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Abstract  
Motivation. Territory as it is currently implemented is not a causal rating variable. The actual causal forces that 
drive the geographical loss generating process (LGP) do so in a complicated manner. Both the loss cost gradient 
(LCG) and information density (largely driven by the geographical density of exposures and by loss frequency) 
can change rapidly, and at different rates and in different directions. This makes the creation of credible 
homogenous territories difficult. Auxiliary information that reflects the causal forces at work on the geographical 
LGP can provide useful information to the practitioner. Furthermore, since the conditions that drive the 
geographical LGP tend to be similar in proximity, the use of information from proximate geographical units can 
be helpful. However, to date procedures for incorporating auxiliary information involve the subjective 
consideration of conditions. And the use of proximate experience as a complement is complicated by complex 
patterns taken on by the LCG in relation to information density. Spline and graduation methods implicitly 
incorporate this information, but they tend to be applied ad-hoc to different regions. Incorporating a 
complement of credibility via proximate geographical units is only discussed formally in two papers, and is fairly 
undeveloped as a method. Another problem involves determining the relative value of information obtained via 
proximity versus the information provided by auxiliary variables. Separately, the implementation of territory as a 
categorical variable has prevented the integration of Territory Analysis with the parameterization of the 
remainder of the classification plan. In addition to these actuarial problems, territory‘s lack of causality creates 
acceptability problems. Lack of causality and increasingly complex territorial definitions have also reduced 
jurisdictional loss control incentives. The newly promulgated Proposition 103 regulations in California provide a 
useful venue for investigating solutions to these problems.  
Method. Using the same data that was employed to create the California Private Passenger Automobile 
Frequency and Severity Bands Manual under Proposition 103, we employ a Mixed Model approach that 
combines the local zip code indication, an arithmetic model of causal geographical variables, and a proximity 
complement to determine the ultimate frequency and severity indication for each zip code. We then use 
constrained cluster analysis to assign these atomic geographical units into objectively determined and optimally 
configured frequency and severity bands. The constrained cluster analysis involves formulating the problem in 
terms of Nonlinear Programming.  
Results. In three out of four cases, our approach, which is a rudimentary implementation of the mixed models 
with clustering concept that we introduce here, outperforms the existing Proposition 103 Frequency and Severity 
Bands Manual in terms of mean absolute deviation. 
Conclusions. A mixed model approach is objective and efficient, and can substantially improve accuracy. The 
use of constrained cluster analysis on the result further achieves these ends. Furthermore, the development and 
analysis of the mixed model, particularly the arithmetic model of causal geographical variables, can be used to lay 
the groundwork for the introduction of causal geographical rating variables. These variables, such as traffic 
density, could eliminate complaints about the lack of causality. Furthermore, since these variables are typically 
continuous, they could be incorporated directly into the parameterization of the remaining classification plan. In 
California, such variables could be introduced to progressively supplant relative frequency and severity, 
improving accuracy and furthering the goals of Proposition 103. 
Availability. The R programming language was used in preparing the data and mixed model. R is available free 
of charge at www.r-project.org. The constrained cluster analysis, employed the Premium Solvertm and 
KNITROtm Solver Engine. This software is distributed by Frontline Systems, Inc. Order information, including 
free 15-day trials, are available at www.solver.com. 
Keywords. Territory Analysis; Rate Regulation; Predictive Modeling; Credibility; Personal Automobile; 
Classification Plans. 
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1. INTRODUCTION 

This paper introduces an objective two staged approach to Territory Analysis. In the first stage, a 

mixed model is applied to determine the expected loss frequency or severity for each zip code. The 

second stage applies cluster analysis to the results to arrive at objectively determined territorial 

groupings. We also introduce the use of constraints in the cluster analysis to reflect non-actuarial risk 

classification criterion. 

1.1 Research Context  

Territory Analysis has been subject to numerous risk classification challenges. Actuarial 

challenges include a particularly thorny opposition between homogeneity and credibility, and 

integration with the parameterization of the rest of the class plan. Non-actuarial risk classification 

challenges include the difficulty in creating objective methods, a perceived lack of causality and 

controllability, and affordability issues. 

1.1.1 Homogeneity versus Credibility 

In Territory Analysis, the classical tension between homogeneity and credibility expresses itself in 

the choice of an atomic geographical unit, and in the subsequent application of complimentary data 

if that atomic unit is not fully credible. 

Selection of Atomic Geographical Unit 

Over time, atomic geographical units have gone from those that correspond to jurisdictions to 

individual zip codes. Most recently, following the proliferation of GPS technology in the 1990s, 

there has been research into the treatment of territory as a continuum.1 But, that research can be 

seen largely as paving the way for the future as opposed to seeing widespread implementation today. 

Much of the emphasis so far has been on methods that make use of indications and proximity only, 

with no consideration of auxiliary information. 

Determining the Credibility Complement 

When partially credible atomic units are elected in territory analysis, the problem then becomes 

how to group them to create credible homogeneous groupings. Kirkpatrick (1921) [5] first noted the 

problem, stating that while significant differences in loss costs between nearby cities may exist, those 

individual nearby cities typically would lack the credibility necessary to be properly recognized. 

                                                           

1 Boskov (1994) [10]. Brubaker (1996) [11]. CAS (1997) [12]. Christopherson et al. (1996) [14]. Guven (2004) [17]. Taylor 
(2001) [22]. Taylor (1994) [23]. Wang and Zhang (2003) [24]. 
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Contrary to Barber (1929) [1], Kirkpatrick argues that the solution is to group cities with similar 

conditions. 

A fairly substantial divide has continued down throughout the years between fairly subjective 

systems that give consideration to auxiliary information and objective systems that do not. In the 

middle of the century the subjective approach might be typified by Stern (1956) [9], while the 

objective approach employed in Massachusetts is typified by McDonald (1955) [6]. 

Another approach is to objectively select and use complimentary data from proximate 

geographical units. California has led the way with this approach, publishing the only two papers 

that formally treat the subject2.  

1.1.2 Objectivity 

The use of auxiliary information to help configure territories typically involves subjective 

judgment. This opens up the risk classification process to criticism. As early as Barber (1929) [1], it 

was argued that subjective approaches would not be accepted by the public. Shayer (1978) [34] 

claimed that the ―Massachusetts‖ approach likely led to more accurate territorial groupings because 

it only gave consideration to the pure indication, as opposed to other information about the 

territory, which she termed ―geographical considerations.‖ Casey, Pezier, and Spetzler (1976) [26] 

note that subjective procedures, including the use of judgment in drawing territorial boundaries, is 

undesirable, and could be unfairly discriminatory. Phase I (1978) [19] seconded this concern. 

Riegel (1920) [8] actually did propose a fairly workable objective system of incorporating 

exposure to traffic density into territory analysis. This was accomplished by using concentric circles 

around large city centers. Relative experience for concentric circles drawn around such cities could 

then be aggregated and used to guide in the selection of rate differentials around each individual city 

within the same size category. 

1.1.3 Causality 

Territory as a rating variable is often criticized on the basis of causality. Shayer, for instance, 

claims that territory is not causal but a mere proxy, and that this decreases its desirability as a rating 

variable. The Phase I authors criticized the industry‘s inability to explain why territory was an 

important rating variable.  

A long list of factors has been posited to influence the geographical LGP. Traffic density 

                                                           

2 Hunstad (April, 1996) [18] and Tang (2005) [21]. 
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probably has the longest and most distinguished pedigree. Others include the configuration and 

maintenance of roads and highways, laws and regulations, attitudes of the public and court toward 

claims, population of drivers (distinct from population of potential claimants), enforcement of 

traffic regulations, population density, climate, driver education, and topography. More recently, 

variation in bodily injury liability loss costs has been attributed to triangles of attorneys, medical 

providers, and claimants, primarily in urban areas.3  

1.1.4 Controllability 

Territory has been criticized as not being reasonably under the control of the insured (Shayer). In 

addition to some conceptions of fairness, controllability is desirable because a self-elected reduction 

in exposure can reduce losses (Finger (2001) [30]). Shayer calls this the variable‘s incentive value.  

1.1.5 Mobility and Automobile Territory Analysis 

As early as Riegel (1920) [8], attention was given to the fact that vehicles may not be driven in 

only one territory. McDonald (1955) [6] noted that interests in one district argued that vehicles 

garaged in another district were responsible for accidents in their own district. Zoffer (1959) [10] 

notes a commercial automobile system that computed a weighted average rate based upon the 

proportion of time a vehicle was driven in each territory. In Stone (1978) [35], the commissioner 

acted on concern that suburban commuters contributed to congestion in the urban center. The 

Phase II (1979) [20] authors recommended that the occurrence zip code be coded by the DMV in 

order to study the problem. 

1.1.6 Integration with the Remainder of the Class Plan 

The determination of territorial boundaries has not been integrated with the application of 

modeling techniques such as generalized linear models. Furthermore, even after boundaries have 

been selected, the sheer number of territories often exceeds the number that can be supported by 

the data with the modeling process. When the disjoint process is used, authors have suggested fitting 

the model to the other classification factors, perhaps with a crude territorial component included, 

and then normalizing the territorial indications using those classification factors and the distribution 

of classifications in each territory.
4
  

                                                           

3 Conners and Feldblum (1997) [15], Feldblum (1993) [16]. 
4 Another problem which is largely outside of the scope of our paper is the fact that classification relativities may vary by 
territory. Early on, classification experience was often tabulated by general territory type. Spellwagen (1925) claimed that 
hazard by class did not vary much between territories. And Barber (1929) [1] argued against grouping ―similar‖ territories 
together to arrive at separate classification factors. Alternatively, Stern (1956) [9] presents data showing significant 
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1.1.7 Affordability 

Casey et al. note that affordability became a concern with territorial rates after the demographic 

shift of middle income persons out of many inner city neighborhoods. This left relatively low 

income persons to pay the high premiums that exist there. Chang and Fairley (1978) [27] showed 

that high-rated classes in high-rated territories may be charged too much when a purely 

multiplicative algorithm is used. This drew attention to the affordability issue because young urban 

drivers also tend to have the lowest incomes. 

1.1.8 California Personal Automobile Insurance and Proposition 103 

Proposition 103 was enacted by California voters in a 1988 referendum. The Proposition, and the 

sequence of regulations (and related court challenges) promulgated to implement it have profoundly 

impacted personal automobile ratemaking in California.  

The Proposition allows the establishment of a relative frequency classification dimension and a 

relative severity classification dimension for each coverage part. No other geographical rating 

variables are currently approved for use. Originally, up to ten levels were allowed in each such 

classification dimension. Each zip code or other geographical unit must be assigned to one of the 

bands. 

Because the credibility of an individual insurer‘s experience in a particular zip code is limited, the 

California Department of Insurance (CDI) created the California Private Passenger Auto Frequency and 

Severity Bands Manual, along with the data used to produce it. Carriers are allowed to make use of the 

CDI band assignments or the raw data if they need a complement of credibility. Hunstad (April, 

1996) [18] presents the raw data, the methodology, and the final band assignments and factors.  

Most recently, former Commissioner John Garamendi promulgated new regulations that may 

decrease the scope that territory can play in the overall rating plan. These regulations are being 

phased in, with full implementation to occur shortly. Consequently, personal automobile 

classification plan ratemaking in general, and personal automobile territory analysis in particular is 

the subject of intense focus in California currently. 

1.1.9 Cluster Analysis 

Cluster analysis has only entered the literature twice. Recently, Sanche and Lonergan (2006) [50] 

                                                                                                                                                             
differences in classification relativities by territory. Even larger differences were found in Phase II (1979) [20]. And 
Chang and Fairley (1978) [27] noted the inaccuracies introduced by purely multiplicative rating algorithms, when only 
one set of classification relativities are employed. Phase II also found that the impact of age and gender on geographical 
loss costs to be fairly negligible, but argued that an off-balance for the classification distribution should be applied. 
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introduced the actuarial use of cluster analysis. However, their treatment involved consideration of 

cluster analysis as a data reduction or mining technique. 

Our focus is on the use of cluster analysis to group objects, not variables. This use in territory 

analysis has been brought up once before, in Phase I (1978) [19]. Although the authors cited works 

on cluster analysis and proposed its use, in the end, they grouped zip codes into contiguous 

territories by manually considering credibility-weighted indications. 

1.2 Objective 

Our objective is to strengthen the position of territory analysis as an accepted and accurate means 

of developing rating variables by confronting the primary risk classification challenges it is subject 

to. 

As it stands now, territory is criticized as not being a causal variable. At the same time, the 

treatment of territory as a purely dichotomous categorical variable largely precludes the use of an 

integrated approach in the parameterization of the remaining class plan. 

The mixed model approach that we propose includes the development of an arithmetic model of 

causal geographical variables. This can be considered a first step toward actually implementing new 

geographically based rating variables, such as traffic density, legal environment, and traffic enforcement. To a 

large extent, these variables can be expressed quantitatively. Thus, in addition to addressing concerns 

about causality, their ultimate introduction as rating variables can facilitate the integration of territory 

analysis with the parameterization of the remainder of the classification plan. 

More centrally, our mixed model approach confronts the primary actuarial risk classification 

challenge, which involves the opposition of credibility and homogeneity. At the same time, the 

objectivity of the approach addresses concerns that territory analysis incorporates too much 

subjective judgment in configuring territorial definitions. The subsequent use of cluster analysis to 

group zip codes into territories adds further objectivity to the process, and should more completely 

inoculate territory analysis from such claims. Furthermore, we show how non-actuarial risk 

classification criterion can be incorporated objectively into the cluster analysis process itself. 

1.3 Outline 

The remainder of the paper proceeds as follows. In Section (2.1), we discuss our source of 

experience data from the California Department of Insurance, and introduce the context in which 

the data was produced. In Section (2.2), we discuss the primary actuarial risk classification challenge 
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in territory analysis, which is particularly thorny opposition between credibility and homogeneity. In 

that Section, we more precisely define the problem, and we discuss possible means of resolution, 

including the one we are proposing in this paper.  

In Section (2.3), we introduce the mixed model. In Section (2.4) we conduct a search for causal 

variables related to geography. In Section (2.5), we discuss cluster analysis of the mixed model 

results.  

We discuss our development of the regression model, and present the final model form in 

Section (3.1). The final model parameters and statistics are presented in Appendix B. We discuss the 

proximity complement in Section (3.2). An analysis of the regression model and proximity 

complement by region occurs in Section (3.3), including our monitoring of the credibility weighting 

of the three mixed model components. Plots of the mixed model components are presented in 

Appendix A. A comparison of our proximity complement to the existing proximity complement of 

Hunstad (April, 1996) [18] is given in Appendix C, giving mean absolute deviation by California 

Automobile Assigned Risk Plan (CAARP) territory. We discuss our constrained cluster analysis in 

Section (3.4). A comparison of our final result with Hunstad‘s final result occurs in Section (3.5) 

using mean absolute deviation as a metric. We also introduce the associated factor weights and their 

method of computation. The results are discussed in Section (3.6). In (3.7) we summarize potential 

avenues of future research. In Section (3.8) we discuss potential refinements of the mixed model. In 

Section (3.9) we discuss a possible alternative to the mathematical method we used in our cluster 

analysis, and we also discuss the possibility of automating our sequential cluster analysis procedure. 

We discuss the potential for introducing new causal geographical rating variables in Section (3.10) 

and potential enhancements to California personal automobile ratemaking in Section (3.11). 

Conclusions are presented in Section 4. 

2. BACKGROUND AND METHODS 

2.1 The 1996 California Frequency and Severity Bands Manual 

In 1996, after much debate and legal fighting, an approach to territorial rating was arrived at, at 

least for the time, as we outlined in (1.1.8). The method of creating ―bands‖ appears to have drawn 

on Phase I (1978) [19]. Members of each band were not required to be contiguous, but did need to 

exceed twenty square miles in aggregate.  

Because the credibility of an individual insurer‘s experience in a particular zip code is limited, the 

Department of Insurance (CDI) created the Private Passenger Auto Frequency and Severity Bands Manual. 
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Carriers are allowed to make use of the CDI band assignments or the supporting raw data if they 

need a complement of credibility. 

We conduct our analysis on this raw data. Hunstad (April, 1996) [18] presents this raw data, the 

methodology, and the final band assignments and factors. The data consists of exposures, claim 

counts, and capped losses for each zip code and for each coverage part. The data was aggregated 

between 1988 and 1993. Results were adjusted for relative amounts of coverage purchased, using 

auxiliary data taken from a subsequent data call of the major carriers in 1994.  

2.2 Homogeneity versus Credibility in Territory Analysis 

This is a particularly thorny problem in territory analysis. Urban loss costs can change 

dramatically over relatively short spans. When this occurs, it can be quite difficult to arrive at 

territorial definitions that are large enough to be credible, but yield a homogenous grouping. This 

phenomenon can occur in more subtle and insidious forms. Consider a series of small towns each 

separated by large sparsely populated expanses of land. What if costs did vary between these areas, 

albeit more modestly? While the gradient in costs might be flatter, the geographical density of 

information might be reduced even further. The gradual erosion of the existence and size of 

―remainder of state‖ territories provides some evidence that this situation has existed. 

This phenomenon occurs when the loss cost gradient (LCG) overwhelms the density of 

information. This problem can certainly occur in other rating variables as well. Consider the 19-year-

old driver.  

It is quite likely that there will not be enough data to support the indication for 19-year-old 

drivers on their own. On the other hand, the LCG is so steep that if we widen the class we will 

introduce a substantial degree of heterogeneity. The common sense technical solution is to create a 

class for 19-year-olds, and then bracket the indication with the indications from 18- and 20-year-

olds, either manually through the ―avoidance of reversals,‖ or more formally by fitting a line or 

curve through the indications, or some similar approach.5  

                                                           

5 There is a non-technical difficulty with this approach. Regulators, consumerists, and the public will typically perceive 
the cells of the classification plan as completely dichotomous when in fact they rarely are. While this difficulty can be 
overcome, it can take the expenditure of some effort. When combined with the lack of a causal relationship and the 
additional dimension in territory, it can become quite an impediment. A similar etiology may lie at the root of allegations 
against sophisticated classification plans; specifically that they cannot generate credible indications and are thus 
necessarily undesirable. Implicit in this allegation is the conception that each cell is completely dichotomous; data from 
cells that even common sense would tell us are similar but not identical are ascribed no predictive value for the original 
cell.  
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The solution in territory analysis is not as easy because, despite statements that age is not a causal 

variable, age has a much more direct causal relation to loss propensity. Spatial loss gradients do not 

run one way or the other. If we had a patch of land analogous to our 19-year-old drivers, and we 

wanted to find the equivalent of the bracketing 18- and 20-year-old drivers, which patch of land 

would be equivalent to the 18-year-old and which patch of land would be equivalent to the 20-year-

old? Our immediate response to that question might be to ask which way the center of the city is, 

and to assign the equivalent of the 18-year-old driver to the patch of land in that direction, and the 

equivalent of the 20-year-old driver to the patch of land in the opposite direction. This clearly 

demonstrates the lack of a direct relationship between geographical coordinates and loss costs. 

Other measures that are embedded geographically, such as traffic density and legal environment are 

the operative factors. 

2.2.1 Resolution without Auxiliary Data 

Without reference to auxiliary data, all that we have is proximity and the indication unadjusted for 

credibility.  

McDonald Approach 

This approach, which we referenced in Section (1.1.1), is one means that does not use auxiliary 

data and is purportedly objective. When the task at hand is only to revise a reasonably well 

functioning set of territorial boundaries and associated relativities, the approach is reasonable, 

although perhaps not optimal. Considerable information is thrown out when auxiliary information 

and the information from similar and adjacent geographical units is simply ignored. This may result 

in less accurate rates. In a competitive environment, the firm that used such techniques would be 

subject to adverse selection by carriers that employed techniques that used all the information at 

their disposal to arrive at more accurate territorial rates. Using the technique in conjunction with a 

reorganization caused by the imposition of new regulatory constraints, such as is occurring now in 

California, would be dangerous, as would the use of the analog to this technique when initially 

forming territories as opposed to revising.  

Proximity Complement Approach 

Another approach is to ignore auxiliary information, but to make use of additional data through 

the use of a proximity complement, as we discussed in (1.1.1). This is the approach that was 

employed in developing the California Personal Automobile Frequency and Severity Bands Manual 

(Hunstad, April 1996 [18]). It was also employed in the analysis by Tang (2005) [21]. 
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Outside of those two papers, the literature is fairly silent about the construction of such 

complements. 

The specific implementation of a proximity complement by Hunstad (April, 1996) [18] is subject 

to bias when the zip code to be complemented falls on the outside edge of the CAARP territorial 

boundary. Complements that are not uniquely constructed for each zip code are subject to this 

problem. 

Ideally, proximity complements would be dynamically determined for each atomic geographical 

unit. Both the selection and the weighting of complementary units would be determined based upon 

numerous pieces of information. The amount of information present in the unit being 

complemented, along with the distance, land area, density of experience information, and the 

dispersion or spatial pattern in loss costs might all contribute. 

The implementation by Tang is somewhat dynamic in this respect. The first complement is 

determined using the weighted average of all contiguous zip codes (the atomic units). In the event 

that the data is still not credible at this point, the indication for the CAARP territory is used as a 

second complement. 

Hunstad (April, 1996) suggests that the indications for nearby zip codes could be weighted by 

their distance from the zip code being complemented. It is also suggested there that zip codes could 

be added to the complement one by one until full credibility is achieved. 

Spline and Graduation Approaches 

Another alternative, which is ostensibly objective and does not make use of auxiliary information, 

would be to use the spline and graduation techniques introduced by the authors we referenced in 

Section (1.1.1). While such approaches are continuous in nature, they can be converted for use with 

zip codes or other such discrete geographical units. These approaches can be somewhat ad hoc in 

that different analyses might be selected for different areas. As a result they might be difficult to 

justify to regulators and the public. They may be quite useful as analytic tools, however. 

2.2.2 Subjective Resolution with Auxiliary Information 

While this may well be the predominant approach, many aspects may not be frequently made 

explicit. For example, a carrier might present its groupings after the fact. With the subjective 

approach, the causal factors we identified in Section (1.1.3) may be incorporated in the process using 

professional judgment. Ad hoc consideration may also be given to proximate complementary data. 
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2.2.3 Objective Resolution with Auxiliary Information 

Riegel’s Approach 

Objective resolution of the problem with auxiliary information has been largely nonexistent. In 

automobile insurance, a noteworthy objective procedure was the one proposed by Riegel (1920) [8], 

where concentric territories were established by radial distance from the city center, and the radial 

pattern of loss cost decay fit to similarly sized cities to develop uniform differentials from similar city 

centers. The auxiliary information is distance from city center, which is correlated with exposure to 

traffic density.  

2.3 A Mixed Model Approach to Territory Analysis 

We propose using an analog of the mixed model approach. Mixed models were first introduced 

by Bishop, Fienberg, and Holland (1975) [25], and were later discussed in general terms in Chang 

and Fairley (1978) [27], Venter (1990) [36],  and Mildenhall (1999) [33].  

The mixed model will consist of three components. The indication for the zip code is the first 

component. The arithmetic model predicted value for the zip code is the second element, and a 

proximity complement is the third element. We will examine the three resulting components, and 

arrive at a means of credibility weighting the three elements to arrive at a predicted value for each 

zip code. 

Conceptually, we think this approach has tremendous promise to increase the accuracy of 

territorial rates. The specific implementation is preliminary, and we would expect improved means 

of implementing the general concept to be developed. 

The specification of the arithmetic model and the identification of auxiliary variables will yield 

substantial benefits in addition to accuracy. By modeling continuous causal variables, we may put 

territory analysis on a firmer footing in terms of acceptability, and promote the integration of 

territory analysis with the parameterization of the remainder of the classification plan. 

2.3.1 Selecting an Arithmetic Model 

Because the purpose of this paper is to introduce the mixed model approach to territory analysis 

as a concept, and then introduce the use of cluster analysis in handling the result, we did not devote 

an inordinate amount of attention on the specific arithmetic model applied to the problem.  

For simplicity, we elected to use a simple multiple regression model of auxiliary variables. To be 

sure, there are more appropriate models. We leave the search for the most appropriate arithmetic 
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models to future work that more specifically focuses on that element. 

2.3.2 Selecting Causal Geographical Variables as Independent Variables 

In addition to model form, the specific auxiliary variables to be included in the analysis must be 

identified.  

2.3.3 Proximity Complement 

Our proximity complement consists of all zip codes whose population weighted latitude and 

longitude falls within ten miles of the same measure for the zip code being complemented. The 

experience for all such zip codes in relation to each zip code being complemented was aggregated 

and a proximity complementary indication generated, along with the number of claims and 

exposures from which credibility figures could be derived.  

We gave consideration to the use of contiguous zip codes, but deemed the effort to be too great, 

given that the zip code definitions we would be using would be somewhat dated, and thus of limited 

use on an ongoing basis. 

2.3.4 Assigning Credibility Weight to Each Mixed Model Component 

We start with a relatively simplistic credibility weighting procedure as our base, and then modify 

it when the data clearly show that one of the components is performing inadequately in a particular 

region. 

We use the simple 1,082 claim rule to assign credibility z to the experience of the zip code in 

question. The proximity complement is assigned credibility via the following formula: 

 

(2.1) 

where c is the number of claims in complement, and R2 is the corresponding statistic for the 

arithmetic model fit to the frequency or severity of that coverage. The arithmetic model receives the 

remaining credibility, or  

 
(2.2) 
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Once again, our purpose was to introduce the use of mixed models in territory analysis as a 

concept, and so we did not devote attention to arriving at an optimal means of assigning credibility 

to each component. We leave this fine tuning to future researchers. 

2.4 Causal Variables in the Geographical LGP 

In this section we mention all of the variables that have been posited as being causal in the 

geographical LGP. We discuss the most immediately promising variables and sources of data. 

Before proceeding with our variable search, we discuss the problem of spatial interaction, which is 

fairly unique to automobile territory analysis. 

2.4.1 The Problem of Spatial Interaction in Automobile Insurance 

In Section (1.1.5), we discussed the problem of mobility in automobile insurance. In geography, 

―the movement of people, materials, capital and information between geographic locations‖ is 

referred to as spatial interaction, Miller and Han (2001) [48]. Due to spatial interaction, the conditions 

that hold in a particular geographical unit such as a zip code do not fully describe the conditions to 

which vehicles garaged in that zip code will be exposed.  

2.4.2 Causal Geographical Variables 

Our literature review covered all of the geographical factors that have been thought to influence 

the geographical LGP. We summarize them below. As we will discuss in the succeeding sections, we 

have elected to include three of these variables in our arithmetic model. 

We will Model We will Discuss Others 

Traffic Density Traffic Density Medical Costs 

Legal Climate Legal Climate Topography 

Population Density Population Density Roads 

 Nature of Population Regulation 

 Enforcement Education 

 Weather Repair Costs 

   

2.4.3 Traffic Density 

• Population 

• Number of Vehicles Used in Commuting 
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• Number of Vehicles 

• Time Spent on the Road to Work 

• Time Leaving to go to Work Each Day 

• Total Road Surface Area 

• Total Land Area 

• Populated Land Area 

With the exception of populated land area and total road surface area, all of these measures are 

available at the zip code level from the decennial census. And populated land area is a figure we 

derived by only including the land area of census blocks that were populated. Industrial, agricultural, 

and wilderness areas without population were thus not included in this measure. 

Traffic density has been studied by the California Department of Motor Vehicles in models that 

include the driving record variables for the individual. Such a study was included in Phase II (1979) 

[20]. Traffic density had modest predictive value for individuals. Unfortunately, because miles of 

road lane were not available below the county level, the measure for the county had to be used. This 

simplification most certainly reduced the predictive power of traffic density. 

Population density can be used as a proxy for traffic density. However, for our purposes we 

wanted to segregate the two elements. We discuss population density in (2.3.6).  

We elected to focus on the commuter measures rather than the vehicle measures. In particular, 

the number of minutes spent commuting one-way by each commuter. 

As we stated earlier, road surface area only appeared to be available at the county level in 1990, so 

we will not consider it as a candidate for a spatial denominator in our density measure. Rather, we 

give consideration to land area and populated land area in that role. 

2.4.5 Legal Climate 

• History and Current Philosophy of Local Court Jurisdiction 

• Friendliness of Potential Juror Pool to Claimants 

• Nature and Level of Activity of Local Bar 

• Existence of Networks of Physicians and Lawyers who Cooperate 

• Lawyer Density 
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The first four measures are not easily quantifiable. Lawyer density can be computed using the 

number of employees employed in legal offices, which is reported in the 2005 Survey of Economic 

Conditions from the Census Bureau. The denominator in the measure can be square miles of land, 

or population count. In addition to quantitative measures, there is the possibility of measuring the 

impact of the legal climate by examining experience within each superior court district as a binary 

variable.  

Legal climate has a pedigree as long as traffic density. It has been difficult to measure, however. 

Most recently, in Conners and Feldblum (1997) [15] and Feldblum (1993) [16], it has been suggested 

that the density of lawyers contributes to liability loss costs, and that the impact of the legal 

environment can be measured by taking the ratio of bodily injury liability claims to property damage 

liability claims. The idea behind this is that this represents the percentage of property damage claims 

that were converted to bodily injury claims. Since the severity of accidents actually increases in rural 

areas due to higher speeds, the observed increase in the ratio in urban areas is posited to reflect an 

adverse claims environment, with an increased prevalence of soft-tissue injury claims.  

We examine the number of legal employees, divided by land area, populated land area, and 

general population in our arithmetic model. 

It is possible that numbers of actual lawyers could be obtained from bar associations, but for our 

purposes we felt that the number of employees is a sufficient proxy. It might also be useful to 

identify the number of personal injury attorneys or the number of medical specialists like 

chiropractors. Also, jurisdictions might be graded by experts in terms of the claims environment, 

and such measures might be tested in a similar model. 

2.4.6 Population Density 

Population density will be included in our model as well, and will be evaluated by the same 

measures with one exception: we will include a block weighted measure of average density. If density 

in the very immediate proximity of one‘s residence is more relevant, then this measure might be able 

to reflect that. 

2.4.7 Population Characteristics 

Variables of Interest 

• Class Plan Off-Balance Effects 

• Externality Effects from Variables Reflected in Class Plan 
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• Externality Effects from Variables not Reflected in Class Plan 

It is important to remember that these are three different effects.  

The first effect involves removing the influence of the other rating variables from the drivers in a 

given geographical unit.  

Next are externality-like effects, which refer to synergistic or dampening effects that might be 

caused by the distribution of drivers. For instance, it is possible that if there are a lot of young 

inexperienced drivers in a particular area, loss costs in that area might increase more than the 

classification factor effects indicate. It is not difficult to imagine that for each at-fault accident that a 

bad driver is involved in, there might be one or more accidents that were at least partially caused by 

the driver‘s actions, even though the driver may not be recorded as the at-fault driver or even have 

been physically involved in the accident itself. On the other hand, the opposite might be true. In any 

case, there is the possibility the class plan off-balance would not fully reflect the impact of driver 

distribution on geographical loss costs.  

Finally, there may well be population-related factors not even measured in the classification plan 

that influence geographical loss costs.  

Risk Classification Issues 

We can think of no objection to removing classification plan off-balances from territorial 

indications. In fact in California the sequential analysis procedure mandated under Proposition 103 

regulations essentially require it.  

The reflection of synergistic or externality effects has not been discussed much, so expectations 

with regard to potential acceptability are unclear. 

With respect to variables not reflected in the classification plan itself, there is nothing that says 

per se that such items could not be modeled, either in the mixed model context or as an entirely 

separate geographical rating variable. An interesting question would be whether some variables that 

might not be acceptable for use on a personal basis would be deemed acceptable on a geographical 

basis, for example, average income. 

Existing Data 

Unfortunately, classification distributions are typically not provided in publicly available loss cost 

data at the zip code level. The data supporting the California Frequency and Severity Bands Manual is no 

exception. And, despite the fact that the sequential analysis procedure requires the removal of the 
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influence of all other rating factors from territorial loss cost indications, this influence is not 

removed from the Hunstad (April 1996) data.  

In Phase II, the CDI found that externality or synergy effects were negligible. The authors did 

argue that class plan off-balances should be removed from zip code indications, however. Phase II 

employed DMV data that included some driver classification information. 

Usage in our Study 

We could have attempted to remove the effect of classification factors from the raw indications 

provided in Hunstad (April, 1996) [18], imputing the classification distribution from decennial 

census bureau data. We were reluctant to do so because of likely variations between the insured 

distribution and the population. The proportion of the population that is uninsured increases for 

younger drivers, due to their lower average incomes and higher average premiums. Furthermore, 

even if the overall proportion of uninsured motorists of various ages were provided, there are still 

probably unequal geographical variations in the rate of uninsured motorists by age. For instance, 

although the overall proportion of uninsured motorists might increase for a low income area with 

high premiums, the increase might be greater for younger drivers than more experienced drivers. 

Since the adjustment could potentially introduce more error than it would eliminate, we elected 

not to adjust using decennial census bureau data. 

To some degree, the fact that age, experience, gender, and marital status are not provided is 

mitigated by the fact that these variables tend to be fairly evenly distributed. However, this is 

obviously not the case for a variable such as driving record. Drivers in high frequency zip codes are 

going to have accident records that are worse than average, and vice versa.  

We should note that we do include a temporal measure of commute distance in our models as a 

standalone variable and as a contributor to our measure of traffic density. Our intention was to 

account for spatial interaction to the extent possible, not to remove the effect of the mileage rating 

variable from the indications. However, our approach does have the impact of, to some degree, 

adjusting for average mileage driven. 

Suggestions for Future Research 

While we will not venture to tackle the problems enumerated here, future research should 

attempt to resolve them. And wherever possible, including the California Frequency and Severity Bands 

Manual case, the classification distribution should be provided at the zip code level when such data is 
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published for ratemaking purposes. Failing that, the impact of classification off-balance effects 

should be removed from the indications, using some agreed upon classification factors. It might also 

be useful to study how accurately census bureau data could be used to correct for class distribution 

for an insurance dataset where the actual insured distribution is known. 

2.4.8 Implementation and Enforcement 

• Traffic Enforcement 

We found no data sources sufficient for use in our study. However, the measure known as the 

enforcement ratio, which was employed in Phase II (1979) [20], is a good first attempt at measuring 

how different levels of enforcement might affect loss rates. The Phase II enforcement ratio related 

the total number of all accidents and violations to the number of injury accidents in a zip code. The 

authors noted that the results might have been confounded by claims-consciousness. We would 

concur. Given that it is thought that bodily injury liability claim frequencies vary considerably based 

not upon accident conditions but on the legal environment, the use of injury accidents in the 

denominator appears problematic. 

2.4.9 Weather 

Weather data are certainly available in quite granular form. Although it is beyond the scope of the 

present study, the impact that weather and climate has on accident statistics may be worthy of 

further study. Given the tension between credibility and homogeneity that exists in territory analysis, 

smoothing of this significant source of variation could actually improve our ability to further 

improve the specificity our study of geographical loss costs. If an accurate weather model could be 

constructed, and the time and impact of that weather on losses could be derived, then the random 

noise created by annual fluctuations in the weather could be removed and replaced with a 

continuous cost variable similar to what is produced in geographical catastrophe models. 

2.5 Grouping Mixed Model Results with Cluster Analysis 

2.5.1 The Primary Objective 

Our goal is to objectively group zip codes into bands that accurately reflect their expected relative 

frequency and severity rates. Additionally, we wish to be able to impose various social and regulatory 

acceptability constraints on the grouping process. One of the reasons for grouping in the first place, 

a complement of credibility, is less of a concern for us because we have already incorporated 

complimentary information from the arithmetic model and from the surrounding zip codes. 
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As we have stated earlier, the use of professional judgment in assigning zip codes to territories is 

a frequent source of criticism.6  

In basic terms, we would like to specify our problem as follows: 

Let xij be our decision variables, where the first dimension represents the zip code. The second 

dimension represents the frequency or severity band. So, under the 1996 regulations and our data, i 

can range from 1 to 1,502, while j can range from 1 to 10.  

A particular piece of land can only be assigned once. So, it would seem that we should define x as 

a binary variable.  

 

 (2.3) 

 

 
(2.4) 

 

A desirable objective function for frequency might be of the form: 

 

 
(2.5) 

 

Where Ri is the computed mixed model relativity for the zip code (as opposed to the raw computed 

relativity for the zip code). Ei is defined as the number of exposures in the zip code. 

Or, alternatively, 

 
(2.6) 

 

2.5.2 Constraints 

In addition to the number of bands, an initial constraint we would be interested in is the 

requirement that each band consist of at least 20 square miles. To incorporate such a constraint, we 

                                                           

6 Barber (1929) [1], Casey et al. (1976) [26], Phase I (1978) [19], Shayer (1978) [34]. 
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would define Lj as the number of square miles of land area contained in the zip code and impose the 

following: 

 

 
(2.7) 

 

We would also be interested in developing constraints upon the size of the factor weight, as 

computed via the proxy7 method. Affordability constraints are also of interest. 

2.5.3 Basic Cluster Analysis 

Cluster analysis comes immediately to mind as an appropriate means of accomplishing the task at 

hand. 

The literature on cluster analysis is vast and diverse because for some time it developed 

somewhat independently under the auspices of different academic disciplines. The two standard 

textbooks on the subject are Kaufman and Rousseeuw (1990) [46] and Everitt, Landau, and Leese 

(2001) [43]. Han, Kamber, and Tung (2001) [45] also provide a remarkably brief introduction. The 

use of cluster analysis for our task was mentioned once in the actuarial literature (Phase I). However, 

it was ultimately not employed. 

Accuracy for Selected Number of Clusters 

Partitioning (Kaufmann and Rousseeuw) techniques, otherwise known as optimization methods 

(Everitt et al.), tend to create more accurate partitions for a given number of clusters according to 

Kaufmann and Rousseeuw. Sanche and Longergan focused immediately on hierarchical methods, 

which are more suited to the task they were concerned with. We are predisposed toward choosing 

the more accurate, computationally demanding methods.  

Robustness 

In selecting a methodology and algorithm, we could elect an L2 objective function (2.4) that more 

severely penalizes misclassification but is less robust. Or we could apply an L1 objective function like 

(2.5), which is robust. Kaufmann and Rousseeuw strongly advocated robust methods of clustering.  

                                                           
7
 See Title 10, California Code of Regulations, Section 2632.8( c ) , which was filed on 11/1/2002 
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2.5.4 Constrained Clustering 

The imposition of constraints is a very new topic in cluster analysis. Kaufmann and Rousseeuw 

do not even mention it. The more recent Everitt et al. discuss constrained cluster analysis. However 

it quickly becomes apparent that the types of constraints we are interested in are not covered. 

Everitt et al. devote their discussion to spatial constraints, such as proximity and contiguity8, and 

certain constraints related to hierarchy. 

Han, Kamber, and Tung‘s (2001) [45] excellent and concise survey discusses constraint-based 

cluster analysis, and pioneering work being done. Of interest to us is Tung et al. (2001) [52]. Those 

authors discuss constrained cluster analysis generally, and introduce a solution for one particular 

form of constraint. 

Tung et al. (2001) [52]  

The authors introduce the following classes of constraints: 1) Existential, 2) Universal, 3) 

Existential-Like, 4) Parameter, 5) Summation, and 6) Averaging. 

Existential Constraints 

Existential constraints focus on the particular qualities of the individual atomic geographical units 

being grouped. In terms of our problem, an example of existential constraint would be a 

requirement that each cluster contain at least two zip codes that each have a land area of at least two 

square miles.  

Unfortunately for us, this is the only type of constraint for which the authors construct a specific 

solution. This particular form of constraint is not of immediate concern to us, although it is possible 

it could be a concern in some type of territorial assignment problems. 

Universal Constraints 

Universal constraints require each member of a particular cluster to meet a particular condition. In 

our example, this might be the requirement that our highest rated cluster only contain zip codes with 

per capita income levels in excess of a certain measure. This constraint is simply solved by running 

separate cluster analyses. Although not of immediate concern to us, this could be of use in 

formulating a cluster analysis that incorporates affordability constraints. 

                                                           

8 The recentness of the literature cited may provide part of the reason cluster analysis was not employed in Phase I. One 
of the constraints imposed on CAARP territories, in addition to the minimum twenty square miles rule, is the 
requirement that each territory be contiguous. Everitt et al. mentions the following research in regards to contiguity: 
Maravalle et al. (1997) [47], Ferligoj and Batagelj (1982) [44], Murtagh (1995) [49], and Wojdyla et al. (1996) [53] 
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Existential-Like Constraints 

This type of constraint focuses on the number of objects contained in each cluster. In our case, 

such a requirement might be that each band contains at least three zip codes. These constraints are 

similar to existential constraints, and can be handled by fairly simple modifications to algorithms. 

Unfortunately, these constraints are not of particular interest to us either. 

Parameter Constraint 

This is a constraint on the number of clusters. 

Summation Constraint 

This is the particular form of constraint we are interested in. It is concerned with the sum of a 

quantity of the members of each cluster. In our example, the minimum land area of twenty square 

miles is a summation constraint. Again, unfortunately the authors do not provide a method for 

solving the problem. 

Averaging Constraint 

Averaging constraints are similar summation constraints. 

Berkhin (2006) [38] 

This author provides a survey of very recent advances in cluster analysis. Included is a discussion 

of recent advances in constraint-based cluster analysis.  

Unfortunately, with respect to the constraints we are interested in, the author refers to sources we 

have already covered, in particular Han et al. and Tung et al. 

Since this is a very recent survey, and since Han et al. and Tung et al. note the difficulty in solving 

the summation constraint problem, this leaves us in a bit of a pinch with respect to the cluster 

analysis literature. 

Teboulle et al. (2006) [51]  

Teboulle et al. indicates that most optimization problems in cluster analysis involve non-convex 

objective functions. The author claims that the k-means method of cluster analysis can sometimes be 

configured as a nonlinear programming gradient-type method. 

2.5.5 Constrained Cluster Analysis Using Nonlinear Programming 

A review of our objective function and the initial constraints indicates it can be considered a 
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nonlinear programming problem from operations research. (See Hillier and Lieberman (1995) [60]).  

Since we are predisposed toward an optimization method as opposed to a hierarchical method, 

and since optimization cluster analysis is related to nonlinear programming, we elected to look here 

for a solution to our problem, which includes the imposition of summation constraints that are not 

currently well-handled in traditional cluster analysis.  

3. RESULTS AND DISCUSSION 

3.1 Regression Models 

3.1.1 Modeling Objectives 

Our primary objective is prediction; we want to create a model that will provide the best 

credibility complement. A secondary objective is to provide groundwork for further research into 

the introduction of causal geographical variables. Given our primary objective, we built more 

complex models than we might have if our primary concern was to establish the use of causal 

geographical variables. Any project to directly introduce causal geographical variables for the first 

time might need to use relatively simple models whose coefficients are easy to explain. 

3.1.2 Spatial Interaction 

We previously mentioned the problem of spatial interaction in automobile insurance. When 

geographical variables are introduced in automobile insurance, careful consideration must be given 

to how proximate geographical units will interact.  

10, 20, and 50 Mile Radii 

Our general approach was to compute values for our variables within the zip code itself, and for 

zip codes within three mutually exclusive radii of 10, 25 and 50 miles. Distances were computed 

using the Haversine formula. Zip code latitudes and longitudes were computed by population 

weighting census blocks (without using the Haversine formula). 

Jaggedness  

One problem with this general approach is the jaggedness of the zip code rings created by the 

procedure. With more time and computing power, the information fed into the model might be 

taken at the decennial census block level rather than the zip code level. This would prevent the 

jaggedness that occurs when zip codes of different sizes are included. California contains well over 
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300,000 census blocks, so this would be very computationally intense. If this level of granularity 

were to be used, experiments could be run on the appropriate number and length of radii. A less 

computationally intensive approach could employ census tracts rather than blocks. 

Variable Exposure Density in Presence of Gradient 

Although it was beyond the scope of our study, future researchers may wish to consider 

mitigating variation in exposure density via an arithmetic average model variables or some other 

weighting scheme. 

Commute Times 

We gave careful attention to commute length when considering how to structure the models with 

respect to spatial interaction. 

3.1.3 Final Variables 

Commute Distance of Drivers in the Zip Code 

Our focus on commute distance is motivated not by a desire to incorporate mileage into the 

model per se; rather, it is to accurately reflect spatial interaction within the framework of our radial 

defined variables. Commute distance is a key contributor to our traffic density measure, and it can 

be expected to interact with geographical conditions within its range. 

• CTi:= We estimated average time spent commuting to work, one-way, for commuters in the 

zip code being modeled, using the decennial census variable that presents the temporal 

commute distance distribution. 

Traffic Density 

We carefully considered how to reflect spatial interaction in this variable. For the numerator, we 

elected to use the total number of minutes one way to work, in aggregate for all commuters. The 

density of this combination was computed by dividing by the involved land area. Thus the measure 

is called commute-time-space-density. We computed the three radial versions of this variable at 10, 

25, and 50 miles. 

• TD10i := Commute length (in minutes) for commuters in zip codes within 10 miles/land area 

for zip codes within 10 miles. Unlike our standard procedure in computing radial measures, 

we did include commuters and land area contained in the zip code being modeled, within the 

10-mile variable.  
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• TD25i := Same measure. Computed for zip codes between 10 and 25 miles from the zip code 

being modeled. 

• TD50i := Same measure. Computed for zip codes between 25 and 50 miles from the zip code 

being modeled. 

Legal Environment 

As we have stated, quantitative variables should be exhausted before binary geographical 

variables are employed. Proceeding along the lines suggested in Conners and Feldblum (1997) [15], 

and Feldblum (1993) [16], we attempted to incorporate lawyer density where it made sense. A priori, 

we suspected it to be most important to bodily injury (BI) liability frequency, followed by bodily 

injury liability severity and perhaps property damage (PD) liability severity respectively. We did not 

anticipate it to be a causal variable in property damage liability frequency. 

Superior court jurisdiction could be a fairly substantial causal binary geographical variable, 

although this conflicts with our desire to minimize the use of categorical variables. Additionally, at 

the time the data was generated, the tort liability system operated under a different jurisdictional 

scheme. Since then jurisdiction has been reorganized.  

As we discuss in the section on geographical binary variables, we do allow, as a last resort, the 

introduction of major metropolitan binary variables, which could to some extent be thought to 

correspond to general legal environment. We discuss this further there. 

In computing our most favored measure of legal environment, lawyer density, we have elected to 

use population as the denominator rather than land area. Either land or population are plausible 

denominators, but given that so many of our other measures include land area as a denominator in a 

density measure, we gave a priori preference to population. This might reduce multicolinearity 

somewhat. 

• LD25i := Lawyer Density 25 miles: Number of persons employed in legal offices in zip codes 

within 25 miles/total population in zip codes within 25 miles. Includes the zip code being 

modeled. 

• LD50i := Lawyer Density 50 miles: Same but includes zip codes greater than 25 miles but less 

than 50miles radius. 

Population Density 

Population and traffic density overlap. Because it seems more plausible that traffic density is a 
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directly causal variable, and because it would likely be seen as a somewhat more acceptable measure 

than population density, we gave it preference, and took care not to use population density when 

traffic density would suffice. 

As it turned out, population density was a fairly important factor, particularly for property 

damage liability severity. 

In attempting to model population density as distinct from traffic density, we hypothesized that 

very local density conditions (in the precise neighborhood where the vehicle was garaged), might 

influence claimant behavior. In this regard, we did introduce a block weighted measure of population 

density, which measured average density at the census block level. So, a zip code that is highly dense 

on one side, and very sparse on the other would have a very high block weighted measure of 

population density, while the measures using simple land area as a denominator, would have an 

intermediate value. Falling between these two measures we created a measure that included only land 

area from census blocks that had a population of at lease one. In testing these variables, we were 

surprised to find that the block weighted measure did not perform well at all. The measure using 

only populated census blocks performed about as well as the normal measure of population density. 

Given the rough equivalence of the two, we have elected to employ the standard measure of 

population density in our final model. 

• PDi := Population density within modeled zip code. Population divided by total land area for 

the zip code being modeled.  

• PD10i := Population density 10 miles: Same measure but for all zip codes (except the zip 

code being modeled) that are less than or equal to 10 miles radius from the zip code being 

modeled. 

• PD25i := Population density 25 miles: Same measure but for zip codes between 10 and 25 

miles radius from modeled zip code. 

• PD50i := Population density 50 miles: Same measure but for zip codes between 25 and 50 

miles radius from modeled zip code. 

Geographical Binary Variables 

Geographical binary variables can be criticized with respect to causality. When considered alone, 

these variables reflect current territory analysis practice. To the extent that the boundaries of the 

region correspond to factors thought to be causal, such as jurisdictional boundaries for the superior 
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court or local governments, they could to some extent be identified with those factors. 

Our primary interest with respect to these variables is legal jurisdiction. But other unexplained 

differences may be reflected as well, particularly for PD liability frequency. As we stated above, there 

has been a significant judicial reorganization since the time our experience data was generated. 

Additionally, to the extent possible we wish to measure causal forces in terms of quantitative 

variables, as opposed to categorical ones. 

For this reason, we only introduced the major metropolitan areas as binary variables, to account 

for the most major regional differences we would anticipate a priori. A priori, we anticipate Los 

Angeles, San Francisco, and the remainder of state to have different environments. 

We only introduced these two metropolitan areas as a last resort, when combinations of variables 

could not produce nearly as good a fitting model. During the course of the model-fitting exercise, 

we found that the city of Los Angeles and the remainder of Los Angeles county behaved somewhat 

differently, and hence we introduced two binary variables for Los Angeles, one for the central city 

and one for the remainder of county. 

• LAi := Los Angeles: A binary variable that is coded ―1‖ for all zip codes in central Los 

Angeles, which is defined as zip codes from 90001 to 90077. 

• LACi := Los Angeles area: A binary variable that is coded ―1‖ for all zip codes in Los 

Angeles County with the exception of central Los Angeles, which consists of zip codes from 

90001 to 90077. 

• SFi := San Francisco: A binary variable that is coded ―1‖ for all zip codes in the city of San 

Francisco. 

Results 

Appendix B contains the model parameters and statistics. Appendix A contains plots of observed 

frequency/severity, model predicted frequency/severity, and model residuals. The x-axis is arrayed 

by observation, rather than listing individual zip codes, which number 1,502 in our overall data set, 

and usually a few less in each individual instance due to missing independent variable values that 

prevented us from computing a model estimate. To help orient the reader, ranges associated with 

particular cities, counties or regions are denoted with arrows at the top of each plot. 

3.1.4 Bodily Injury Liability Frequency 

Final Model 
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3.1.5 Property Damage Liability Frequency 
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3.1.6 Bodily Injury Liability Severity 

Final Model 
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3.1.7 Property Damage Liability Severity 

Final Model 
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3.2 The Proximity Complement 

Our goal once again was to introduce the concept of a mixed model, using model and proximity 

defined complements to the zip code indication. As a result we introduced a relatively simple 

proximity complement. We discuss potential avenues of future research later in Section 3. 

The proximity complement we elected can be considered dynamic in that a separate measure is 
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computed for each zip code being complemented. This is as compared to the Hunstad (April, 1996) 

[18] CAARP complements, which were pre-defined and static. 

The proximity complement employed in Tang (2005) [21], however, can be considered even 

more dynamic. Immediately contiguous zip codes are used as a first complement for each zip code, 

which is similar to our ten-mile radius measure. Tang‘s complement is also dynamic in that it 

responds to the amount of information contained in the zip code being complemented, and the 

contiguity complement, and then determines whether the CAARP complement is necessary for any 

unfulfilled credibility. 

We considered use of a contiguous proximity complement. But as we stated earlier, it was 

deemed to be too laborious given that the zip code definitions are from 1990, and so creating or 

procuring the contiguity definitions would serve no useful future purpose.  

Our proximity complement appears to fare best in less densely populated areas and areas where 

the LCG does not appear to be particularly steep. This is as we would have expected. Our 

complement fared poorly in the most densely populated urban areas. Particularly in central Los 

Angeles, where many of the zip codes are not completely credible, this is a serious problem. 

In Appendix C, we present a table comparing our proximity complement to Hunstad‘s CAARP 

complement, using mean absolute deviation within each CAARP territory as a statistic. We also 

included the number of zip codes in each CAARP territory that required a complement, since the 

primary concern should be with areas where complementary information is needed. We analyze the 

regionally specific performance of our complement against the other two elements of the mixed 

models in the following section. 

3.3 Analysis and Credibility Weighting of Mixed Model Components  

 In this section we evaluate the relative regional performance of the proximity and model 

complements for each coverage part. Ideally, the relative credibility for each mixed model 

component would be determined by its relative local performance. Our purpose here is to introduce 

the concept, not necessarily to arrive at the best possible implementation. For this reason, we did 

not devote significant attention to the determination of the credibility weighting formula. Because 

both the individual mixed model components and the credibility weighting formulas are preliminary 

in nature, we did intervene in the credibility weighting process (from our formulas (2.1) and (2.2)) 

when there were particularly serious problems with the local fit of a measure. We discuss each such 

instance as it occurs below. 
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Once again we leave the determination of optimal credibility weighting schemes to future 

researchers. 

Appendix A contains plots of each mixed model component and the regression model residuals. 

The attached plots include arrows that denote geographical regions of interest. The x-axis is simply 

the zip code, so too much meaning should not be ascribed to changed patterns in ranges outside of 

the arrows without further investigation. 

3.3.1 Bodily Injury Liability Frequency 

Bodily injury liability frequency is certainly the most interesting of the four analyses. As evidenced 

by the plots of observed values, the range is much wider. The local legal and claimant environment 

is thought to significantly influence geographical variation in BI frequency. In central Los Angeles, 

BI frequency is almost equal to PD frequency, while in rural areas BI liability frequencies are much 

lower than PD liability frequencies. Since rural accidents tend to be more serious in nature, this 

would seem to point to substantial differences in claiming behavior. 

We expected and found legal variables (lawyer density and the geographical binary variables) to 

significantly influence frequency. 

Urban Metropolitan Areas 

 These include Los Angeles, San Francisco, and Oakland/Berkeley.  

Los Angeles 

Central Los Angeles exhibited the highest frequencies. The zip codes here tend to be smaller and 

densely packed. In this sort of an environment, we would expect a lack of performance from our 

proximity complement. The radius of ten miles used in our proximity complement is static. It is not 

responsive to local heterogeneity or exposure density. In central Los Angeles, ten miles is probably 

too much, since geographical information density is extremely high. Adequate quantities of 

information can be obtained in smaller radii. And, given the steep LCG, using a wider than 

necessary radius introduces heterogeneity. This can be observed by comparing the plot of observed 

frequency with the proximity complement plots. The proximity complements are densely packed at 

about 0.03. Each proximity complement contains a massive amount of data, and each complement 

contains mostly the same zip codes, as the size of each zip code probably dramatically increases as 

one leaves the center city. 

CAARP territory 39 roughly corresponds to the most central part of Los Angeles. In Appendix 
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C, we can see that the Hunstad complement fares much better in terms of mean absolute deviation 

than our ten-mile complement in this territory. 

Our arithmetic model includes a binary variable for central Los Angeles and for its remainder so 

there is little regional bias in the residuals. The higher observed heterogeneity in central Los Angeles 

is probably due both to actual heterogeneity in expected frequencies, and also to the fact that many 

of the zip codes in central Los Angeles are not fully credible, because many drivers are uninsured 

due to affordability. 

Because of the extreme lack of fit for the proximity complement here, we have elected to 

intervene in the credibility weighting process. No credibility is assigned to the proximity 

complement in and around central Los Angeles (zip codes 90001 to 91108). All of the credibility 

that would have been assigned to the proximity complement was instead assigned to the model 

complement. 

San Francisco 

San Francisco is subject to much lower BI frequency than would be expected given its density. 

The BI/PD ratio is relatively low for an urban area. This is likely due to the legal environment. Slow 

average speeds associated with density could have contributed, but this could be counterbalanced by 

more collisions with pedestrians. 

The residuals for the model complement indicate good performance for San Francisco, while the 

proximity complement is tightly bunched, although not particularly biased. The adjacent bay and 

ocean may contribute to this bunching. 

Future researchers might wish to include an investigation into the impact that the bay and ocean 

have on the performance of mixed model components. 

Oakland/Berkeley 

Next rightmost is Oakland/Berkeley, which exhibits a modest positive residual bias. Such a bias 

is not discernable in PD frequency residuals. 

Suburban Areas 

These consist of southwest Orange County, Fresno, and Sacramento, as well as a modest 

proportion of the remainder of the plot. 

Although several residual spikes are clearly noticeable, and indicate places where a geographical 
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binary variable would significantly improve fit, no interventions were made in these areas, so the 

credibility formulas (2.1) and (2.2) were left to operate freely. 

Fresno 

Moving from left to right, the first such spike is for Fresno. Clearly the model is underestimating 

frequency here. This bias also exists for property damage liability, but to a much less significant 

degree, so it would appear that legal environment might be to blame, as opposed to some 

unexplainable increase in the overall level of accident frequency. An investigation into the claims 

environment would be of interest. And a binary geographical variable would clearly improve fit here. 

San Jose 

A fairly surprising residual spike occurs for San Jose, which is not denoted on the graph but can 

be quickly identified between 1000 and 1100 on the x-axis. There is little corroborating evidence in 

the property damage frequency plot to indicate a general unexpected spike in the overall accident 

rate. There appears to be a somewhat stronger uptick in raw bodily injury frequency observations for 

San Jose. And there would not seem to be any obvious reason why accidents in San Jose would be 

relatively more likely to result in real injury. So there is some basis for an investigation of differences 

in claimants and the courts. A binary geographical variable would clearly improve fit here. 

Sacramento 

The most striking residual spike occurs for the city of Sacramento, which sits to the far right of 

the plot. Such a spike only occurs in muted form in the property damage liability residual. The spike 

is clearly visible in the raw frequency plot also. An analysis of the legal environment here would 

clearly be in order. And, clearly a binary geographical variable would dramatically improve fit. 

Rural Areas 

This includes extreme northern California, which falls to the immediate left and right of 

Sacramento on the plot. And, the majority of the remaining unlabeled plot consists of rural zip 

codes, many of them in central California and the southern inland empire area. 

Northern California 

This label actually refers to extreme Northern California away from the coast, while the area 

immediately to the left of Sacramento occurs in extreme northern California along the coastline.  

Zip codes in this area are relatively sparsely populated. Hence the plots in this area contain more 
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dispersion, and it takes a few more seconds to see the bias in residuals. Comparing the residuals to 

the 0.0 line on the y-axis it becomes clear that the inland extreme northern California is significantly 

overestimated by the arithmetic model. It is possible that this is a significantly less litigious 

environment. A similar, but less extreme situation can be observed in Coastal northern California, 

which falls to the immediate left of Sacramento on the plot. The same pattern exists for property 

damage liability, but to a significantly reduced degree. Clearly geographical binary variables would 

improve fit here. 

The proximity complement performs well here with respect to bias. This is to be expected given 

the lack of geographical information density and the shallow LCGs likely to be present here. But the 

precision of estimates could probably be improved by increasing the geographical scope of the 

proximity complement. So in this area we observe the opposite situation from central Los Angeles. 

Clearly a more dynamic complement would improve things. 

Upon inspection, it would appear that the performance of the mixed model could be improved 

here if a higher relative credibility weight were awarded to the proximity complement. And perhaps 

the model complement could be assigned zero credibility here. A better arithmetic model, combined 

with a dynamic complement is probably the best solution. Ultimately we elected not to intervene in 

the credibility weighting procedure here. 

Remainder of State 

Rural areas in southern and central California did not appear to be subject to the same degree of 

model bias. These areas are probably less sparsely populated than in extreme northern California. So 

while larger proximity complements might be in order, the need is not as pronounced as in the 

extreme north. 

Conclusions 

To conclude, we only intervened in the limited instances we discussed above. However, this was 

partly due to the nature of this paper, which is to introduce the concept in simple form, allowing 

later researchers to more finely tune each element of the mixed model and cluster analysis. It would 

appear that major increases in fit could be gained by dividing the state into a few additional regions 

and assigning binary random variables. A suggestion would be binary variables for Fresno, 

Sacramento, San Jose, the remainder of state north of the bay area, and the remainder of state falling 

south and east of there, perhaps including significant suburban and urban (Oakland/Berkeley) 

populations in the east Bay Area. Another alternative, which we will discuss later, is to use a spatial 
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autocorrelation model.  

3.3.2 Property Damage Liability Frequency 

The proximity complement performs similarly for property damage liability frequency. But the 

problems in the central city areas are not pronounced. 

From the perspective of regional bias, the model complement performs much better. The model 

similarly over-predicts for inland and coastal extreme northern California, but error is smaller. The 

model tends to modestly over-predict for rural areas. There appears to be modest over-prediction 

for San Jose. 

No interventions in the credibility weighting process were urgently necessary.  

3.3.3 Bodily Injury Liability Severity 

The model modestly under-predicts for central Orange County. A moderate over-prediction 

occurs for the Oakland/Berkeley area. Part of Marin County is underestimated immediately below 

1000. The Santa Rosa area at about 1150 is underestimated. There is an overestimate in the area 

around 1200. There is a modest underestimate for Sacramento. The extreme Northern California 

coastal area is underestimated. The desert area immediately before 500 is underestimated. Santa 

Barbara, which occurs in the 590s is underestimated. 

The proximity complement performs similarly to the property damage liability frequency case. 

No credibility weighting interventions were urgently necessary. 

3.3.4 Property Damage Liability Severity 

The most striking bias occurs for southwest Orange County. A less severe spike occurs for 

Sacramento. There is a slight overestimate for part of San Diego County, which is plotted to the 

immediate right of the greater Los Angeles area. And Oakland/Berkeley is modestly underestimated. 

Inland extreme northern California appears to be modestly over-predicted. 

The proximity again performs similarly. No credibility weighting interventions were urgently 

necessary. 

3.3.5 Regression Model Conclusions 

It would appear that, even with this very simplistic multiple regression approach, three of the 

four loss quantities were well handled with relatively few binary geographical variables. And, even 

for the somewhat more complicated BI frequency case, the model would do an adequate job with 
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the addition of a few more binary geographical variables and perhaps some reorganization of the 

model. It is quite likely that much of the regional bias in geographical BI frequency is due to 

unmeasured differences in the legal environment. 

Obviously, a spatially autoregressive approach has the potential to improve the results, which we 

again leave to future researchers. 

3.3.6 Proximity Complement Conclusions 

Clearly the quality of the complement would be improved through a dynamically determined 

radius and weighting procedure. Larger radii appear to be in order for rural areas and smaller ones 

appear to be in order for urban areas. 

3.4 A Nonlinear Programming Approach to Constrained Clustering 

3.4.1 Introduction 

As we stated in Section (2.2.4), Teboulle et al. noted the similarity between optimization cluster 

analysis and nonlinear programming. Given the lack of solutions available in the cluster analysis 

literature for summation and averaging constraints, we looked to nonlinear programming as a means of 

formulating constrained cluster analysis problems because operations research, of which nonlinear 

programming is a part, has constrained optimization as one of its central objects of analysis. 

A simple description of the difference in the types of nonlinear mathematical programming 

programs can be found in the appropriate chapter of Hillier and Lieberman (1995) [60]. Both of our 

proposed objective functions, (2.5) and (2.6), are nonlinear and non-convex. Additionally, (2.6) is 

non-smooth in a small finite number of places corresponding to the breaking point for the absolute 

value function. These factors generally make the problem difficult to solve and guarantees of a 

globally optimal solution hard to come by. 

Additionally, our decision variables are defined as binary. So what we have is a constrained non-

convex pure integer programming problem.  

Computationally intense approaches are required to ensure good solutions for this class of 

problems. It is the modeler‘s task to creatively specify the model in a manner that makes maximum 

usage of the structure present, increasing chances of success and decreasing computational demands. 

3.4.2 Large Non-Convex Integer Programming Problems 

As originally configured in (2.3), (2.4) or (2.5), (2.6) and (2.7), our problem is generally too large 



Territory Analysis with Mixed Models and Clustering 

Casualty Actuarial Society, 2008 Discussion Paper Program 126 

to be solved in a reasonable amount of time.  

The size of the problem can be significantly reduced and its structure made clearer with a few 

additional steps. First, the zip codes should be sorted by the mixed model indication, from smallest 

to largest. In that configuration, our decision variable xij runs from i=1 being the zip code with the 

smallest mixed model indication, to i=1,502 being the zip code with the largest indication. The fact 

that we are not giving consideration to the relative credibility of our mixed model indications is 

significant here. Credibility considerations would make the problem difficult to solve, although it 

might improve the end result. 

We already have constraint (2.4), which ensures that only one decision variable in a row (for a zip 

code) can take on a ―1‖ value, and all the remaining decision variables have to take on a ―0‖. This 

means that the zip code can only be assigned to one band. 

Combining this fact with the new sorted nature of the matrix, it also becomes clear that the 

column of ―1‖s in a good solution should generally march in discrete columns from left to right. 

Except in very limited instances, there should be no reason for the column of ―1‖s to move 

backward to the left. 

After making this realization, we see that certain portions of the matrix are irrelevant. For 

instance, for low i values, the right hand part of the matrix is irrelevant, since in a good solution 

those values will always be ―0‖.  

It would seem that the size and complexity of the problem could already be reduced considerably 

given these considerations. 

3.4.3 The Frontline Premium Solvertm  

The R language we have been using up until this time does not currently have ready-made 

packages for dealing with non-convex optimization problems. And, the size of our problem exceeds 

the number of variables allowable in the Microsoft Excel Solver.  

But as it turns out, the maker of Microsoft‘s Excel Solver has also made a commercial package 

available that handles larger problems. We elected to employ Frontline‘s KNITROtm Solver using 

the Frontline Premium Solver Platformtm. 

This Solver employs one of three methods each time it conducts a minimization step. The first 

two are interior point algorithms, which are also known as barrier methods. The third method is 

known as an active-set method. 
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The conjugate gradient iteration interior point method employs a step to improve feasibility and a 

tangential step to improve optimality using a projected conjugate gradient iteration. The direct 

interior point method solves the primal-dual KKT system using direct linear algebra. The interior-

point methods employed are described in Byrd, Gilbert, and Nocedal (2000) [56] and Byrd, Nocedal, 

and Waltz (2003) [58]. 

The active set method is a sequential linear quadratic programming technique. The first stage 

identifies those constraints that are ―active‖ for a first solution of the problem. This solution 

involves solving a linear approximation within a trust region. The second stage involves an equality 

constrained quadratic approximation that incorporates only those constraints that were identified as 

active in the first stage. A projected conjugate gradient method is employed in the second stage. The 

active set methodology employed is outlined in Byrd, Gould, Nocedal, and Waltz (2004) [57]. 

Integer and binary problems also involve the use of the branch and bound method. As we shall 

discuss, the constraints imposed with the interior point methods sometimes lead to an overly-

restrictive feasibility region when used in conjunction with the branch and bound method, and as a 

result the active-set method might need to be employed.9 

3.4.4 Experimentation with Model Formulations 

Reducing the Size of the Decision Variable Matrix 

Starting with BI frequency, we began by dividing the matrix of decision variables into roughly 

equal length sections in terms of the number of zip codes. Then we pre-assigned the decision 

variables ―0‖ or ―1‖ values in discrete columns. The first set of zip codes, numbered i=1 to 148, 

were assigned to frequency band ―1‖, which means that the first of the ten columns (j=1) were 

assigned the value ―1‖ while the remaining columns (j=2 to 10) were assigned ―0‖ values. For i=149 

to 296, the column j=2 was assigned values of ―1‖ while the columns corresponding to j=1 and j=3 

to 10 were assigned values of ―0‖. And so forth.  

We found the problem was far too large to be solved so we began to pair down the number of 

variables by inspection eliminating those variables that would never be ―1‖ in an optimal solution. 

This involved removing variables more than a certain distance from the ―1‖ in its row. So, for 

instance, the cell at (1,10) was among the first removed, since certainly the zip code with the lowest 

mixed model indication was not going to be assigned to the highest frequency band. We removed 

                                                           

9 See Frontline Systems, Inc., [59]. 
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close to half of the variables using this approach and attempted to solve the problem, but it was still 

far too large.  

Non-Decreasing Band Assignment Constraint 

Through successive experimentation we found that the problem had to be restricted both in 

terms of width around the ―trial solution‖ represented by our columns of ―1‖ values, and in terms of 

the number of zip codes considered at one time (we could not consider all 1,502 zip codes at one 

time). We finally arrived at a system that yielded solutions in a reasonable amount of time, and which 

were relatively certain not to be significantly affected by the restrictions in the size of the individual 

problems solved. 

In the process of successive experimentation, we also found that it was useful to require that the 

frequency band assignments march forward in the column-like fashion we expected. Imposing this 

constraint takes into account our knowledge of what an optimal solution has to look like, and saves 

computational time, since the algorithm will not have to investigate solutions that clearly are out of 

the range of an optimal solution. 

We prevent the band assignments from moving ―backwards‖ through the following system of 

constraints. Mathematically, we represent these constraints as  

 
(3.5) 

This corresponds to our entire original range of decision variables. When we reduce the size of 

the problem as we just outlined, we only need to consider constraint (3.5) in terms of this reduced 

range of possible i,j  values.  

 3.4.5 The Final Model Formulation 

Our final method of solution is a sequential one. We present our first model formulation next 

and then show the logic behind the sequential progression. 

Initial Problem Formulation 

We began by only considering the decision variable in the following limited range: 

 (3.6) 

The actual values in the initial solution we provide remain unchanged, that is in the first of the 

three ranges enumerated above, ―1‖ values are assigned to the decision variable when j = 1, and ―0‖ 

values are assigned to all the other decision variables in the range. In the second range, the decision 
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variables are assigned ―1‖ values when j = 2, while the other decision variables in the range are 

assigned ―0‖ values. And for the third range of variables, ―1‖ values were assigned when j = 3, with 

―0‖ values assigned to all the remaining variables in the range. 

Throughout the process, we elected to use the L1 objective function (2.6), which converted to the 

range specified in (3.6) is 

 

 

(3.7) 

 

In our initial attempts, we thought we would wait before incorporating the minimum land area 

constraint (2.7). Should a solution ever be arrived at that violated or threatened that constraint, we 

could always move back a step and add it.  

Sequential Procedure 

The sequential procedure essentially involves moving downward and to the right through our 

original range of decision variables.  

Initial Solution Stage 

The first stage involves running the problem as formulated immediately above, using the 

Frontline KNITROtm Solver on the Microsoft Exceltm implementation. We will discuss the 

parameters selected for the KNITROtm Solver a little later. 

As an example, our first solution of the problem as formulated immediately above assigned BI 

frequency band 1 to zip codes corresponding to i values of 1 to 116. BI frequency band 2 was 

assigned to zip codes corresponding to i values of 117 to 275. Band 3 was assigned to i values of 

276-444. 

Solution Check Stage 

After the previous run of the KNITROtm Solver, we check the stability of the solution under a 

different set of constraints. We keep the same band assignments (―1‖ values), but we modify the 
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range of decision variables somewhat.  

First, we ensure that the leftmost (the lowest band under consideration) column of ―1‖ values has 

no decision variables defined to its left.  

For the next column of ―1‖ values, or the next assigned band, we ensure that there is only one 

decision variable defined immediately to its left, and one to its immediate right.  

We do the same for the proceeding columns of ―1‖ values. So, the leftmost column under 

consideration cannot in the future move backward, while it can move forward one band. The 

remaining band assignments from the previous solution can move forward or backward a maximum 

of one band assignment. 

With the same range of i-values under consideration, and a somewhat reconfigured set of j-

values, we rerun the problem. 

If we get the same result, then we move on to the next step in the ―sequence‖.  As we will explain 

further, moving forward in the sequence involves ―dropping‖ the leftmost band from consideration, 

and adding a new segment of i,j values for consideration, corresponding to a downward and possible 

rightward movement on the right-hand side.  

As it turns out, the solution check stage was unnecessary. The solution to the problem under new 

constraints always was the same as the previous solution. We conducted the solution check stage 

through the entire process for BI frequency, but abandoned it for the remaining frequency and 

severity analyses. 

As an example, our solution check of our first initial solution was formulated as follows: For i 

from 1 to 116, and for j from 1 to 2, the decision variables were defined, with ―1‖ values assigned 

when j=1 and ―0‖ values assigned when j=2. For i from 117 to 275, decision variables were defined 

for j from 1 to 3. ―1‖ values were assigned when j=2, and ―0‖ values were assigned when j=1 or j=3. 

For i from 276 to 444, decision variables were defined from j=2 to j=4. ―1‖ values were assigned 

when j=3, and ―0‖ values were assigned when j=2 or j=4. 

When we reran the problem, the same solution was generated; the first BI frequency band was 

assigned to i from 1 to 116, the second to i from 117 to 275, and the third from 276 to 444. 

Sequential Advancement Stage 

When the solution check yielded the same solution (which it always did), we essentially moved 

downward and to the right, dropping the lowest band (furthest to the left) from consideration and 
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adding a new range of decision variables to consider downward and to the right. 

For the returning ―bands‖, the band assignments from the previous solution remain unchanged. 

New zip codes, which have already been assigned values in our original trial solution are then added.  

Defined decision variables follow the same general pattern, with the leftmost column of ―1‖ 

values not having any decision variables defined to their left, thus restricting consideration to 

solutions that either maintain the band assignment, or increase it by one (moving one column over 

to the right). The remaining band assignments are allowed one decision variable to the right and left, 

so they are free to move forward or backward a band from their existing position. 

After the solution is run for this problem, we move to the solution check stage and test this new 

result. If the result is the same we move forward again, dropping the lowest band and picking up 

one new one. 

As an example, our first sequential advancement from the previous solution was as follows: for 

i=117 to 275, the decision variable was defined for j=2 and j=3 with ―1‖ values assigned when j=2 

and ―0‖ values being assigned when j=3. For i=276 to 444, the decision variable was defined for j= 

2 to j=4; when j=3 the decision variable was assigned a value of ―1‖, and when j=2 or j=4 a value of 

―0‖ was assigned to the decision variable. For i=445 to 593, the decision variable was defined for j= 

3 to 5, with ―0‖ values being assigned when j=3 and j=5, and ―1‖ values being assigned when j=4.  

Reaching the Final Band 

When sequentially advancing to the stage where final decision variables (when the rightmost and 

lowest cell under consideration is (max(i), max(j)) then a slight modification of the problem setup is 

in order. The treatment of all the ranges is the same except for the last one. Those cells that were 

previously assigned ―1‖ values in the rightmost column are only allowed to have one decision 

variable defined to their left. And, by definition there are no decision variables defined to their right. 

The result is checked once and that gives the final result. 

3.4.6 Elected KNITROtm Solver Parameters 

Solution Method 

As we discussed earlier, there are three solution methods available: the Direct Interior Point 

Method, the Conjugate Gradient (CG) Interior Point Method, and the Active Set Method. Interior 

Point Methods are also known as ―barrier‖ methods. 

The default setting is to allow the Solver itself to choose the best method as it proceeds during 
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the iterative solution process. We elected to keep this setting. As we will discuss later, there were two 

occasions where we had to modify our reliance on the default and make use of a particular solution 

method. 

Global Optimization of Non-Convex Problems 

When the problem is non-convex, as ours is, a truly optimal solution can often not be 

guaranteed, or can often not be guaranteed in a reasonable period of computation time (for integer 

programming problems). Integer programming problems can sometimes be solved with guarantees 

of global optimality, but often the amount of computing time necessary would be too high.  

We will discuss integer programming in a moment. With respect to the non-convex aspect of our 

problem, a kind of brute-force method can be used to help increase the likelihood that the solution 

obtained is optimal or near-optimal. In KNITROtm these parameters are known as Multi-Start 

Search and Topographic Search. The Multi-Start Search involves trying different randomly selected 

points from which to attempt solution of the problem. The Topographic Search option is essentially 

an add-on to the Multi-Start Search. From the point generated by the Multi-Start Search, the 

Topographic Search attempts to map the local terrain to determine the best starting point.  

We elected both the Multi-Start Search and Topographic Search for the solution of our problems. 

Automatic Scaling 

Poor scaling in the problem formulation can reduce the precision with which the Solver can 

operate. Automatic scaling helps to handle some scaling problems, but is not a guarantee. We used 

the automatic scaling option when solving our problems. 

Derivatives 

The interior point methods work best when they can use analytic second derivatives. Analytic 

second derivatives could not be found for our problem, probably because of the absolute value used 

in the objective function. We did test our L2 objective function early in the process and KNITROtm 

was not able to find the analytic second derivatives to that problem either. 

When analytic second derivatives cannot be found, KNITROtm offers the option of using analytic 

first derivatives or finite differences. We elected analytic first derivatives. 

The user is also given the option of using the default selection of forward derivatives or selecting 

central derivatives. We used the default. 
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Sparse Optimization 

Our problem is quite large. For large sparse problems, the KNITROtm solver ―sparse‖ option can 

improve performance considerably. The Solver indicated our problems were all sparse, with a 

sparsity measure always well under 1%, so we always elected the sparse option. 

Integer Tolerance 

When solving integer programming problems, the branch & bound method can solve to a 

predetermined level of tolerance from true integer values, when testing for optimality. The default 

setting is 0.05, which we did not change. If one were to select ―0‖, it is possible that the Solver could 

arrive at a guaranteed globally optimal solution, although it might take quite a while. 

Remaining Parameters 

We employed all the remaining default parameters. The most significant of these involve 

tolerance levels. 

 3.4.7 An Example of the Process 

To illustrate the solution process, we present the complete sequence of problem setups and 

solutions below in a simplified tabular form for BI frequency: 

 i  range FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 FB9 FB10 

Setup1 1 to 148 1 0         

 149 to 296 0 1 0        

 297 to 444  0 1 0       

Solution1 1 to 116 1          

 117 to 275  1         

 276 to 444   1        

Setup2 117 to 275  1 0        

 276 to 444  0 1 0       

 445 to 592   0 1 0      

Solution2 117 to 276  1         

 277 to 453   1        

 454 to 592    1       

Setup3 277 to 453   1 0       

 454 to 592   0 1 0      

 593 to 740    0 1 0     

Solution3 277 to 474   1        

 475 to 628    1       

 629 to 740     1      
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 i  range FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 FB9 FB10 

Setup4 475 to 628    1 0      

 629 to 740    0 1 0     

 741 to 888     0 1 0    

Solution4 475 to 637    1       

 638 to 766     1      

 767 to 888      1     

Setup5 638 to 766     1 0     

 767 to 888     0 1 0    

 889 to 1036      0 1 0   

Solution5 638 to 794     1      

 795 to 927      1     

 928 to 1036       1    

Setup6 795 to 927      1 0    

 928 to 1036      0 1 0   

 1037 to 1184       0 1 0  

Solution6 795 to 928      1     

 929 to 1067       1    

 1068 to 1184        1   

Setup7 929 to 1067       1 0   

 1068 to 1184       0 1 0  

 1185 to 1332        0 1 0 

Solution7 929 to 1084       1    

 1085 to 1220        1   

 1221 to 1332         1  

Setup8 1085 to 1220        1 0  

 1221 to 1332        0 1 0 

 1333 to 1485              0 1 

Solution8 1085 to 1223        1   

 1224 to 1339         1  

 1340 to 1485          1 

The solutions contain only the values of those decision variables that were assigned to a particular 

band (only those with ―1‖ values). We did not include setups and solutions for the ―solution check‖ 

stage since in each case, the solution found did not change from the previous solution. 

The setups contain all of the defined decision variables and their pre-assigned values (before the 

solver is applied). The ten columns, corresponding to the ten bands, also correspond to j values 

from 1 to 10. 
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3.4.8 Clustering the Remaining Frequency and Severity Bands  

For the most part, we were able to use the same KNITROtm parameters, and the same general 

process in solving the other three problems. There were a few problem areas, some of which 

actually serve to highlight the relative strengths of the interior point methods versus the active set 

method. 

The PD frequency clustering was as uneventful as the BI frequency clustering.  

Severity Band Clustering 

The severity clustering processes developed two complications not encountered with frequency: 

four band solutions and the inability to find feasible solutions.  

Four Band Solutions 

First, solutions moved to take up four bands in many of the solution steps. For example, the first 

solution for BI severity was as follows: i from 1 to 76 was assigned to Severity Band 1, i from 77 to 

212 was assigned to Severity Band 2, i from 213 to 352 was assigned to Severity Band 3, and i from 

353 to 450 was assigned to Severity Band 4.  

This did not really present a challenge. We formulated the next setup in the same way, with 

Severity Band 1 dropped, and both the previous solution values for Severity Band 4 and the new 

segment, which was assigned to four, being introduced into the setup. The system of surrounding all 

but the leftmost column of ―1‖ values with ―0‖ values corresponding to defined decision variables, 

and the leftmost column of ―1‖ values having only a single column of decision variables, coded to 

―0‖ immediately to its right. 

Inability to Find Feasible Solutions 

One of the drawbacks of using the two interior point methods in combination with integer 

programming problems is that the feasible region drawn by the algorithm may be too restrictive for 

the branch & bound method to operate properly. While we elected the default value for the solution 

method, which allows the Solver to choose the best of the three methods, there were two instances 

where we did have to intervene. 

For PD severity, on setup3, repeated attempts yielded the result that a feasible solution could not 

be found. This must have been an instance where one of the two interior point methods was being 

used but was drawing too tight a boundary for the branch & bound algorithm to operate in.  

In response, we manually selected the active set methodology. Under that method, the algorithm 
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ran for a much longer period than we had seen before for our reduced-size problems. We could see 

that, at each iteration, the solver was making very slow progress, but measurable progress 

nonetheless. At that point, we elected to stop the algorithm, maintaining the intermediate solution 

that it had come to at that point. We then ran the algorithm with the default solution parameter set 

that allows the Solver to choose the appropriate method. That approach yielded a solution in a 

reasonable amount of time. 

The problem repeated itself on the eighth and final setup, and we used the same procedure, but 

only allowing the active set method to run for a shorter period of time to an interim solution. 

3.5 Final Results 

Detailed information for BI frequency, PD frequency, BI severity, and PD severity has all been 

placed on the CAS Web Site. This detailed information includes each of the mixed model 

components, the credibility assigned to each component, the mixed model estimate, and a 

comparison of the new band assignment with the Hunstad (April, 1996) [18] band assignment. In 

the present section, we present summary statistics to evaluate the performance of our approach. In 

the following tables, we present a comparison of the mixed model average indication for each band 

with the actual indication, to indicate bias that exists at respective hazard levels. Furthermore, we 

present the indicated relativity for corresponding Hunstad bands. Below this, we compare the mean 

absolute deviation for the new bands against the same statistic for the Hunstad bands. A discussion 

follows. 
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3.5.1 Statistics for Final Band Assignments 

BI Frequency 

 FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 FB9 FB10 

           

     Relativities      

           

Mixed Model 0.5438 0.6180 0.6730 0.7253 0.7866 0.8602 0.9870 1.1386 1.3374 1.7544 

Actual 0.4895 0.5775 0.6589 0.7232 0.7882 0.8619 0.9940 1.1488 1.3472 1.7708 

Hunstad 0.5334 0.6715 0.7456 0.8037 0.8767 0.9795 1.0752 1.1856 1.3425 1.7393 

           

     MAD      

           

New Cell 0.00105 0.00092 0.00047 0.00039 0.00037 0.00045 0.00058 0.00071 0.00109 0.00315 

Hunstad Cell 0.00121 0.00041 0.00034 0.00029 0.00048 0.00035 0.00052 0.00052 0.00086 0.00319 

           

New Total     0.00087      

Hunstad Total     0.00083      

 

PD Frequency 

 FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 FB9 FB10 

           

     Relativities      

           

Mixed Model 0.6548 0.7265 0.7853 0.8423 0.9171 0.9663 1.0127 1.0598 1.1247 1.3036 

Actual 0.6132 0.7137 0.7827 0.8423 0.9173 0.9671 1.0140 1.0613 1.1271 1.3102 

Hunstad 0.7301 0.8634 0.9297 0.9642 0.9965 1.0219 1.0492 1.0740 1.1117 1.2430 

           

     MAD      

           

New Cell 0.00223 0.00094 0.00081 0.00074 0.00067 0.00049 0.00047 0.00044 0.00114 0.00299 

Hunstad Cell 0.00261 0.00129 0.00048 0.00042 0.00030 0.00027 0.00027 0.00029 0.00060 0.00318 

           

New Total     0.00082      

Hunstad Total     0.00097      
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BI Severity 

 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 

           

     Relativities      

           

Mixed Model 0.8297 0.8777 0.9026 0.9267 0.9499 0.9805 1.0136 1.0422 1.0761 1.1268 

Actual 0.8224 0.8728 0.8985 0.9253 0.9508 0.9833 1.0154 1.0427 1.0765 1.1293 

Hunstad 0.8380 0.8902 0.9202 0.9525 0.9792 1.0049 1.0232 1.0445 1.0675 1.1156 

           

     MAD      

           

New Cell 207.61 129.62 91.92 87.93 87.16 124.18 90.86 92.81 100.82 206.48 

Hunstad Cell 229.64 100.22 113.12 158.01 210.82 171.97 139.16 144.30 145.46 243.90 

           

New Total     117.85      

Hunstad Total     168.71      

 

PD Severity 

 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 

           

     Relativities      

           

Mixed Model 0.8387 0.8770 0.9078 0.9346 0.9615 0.9905 1.0181 1.0423 1.0803 1.1487 

Actual 0.8355 0.8755 0.9076 0.9349 0.9625 0.9909 1.0181 1.0421 1.0807 1.1503 

Hunstad 0.8505 0.8989 0.9406 0.9771 0.9983 1.0155 1.0283 1.0449 1.0700 1.1303 

           

     MAD      

           

New Cell 28.94 11.79 11.40 12.11 13.73 12.68 8.33 9.46 19.58 35.53 

Hunstad Cell 29.83 18.28 20.34 12.95 10.06 5.18 7.54 8.00 14.25 42.84 

           

New Total     14.67      

Hunstad Total     17.01      
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3.5.2 Other Quantities 

Basic Constraints 

The minimum 20-square mile requirement for bands came nowhere near being reached. We also 

checked to ensure that each band contains a credible amount of experience, and again nothing even 

close to a problem emerged. 

Factor Weights 

Under the proxy weighting methodology promulgated by the CDI, a ―relative‖ factor weight can 

be computed for our results and related to relative factor weights on the marketplace and also that 

might be projected to be necessary under the regulations that are soon to take full effect. 

―Relative‖ factor weights can be computed in terms of our formulation as follows: 

 

(3.8) 

 

Using this formula our relative factor weights for each of the four bands are as follows: 

• BI frequency: 0.2701 

• PD frequency: 0.1014 

• BI Severity: 0.0705 

• PD Severity: 0.0629 

An individual company‘s factor weights can be converted to relative factor weights by dividing 

out the base rate and the total number of exposures. Relative factor weights can then be compared 

on an apples-to-apples basis with our relative factor weights.  

3.6 Analysis of Final Results 

3.6.1 Mean Absolute Deviation Comparison 

It would appear that the mixed model with clustering approach outperformed the Hunstad 

(April, 1996) approach for PD frequency, and both measures of severity, using mean absolute 

deviation as the basis of comparison. 

For BI frequency the Hunstad assignments modestly outperform mixed models with clustering. 
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The mixed model outperforms the Hunstad result for bands 1 and 10, with results for the first band 

significantly better. 

For PD frequency, mixed models with clustering moderately outperformed the Hunstad result. 

Our approach again outperformed for bands 1 and 10. 

For BI severity, our approach significantly outperformed the Hunstad result, and again 

outperformed in bands 1 and 10. 

For PD severity, our approach moderately outperformed the Hunstad result, and again 

outperformed for bands 1 and 10. 

3.6.2 Mixed Model Bias by Hazard Level 

The mixed model shows bias in the first band for BI frequency, and to a lesser extent, for PD 

frequency. However, for BI frequency, the net effect of the mixed model and clustering appears 

however to be greater separation and greater accuracy for the lowest hazard band. Much of this 

band comes from extreme northern California, where we observed significant bias in the regression 

model, and where the proximity complements might be made larger.  

The bias for the first band in PD frequency was moderate. There was little regional bias to speak 

of for the remaining frequency and severity bands. 

3.6.3 Constraints 

Each band vastly exceeds the minimum required land area of 20-square miles. Each band also 

contained extremely credible quantities of data.  

So it would appear that the introduction of constraints made our search for a solution easier 

rather than more difficult (in particular (3.5)). 

3.7 Directions for Future Research 

We can see several separate prongs of research emanating from this paper.  

First, within the scope of the existing framework of territory analysis, the implementation of the 

concept we have introduced could certainly be improved. This would require the devotion of 

individual attention to the arithmetic model, the proximity complement, credibility weighting of the 

three mixed model components, and the automation and possible methodological improvement of 

the cluster analysis technique. 

Next, it would seem to make sense to begin to move territory analysis forward with the 
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introduction of new causal geographical rating variables. As the arithmetic model and proximity 

complement are improved within the existing framework of territory analysis, it seems to us that the 

groundwork could be laid for the introduction of new rating variables that would address several 

issues in territory analysis. The introduction of rating variables such as traffic density, claims environment, 

and traffic enforcement could strengthen geographical rating from claims that is not a causal rating 

variable. Furthermore, by introducing these variables as continuous measurements, say for each zip 

code, they could be properly integrated into the parameterization of the remaining parts of the 

classification plan, helping to alleviate the current disjointed relationship between the two. 

The use of constrained cluster analysis as a potential alternative to pumping and tempering to 

achieve factor weight compliance could also be investigated in California. It is possible that a 

procedure could be arrived at that would not be viewed as arbitrary by the courts.  

Also in California in particular, it would seem to make great sense to introduce new geographical 

rating variables under the new Proposition 103 regulations soon taking full effect. 

3.8 Discussion of Mixed Models in Territory Analysis 

With even this crude implementation of our concept, we see that for three out of four territory 

bands, our method outperformed the method initially used to form the California Personal 

Automobile Frequency and Severity Bands Manual under Proposition 103. Furthermore, the 

implementation was completely objective. 

Individual attention to three elements of the mixed model could substantially improve the result. 

We would suggest the following separate lines of research. 

3.8.1 Refinement of the Arithmetic Model 

As we discussed earlier, even within the framework of the simplistic and somewhat inappropriate 

multiple regression model form, substantial improvements for BI frequency could probably be 

obtained by identifying better variables related to legal environment. And even failing that, the 

simple introduction of a handful of binary geographical variables could substantially improve the 

result. In particular we feel that there is the potential to dramatically improve the territory analysis of 

the lowest frequency, sparsely populated areas of northern California. 

Perhaps an area of even greater promise is the spatially autoregressive model. This type of model 

is used in geography, and is almost certainly more appropriate than the multiple linear regression we 

employed. See Bailey (1995) [37] for a fairly gentle introduction to spatial statistics with software and 
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data. Another such introduction, in the R language, is provided in Crawley (2007) [40]. For a very 

theoretical treatment, see Cressie (1993) [41]. 

Given further refinements in the variables employed and the form of the model, we are quite 

confident that the results we reported here can be substantially improved upon. 

In addition to improving the mixed model result, improved models of causal geographical 

variables could hasten the introduction of new, causal and continuous rating variables that will be 

both more acceptable to regulators and the public and easily integrated into the parameterization of 

the remaining elements of the classification plan. 

3.8.2 Refinement of the Proximity Complement 

The proximity complement should become a formal area of study under territory analysis. Up 

until now Hunstad (April, 1996) [18] and Tang (2005) [21] provided the only two papers dealing 

with the topic substantially. In our study, we found that in sparsely populated areas optimal 

complements should have more than a ten-mile radius, while in the center of the city a shorter 

radius is in order. This really is a matter of common sense when looking at these extremes. 

However, deriving methods that will dynamically generate optimal proximity complements for each 

atomic geographical unit based on all of the relevant local information would seem to be a nontrivial 

task deserving of some future research. 

Another possible approach would be to employ a form of cluster analysis that allows for 

overlapping clusters (where an individual zip code may be included in more than one proximity 

complement). 

Another approach, would be to use the results of a spatially autoregressive model to arrive at 

indications for the zip codes in the proximity complement. The model would not need to 

incorporate auxiliary variables. The model could incorporate gradients, which could be a great 

advantage.  

Another possibility, although perhaps it would be too unwieldy, would be to incorporate spline 

or graduation information into a proximity complement. One problem to solve would be how to 

treat the data from the geographical unit being complemented, since without adjustment it would be 

counted twice. 

In addition to the actual selection of units to include in the complement and their valuation, 

attention should be given to the means by which the resulting complementary indication is 

computed, as it might make sense to weight the results on some non-obvious basis or perhaps use 
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an arithmetic average instead of a weighted average. Perhaps a population weighted latitude and 

longitude (at the block level) should be computed for the proximity complement, and used to adjust 

the complement, either in terms of the geographical units included or the method in which they are 

weighted. It would seem that ideally such a measure should fall at or near a similarly computed 

center for the geographical unit being complemented. 

3.8.3 Refinement of the Credibility Weighting Scheme 

A formal credibility analysis should be conducted to arrive at better methods of credibility 

weighting the results. Ideally the local geographical fit should influence the weight for both the 

arithmetic model and the proximity complement. Additionally perhaps the local fit in terms of the 

auxiliary variables in the arithmetic model should also influence the result. 

3.9 Refinement & Automation of Constrained Cluster Analysis 

3.9.1 Refinement 

One competing method of nonlinear programming should be investigated. Although we did not 

have much luck in our initial experiments, the Large-Scale SQPtm solver engine from Frontline 

Systems, Inc. has a particular feature of interest for problems with our structure. 

The structure in question involves binary decision variables constrained in the manner of (2.4). 

This type of constraint is known as a special ordered set (SOS). Williams (1999) [62] indicates that 

this method was introduced in Beale and Tomlin (1969) [54]. 

This methodology is incorporated in the Large-Scale SQPtm (Sequential Quadratic Programming) 

Solver, along with several other methods associated with integer and binary programming. 

Particularly if one wants to attempt to increase the size of the problems we analyzed sequentially 

(particularly widthwise), or even solve the whole thing at one time, such methods should be 

investigated to see how they perform against the methodology employed in the KNITROtm Solver. 

Generally speaking, outside of the SOS method we mention, the Large-Scale SQPtm Solver operates 

on principles similar to those employed under the active-set methodology under KNITRO.tm  

3.9.2 Automation 

We employed the Frontline Systems, Inc., implementation that plugs in directly into the 

Microsoft Exceltm Solver. This made it easy for us to learn and experiment. The sequential procedure 

involving the solution and setup of sub-problems is cumbersome when performed manually. 

Frontline offers implementations where we are certain the procedure we employed, or any variant, 
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could be fully automated relatively easily. When so automated, the method would be incredibly 

efficient, dramatically improving the productivity of those involved in large-scale territorial revisions 

for many states. 

3.10 Introduction of New Geographical Rating Variables 

3.10.1 Traffic Density 

Traffic density is probably the leading candidate for introduction as a causal geographical 

variable. It has consistently been considered a causal factor in accidents for at least ninety years.10 

This includes instances where territory has been criticized as a simple proxy for truly causal factors 

like traffic density. 

Arriving at the best measure of density is the main challenge in implementing this as a rating 

variable.  

In the past, measures of the denominator typically employed quantities of road lane. However, 

these figures were only tabulated at the county level, which introduces a significant degree of 

inaccuracy. At this point, we do not see a better alternative to using simple land area. In the course 

of our study we investigated the use of populated land area (defined as the land area for all census 

blocks that contain at least one inhabitant), on the suspicion that a simple land based measure would 

not reflect land on which essentially no commuting takes place. However, we found the standard 

measure and the new measure to perform at about the same levels.  

The best current source of a numerator of for any density measure is probably the census bureau. 

However, new sources of information could soon become available. 

Census Bureau Data  

Our measure of the numerator focused on the total commute minutes one-way, partly because it 

was easier to measure and partly because it is most relevant. All of this information came from the 

1990 decennial census.  

Significant traffic congestion generally only occurs during the common commute hours. 

Furthermore, the relative traffic density between geographical units during the commute hours is 

probably maintained to some degree by density at other times of the day. 

                                                           

10 Michelbacher (1918) [7], Dorweiler (1930) [4], Whitney (1941), Phase I (1978) [19], Phase II (1979) [20], Stone (1978) 
[35], Shayer (1978) [34]. 
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If commute traffic density is to be introduced as a unitary measure, as opposed to the three radial 

measures we employed, then the appropriate radius will need to be selected. Determining the 

average commute density for a geographical unit like a zip code by using only data from the 

commuters within that zip code would likely be inferior to a broader measure that incorporates the 

true spatial interaction that exists. 

Several additional decennial census measures should be considered to potentially improve the 

numerator. The census contains information on the number of vehicles used in commuting, 

including those used in car-pools, and also the number of persons taking mass transit. A measure 

that is responsive to such variations would be ideal. However, the vehicle measures are not cross-

tabulated against the temporal measures of time spent commuting one-way. We feel time spent 

commuting is the most important measure, since geographical variation in temporal length of 

commute is probably much greater than variation in the use of public transport and car-pools. To 

combine the measures, one would either have to assume they are independently distributed, or one 

would have to find some means of imputing the cross-tabulated distributions. 

In addition to the vehicle-related measures, the decennial census contains an additional commuter 

variable of interest; the hour in which each commuter leaves for work. Variations in this measure 

could also influence density to some degree. However, once again it is not cross-tabulated with the 

other measures. Furthermore, incorporation would be exceedingly complex. The same comments 

apply with regard to independence or imputation. 

Another interesting measure from the census bureau tabulates the number of workers in various 

industries at the location where they work as opposed to where they reside. We obtained this data 

from the 2005 survey of economic conditions, and used it to derive the numerator of our lawyer 

density measure. This survey could also be used to essentially compute the ―demand‖ for workers. 

This could be laid in some relation to the ―supply‖ of commuters taken from the decennial census 

to arrive at an improved estimate of average density. Aside from the mismatch between the 2005 

date of the survey and our data (which we deemed to be tolerable in our measure of lawyer density), 

the level of complexity of such an analysis exceeds the scope of this paper. But it may well be worth 

investigating whether the ―directional‖ nature of the information that could be gleaned from such a 

study could be used to improve measures of density. 

Finally, our density measure involved ―rings‖ around each zip code being modeled, and considers 

only commuters who reside in those rings when computing the quantities. It is possible that 

considerably more complex models could be used to compute traffic density. It is important to 
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remember that the quantity of interest is the traffic density to which vehicles inside the zip code 

being modeled will be exposed to, not necessarily the traffic conditions that exist in their own zip 

code. Coming up with a way to more accurately model the flow of vehicles might involve the use of 

spatial statistics. 

GIS Data 

Although it may not quite be ready yet, it is likely that accurate traffic density measures will soon 

be computable from the vast and growing information storehouse being created by position-aware 

devices in cell phones, vehicles, and the like. 

Remote Sensing 

Remote sensing data that physically measures density at various sites may also soon become more 

widely available. 

Ensuring Acceptable Measurement 

In a competitive marketplace, there will be the obvious incentives to determine the most effective 

measurement of traffic density. In heavily regulated markets that may restrict the use of territorial 

rating variables, there may well be a need for regulators to either determine standard measures of 

density for each geographical unit, or the appropriate standards by which such measures can be 

created. 

3.10.2 Traffic Enforcement 

It is commonly accepted that increased enforcement reduces accidents. Phase II (1979) [20] 

attempted to measure the impact that enforcement has on accident rates through a measure called 

the enforcement ratio. The enforcement ratio, as computed in Phase II, involved measuring the relative 

frequency of bodily injury accidents to all violations and accidents. 

Since that time, authors such as Feldblum (1993) [16] and Conners and Feldblum (1997) [15] 

have pointed to data that show that many bodily injury liability claims appear to be elective soft-

tissue injury claims, and that the propensity to make such claims successfully varies significantly by 

area. 

We think it would be extremely worthwhile to re-investigate an enforcement using property 

damage liability accidents in lieu of bodily injury liability accidents. And perhaps other measures of 

enforcement could be derived. 

A relative index of traffic enforcement might well be considered a causal variable and be deemed 
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controllable through the local government. Additionally, it would provide economic incentives for 

actions that reduce the number of accidents. 

The use of a measure like the enforcement ratio has advantages over other measures such as local 

citations issued or enforcement expenditures. The enforcement ratio already implicitly reflects spatial 

interaction, so no adjustments in that regard would be necessary from an actuarial perspective. 

Although such an undertaking would be laborious if done manually, all of the data necessary to 

conduct such a study using property damage liability accidents is available in the appendices of the 

Phase II study. Obtaining a fresh data set from the DMV would be an even better alternative. 

Were a good measure of enforcement be shown to have a significant relationship to loss we think 

it would be an excellent candidate for early introduction as a geographical rating variable.  

3.10.3 Legal Environment 

We were the least successful with our approach in dealing with BI frequency. And this is the 

problem most affected by the legal environment. 

Although there are remaining difficulties with the introduction of legal or claims environment as 

a causal geographical rating variable, we mention it because it likely has such a great impact on 

bodily injury liability loss costs. 

Legal or claims environment might only be a good candidate for introduction in heavily regulated 

jurisdictions after several other causal geographical variables have successfully been introduced. In 

the meantime, improved measures of lawyer density, perhaps using the actual number of personal 

injury attorneys or perhaps using certain forms of medical specialists, should be researched. 

Additionally, analysis of differences by court jurisdiction might be useful, although the use of binary 

geographical variables corresponding to legal jurisdictions would not promote integration of 

territory analysis with the parameterization of the remainder of the classification plan. 

3.10.4 Medical and Repair Cost Indices 

These factors probably influence losses less, but may be easier to implement quickly in heavily 

regulated jurisdictions. If a relationship can be established to an accurate index, we think it would be 

relatively difficult to argue against their causality. A search for granular indices of these costs would 

be of interest in developing these causal geographical variables for BI and PD severity (in addition to 

severity for other coverage parts not addressed in the present study). 
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3.11 Refinements to California Personal Automobile Ratemaking 

3.11.1 A New Frequency and Severity Bands Manual For California 

In California, it would seem that the Private Passenger Automobile Frequency and Severity Bands Manual 

could be updated with the release of more recent data from the same source, such as was used in 

Tang (2005) [21]. In addition to the use of new data, the use of a mixed model technique, or Tang‘s 

new proximity complement might be in order. To promote stability and give carriers time to adjust, 

carriers could be given a choice of using either the new Manual or the old Manual as a credibility 

complement for a short period of time. 

3.11.2 An Alternative to Pumping and Tempering in California 

When the new Proposition 103 regulations take full effect in the near future, the factor weights 

for frequency and severity bands will have to fall below the factor weight for years of driving 

experience. This may force some insurers to reduce the scope of influence of relative frequency or 

severity in their rating plan.  

Currently, a procedure exists called pumping and tempering, which provides a means by which 

the years of driving experience (or any other mandatory factor with a weight that is ―too small‖ 

under the regulations) factor can be increased (pumped) in its scope, and/or relative frequency or 

severity (or any other factor with a weight that is ―too large‖ under the regulations) can be decreased 

(tempered) in scope. The courts have criticized this procedure as arbitrary. 

Introducing factor weight as a constraint in the cluster analysis procedure is an alternative. In this 

case we would set an upper bound on the relative frequency or severity factor weight equal to the 

factor weight for years of driving experience. 

A factor weight constraint in our formulation would simply involve constraining (3.8) as follows: 

 

(3.9) 

where M is the constant. A difficulty would be involved in that the constraint should be 

incorporated over the entire range of the problem. For computational reasons we solved the original 

problem in a series of steps that breaks the problem into pieces. This sort of approach might not 

work to arrive at an optimal constrained solution since the constraint should operate on the whole 

range of zip codes at the same time. An investigational attempt to implement this form of constraint 

would be of interest. 
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3.11.3 The Introduction of New Causal Geographical Rating Variables in California 

The Underpinnings of Proposition 103 

Proposition 103, which passed as a referendum in 1988, can be thought of as the California 

culmination of events that began with the publication of Casey et al. (1976) [26]. The Proposition‘s 

intellectual underpinnings seem to be traceable to Casey et al., the subsequent events and 

publications11 associated with the revisions to the Massachusetts ratemaking procedures in 1978, and 

the publication of Phase I (1978) [19] and Phase II (1979) [20] by the CDI. 

Proposition 103 requires that driving record be made the most important rating variable, and 

suggests that territory should be made much less important. This clearly mirrors the proposal in 

Ferreira (1978a) [28] and the subsequent Massachusetts experience. Proposition 103‘s use of years of 

driving experience as a rating variable, and prohibition of the use of age clearly mirrors the proposal 

in Shayer (1978) [34] and subsequent adoption in Massachusetts. The system of factor weights, 

which sometimes requires that rates be tempered, bares resemblance to the asymmetrical pricing 

introduced in Ferreira (1978b). And clearly these Massachusetts papers and developments drew 

heavily on the SRI Report of Casey et al. So the link seems pretty clear. Phase I can clearly be seen 

as a precursor in that it developed a ―band‖ system of territorial rating that was emulated in the 

regulations used to implement the Proposition. And portions of Phase II were clearly in direct 

response to Casey et al. 

Objections to Territory Immediately Preceding Proposition 103 

The central argument against territorial rating by Proposition 103‘s precursors was its lack of 

causality and perceived arbitrariness. 

Casey et al. argued, among other things, that territorial ratemaking was easy to criticize because of 

the subjective procedures used in grouping together geographical units into territories. It was argued 

that this arbitrariness could result in unfairly discriminatory rates, which did not reflect actual loss 

propensity. Phase I (1978) [19] seconded the concern about the arbitrariness with which territorial 

definitions were drawn up. 

Shayer (1978) [34] criticized territory for not being a causal rating variable, stating that it was a 

surrogate for truly causal forces such as traffic density and road quality. We can see that this criticism 

of a lack of causality is crucial by examining the paper‘s discussion of other rating variables. For 

                                                           

11 For instance, Shayer (1978) [34], Ferreira (1978a) [28], and Ferreira (1978b) [29], Change and Fairley (1978) [27] and 
Stone (1978) [35]. 
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instance, despite the fact that years of driving experience is largely beyond the control of the insured 

just as age is, Shayer advocates its use in lieu of age, arguing the plausibility of the causal relationship 

between experience and loss propensity. Also, years of driving experience was deemed acceptable 

despite the fact that, by the line of reasoning she used in relation to age, years of driving experience 

would have no incentive effect. So it seems clear that causality was a determinative factor. 

In California itself, Phase I (1978) [19] largely took the industry to task because it had failed to 

explain why geography had a significant impact on loss costs, and essentially argued that the industry 

had brought the then present state of affairs upon itself by not responding to the public‘s growing 

demand to know why they were being charged particular premiums. The authors of Phase I even 

unsuccessfully tried to relate geographical loss costs to causal geographical variables such as 

population density, topography, road quality, and weather. Although not explicitly arguing for the 

introduction of causal geographical rating variables, Phase I was arguing that if some form of 

analysis showing the true causal geographical forces at work on territorial loss costs were not 

forthcoming, the existence of territorial rating might be imperiled. 

Also in California, in Phase II (1979) [20], the authors attempted to draw a link between a causal 

geographical variable—traffic enforcement—and geographical loss costs. They also attempted to 

analyze the impact of differences in the classification distribution on geographical loss costs.  

Basis for Introducing Causal Geographical Rating Variables 

By eliminating the determinative objection, which involved a lack of causality, on the basis of 

Proposition 103 and its associated regulations themselves and on the basis of factors we have 

pointed out earlier in our study, it seems that it would be worthwhile to investigate the introduction 

of new causal geographical variables into the personal automobile classification plan. 

Under the Proposition, the California Insurance Commissioner has the power to introduce new 

rating variables that have been demonstrated to have a ―substantial relationship to the risk of loss.‖ 

Currently, two such geographical rating variables exist – relative claims frequency and relative claims 

severity.  

Since in Shayer, and virtually everywhere else, it is explicitly recognized that traffic density is a 

causal geographical rating variable, and since lack of causality seems to have been such an important 

concern in the prelude to Proposition 103, if a suitable method of measuring traffic density at the 

zip code level could be agreed on, it could be introduced as a rating variable by the commissioner. 

Zip codes with similar traffic densities could be grouped via an objective means like cluster analysis, 
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or the existing manual methods of grouping frequency and severity bands could continue to be 

employed. Sequential analysis of the resulting bands would seem to be an easy enough process.  

Since the CDI itself commissioned the earlier study of the enforcement ratio in Phase I, an 

investigation and enforcement ratio based upon property damage liability claims would seem to be 

in order. The non-actuarial rationale for the introduction of such a causal geographical rating 

variable is overwhelming because of the potential for loss prevention incentives. 

The introduction of medical and repair cost indices at the zip code level, if they could be related 

to loss severity, would also seem to be uncontroversial candidates for introduction as causal 

geographical variables for the appropriate coverage parts. 

As causal geographical variables are introduced, the more ―undesirable‖ geographical variation in 

frequency and severity, with no known cause, would be captured in the relative frequency and 

severity bands. Perhaps in tandem with or shortly following the introduction of causal geographical 

rating variables, the scope of relative frequency and relative severity, which would become nothing 

short of unexplainable geographical variation in loss costs, could be reduced even further than it is 

now, in effect even further achieving the objective of the Proposition in the first place. For instance, 

the sum of the factor weights for relative frequency and relative severity could be required not to 

exceed the factor weight for years of driving experience. Or, perhaps the relative frequency and 

severity factor weights could be restricted in relation to the size of the smallest causal geographical 

rating variable. 

What seems clear is that the introduction of causal geographical rating variables, combined with 

reductions in the scope of relative frequency and severity, would improve accuracy and further 

achieve the objectives of Proposition 103. 

4. CONCLUSIONS 

Our mixed model with clustering approach to territory analysis, which is entirely objective, 

generally outperformed the existing Proposition 103 California Frequency and Severity Band Manual 

in terms of mean absolute deviation. This is impressive because the implementation of the new 

concept was rudimentary.  

Significant further work can be done on improving each of the elements of the mixed model, 

which would substantially improve the accuracy of the result. Modest improvements in the 

constrained cluster analysis may also yield additional marginal improvements in accuracy. 
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And after the method is fine-tuned and has matured, it would be a relatively easy matter to 

automate the sequential piecewise procedure employed in the cluster analysis. In that format, the 

approach could become extremely efficient, relative to the manual procedures currently involved 

when extensive territorial refinements are conducted. 

The causal analysis of geographical variation in loss costs, which could ensue from our approach, 

could pave the way for the introduction of new causal geographical rating variables. In addition to 

eliminating criticisms regarding causality and potentially invigorating local loss prevention initiatives, 

this group of largely continuous variables could be integrated with the parameterization of the 

remaining classification plan via the extensive array of predictive modeling procedures that are being 

employed for that purpose. 

Moving forward to a more causally based method of territory analysis will in turn better prepare 

us for the revolutionary ratemaking changes in automobile insurance that are sure to come as the 

means for incorporating data from mobile position-aware devices come into being. 
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Appendix B 

Property Damage Liability Severity 

Call: 
lm(formula = PDSV ~ sqrt(LawDensePopInc25) + sqrt(CommuteMinutes *  
    LawDensePopInc25) + sqrt(POPDENSE) + sqrt(PopDense10) +  
    sqrt(PopDense25) + sqrt(PopDense50) + LosAngeles +  
    LosAngelesArea + SanFrancisco, data = Data11,  
    weights = PDExposure) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-71323  -7633   1124  11427  67306  
 
Coefficients: 
                                                         Estimate  Std. Error  t value  Pr(>|t|)     
(Intercept)    1272.9902      8.2572  154.168  < 2e-16 *** 
sqrt(LawDensePopInc25)  -2467.5218    455.3205 -5.419  6.97e-08 *** 
sqrt(CommuteMinutes  
* LawDensePopInc25)   640.4759     79.3663   8.070  1.43e-15 *** 
sqrt(POPDENSE)   -0.6594      0.1529  -4.313  1.71e-05 *** 
sqrt(PopDense10)   1.0725      0.2975   3.605  0.000322 *** 
sqrt(PopDense25)   -1.7157      0.3584  -4.786  1.87e-06 *** 
sqrt(PopDense50)   8.7453      0.4097   21.346  < 2e-16 *** 
LosAngeles    144.6067     13.1650   10.984  < 2e-16 *** 
LosAngelesArea   84.9154      6.0392    14.061  < 2e-16 *** 
SanFrancisco    61.4017     16.9720   3.618  0.000307 *** 
--- 
Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  
Residual standard error: 16860 on 1492 degrees of freedom 
Multiple R-Squared: 0.6164,     Adjusted R-squared: 0.6141  
F-statistic: 266.4 on 9 and 1492 DF,  p-value: < 2.2e-16 
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Bodily Injury Liability Frequency 

Call: 
lm(formula = BIFQ ~ CommuteMinutes + CommTimeSpaceDensity10 +  
    CommTimeSpaceDensity25 + CommTimeSpaceDensity50 +  
    CommuteMinutes * CommTimeSpaceDensity25 + +LawDensePopInc25 +  
    LawDensePop50 + LosAngelesArea + LosAngeles +  
    SanFrancisco + CommuteMinutes * LosAngeles +  
    LosAngelesArea * LawDensePopInc25 + LosAngelesArea *  
    LawDensePop50 + CommuteMinutes * LawDensePopInc25,  
    data = Data11, weights = BIExposure) 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.3214 -0.4119 -0.1400  0.2401  3.6836  
Coefficients: 
                                                      Estimate   Std. Error  t value  Pr(>|t|)     
(Intercept)                    9.803e-03   7.985e-04   12.277   < 2e-16 *** 
CommuteMinutes       1.178e-04   3.047e-05    3.867  0.000115 *** 
CommTimeSpaceDensity10               2.557e-07   1.402e-08   18.236   < 2e-16 *** 
CommTimeSpaceDensity25       -4.986e-07   8.352e-08   -5.970  2.97e-09 *** 
CommTimeSpaceDensity50       4.256e-07   4.235e-08   10.049   < 2e-16 *** 
LawDensePopInc25    3.717e-01   2.131e-01    1.745  0.081265 .   
LawDensePop50        -1.977e-01   4.176e-02   -4.734  2.41e-06 *** 
LosAngelesArea     5.829e-03   1.620e-03    3.597  0.000333 *** 
LosAngeles                -1.188e-02   4.391e-03   -2.705  0.006908 **  
SanFrancisco                -3.772e-03   8.008e-04   -4.711  2.70e-06 *** 
CommuteMinutes: 
CommTimeSpaceDensity25    1.072e-08   2.875e-09    3.728  0.000200 *** 
CommuteMinutes: 
LosAngeles                 8.224e-04   1.570e-04    5.240  1.84e-07 *** 
LawDensePopInc25: 
LosAngelesArea           5.635e-01   1.646e-01    3.424  0.000634 *** 
LawDensePop50: 
LosAngelesArea            -9.075e-01   2.159e-01   -4.203  2.80e-05 *** 
CommuteMinutes: 
LawDensePopInc25         -1.772e-02   7.293e-03   -2.430  0.015204 *   
--- 
Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  
 
Residual standard error: 0.7196 on 1470 degrees of freedom 
  (17 observations deleted due to missingness) 
Multiple R-Squared: 0.719,      Adjusted R-squared: 0.7163  
F-statistic: 268.6 on 14 and 1470 DF,  p-value: < 2.2e-16  
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Property Damage Liability Frequency 
Call: 
lm(formula = PDFQ ~ sqrt(CommuteMinutes) + sqrt(CommTimeSpaceDensity10) +  
    sqrt(CommTimeSpaceDensity25) + LosAngeles +  
    sqrt(CommuteMinutes * CommTimeSpaceDensity10) +  
    sqrt(CommuteMinutes * CommTimeSpaceDensity25) +  
    POPDENSEPOP + PopDensePop10 + sqrt(PopDensePop25) +  
    sqrt(CommuteMinutes * PopDensePop10) + sqrt(CommuteMinutes *  
    PopDensePop25) + sqrt(CommuteMinutes * LosAngeles),  
    data = Data11, weights = PDExposure) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.9499 -0.4954 -0.1054  0.3493  3.6748  
 
Coefficients: 
                                     Estimate  Std. Error  t value  Pr(>|t|)     
(Intercept)                        3.345e-02   1.869e-03   17.896  < 2e-16 *** 
sqrt(CommuteMinutes)            -6.481e-04   3.662e-04   -1.769  0.077018 .   
sqrt(CommTimeSpaceDensity10)  2.235e-04   3.764e-05    5.938  3.59e-09 *** 
sqrt(CommTimeSpaceDensity25)   -6.401e-04   2.505e-04   -2.555  0.010731 *   
LosAngeles                               4.305e-02   9.978e-03    4.314  1.71e-05 *** 
sqrt(CommuteMinutes *  
CommTimeSpaceDensity10)  -2.238e-05   7.159e-06   -3.126  0.001807 **  
sqrt(CommuteMinutes *  
CommTimeSpaceDensity25)    1.417e-04   4.752e-05    2.981  0.002918 **  
POPDENSEPOP                      1.048e-06   7.161e-08   14.632  < 2e-16 *** 
PopDensePop10                  -6.204e-06   3.021e-07  -20.539 < 2e-16 *** 
sqrt(PopDensePop25)             1.659e-03   8.264e-04    2.007  0.044943 *   
sqrt(CommuteMinutes *  
PopDensePop10)             4.890e-05   7.432e-06    6.580  6.53e-11 *** 
sqrt(CommuteMinutes *  
PopDensePop25)            -3.966e-04   1.567e-04   -2.531  0.011466 *   
sqrt(CommuteMinutes *  
LosAngeles)                -7.302e-03   1.892e-03   -3.859  0.000119 *** 
--- 
Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  
 
Residual standard error: 0.8041 on 1472 degrees of freedom 
  (17 observations deleted due to missingness) 
Multiple R-Squared: 0.6166,     Adjusted R-squared: 0.6134  
F-statistic: 197.2 on 12 and 1472 DF,  p-value: < 2.2e-16  
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Bodily Injury Liability Severity 

 

Call: 
lm(formula = BISV ~ LawDensePopInc25 + LawDensePop50 +  
    LawDensePop50 * LosAngeles + CommuteMinutes +  
    CommuteMinutes * LawDensePopInc25 + CommuteMinutes *  
    LawDensePop50 + CommTimeSpaceDensity10 + CommTimeSpaceDensity50 +  
    LosAngelesArea, data = Data11, weights = BIExposure) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-577104  -76520    7645   91232  852072  
 
Coefficients: 
                                                  Estimate    Std. Error  t value  Pr(>|t|)     
(Intercept)                                      7.333e+03  1.898e+02   38.639  < 2e-16 *** 
LawDensePopInc25                          6.512e+04  3.685e+04   1.767   0.07736 .   
LawDensePop50                             7.103e+04  3.622e+04   1.961   0.05009 .   
LosAngeles                                2.560e+03  9.074e+02   2.822   0.00484 **  
CommuteMinutes                            5.159e+01  7.561e+00   6.824  1.28e-11 *** 
CommTimeSpaceDensity10                   4.546e-03  1.691e-03    2.689   0.00724 **  
CommTimeSpaceDensity50                   1.039e-01  7.567e-03   13.737  < 2e-16 *** 
LosAngelesArea                            3.892e+02  4.994e+01    7.794  1.21e-14 *** 
LawDensePop50:LosAngeles          -6.066e+05  3.051e+05  -1.988   0.04700 *   
LawDensePopInc25:CommuteMinutes  -3.607e+03  1.236e+03  -2.918   0.00358 **  
LawDensePop50:CommuteMinutes      -6.545e+03  1.365e+03  -4.795  1.79e-06 *** 
--- 
Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  
 
Residual standard error: 141000 on 1490 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-Squared: 0.4232,     Adjusted R-squared: 0.4194  
F-statistic: 109.3 on 10 and 1490 DF,  p-value: < 2.2e-16  
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Appendix C 

Bodily Injury Liability Frequency MAD Comparison by CAARP Territory 

CAARP 

Zip Codes 
not fully 
credible Zip Codes 

CAARP 
MAD 

10Mile 
MAD Frequency 

1 4 5 0.0004 0.0006 0.0109 

2 84 84 0.0016 0.0009 0.0072 

3 7 9 0.0008 0.0006 0.0131 

4 46 47 0.0015 0.0010 0.0096 

5 21 31 0.0021 0.0020 0.0169 

6 31 32 0.0012 0.0017 0.0086 

7 21 39 0.0015 0.0012 0.0136 

8 17 19 0.0008 0.0019 0.0121 

9 7 11 0.0006 0.0013 0.0114 

10 7 13 0.0022 0.0032 0.0206 

11 8 16 0.0020 0.0021 0.0188 

12 0 3 0.0003 0.0031 0.0144 

13 14 29 0.0011 0.0012 0.0119 

14 1 3 0.0004 0.0036 0.0187 

15 10 12 0.0030 0.0043 0.0200 

16 11 29 0.0010 0.0009 0.0144 

17 5 16 0.0027 0.0024 0.0170 

18 56 64 0.0065 0.0030 0.0123 

19 5 6 0.0021 0.0025 0.0189 

20 7 11 0.0016 0.0011 0.0149 

21 2 3 0.0011 0.0013 0.0166 

22 9 11 0.0048 0.0034 0.0192 

23 9 10 0.0091 0.0013 0.0100 

24 10 11 0.0009 0.0012 0.0124 

25 28 31 0.0008 0.0011 0.0090 

26 21 28 0.0011 0.0014 0.0131 

27 5 7 0.0007 0.0017 0.0154 

28 5 18 0.0053 0.0016 0.0234 

29 19 31 0.0051 0.0020 0.0173 

30 5 23 0.0039 0.0028 0.0282 

31 1 12 0.0040 0.0031 0.0277 

32 8 35 0.0036 0.0033 0.0259 

33 3 8 0.0027 0.0028 0.0237 

34 3 22 0.0021 0.0020 0.0206 

35 5 12 0.0023 0.0027 0.0266 
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CAARP 

Zip Codes 
not fully 
credible Zip Codes 

CAARP 
MAD 

10Mile 
MAD Frequency 

36 6 10 0.0058 0.0108 0.0409 

37 7 10 0.0055 0.0046 0.0323 

38 6 11 0.0025 0.0040 0.0325 

39 21 21 0.0053 0.0072 0.0335 

40 6 9 0.0029 0.0034 0.0278 

41 1 6 0.0031 0.0025 0.0236 

42 1 5 0.0023 0.0037 0.0224 

43 1 6 0.0008 0.0024 0.0195 

44 2 11 0.0011 0.0015 0.0216 

45 1 11 0.0024 0.0032 0.0249 

46 7 37 0.0022 0.0024 0.0199 

47 4 19 0.0015 0.0019 0.0207 

48 5 16 0.0010 0.0022 0.0184 

49 0 5 0.0021 0.0046 0.0250 

52 8 18 0.0014 0.0011 0.0171 

54 56 65 0.0019 0.0018 0.0143 

57 5 8 0.0012 0.0015 0.0130 

59 9 17 0.0015 0.0019 0.0203 

64 75 92 0.0026 0.0015 0.0130 

65 10 13 0.0013 0.0015 0.0131 

66 35 44 0.0025 0.0013 0.0159 

67 36 37 0.0020 0.0007 0.0117 

68 28 32 0.0048 0.0015 0.0143 

71 8 10 0.0032 0.0055 0.0192 

74 20 33 0.0014 0.0012 0.0132 

75 19 30 0.0018 0.0013 0.0135 

76 10 15 0.0011 0.0019 0.0118 

77 43 45 0.0015 0.0010 0.0097 

80 35 37 0.0020 0.0016 0.0122 

89 3 8 0.0011 0.0014 0.0152 

93 6 12 0.0006 0.0008 0.0137 

94 3 14 0.0012 0.0010 0.0167 

95 2 6 0.0027 0.0060 0.0215 

96 6 16 0.0010 0.0013 0.0134 

97 1 6 0.0007 0.0007 0.0127 

98 7 15 0.0014 0.0015 0.0145 

99 12 14 0.0016 0.0026 0.0150 
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