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ABSTRACT AND INTRODUCTION

Quadratic programming means maximizing or INININIZING a
quadralic function of one or more variables subject to linear restric-
tions i.e. lincar equations and/or inequalities.

Among the numerous insurance problems which can be formulated
as quadratic programs we shall only discuss four, namely the
Credibility, Retention, IBNR and the Cost Distribulion prodlems.

Generally, there is no explicite solution to quadratic optimization
problems, only statements about the existence of a solution can be
made or some algorithm may be recommended in order to get exact
or approximate numerical solutions. Restricting oursclves to
typical problems of the above mentioned type, however, enables us
to give an explicit solution in terms of general formulae for quite
a number of cascs, such as the onedimensional credibility problem,
the retention problem and—under relatively week assumptions—
for the IBNR-problem.

The results given here are by no means new. The only goal of
this paper is to describe a few fundamental insurance problems
from a common mathematical standpoint, namely that of quadratic
programming and at the same time, to draw attention to a few
special aspects and open questions in this {ield.

1. T CREDIBILITY PROBLEM

We consider a portfolio consisting of N different risk categories
jlj=1,2,..... N) for each of which claims statistics over the
last » years 1 =1,2, ..... n) are available. With Py > o0, we
denote the volume of class no. 5 for the year no. 7 (volume = number
of risks, total sum insured or underlying premium volume) and
with Yy the corresponding total of claims (or number of claims) so
that the ycarly loss ratios (or the claims frequency) are given by
‘XU = YU/PU-
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Tror the entire statistical period we thereforc have

avolume P.; = X Py

i=1

andalossratio X.; = Y .;/P.;withY ;= 2 Yy.
f=1
Now, the so-called credibility problem consists of estimating the
expected value of A, for a fixed risk category % under the condition
that the latter depends on a risk parameter 0 which characterizes
the heterogeneity of the portfolio. Or, expressed a little more
mathematically:

Estimate E [X. x| P.x = P, 0; = 0]
HEX. g | L= P, 0 =0] = w0 independently of I,

a*(0)

1)
where X . and X .; are assumed to be stochastically independent
for j # k and fixed 0 and 0; and furthermore 05 independent and
identically distributed according to a distribution U(0) which is
called “structure function”.

Confining ourselves to lincar and unbiased minimum square
cstimates we may finally write:

For fixed % determine g (¢ = 1,2, ...%; §==1,2, ...N) such
that

Var [X.g | Pop=P, 0 =0] =

N n
() E[p0r) — £ X a5 Xy}] == minimum
foli=l
(i) E[X XeayXy] = Eq [p(0)] (unbiascdness)
Jo1 41
(1)) oLay<<1fori =1,2,...nandj—=1,2,...N.

This is a quadratic program for the 72¥ unknowns ag.

I'ts explicit solution is given by [2]
N " —-
Rg = x X aUXij:ka\—.k—}— (I—YL')X

jo1 01

wh ., . .
where vy — v L wh Credibility of risk category &
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with v = Eg[c2(0)], w = Vary[u(0)]
— N N
and X = 2 (y/y) X,y withy= 2 vy.5
=1 je1
We can therelore say that the estimate which is optimal in the
above sensc is a weighted average of the individual claims ex-
perience X . and the overall claims expericnce X The latter is in
general, however, not identical with the ‘“‘natural” portfolio
average X .. where the individual claims experiences are weighted
with the rclative premium volumes, namely

N N
X..= Z(PyP.)YX, with .. == X [Py
=1 7
but instead, the correct weights are, as we have just seen, the
relative credibilitics, since

N N
X=X (v.g/ly) Xy with v —= 2 v
i=1 1

From the special form of the credibilities y.; we can also im-
mediately see that

—the larger the risk category 7 (i.c. the larger P.;), the larger is
Y-i

—the larger the variations of the Xy's in time (i.c. the larger v),
the smaller is .4

—the larger the variations of the Xy's within the porifolio (ie.
the larger w), the larger is v.y

These observations match perfectly with what we may already
have intuitively expected and this makes it rclatively easy to
discuss the general results also with insurance practitioners who
are not necessarily mathematically oriented.

However, this very practical advantage scems to be lost as sopn
as we change to two- or more-dimensional risk parameters, since at
least so far, we have not been able to write up a similar kind of
explicit solution for 0 = (0y, 0/), i.e. for the case where the port-
folio is divided into subgroups by two or more criteria at the same
time.
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2. RETENTION PROBLEMS

The retention in reinsurance arrangements can be determined
by means of uadratic optimization as is demonstrated in the fol-
lowing summary of a chapter from [1].

Let us consider a portfolio consisting of IV independent risks,
where the -th risk is characterized by S, the accumulated claim
in a given time interval. An individual reinsurance arrangement is a
function g; which determines a retained portion g;[S@)] of SO,

Coufining ourselves to the proportional case, let £@) denote the
price demanded by the reinsurer for taking over the risk completely,
and P®, (1 —a;) for accepting the cession 1 —a;. Then the
stochastic variable

M =

/o=

<

S () — S8 (1)

1

measures the profit carned on the retained portion of the portfolio.
Then our problem is that of finding those rcinsurance arrangements
which guarantee the given expected profit I2(Z) in the retention
with the smallest possible deviations. In other words, we determine
the a4 so that

Var(Z) == min.
under the addilional condition that

E(7Z) = constant.

Tor this purpose we introduce the Lagrange multiplier 2 and dil-
ferenciate the function

$ == Var(7) + aE(7) (2)

partially with respect to a;. Because of the independence of the
S we have

N
Var(Z) = £ a Var(S®)

and o
E(Z) = & a(PO - E[S®)).
I‘rrom .
£~ 20y Var[SO] + 2(PO) — E[SO)) = o (3)

2
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for all 7 it follows that
P — E[SW]
“=C TV 5oy (4)
C is called “"absolute Retention™ (cf. [1]).

It depends on the insurance carrier’s stability policy. If e.g. ac-
cording to the ruin critcrion, the probability of ruin should be less
than a given P, it is shown in [1] that

2%

C= —2
e- l In P I

44
under the assumption that S¥ = ¥ Y@

i=1

where

Ajis a Poisson distributed number of claims variable,

Y arc independent non-ncgative variables with identical dis-
tribution,

2 is the amount of free reserves, and
e is the ratio of proportional loading in the rctained portion in
relation to that in reinsurance.

Replacing those a; which exceed 1 by 1 yields an optimal solution
for a smaller E{(#) than the one given.

3. Tie IBNR-PROBLIEM

In this context TBNR stands for both “Incurred Bul Not
Reported” and inadequate reserving of already reported claims. Tt
is a wellknown fact when dealing with so-called “longtail business”
that the final number of claims and final total yearly claims cost
are only known after scveral ycars. The insurer-—and especially
the excess of loss reinsurcr of Motor Liability e.g.—is therefore
forced to estimate final loss ratios either for premium calculation or
reserving purposcs on the basis of incomplete statistics. These
purcly statistical observations are usually presented as follows in
what is called an “IBNR-triangle”:
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Loss valios as per the end of

year of

occurrzice 1966 1967 1968 1960 1970
1966 i=75 Xl Xl X0 X5 X0
1967 1= 4 X1 Xo® X ) X
1968 1--3 A3 Xp® Y@
1969 i =2 Xal) X9
1970 i=r1 Xy

c.g. Xa® = loss ratio for 1967 as per December 31st, 1969
Lf there arc i statistical years in total, we have a triangle
W ={XP|i=1,2,..... m; h=1,2 i}

and our problem is to estimate the final loss ratio e.g. for the year
1 = q or, in other words:

TFor the conditional expectution ],[\’(“’) | NY] determine an
estimator p.(co) such that

E[{E[X{ |\X]— (“3’} ¥ — minimum
and E[a{] = E[E[X{™ |NX]].
We are thus looking for an unbiased minimum square estimator
for the—at present unknown—final loss ratio of the year 7 = g.
Under the assumptions

(i) X stochastically independent of X#? fori /.1
(ii) E[X™] = ™ independently of 7
(iliy P, Cov XM, X)) = ¢,,. independently of 2 and with [, —
underlying premium volume of year ;

n 4
(iv) pf = X I @, X ic. we confine ourselves to linear esti-
-1 Aol
mators

(v) loss ratio already final after m years: X o X[

we are again confronted with a quadratic program, this time for

m(m + 1)
o —— 1 7

unknowns ¢z, and subject to simply one boundary

condition, namely

e = E % aye.
im1 A1
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According to [3] the general solution of this problem is described
by the two following equations

G = o X P8, B X)) + (g 87X, (1)
i1

0 g Pile, 871 + (g By '8y (2)
e A TN o Yy Pg 2y =

-

[

where the following vector and matrix notation has been used

— (1) — - — (1 — -
et €1y Cry - - - Cyy XM ot
c® Coy Cay - - - Co; x® -

G =1 - Bi=] - e » Gy =
) q0)
¢ ] | Ci1 G- e O X7 | Coni

(B;7 ' — inverse of the covariance matrix B;) and where (g, b) denotes
the inner product of the two vectors a4 and 6.

If the expectations ¢, and covariances B, are known, we can
therefore first calculate the multiplier o from cquation (2) and
afterwards, by introducing a into (1), dircctly get the estimator
udm  Equation (2) is, by the way, nothing clse than the condition
of unbiasedness applied to equation (1).

Asshown in {5], these calculations become much more transparent
if
gither (1) X = X@&-1) 4 V), Y& independent of X2-1) (ad-
dilive model)
or (i) X&) = AWM X-1) A independent of X -1 (smnlii-
plicative model)
or (i) X = AWXR-1) 4 V) ; Xh-1) YO AWM indepen-
dent (the “mixved” model)

because in these cases the inverses B~* can all be explicitly wiitten
up (their elements are all equal to zero cxcept those in the diagonal
and in the two adjacent “diagonals’).
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When dealing with concrete practical problems, the parameters
¢,, and B, arc of course unknown, thesc parameters also have to be
estimated from the information contained in the triangle YX, a
problem which—depending on one’s view—may be formulated as
yet another quadratic programme. In this context, the estimation of
the covariances is of primary interest. Starting e.g. with estimators
Cyy of the form

I m 1{m m m
A o Al 7 (1 r{k \ A 7 (1 ~ r{k
b= —7 { SLXPXP - (XP) X Px 8 PXP)
— Gk i n [} i=h

we may perhaps discover that the corresponding estimators for the
correlation coefficient, namely

are ncither bounded by —1 or + 1 nor—-as it scems reasonable
to assumec—monotonically increasing in A& for # < & It is then
indicated to ““isotonize’ the above Ehk values which is essentially
equivalent to solving a specific quadratic program [4].

4. Tne Cost DISTRIBUTION PROBLIM

We consider an insurance portfolio divided with respect to two

criteria, e.g. branches ¢ (i = 1,2, ...., %) and countries j (§ = 1,
2, ... , m), which has to contribute an amount C to a fund, c.g.
a catastrophy fund.

Furthermore, let A1, Az, . ..., CApand By, Be, ... .. , I3;» denote

the contributions per branch and country, respectively. We assume

Y A= ¥ B; —=C.
o

i1 1
The following table represents the distribution of these costs,
where xyPy stands for the contribution of branch 7 in country 4,

Py being the corresponding volume (e.g. number of risks, sum
insured or underlying premium volume).
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country 1 country2z . . . . . . countrym
branch 1 2y Py %12 Pie Xim Pim Ay
branch 2 xa Pa #a2 Poe Nom Pz Aq
branch n X1 Pyt xp2 Paz Xam Pnm Ap

B, Ba Bn C

We write 4y = a;l’;., By = bl .5, C = cP..

where
Py = 2 Py, Py= 2 Pyand .. = ¥ X Py
j-t (LR ] te1 =1

Now our problem consists in minimizing the function

m

X3 (xy—o)2Py such that

(ol fol
Z XpyPry = arly. r=1,2,..... , 1) (1)
i=1
Y xislPis = 05 (s=1,2,..... , 1) (2)
1ol
¥rs 22 0. (3)

As far as we know, this problem cannotl be solved explicitly. We
are thus forced to confine ourselves to a few remarks about the
rare results found until now. FFirst, treating the problem without any
sign-restrictions, we form the Lagrangian

d= T X (xg—c)2Py+2 T 0;(X x5 Py-— Ay)
jm1 =1 =1 1=

+2 T (2 vy Py—DBy).

J=1 i=-1
Putting the partial derivatives with respect to %, to o yields

Xrg = € — 0y — Ag. (4)
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Summing up over 7 and s, respectively, we get for the Lagrange
multipliers 0 and A the equations

E OLPZ.S —I" )\sl).s = (C — bg) 1).5 (S = 1,2, ..... ) 1”') (5)
£ 1
0,Pr. + 2 NP = (c— a;) L. r=1,2,..... )
$o1
which solved for 0 yield
0.Pr. — X 00y == 9y (r=1,2,..... , 1) (6)
i1
' " P, ™
with oy = Y and 3, = Z b;Pry— Ay
Py
RN | Jol
or in matrix-notation
A = 3§
where (i = AN Ciky Atk = Agt =— — Uil
oy
and Y 3; — o.
61

The rank of A is less or equal to # — 1. In the sequel we assume
rank 4 =#»n-—1. In this case the one-dimensional subspace
0 = p.1 is the solution of the homogenous system A0 = o.

To find a special solution 0% of the inhomogenous system we
add the equation

x
0 =o0

because of 2 §; = o the system

€1
(./1 )0:!;=8,0
I00 ....0

has at least one solution too.
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The solution of the system

- . — — — — —
.l L
Y ooy — %23 — @24 . ...—0ap 03 32
(=1
i1
n
N *
— 23 = Ogf — ®34 — 0.3y 03 83
=1
173
—0laqg — €4 . — . (7)
n-1
. *
— Gon by [ 771 0” 81L
| [ - L - . —

introduced in 5) and 4) yicld the x,,.
Explicit expressions become very complicated for # > 3.

Yet, there are some rules for the computation of the determinant
A of the matrix in 7): It is the sum of all productls egp, o,

....aqq, in which every subscript appcars at least once and in
which no 72 factors (& — 2, 3, ..., %) may bc ordered in a cycle as
OLf,iq Ffaty « v o - - O ipip-

Similar rules exist for the next lower subdeterminants of A,
As an example in the casc of # = 3, we have

A = oz oz + oz ez 4 ars azs and the solutions of 5) are

az3 Pas + Pag oz DPag iz Pag
R S DR i N PN O

23 P t1s Pis -+ Pas o1y Pas
M=l b T T T, BT,

oes g #is Pes a1z Pig 4 Pag
Bas=bst T pmd T —x —p %

As the problem can be solved explicitly for # = 2, presumably
cven with the sign restrictions, onc is encouraged to try to solve the
problem “iteratively” in a first step by distinguishing the first line
of A, combining the second, third a.s.o. 1o one single line and solving
this zvin problem (z lines, s columns), then in o second step dis-
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tinguishing the originally second line, combining the third to last
a.s.0.

It seems, however, that this procedurc is not generally applicable,

at least the numerical examples we have dealt with so far by this
method led, in some cases, to solutions, in othets to contradictions.

{r]
(2]

(31

(4]
[5]
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