on = 

Line 8. - 

These examples illustrate that options on a catastrophe index are more valuable to 

insurers whose exposure distribution closely matches the industrywide exposure 

distribution. As our second example shows, these options are of no value the to an 

insurer with concentrated exposures. 
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Although options on a catastrophe index are not appropriate for all insurers, they 

are a positive development for the insurance industry. At the very least, they provide 

another source of capital. 

These sample calculations do not account for possible differences in transaction 

costs. Also, the reinsurer might find a better strategy for purchasing options, both in 

terms of the number of options and the strike price. 

12. The Compounding Effect of Building Codes 
So far, we have only discussed the insurance side of risk management. In this 

section we discuss the effects of loss mitigation efforts. 

We assume the existence of a loss mitigation technology that can reduce the 

expected loss to each insured by a factor of v. If Y is the loss random variable for the 

insured, the expected loss after loss mitigation is v. E[Y]. Since loss mitigation is 

intended to reduce losses, v < 1. 

Under normal conditions”, an insurer will reduce its rate by a factor of v when there 

is convincing evidence that the insured’s expected losses are reduced by a factor of v. 

However, as we shall argue, the positive effects of loss mitigation are compounded when 

a catastrophe exposure is present. 

In the discussion that follows, R will be the risk load that applies before any loss 

mitigation measures take place. 

If only one insured takes the loss mitigation measure, the risk load, RM, for the 

insured becomes 

~vDR. (12.1) 

“Here we ignore considerations such as fixed expenses which figure into pricing deductibles. 
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This last approximation is good for individual properties which are part of a 

catastrophe exposure. In this case, as discussed in Section 9 above, the covariance risk 

load is much larger than the variance risk load. 

If all insureds take the loss mitigation measure, the risk load, RM, for an insured 

becomes 

RM=X. Var[v.Y] +2. ~COV[V.~, v*Y] 
i=l > 

= v2 9 x 0 Var[Y] + 2.2 COVIXi,Y] 
i=l 

= v2.R. (12.2) 

As argued above, the risk load can be a significant part of the overall property rate. 

Thus the message contained in Equations 12.1 and 12.2 is that the premium for an 

individual insured can be significantly reduced if its neighbors also take steps to 

mitigate losses. All insureds have an interest in community-wide loss mitigation. 

Effective building codes are one way to express this interest. 

- 

-’ 

- 

13. Frequently Asked Questions 
In discussing these ideas with various colleagues, the author has come across a 

number of common questions. This section addresses these questions. 

Ql. As Section 5 argues, the first property insured will have a greater return on ;;;I 

marginal capital than the last property insured. Does this mean the total return on z 

equity will be greater than the rate of return on marginal capital, K? 

Al. Yes, and that is the way it should be. What does matter is that the risk load is the 

same for each insured, and this is what happens. Admittedly, this formulation 

does not fit well with the target rate of return on allocated surplus paradigm, but 

we believe that our formulation does fit better with competitive market economic 

theory. 
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Q2. If one were to charge the rates underlying Exhibit 9.1, the risk load for an insurer’s 

book of business sums up to far less than the corresponding risk load for Exhibit 

11.1. What is happening here? 

A2. The difference is in the variance risk load. If a primary insurer expands from a 

single house in a given territory to n houses in the same territory, the variance risk 

load is multiplied by n2. (The mathematical explanation for this -- 

Var[n . Y] = n2. Var[Y].) This assumes that a hurricane affects all properties in the 

same territory equally. A primary insurer can add contracts to its book of business 

one at a time in whatever territory (or line of business) offers the best return on 

invested capital. The reinsurer gets a package deal, which presents a bigger 

additional risk. 

Q3. If the reinsurer accepts a greater risk and charges for it, why would a primary 

insurer ever use reinsurance? 

A3. Since the first property insured has a greater return on marginal capital than the 

last property insured, the act of reinsuring many properties in a single contract 

frees up a greater amount of capital than the marginal return on the last property 

insured indicates. If the insurer cannot find a better use of capital elsewhere, it 

should not reinsure. 

But don’t forget the “global” reinsurer. Its total market may be different than that 

of the primary insurer. And in the example given above, the reinsurer’s risk load is 

smaller than the primary insurer’s combined risk load. 
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Q4. The total of the CME risk loads for primary insurer and the reinsurer can be less 

than the CME risk load when the primary insurer does not reinsure. Doesn’t this 

violate the additivity criterion that many feel sound premium calculation principles 

should satisfy? 

A4. The CME risk load does not satisfy the additivity criterion. In spite of this (or, to 

put it more strongly, because of this) the formula is sound. Additive premium 

calculation principles are consistent with the practice of explicitly including a 

provision for reinsurance in the price of an insurance contract. But the cost of 

reinsurance includes transaction costs as well as the reinsurer’s capital costs. Thus 

the CME risk load can still be applied since it seeks only to account for capital 

costs. 

We further contend that any additive risk load formula based solely on capital 

costs does not apply to real insurance markets. If the act of reinsuring generates no 

savings in capital costs, the insurer has no reason to incur transaction costs of 

reinsurance. But there is an active reinsurance market -- QED. 

The debate over the soundness of additive premium principles continues in the -- 

literature. Consider the exchanges between Meyers [1991 and 19931 and Robbin 

[1992] and between Venter [1991] and Albrecht [1992]. 

Q5. In response to insurance shortages in catastrophe-prone areas, several states are 

setting up their own catastrophe funds to alleviate these shortages. How do these 

funds affect the assumptions of the CME risk load formula? 

A5. The CME risk load formula is a market driven formula. Government programs can -- 

affect the operations of the free market. To the extent that government allows a = 

free market to operate, the CME formula still applies. Any government incentives .z 

to write in densely populated areas will reduce differences in risk loads between 

sparsely populated and densely populated areas. The desirability of this result will 

depend upon who funds the incentives. 
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14. Concluding Remarks 
This paper has derived the Competitive Market Equilibrium risk load formula from 

standard competitive market economic assumptions, as they apply to the business of 

insurance. The paper applies the risk load formula to lines of business with a significant 

catastrophe exposure. The formula uses output from newly developed catastrophe 

models. The key idea is as follows: 

The marginal capital needed to support an insurance 

contract increases with the concentration of exposure. 

We define the risk load as the cost of marginal capital needed to support the 

insurance contract. The Competitive Market Equilibrium (CME) risk load is the risk 

load that matches the supply and demand for insurance. 

Through examples, we raise the possibility that the risk load can be very high 

relative to the expected loss. Rather than pass this risk load on to the insured, we show 

how cooperative risk management arrangements can result in significantly lower risk 

loads. 

This paper provides a way to balance price, concentration, and the transaction costs 

of reinsurance. 

Market equilibrium is a rare phenomenon in real economic behavior. Shocks to the 

system happen too often for an equilibrium to develop. However, the examples in this 

paper show that the CME risk load formula can provide guidance for pricing and 

managing the catastrophe risk in an evolving insurance market. 
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Appendix - Parameters for Sample Hurricanes 

The sample hurricanes used in this paper travel from east to west. AS a hurricane 

moves inland, the damage per exposure unit, dhi, is multipled by 0.7 as it crosses each 

territory. 

Hurricane Landfall 
Number Territory 

h i 

1 
3 
4 

8 

ii 
9 

10 
11 

14 25 

17 
18 
19 
20 
21 
22 
23 
24 
25 45 

28 

10 
10 

45 
45 
50 

Fi8 

Average Damage Annual 
Per Exposure Unit Probability 

dhi ph 

41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 OeOO485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
41.46 0.01618123 
82.91 0.01294498 

124.37 0.00485437 
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Landfall 
Territory 

i 

5 10 
5 10 
5 10 

10 15 
10 15 
10 15 
15 20 
15 20 
15 20 
20 25 
20 25 
20 25 
25 30 
25 30 
25 30 
30 35 
30 35 
30 35 
35 40 
35 40 
35 40 
40 45 
40 45 
40 45 
45 50 
45 50 
45 50 

5 

i: 
50 

Z8 

Average Damage Annual 
Per Exposure Unit Probability 

dhi ph 

124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
124.37 0.00485437 
165.82 0.00647249 
207.28 0.00323625 
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