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INTRODUCTION 

One of the most important properties of a distribution function 
is that it fits the data well enough for the decision-makers' or 
analysts' purposes. The statisticians' problem is to select a specific 
form for the distribution function and to determine its parameters 
from the available data. Various methods (graphical method, 
method of moments, maximum likelihood method) are available 
for that purpose. 

In many real world situations a single distribution function, 
however, may not be appropriate over the entire range of the 
available data. This suggests that the underlying process changes 
over the range of the respective variable. This fact should be 
considered in curve fitting. A typical example of such a situation 
is given in Figure x representing third party liability losses for 
t rucks.  
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Fig. x. Loss Distribution. 
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It  is interesting to speculate about the different raisons d'etre 
(Seal E5]) for the observed discontinuity. I t  may be the result of 
out-of-court or in-court settlements or could stem from differences 
between bodily injury and property damages. 

To represent such data a combination or a mixture of distribution 
functions appears to be more appropriate. Various authors have 
considered this problem. While Almer [I] discusses the problem 
in general terms, Andreasson [2] represents the distribution of 
the claim size in the Swedish third party motor insurance by a 
sum of exponentials (exponential polynomial) and uses a graphical 
procedure to estimate the parameters. Coppini [3] derives the 
distribution of the length of sickness as the weighted sum of two 
gamma distributions, one referring to sick males and the other to 
sick females. The purpose of this paper is 

(a) to present a different approach in mixing distribution functions 
to represent data as shown in Figure I, and 

(b) to use a computer based search procedure to determine the 
parameters. 

~¢[ULTISTAGE C U R V E  FITTIN'G 

Let x(x > o) be a random variable whose distribution function 
F(X) has to be determined from a given set exhibiting such dis- 
continuities. Since a single function for F(X) appears to be in- 
appropriate, one can think of F(X)  being composed of various 
expressions which are defined over specific intervals only. Let  the 
index k(k = I, 2 . . . . .  K) represent the kth interval of the random 
variable. We define as T~ the transition point between interval  
k and k + I, postulate T~ < T~+x and set To = o and TK = oo. 
The function representing the kth interval is defined as g,(x). 
Thus, the integral 

T k 

.f gk(x)dx (i) 
T k . J. 

is contribution to F(X).  Adjustments however, must be made to (I) 
to insure tha t  the sum of the integrals 8ver all intervals equal to I. 
Let ~ be the adjustment factor for interval k. Thus we can define 

k - t T i  . V  

F(X) = X x~ f gs(x)dx +m~ .[ g~:(x)dx Tk - t  <_X < T~: (2) 
j-I T]--I T~--I 
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which satisfies 

if ~ is defined as 

I 

OCk -~- 

g Tk 

X ~ S g ~ ( x ) d x = i  (3) 
k -  t T k - t  

gs(x)dx 
Tj 

Tj 

or in its recursive equivalent 

X 

k = I  

k = 2 , 3  . . . . .  K 

k = I  

oct = ~ glc_z(x)dx 
Tk - t 

~t-z k =  2 ,3  . . . . .  K 
"S g~(x)dx 

T k -  t 

For a given form of g~(x) the problem remaining is to determine 

(a) the number of intervals K, 
(b) the transition points T~, and 
(c) the parameters of the distribution to represent the kth interval. 

The values selected depend of course on the criterion used in the 
curve fitting process. Various criteria are available with the squared 
sum of the error being used most frequently. The squared sum of 
the errors can be defined by  

N 

S = Z [F(X = y~) - -  (i/N)], (5) 

with y,  (i = i, 2 . . . . . .  N)  being the i th observation and y, < y~ +z. 
Since accuracy in the tail areas appears to be of relevance in the 
evaluation of risk, heavier weights of the errors in the tails may be 
appropriate. It  will be shown below that  the suggested multistage 
process improves specifically the fit in the-tails without using any 
arbitrarily assigned weights. Furthermore, for premium calcula- 
tions it seems that  the mean of the fi t ted distribution should be 

x3 
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as close as possible to the sample mean, ~. Thus we can augment  
the criterion of minimizing the squared 

K T k 

Z o~k S x g k ( x ) d x = ~ + d l - - d o  (6) 

with 
d~, do _< ¢ 

d, and do- are tolerances which must  be less than or equal to a 
managerially determined level c. Of course c can be zero. 

Thus the problem is to determine optimally the above para- 
meters using a given criterion. Although a number of methods are 
available for solving opSimization problems, the success of any 
one method depends  on the problem. Because of the existing 
discontinuities in the response surface a multidimensional search 
technique will be used for determining all parameters. An excellent 
discussion of search techniques can be found in Wilde [6]. 

PATTERN SEARCH 

The search method to be used here has been developed b y  Hooke 
and Jeeves [4] and is known as pat tern search. Their method takes 
advantage of the fact that  most response surfaces have one or 
more ridges which lead to the optimum. Thus the purpose is to 
find a ridge and follow it to the optimum. In pattern search the 
search begins by  exploring the response surface in the vicinity 
of a randomly or other~vise selected base point. With repeated 
success the explorations become longer taking advantage of an 
established pattern. Failure to improve the criterion, however, 
indicates that  one must abandon the old pat tern and t ry  to find 
a new one which will be followed until the pattern is broken again 
and the process has to be repeated. The so determined pat tern will 
coincide with the ridge. In the neighbourhood of the optimum, 
the steps become very small to avoid overlooking any promising 
directions. The optimum is reached and the search terminates when 
the predetermined final step size fails to improve the criterion. 
Repeated  searches from different starting points reduce the likeli- 
hood of the optimum being a local extreme point. The ideas of 
pat tern search are exemplified for a two dimensional search problem 
in the Appendix. 
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ILLUSTRATIONS 

The multistage curve fitting is illustrated by two examples. 
Both examples come from the authors' experience in analysing 
insurance problems for a company operating a large fleet of vehicles. 
Various distributions can be used to present g~(x) and there is no 
restriction to use the same distributions for all intervals k. For the 
purpose of these examples, g~(x) was chosen to be exponential for 
all intervals with parameter  X~, since it appeared appropriate and 
easy to integrate. 

Example 2 
This example consists of 75 data  points representing collision 

claims for cars during z969/7o. The data  are exhibited in Figure 2 
by asterisks and have a mean of y = $ 363.I 3. The optimal values 
of the parameters of the distribution function F(X)w i th  the 
squared sum of the errors and the mean of F(X) resulting from 
the pat tern search are given in Table I. The initial step size for 
Xk = .ooo5 and for T~ = $ 5o.oo while the final step size is .oooox 
and $ x.oo respectively. 

TABLE I 

Results: Example I 

Number of Stages (K) 

K = I  K = 2  K =  3 K =  4 

Xt .003633 .oo:z363 .oo2z48 .oo2x87 
Tt - -  $ 35.94 $ 54.69 $ 5.62 
Am -- .004039 .004969 .oo4996 
Ts - -  -- $ 243.75 $ 199.99 

X~ - -  -- .oo x 87x .002906 
T,  -- -- -- $ 453.x2 
X4 -- -- -- .oox4o2 
S .x3684 .xz688 .02890 .ox948 

$ 275.26 $ 261.88 $ 346.86 $ 368.27 

The number of transition points K is determined similar to the 
multiple regression model. The value of K will be increased as 
long as a "worthwhile" improvement in S justifies doing so. 
Figure 2 illustrates the distribution functions for K < 4 indicating 
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that  the multistage process clearly improves t, h e fits. Furthermore 
it is interesting to note that  the improvements take place primarily 
in the right taft. While the means of the fi t ted distribution functions 
for smaller values of K deviate substantially from y, ~ approaches 
5~ reasonably closely for K ~ 3. 

Example  2 

The data  in the second example are 98 third par ty  liability losses 
for trucks during I97o/7I. The data are exhibited in Figure 3 by  
asterisks and have a mean of $ 399.49- A first run of the pat tern 
segrch using the same step sizes as in Example z resulted in means 
of the fitted distribution functions ~ as given in Table 2 which 
are too far off from ..9 = $ 399.49. Thus the criterion of minimizing 

TABLE 2 

M4a.s o/the Fitted Distributio~ Functions 

Number of Stages (/Q 

K = t  K = z  K = 3  K = 4  

$ z98.44 $ z7L89 $ z54.63 $ 256.05 

the squared sum of errors was augmented by  (6) with d, = d~ = o. 
O f  course this implies that  the number of degrees of freedom is 
reduced by  one. The parameter  determined as a result of the others 
was selected to be kK. Table 3 summarizes the results. 

TABLE 3 

Results: Exampte 2 

Number of Stages (K) 

K=z K=2 K= 3 K=4 

M .002503  .oo5o8 z . 004280  .oo4280  
T ,  - -  $ 448 .64  $ z34-36 $ z35.93 
~= - -  .ooo49~ .00885 z .oo9I  63 
T~ - -  - -  $ 3o7 .8o  $ 254 .68  
Xa - -  - -  . ooo4899  .oox839  
T= - -  -- - -  $ I , I48.30 
X4 -- -- -- .ooo2o99 
S 3.526z .2~75~ .o763o .o68o4 
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Figure 3 again illustrates the distribution functions for K _< 4. 
J 

Again considerable improvements resulted over a one stage fit. 

APPENDIX 

The concept of pattern search is explained and illustrated for 
the two stage fit with equal means of example 2. The example has 
two independent parameters, the exponential parameter kl, and the 
transition point T1. The exponential parameter X2 is determined 
by X~, T~ and the restriction of equal means. The contour lines of 
the response surface expressed by the squared sum of errors for 
values of the independent variables X and T are pl6tted in Figures 
4 and 5. 

The search is illustrated in Figures 4 and 5 with solid lines 
representing successful perturbation and pattern moves while 
broken lines indicate perturbations and pattern moves which fail 
to improve the objective function. The search begins by exploring 
the response surface at base point B~ = H1 through changes in the 
transition point in T (Figure 4). An improvement in the criterion 
leads to a temporary head hi(T). From here local explorations 
through changes in X lead to hi(T, k) and the second base point B~, 
since only two independent variables exist. Reasoning that another 
perturbation about B~ would produce similar results, one creates 
a new temporary head H2 by adding the vector B~ B2 to Point B2. 
This represents a pattern move. Local explorations about H~ 
produce B v As above local explorations about B~ are omitted and 
a new temporary head H3 is determined by adding the vector B 2 Ba 
to point By As can be observed from Figure 4, Ha fails to improve 
the criterion. The pattern is broken and local explorations must 
take place at B 3 which lead to B 4 and via a new pattern eventually 
to the temporary head H v At H a the pattern is broken again and 
local explorations about B a must resume which lead via pat tern 
moves to H n  (Figure 4). This process is continued with reduced 
step sizes and illustrated in Figure 5. The optimum, B~a, is reached 
when perturbations with the predetermined minimum step size fail 
to improve the criterion. Repeated searches from different initial 
base points should be performed to insure the optimum is a global 
optimum. 
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