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ABSTRACT AN]) INTRODUCTION 

Quadratic programming means maximizing or minimizing a 
quadratic fnmtion of one or more variables subject to linear restric- 
lions i.e. linear equations aad/or inequalities. 

Among tile nmnerous insurance problems which can be formulated 
as quadratic programs we shall only discuss four, namely the 
Credibility, Rele,zlt, on, I B N R  and the Cost Dislributionn problems. 

Generally, there is no explicite solution to quadratic optimization 
problems, only statements about the existence of a solution can be 
made or some algorithm may be recommended in order to get exact 
or approximate numerical solutions. Restricting ourselves to 
typical problems of the above mentioned type, however, enables us 
to give an explicit solution in terms of general formulae for quite 
a number of cases, such as the onedimensional credibility problem, 
the retention problem and--under  relatively week assumptions-- 
for the IBNR-problem. 

The results given here are by no means new. The only goal of 
this paper is to describe a few fundamental insurance problems 
from a common mathematical standpoint, namely that  of quadratic 
programming and at the same time, to draw attention to a few 
special aspects and open questions in this field. 

I .  TI lE CREDIBILITY PROBLEM 

We consider a portfolio consisting of N different risk categories 
j (j  ---- I, 2 . . . . . .  N) for each of which claims statistics over the 
last n years (i = I, 2, . . . . .  n) are available. With .Po > o, we 
denote the volume of class no. j for the year no. i (volume = number 
of risks, total sum insured or underlying premium volmue) and 
with Y~ the corresponding total of claims (or number of claims) so 
that  the yearly loss ratios (or the claims frecluency ) are given by 
X u = Yo/Pu. 
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For  the entire statist ical  period we therefore have 
n 

a volun-te P .  j = E P~y 
t - 1  

and a loss ratio X . j  = Y . j / P . j  with Y . j  = E Yg. 

Now, the so-called credibil i ty problem consists of est imating the 
expected value of X .  g for a fixed risk category k uuder  the condit ion 
tha t  the la t ter  depends on a risk paramete r  0 which characterizes 
the he terogenei ty  of the portfolio. Or, expressed a little more 
mathemat ica l ly :  

Es t ima te  E [X.  k 

if E [ X . ~  

Var IX.  k 

P . e = P ,  Ok= O] 

P . k =  P,  0k -=0]  

P . e  = P, 0k = 0] 

= E,(05 independent ly  of P ,  

~ (0) 
P 

where X .  k and X . j  are assumed to be stochastical ly independent  
for j ~ k and fixed Ok and Oj and fur thermore  01 independent  and 
identical ly dis t r ibuted according to a d is t r ibut ioa  U(0) which is 
called " s t ruc tu re  funct ion" .  

Confining ourselves to linear and unbiased minimun-t square 
est imates we m a y  finally write:  

For  f ixed k determine s 0 (i = I, 2 . . . .  n; j - -  I, 2 . . . .  N) such 
tha t  

(i) E [ { ~ ( 0 k ) - -  E E o~uXu}2] --= minimum 
f , * 1  ~ = 1  

iV n 

(ii) E [ )_, E s¢0X0] = Eo [p.(0)] (unbiasedness) 
t ,  I , I , , 1  

(iii) o ~ o ~ o ~ I f o r i - = I , 2  . . . .  ~ z a n d j = I ,  2, . . . N .  

This is a quadrat ic  program for the n N  unknowns ~..  

Its explicit  solution is given by  [2] 

= ,2  0.xv = wx.  + - v,.)X= 
t "  t | i 

w P .  t: 
whore ¥k Crcdibili ty of risk category k 

v - ~- wl~./i" 
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w, itll v = E0[~=(0)], w = Var0[~,(0)] 
N N 

a n d ~ V =  E (YdY) X-J w i t h y =  E y . j .  
I - I  I , , 1  

We cart therefore say tha t  the est imate which is optimal in the 
above sense is a weighted average of the individual claims ex- 

perience X.  a: and the overall claims experience _-Y. The lat ter  is in 
general, however, not identical with the "na tu ra l "  portfolio 
average X . .  where the individual claims experiences are weighted 
with the relative premium volumes, namely 

/v /v 

X . .  = G ( p . d p . . ) X . ~  w i t h P . .  -- 2/ P./  
t - t  t , t  

but instead, the correct weights are, as we have just seen, the 
relative credibilities, since 

/v N 

X =  E (Y.dY) X.~ with y ~ E 7-J 

From the special form of the credibilities y . j  we can also im- 
mediately see tha t  

larger the risk category j (i.e. the larger P . / ) ,  the larger is - - the  
Y. i  

- - the  
the 

- - the  
the 

larger the variations of the Xq's i~ lime (i.e. the larger v), 
smaller is 7 . :  

larger the variations of tile Xv's wilhin, lh~ 15orlfolio (i.e. 
larger w), the larger is y . j  

These observations match perfectly with what  we may  already 
have intui t ively expected and this makes it relatively easy to 
discuss the general results also with insurance practit ioners who 
are not necessarily mathemat ica l ly  oriented. 

However, this very practical advantage seems to be lost as soon 
as we change to two- or more-dimensional risk parameters,  since at  
least so far, we have not been able to write up a similar kind of 
explicit solution for 0 = (0r, 0/z), i.e. for the case where the port- 
folio is divided into subgroups by two or more criteria at the same 
time. 



314 QUAI)RATiC I'I(()GI(AMMING IN INSURANCE 

2. RETENTION PROBLEMS 

The retr~tti(m in reinsurance arrangements  can be determined 
by means of quadrat ic  optimization as is demonstra ted in the fol- 
lowing summary  of a chapter  from [I]. 

Let us consider a portfolio consisting of N independent  risks, 
where the i-th risk is characterized by S(O, the accumulated claim 
in a given time interval. An individual reinsurance arrangement  is a 
hmct ion  g, which determines a retained portion gelS(O] of S(O. 

Confining ourseh,es to the proportional case, let p (o  denote the 
price demanded by  the reinsurer for taking over the risk completely, 
and P(O. (i - -  a,) for accepting the cession I - - a , .  Then the 
stochastic variable 

Z = E adP(O--S(~) )  (I) 

meastn'es the profit earned on the retained portion of the portfolio. 
Then our 1)roblem is tha t  of finding those reinsurance arrangements  
which guarantee  the given expected profit E(Z) in the retention 
with the smallest possible deviations. In other words, we determine 
the a~ so tha t  

Var(Z) -- min. 

under the addit ional  condition tha t  

E(Z) = constant.  

For  this l)url)ose we introduce the Lagrange multiplier X and dif- 
ferenciate the funct ion 

~ - :  Var(Z) -t XE(Z) (2) 

partially with respect to a~. Because of the independence of the 
S(O we have 

a n d  

l?rom 

~ a j  

/q 

Va (Z) = x Wr(S")) 

1,:(z) #" .dR") EfS. ]) 

- -  2a/Var[SO)] + X ( P 0 ) -  E[S0)]) : o (3) 
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for all j it follows that  

aj ~-- C 
l , m  - -  ELs(J)3 

Var IS (J)] (4) 

C is called "absolute Retention" (cf. [I]). 

It depends on the insurance carrier's stability policy. If e.g. ac- 
cording to tile ruin criterion, the probability of ruin should be less 
than a given Po it is shown in [I] that 

2U 
C - -  

p . ] lnPo[  

under rite assuml)tioll that  S (j) -= E y}l) 
1--1  

where 

Aj is a Poisson distributed number of claims variable, 

Y~J) are indepelldent non-negative variables with identical dis- 
tribution, 

u is the amount of free reserves, and 

P is the ratio of proportional loading in the retained portioll in 
relation to that  in reinsurance. 

Replacing those aj which exceed i by I yields an optimal solution 
for a smaller E(Z)  than tile one given. 

3. TIlE [13NR-1)ItOBI,F.M 

In this context IBNR stands for both "Incurred But Not 
Reported" and inadequate reserving of already reported claims. It  
is a weUknowll fact when dealing with so-called "longtail business" 
that  the final number of claims and final total yearly claims cost 
are only known after several years. The insurer---and especially 
tile excess of loss reinsurer of .Motor Liability e.g.--is therefore 
forced to estimate final loss ratios either for prernium calculation or 
reserving purposes ort the basis of incomplete statistics. These 
purely statistical observations are usually presented as follows in 
what is called an "IBNR-triangle":  
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Loss ratios as per the end of 
year of 
occnvr~nce 1966 1967 I968 1969 197o 

1966 i = 5 Xs(1) XG(') Xs(a) Xs(4) Xs(6) 

I967 i - -  4 X40) X4(2) X4(3) X40) 
x968 i - -  3 Xa (l) A ' ~  (a) X a  (u) 

1969 i = 2 XgO) X2(~) 
r97 o i = I" ,.'k'l (1) 

e.g. X4(a) = loss r a t io  .for I967 ab per  D e c e m b e r  3isl:, 1969 

if there are m statistical years in total,  we have a triangle 

Xl X = { X }  h) l i = I , 2  . . . . . .  m; I s = I , 2  . . . . . .  i} 

and our problem is to est imate the final loss ratio e.g. for the year  
i = q or, in other words: 

For  the conditional expectat ion : "(~) L;[.~q ~ X ]  determine a n  

est imator ~q(~O) such tha t  

E~{E[X(q°O) ] ~ X ] -  ;(qm)}"] - -  l l l l l l i l l l t l l l l  

and EL;~°°)J = E[E[X~ ~-) I 'q-~q ]. 
We are thus looking for an unbiased minilnum square est imator 

for t h e - - a t  present unknown-- f ina l  loss ratio of the year i = q. 

Under the assumptions 

(i) X} ~) stochastically indcpeltdcnt of .,~,v(h') for i /- i' 
(ii) E[X~ n)] = e (~) independent ly  of i 

(iii) P~ Cov L~rYtm, -'~lY(~')qJ = cht ~, independent ly  of i and with Pi 
underlying premium volume of year  i 

n tl 

(iv) 2(o~) X 2 =zhX~ h) i.e. we confine ourselves to linear esti- 
Dff 

I , - 1  ~ , , 1  

mators  
(v) loss ratio already final after m years: X} m) ~_ X} ~°) 

we are again confronted with a quadrat ic  program, this t ime for 

mCm + I) 
the unknowns 0~h and subjcct to simply one boundary  

2 

condition, namely 
m I 

e(m) = ~ ~ o~the(a). 
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According to [3] the general solution of this problem is described 
by the two following equations 

a(m) ~q ~ q )  ( I )  

ra  

c ('u) - -~  G 1)~(q,~le)  1, _ _ ,  ( f_m, , ,  P; _%) 
( ,  1 

where the following vector  and matrix notat ion has been used 

-g(t) - 

a(e.) 

6 ( l )  

m 

c l t  e l 2  . . .  C l l  

c2t C22 • • • C2i 

_ C l t  ~12 " "  • Cig _ 

, X i  - ~  

- X0) q xP' / 
, C t l E /  ~ -  

m 

C 7//~ 1 

Cm 2 

_ CTai _ 

(~3/-' --  inverse of the covariance matr ix f3~) and where (a, b) denotes 
the inner product  of the two vectors a and b. 

If tim exl)ectations em and covariances [3m are known, we can 
therefore first calculate the multiplier v. from equat ion (2) and 
afterwards,  by  introducing c~ into (r), directly get the es t imator  
~(m) Equa t ion  (2) is, by  the way, nothing else than the condition q " 

of unbiasedness apl)lied to equat ion (I). 

As showlt ill [5], these calculations become much more transl)arcnt 
if 

either (i) X(a) = X(h-~) -Jr y(h), y(/~) independent  of X (/l-l) (ad- 
dilive model) 

or (ii) X(a) = A(a) X(a-1), A(a) independent  of X(a-~) (mulE- 
plicalive model) 

or (Jill X(h) = A(a)X(a-l)  + y(h);  X(a-~), y(h), A(h) indepen- 
dent  (the "mixed" model) 

because in these cases the inverses ~ - 1  Call  all be explicitly wl i t ten  
up (their elements are all equal to zero except those in the diagonal 
and in the two adjacent  "diagouals") .  
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When dealing with concrete practical problenls, the parameters 
a,,, and f3 m are of course unknown, these parameters also have to be 
est imated from the information contained in the triangle ~ X ,  a 

problem which--depending on one's v i ew- -may  be formulated as 
yet  another  quadrat ic  programme. In this context,  the est imation of 
the covariances is of pr imary interest. Start ing e.g. with estimators 
ehk of the form 

we may  perhaps discover tha t  tile corresponding estimators for tile 
colrelation coefficient, nalnely 

d t~ l~ 

~hl;  - -  / e h l  ~ el: l  ~ 

are neither bounded by - - I  or 4- I nor - -as  it seems reasonable 
to assume-- lnonotonical ly  increasing in h for h ~ k. I t  is then 
indicated to " i s o t o n i z e "  the above pl~e values which is essentially 
equivalent  to solving a specific quadrat ic  program [4]. 

4- TIlE COST I)IS'FRII*U'I'I(~N I~ROBLI,;M 

\Vc consider an insurance, portfolio divided with respect to two 
criteria, e.g. branches i (i == I, 2 . . . . . .  n/ and countries j (j  -- I, 
2 . . . . . . .  m), which has to contribute an amount  C to a fuud, e.g. 
a ca tas t rophy fund. 

Furthermore,  let A , ,  A2 . . . . . . .  A ,~ and Bt, ]~.. . . . . . .  , ]~m denote 
the contributions per branch and country,  respectively. We assume 

rl m 

X A , =  X B : - : C .  
I 1 t , . 1  

The following table represents tile distr ibution of these costs, 
where xoPs  stands for the contr ibution of branch i in country  :, 

Po being the corresponding volume (e.g. number  of risks, sum 
insured or underlying premium volume). 
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c o u n t r y  I c o u n t r y  2 . . . . . .  c o u n t r y  m 

b r a u c h  I x~t 1)u  x ~  P ,2  ,vxm P t m  A ,  

b r a n c h  2 xai  .P2z x22 _Pe.- X~m P2m A 2 

b r a n c h  n X n t  Pn t  .vn~..Pn2 xnm .Pnm An  

Bi B2 Bm C 

We write A+ ~ all)+., B j  = b j P . j ,  C = c P .  . 

where 
m tt  ~ m 

P t .  -= Z Po, P.~ = ,G l)~ and  P .  . -- G G PU. 
l ~ , t  ~ . . I  I t . , l  I - I  

Now our  problem consists in minimizing the funct ion 
n m 

X X (x u - c ) 2 P  a such tha t  
l ~ , , l  J . , l  

m 

X~ X r j P r j  = ( t rPr .  ( r  = I ,  2 . . . . . . .  $+) ( I )  
1 - 1  

n 

~, xi~.Pi~ = bsl~.s (s = I, 2 . . . . . . .  m) (2) 
t o t  

x~+ >~ o. (3) 

.As far as w e  k i l o w ,  this 1)rol)lena caunot  be solved explici t ly.  We 
are thus  forced to confine ourselves to a few r emarks  abou t  the 
rare results  found until  now. First ,  t rea t ing  the prob lem wi thou t  any  

sign-restrict ions,  we form the  Lagrang ian  
m 

~ - i  I - - l  | - I  ~ - - 1  

m N 

+ 2 I~ Z j ( Z  x o P o - B ~ ) .  
t - I  I - x  

Pu t t i ng  the  par t ia l  der iva t ives  wi th  respect  to Xrs to o yields 

x~, = c - -  0~ - -  X+. (4) 
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Summing  up over  r and s, respect ively,  we get for the Lagrange  
mult ipl iers  Or and  Xs the equat ions  

n 

X OzPis + XsP.s - (c--bs) P.s 
t .  1 

(s  - ~, 2 . . . . . . .  m )  (5)  

O r P r .  --t- -~ k j l ' r j  - -  (C - -  a,.) P r .  
J , , l  

r : I ,  2 ,  . . . . .  , '1~) 

which solved for 0 yield 

n 

O r P r .  - -  ~ Ot C'.ri - -  ~r  
t l 

r n  

£ Prl PU 
with C~r~ = p . j  

t '  1 

o r  i n  m a t r i x - n o t a t i o n  

where 

attd 

r = I~ 2 ,  . . . . .  , n )  

m 

and 3r : ~ bjPrl-- A r 
J , , l  

AO ~ ,3 

n 

Etii = ~ gi l t ,  t t i k  = ( tk l  = - -  gi l t  
I , . l  

k-75t 

n 

X 3 i = o .  
I I , , 1  

(6) 

Tile r ank  of A is less or equal  to n - -  I .  In  the sequel we assume 
rank A = n - - I .  111 this case the  oue-dimensional  subspace 
0 = p. I is the solution of tile homogenous  sys tem A 0 = o. 

To find a special solution O* of the inhomogenous  sys tem we 
add tile equat ion 

0~ = o 

n 

because of .E ~ = o tile sys tem 
I I 

(A )0= o 
I O O  . . . .  O 

has  a t  least  one solution too. 
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The  so lu t ion  of the  sy s t em 

f = l  

n 

- -  0~23 ~ (X3g - -  ff-34 

- -  0~2d - -  ~ ' 1 4  

. . . .  - - ~ 2 ~  O~ ~ 

O~ 8'.~ 

• . . ~  • 

• ° 

, o 

• ° 

(7) 

X . ~ s  = b s  -4 -  - -  - -  

x z s  = b s  + - -  - -  

~2:~ P2s + P3s o~a P2s ~o P.~s 

A P.8  e P . ,  A P . s  

o~23 Pls ~ta Pls + P3s ~.la P:~s 

A P . s  & P . s  A P . s  

1X23 £)18 0~13 P 2 3  0~12 Pls  -~- 1)as 
~ -t- - -  - -  ~". ~ .  A P . s  A I>.s A P . s  

As the  p rob lem can  be solved expl ic i t ly  for  n = 2, p r e s u m a b l y  
even  wi th  the  sign res t r ic t ions ,  one is encou raged  to t r y  to solve the  
p rob lem " i t e r a t i v e l y "  i~1 a first step b y  d is t inguish ing  the first line 
of A,  combin ing  the  second,  th i rd  a.s.o, to  one single line and  solving 
this 2xm prob lem (2 lines, ,m columns) ,  t hen  in a sccond slcp dis- 

X18 ='~ b 8 

n - - I  

- -  ~ 2 n  ~ ~n l  
_ i i _ 

introduced in 5) and 4) yield tim x~s. 
Expl ic i t  express ions  become  v e r y  c o m p l i c a t e d  for n > 3. 

Yet ,  there  are  some rules for the c o m p u t a t i o n  of the  d e t e r m i n a n t  
A of the  m a t r i x  in 7): I t  is the  sum of all p r o d u c t s  0%~.~ et~t~ 
. . . .  cq,,l, in wh ich  eve ry  subscr ip t  appea r s  a t  least once and  in 
wh ich  no h fac tors  (h - -  2, 3 . . . . .  n) m a y  bc o rde red  in a cycle  as 

~-Qi2 ~ i : i s  . . . . .  O~ihih. 

Similar  rules exist  for the  next  lower  s u b d e t e r m i n a n t s  o[ A. 

As an  examplc  in the  case of n = 3, we  h a v c  

A = ~.~-, ~.~:~ + 0~12 u.~.~ -+ ~.~.~ c~2:~ and the solut ions  of 5) are  
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t i n g u i s h i n g  t h e  o r i g i n a l l y  s e c o n d  l ine,  c o m b i n i n g  t h e  t h i r d  to  l a s t  

a.s.o. 

I t  seems,  h o w e v e r ,  t h a t  t h i s  p r o c e d u r e  is n o t  g e n e r a l l y  applicable, 
a t  l e a s t  t he  n u m e r i c a l  e x a m p l e s  we  h a v e  d e a l t  w i t h  so far  b y  th i s  

m e t h o d  led,  in s o m e  cases ,  to  so lu t ions ,  in o t h e r s  to  c o n t r a d i c t i o n s .  
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