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.A.BSTRACT 

Credib i l i ty  theory  is concerned  wi th  the  p rob lem of forecas t ing the  m e a n  
p e r f o r m a n c e  (dana1 f requency,  to t a l  losses, etc.) of an  ind iv idua l  risk, 
selected f rom a col lect ive of he t e rogeneous  risks, based  upon the  s ta t i s t ics  
of the  col lechve,  and  upon  t he  i nd iv idua l ' s  exper ience  da ta .  The  classic 
results ,  der ived by Amer i can  ac tua r ies  in the  i92o 's ,  were fu r the r  s t reng-  
t hened  by  Bai ley  and  Mayerson  in 195 ° and  1965, who showed t h a t  these  
resul ts  were exac t  Bayes i an  for ce r t a in  r isk d i s t r ibu t ions .  BiJhlmalm,  in 
1967, t hen  showed t h a t  the  credib i l i ty  fo rmulae  were the  bes t  l eas t - squares  
l inear ized a p p r o x i m a t i o n  to the  exac t  Bayes ian  forecast ,  for genera l  risk 
d i s t r ibu t ions .  

This  pape r  ex t ends  credib i l i ty  theory  to the  p r ob l em of forecas t ing  the  
dzslributwn of ind iv idua l  risk, based upon  col lect ive s ta t i s t ics  and  ind iv idua l  
exper ience  da ta .  A l t h o u g h  the  p rob lem is, in pr inciple ,  solved b y  f ind ing  a 
13ayesian condi t iona l  d i s t r ibu t ion ,  th is  a p p r o a c h  requi res  a de ta i led  know-  
ledge of col lect ive s t ruc tu re .  The  credible dzstmbutzon, on the  o t h e r  band ,  
requires  fewer pr ior  s ta t is t ics ,  and  as also a bes t  least-~quares  l inear ized ap-  
p r o x i m a t i o n  to the  exac t  Bayesian d i s t r ibu t ion .  

Fol lowing the  theore t ica l  deve lopmen t ,  deta i led  conapu ta t iona l  resultg 
are given.  

I .  INTROI)UCTION 

Credibility ttleory is the name given to a method of experience 
raling an insurance risk, which was developed by American actu- 
aries in the z92o's. In the classic problem, one begins with a pool, a 
collective of somewhat heterogeneous insurance contracts which are 
grouped together to "spread the risk"; it is assumed that detailed 
prior statistics are available from this pool. In particular, the fair 
collective pre.mi.um, E{~}, is the average value of the risk randorrl 
variable of interest, such as number of accidents per year, dollar 
losses per unit exposure, etc. 

Now suppose that  a new insurance contract of unknown risk 
characteristics is underwritten, and assigned to this pool. At the 
beginning, the fair individual premim~ changed would be just the 
collective premimn E{~}; however, as individual experience data 
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xl, x2, . . .  x~ is obtained over n years, this data  would tend to 
reflect more nearly the individual risk characteristics. 

Using heuristic reasoning on the pooling of data (and considering 
only tile number of claims per year), arguments were advanced in 
the early literature for a fair experience premium for next year's 
risk, ~n ÷~, based oll a fornmla of the form 

*l 

]~{~?, I-1 I Xt, X2 . . . .  X l t }  ~ ( I  - -  Z )  " E { ~ }  -Jr- Z • ( X  xt/'r~), ( I . I )  
I ,1  

with 
n 

Z = - - -  (1.2) 
~ + N" 

Z was called the credibililyfaclor; it provides for a mixing of the 
fair collective premium, E{~}, and the i~zdivid~ral sample mea,~z, 
X xdn, with increasing "credibility" attached to the latter as n 
increases. The time constant N was essentially determined by trial 
and error. 

This credibility formula was successfully used in American 
actuarial circles for more than 50 years, with innumerable variation 
and elaboration. A full survey, with references, may be found in 
Longley-Cook [II]. However, the modern theory of credibility 
begins with the resurgence of Bayesian techniques and with the 
works of Bailey I2] and Mayerson [12], who showed, under certain 
assumptions regarding the structure of the collective of risks, that 
(1.I) was an exact formula. Finally, in 1967, Btihlmann [3] showed 
that the credibility formula was the best least-squares lirlearized 
approximation to the exact Bayesian forecast, and gave an explicit 
formula for N in terms of collective second-order statistics (see 
formula (4.6) below). A larger survey of this development is in [19]. 

Since that time, other research has focused on credibility-type 
forecasts of variance [4], the use of auxiliary data in conditional 
distributions [5], [6], the " IBNR triangle" of partial data develop- 
merit [z7], and multi-dimensional risks [19], [2o]. 

The purpose of this paper is to extend the approach of credibility 
theory to the problem of estimating the dislrib.zd.io~ of individmd 
risk, based upon collective statistics and individual experience data. 
Although this problem is, in principle, solved by finding the 
Bayesian conditional distribution, .Pr{¢n~t < y I x~, x% . . .  x~}, 
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this approach requires a detailed knowledge of collective s t ruc ture  
for every  2.'. We shall see tha t  the credibil i ty approach needs fewer 
prior statist ics for a fixed value of 3', and leads to a simplified 
predict ion of credibil i ty type (I . I ) ;  fur thermore ,  the credible 
distribution is unbiased, and is a least-squares ]inearized fit to the 
exact  Bayesian distr ibution.  

First,  we consider in more detail  the na ture  of the risk collective, 
and results of least-squares theory  we shall need in the sequel. Fol- 
lowing the deve lopment  of the credible distribution, we consider the 
problem of forecasting the densi ty,  and show how, in the discrete 
case, more complicated est imates can be made. Various theoret ical  
propert ies  of the credible est imates are presented,  followed by  
computa t iona l  results for certain well-known distributions.  Finally,  
we briefly consider certairt problems in lnoment  est imation.  

2.  TIlE RISK COLLECTIVE: BAYESIAN RESULTS 

Consider a collective of heterogeneous risks, such as an insurance 
portfolio, in which each member  is character ized by  a risk para- 
meter, O. For  a given value of 0, the claims experie.nee (number  of 
claims or total  value of claims) for a certain t ime period or ex- 
posure base l is a random variable, ~t. with known distr ibution 

Pt(x[O) = Pr{~t < x [ 0 }  (t = I, 2 . . . .  ). (2.I) 

In what  follows, it will be assunled tha t  the ~t are mutua l ly  
independent ,  given 0; the (discrete 01" continuous) densi ty  of (2.1) 
will be indicated by  pt(x I 0). 

If the true value of an individual  pa ramete r  0 = 0~, were known, 
then  the fair premium would be: 

E{~t 10T} ----- .[ xdPt(x ] 0,1,) (2.2) 

for any t ime period t. 

If 0T were not  known, it  would still be possible to infer a fair 
premium for an individual  risk, provided tha t  a prior distribution, 
U(.), on the collective risk pa ramete r  was known, and if experience 
data (~t = x t  I l = I ,  2 . . . . .  n) were available for this individual.  
By  the usual Bayesian  argument ,  the forecast distribution of next  
year ' s  risk would be tim condit ional  dis t r ibut ion:  
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p . + l ( y  Ix1, x~ . . . . .  .~,,) = Pr{~, ,+ ,  _< y Ix, ,  x~ . . . . .  x,,} 
n 

f P , , , i ( y  I 0) n p,(~, I o) dU(0) 
t ,  l 

= - -  - -, (2.3) 
,[ i l p,(x,  1 0 ) d u ( o )  

t 1 

which is known to be the unbiased, least-squares estinaate of 
Pn ~(y  [ 0T), given the experience data  x -= {xt, xz . . . .  x,~}. 

The fair experience premium would then be' 

E{~,,+~ [ x~ j" ydP,~ , (v lx) .  (2.4) 2 J  = 

The statistical l i terature enaphasizes the behavior of the density 
of 0 posterior to x, given by" 

n 

il t,(x~ 10) ug (0 )  
dU,,(OI y) = __'_2, . . . .  (2.5) 

j" l] pdxt  I ¢) dV(¢)  

I t  is kaowil  (see, for example DeGroot  [7]), that  for faMy ar- 
bi t rary priors, Un(0 ] x_" ) is apl~roxinaately normal with mean 0m, 
variance proport ional  to 7~-t, for large enough ,J~, and converges to 
the degenerate distribution at 0 = 0m as n -~ ~ .  Thus the forecast 
distribution (2.3) also converges to P(y I 07,) for ahnost  every y. 

These Bayesian calculations are laborious, except for certain well- 
known co~jugate-prior families of priors and likdihoods, such as 
Beta-Binomial ,  Gamma-Poisson,  Norlnal-Nornaal, etc. (See for 
exainple ~7])- Ftir thermore,  tim problem ill insurance and other  
applications is that,  al though detailed statistics may  be available 
from the mixed colleclive dislribnlion,: 

S't(x) = EoPt (x  I 0) - I S't(x I 0) <~U(0), (2.6) 

there is very little illformation available oa the internal s t ructure of 
the collective, between different risks. Thus a full Bayesian fort- 
casting is impossible without  additional distributional assumptions.  

In the sequel, we shall deal only with t ime-invariant  collectives, 
for which / ) t ( x ] 0 ) - = P ( x ] 0 ) ( V  t), and we shall consider tim 
problem of providing a credibi l i ty- type approximat ion to (2.3). The 
theoretical basis for this approximation is in least-squares theory. 
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3. LEAST-SQUARES TIIEORV 

Suppose we have  a vector-valued random variable co from whose 
observat ions w we are t rying to predict  ano ther  r andom variable "4 
through a forecast  furtction f(w). Assuming the joint  distr ibution 
P(y ,  w) = Pr{'~ < y; c± < w} is known, the classical norm to 
evaluate  the forecast is the mean-square  error '  

s = I ( y - - f ( w ) p  ap(y ,  '2). (3.~) 

I t  is known tha t  the integrable function fo which minimizes (3.I) 
at  value I o is the condit ional mean:  

_ = w ~ ( 3 . 2 )  f°(!~,) = E{ - , i l , . o  _ s, 

where E is defined with respect to the nleasure .]2. However ,  i r l  
man 3 , cases the exact  condit ional  calculation is too difficult and an 
approx imate  forecast f tmction f is sought. Since complet ion of the 
square shows tha t  

I = 1 o + I (f°(L~)--S(Lv)) ~ dP(w_) (3.3) 

s ° = v { - 4 } - - v f o ( ~ )  = ~ v { ~  i ~ I 

for any f ,  then the approx imate  forecast is also a least-squares fit to 
the condit ional  mean, and one may  select a rb i t ra ry  parameters  in 
the approximat ion  to make the iategral  in (3-3) as small as pos- 
sible, or work direct ly  with (3.1). 

A typical  choice of an approx imate  forecast is a lin, ear function 

f(~2) = ao + E asw s. (3.4) 

[n this case it is well known that  the opt imal  parameters  a~ are 
given by  solutions of linear equat ions of the form" 

z c{<o~, °'s} " ~; = c{'4; <,,~} (v ¢ # o) (3.5) 

with a;  selected so as to make  the average forecast E] f (~)}  un- 
biased, e.g., 

E ( / ( e ) }  = E{-4}; a;  = E{-q} - -  )2 a~E{o)s}. (3.6) 
S:¢-o 

The prior variance of the opt imal  linear forecast  is: 
* * r - l "  , f~ , 

, 5 C { ~ ,  ( 3 . 7 )  v { / ( _ ~ ) }  = z x <h<~s,_,~<.o, <°s} = x <oj} 
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and tile approx imat ion  error turns out  to be" 

f - -  I ° = Vf°(o/) - -  Z a; C{-t~; ooj}. (3.8) 
/ 5o  

As before, all operators  are defined on the measure P = P(y,  w). 

I t  is sometimes not realized tha t  the above approximat ion  is a 
l inearization only in terms of the parameters  aj, and not necessarily 
in terms of the observables. For,  suppose there is an under lying 
vector  random variable ~, with observat ions )', and there are known 
t ransformat ions  

",~ = go(0;  coj = gj(~) ( j  = i,  2, . . . ) .  (3.9) 

Then  the above theory  applies direct ly  to the predict ion of go( 0 
by a forecast  function 

f (x )  = .o  + z ajgj(x), (3.~o) 

by making the obvious extension of the operators  in (3-5) and (3.6). 
In  m a n y  cases a fu r ther  simplification results if the gj(.) are func- 
tions of only a single component  of ~. 

Another  modification of linear least-squares theory  occurs when 
one constrains the variables:  

Coao + E cjaj = Constant.  (3.II) 

Here  one defines a Langrange  multiplier tz, adds V..c0 to the 
definit ion (3.6) of a;, and adds ~ z ( c i -  c0E{oot} ) to the ith equat ion 
of (3-5); t* is then adjusted until  (3.tI)  holds. 

A special case of the above occurs when a subset of the aj ( j  7~ o) 
are constrained to be equal to each other.  One can show tha t  the 
columns in the constra int  mat r ix  [C{~t, ~j}] corresponding to the 
common aj are first added together  to form the coefficients of the 
common variable a¢; then the coefficients of the rows corresponding 
to the constrained subset (in both  the constraint  mat r ix  and the 
RHS,  [C{-q ; {*}1) of variables are aggregated by addi t ion into a single 
equation,  thus making the system (3.5) again square. If there were 
m equations,  and I < r < m variables are set equal to each other,  
the resulting system is ( m - - r  + I) × ( m - - r  + I), and the coef- 
ficient of ac in its own row consists of the sum of r z old coefficients. 
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All of these constraints increase the mean-square error. 
Finally, we make the observation tha t  superfiosilion holds, i.e. 

suppose we have made a linear forecast of a certain random variable 
-q' by finding parameters  {a~} from (3.5) using a RHS of C{'q~; ¢oi}. 
We then repeat the process, :finding other sets of parameters  
{ay [ k -~ 2, 3 . . . .  } using a RHS of C{-qtc; oat} (k = 2, 3 . . . .  ). Not 
only is orl ly  o n e  irtversion of the constraint  mat r ix  of (3-5) required 
for all the parameter  sets, but  any linear combinat ion of predictands, 
say of" 

-~' = X ce~ k (3.z2) 
k 

will have optimal values 

a~ = E ctca ~ (j = o, I, 2 . . . .  ). (3.I3) 
/¢ 

We now apply these results to the model of the collective. 

4. THE CREDIBLE MEAN 

Ill tile collective rnodel, there arc underlying random variables 
~L, ~ 2 , . . . ,  ~t;  {nq~ which are mutual ly  independent  (and, here, 
identically distributed), given 0, the risk parameter.  To predict the 
mean of the next observalion, given the n observed values ~t : xt 
( l  = I ,  . . . ,  n), we take the simplest case of (3.9): 

= ~ , , + , ;  oot = ~t (t = x . . . .  , 'n). (4.]:) 

Using the fact tha t  

C{;," ; g j l  0 } =  IV{g*lO} ( i = j )  
i o ( , #  j), 

we find 

(4.2) 

! v{¢,} = EoV{~, I 0} + VoE{~ I 0} (i = :) C{oo~' O) J} (4.3) ' = i Co{E{~ I0} ;  E{~j  I 0}.}. (i # j )  
The second case also holds for C{'q; o~,}. 

If the ~t are identically distr ibuted (t = I, 2 . . . .  n + I), we find 
tha t  the optimal ay (j # o) are identical, with: 

ao = E { ¢ }  Ex - -  n a t ]  ( 4 - 4 )  

v{~} gov{¢ I 0} 
a t  - -  iV I - -  • ( 4 . 5 )  

n + N -- VoE{~ I 0} VoE{~ I 0} 
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In  other  words, we get the classical credibil i ty forecast:  
• n 

\ , , j  E{{,, +t l _x = ~} m f ~ )  = ( i - - Z )  E{~}-+-Z ~ • (4.6) 

This result  is due to Bt ih lmann [3]. 

Where  necessary in the sequel, we shall distinguish the a b o v e - -  
given N and Z from others as 

EoV{~ I o} 
Ntq = VoE{g I 0} ' 

% 

Z[~] - -  n + N [ q '  (4.7) 

the mean-credible time constant and credibility factor, respectively. 
The corresponding forecast  functio,l  in (4.6) will be referred to as 
fEll(X). The forecast of the mean  is a priori unbiased, 

'E/ill({) = g{~} .  (4.8) 

I t  is easy to show tha t  the mean square error is: 

[ = V { ~ } - - Z  m VoE{~[0}, (4.9) 

so tha t  error s tar ts  at  V{~} (variance using the collective mean as 
forecast), and decreases with increasing n to EoV{~ 10} (irreducible 
variance in sample mean). This error is, of course, a priori; Section 8 
examines the forecast behavior  when 0 is known. 

5. THE CRE1)IBLE DISTRIBUTION 

We now consider the central  problem of this paper, which is to 
find a credibil i ty approximat ion  to the true dis tr ibut ion of the next  
observat ion:  

P,, , l (y ] 0~,) = Pr{~,~_~l < 3' [0T}. (5.I) 

The analysis is great ly  facil i tated if we use the generalized least- 
squares formulae (3.9) (3 .10 ) and set :  

"/~ --= g0 (~ ) ,  t 1) = I ( y  - -  ~?, | 1) ( 5 , 2 )  

for a fixed value of y, where I( .)  is the unit  step, uni ty  for 11011- 
negative arguments ,  zero otherwise. 
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The opt imal  predictor  of -q, in terms of ,~ = y (now referring to the 
first n samples only) is by  (3.2)" 

f0(x) = E{'q ] ~_ = :~:} = E l i ( y - -  ~,,+t ] ~ = x} 

= s , {y  I~ --- x}, (5.3) 
the Bayesian condit ional  distr ibution! Thus,  a credibil i ty forecast 
of type  (4.5) will approximate  the Bayes distr ibution,  if suitable 
t ransformat ions  (3.9) can be chosen. (5.2) above suggests we also 
choose 

~ t - -  ] ( y -  ~,t) (t  ~= I . . . . .  *~) (5.4)  

Using the independence and identical  dis tr ibut ion propert ies  of 
the collective described previously,  we find the (prior) moments :  

E{'~} = E { o , , }  = P ( y ) ;  (5.5) 

Cov {oo,; <.,s} = ~l ' (y)  (~ - -  e (y))  (i = j )  
I v0P(y  l o). (~ # j) (5.6) 

(The last case also covers Cox, {'q; o~,}). These results should be 
compared  with (4.3). I t  follows, as for the mean, tha t  the opt imal  
coefficients as(i ~ o) are identical,  and we obtain the credible 
forecast distribution : 

= ( ~ - - z ) ~ , ( y ) + z  '~'  " 

with 

t5.7) 

,~ l-,(y) (~ --s- , (y))  
Z = - - - - - .  N . . . .  i .  (5.8) 

n + N VoP(y  10) 

Notice how the classical form remains the same; the forecast is a 
mixture  of the collective est imate  of the distr ibut ion,  P(y) ,  and of 
the sample d'zstrtbulion., Z 1(3, - -  x t ) /n .  The credibil i ty factor  is an 
increasing function of n, of classical form, but  with a different time- 
constant ,  N, which in this case depends upon the chosen value of 
y. And, lim Z = x. 

To dist inguish tlm above results from other  credibil i ty formulae,  
and to emphasize the role of y, we shall henceforth refer to the 

I6 
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above t ime-constant  as JVp(y), tile credibil i ty factor  as Zp(y), and 
the forecast function as F (y  ] x). 

A priori, tile mean forecast is unbiased:  

E{F(Y I ~)} = P(Y), (5.9) 

and the mean-square  error is 

! = P(y)  (~ - - e ( y ) )  - -  v0P(y  I 0) . *e (y) .  (S.~o) 

Incidental ly,  it is easy to see tha t  the credible est imate of the 
complementa ry  distr ibution,  pC{y ]_x} --- Pr}~,,+~ > y [ ~ ---- ~} is 
the same as (5.7), with the same credibil i ty factor, but  with P(y)  
replaced by  pc(y), and the complementa ry  sample distr ibution used. 

6. HISTORICAL REMARKS; AN EXACT RESULT 

The form of the credible distr ibution has a l ready been hinted at 
in other  works. Whi tnev  [z8j in 1918 begins with a normal  distri- 
but ion of "class hazard"  and, using a mixture  of arguments  re- 
miniscent of later  Bayesian and max imum likelihood techniques, 
finds a credibil i ty form to mix " the  indicated (individual) risk 
haza rd"  with P, " the  indicated class hazard" .  He obtains Z of 
form (5.8), with, as one approximat ion,  

e(I --P) 
N = ~ , ( 6 . I )  

~ being the (normal) "var ia t ion  of hazard  within the class". "We 
now come to the most  difficult question of all, the de terminat ion  
of ~2. [ t  is obviously iml)ossible to determine ~'- statist ically in each 
case. Some general assumptions must  be made regarding its form 
and value".  [18] Whi tney  goes on to argue for ~e varying as l )~/4, 
while others argued for N a constant .  (See the discussion to [I2], 

p. 123-4). 
The formula  (4.5) for the credible mean of the Beta-Bernoull i  

family, as derived by  Bailey [2] and Mayerson [z/l ,  is also sug- 
gestive : 

N = ~ 2  - - I  (6.2) 

where m and ~2 arc the mean and variance of "P(H), the prior 
probabi l i ty  (one is) willing to assign to H", the hypothesis.  [i2] 
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In fact, after reflection we see tha t  est imating probabilities is a 
form of Bernoulli trial, in which we count each sample as a "success" 
or "fai lure",  depending on which side of y it falls; the long-run 
frequency of success (which is the mean success) must  be the 
probabil i ty sought. Our contr ibution is thus to point out tha t  (5.7) 
and (5.8) are the minimal-variance est imators for an arbitrary 
distr ibution of "class hazard".  

Perhaps it is not surprising tha t  the only distributions of P(x ] O) 
and U(0) which the author  has been al)le to find for which (5.7) is 
exact  Bayesian are the Bernoulli (x[0) - - B e t a ( 0  l e, ~) families, 
for which: 

E{O} - -  E{0}] 
Np(y) = V{0} - -  I = ~ + ~. (y = o,I) (6.3) 

Credibility is a lready only an approxinaation for slightly enlarged 
families, such as Binomial-Beta,  or Bernoulli-Arbitrary U(.). 

7- COMPUTATIONAL CONSIDERATIONS 

What  has been accomplished with (5.7), as colnpared to the 
minimal variance Bayesian prediction (2.3) ? In the first place, the 
exact calculation requires knowledge of the s tructure of tile prior 
and likelihood for all values of the observables, for all 0. Practical ly 
speaking, this restricts the computat ions  to the conjugate-prior 
families of distributions. 

The credible forecast (5.7), on tile other hand, is a point estinaate 
of P (y  [:x), which is practically distribution-free, requiring only 
estimates of P(y) = EoP(y [ 0) and VoP(y [ 0) from the collective at 
tile desired value(s) of y. Even the experience record-keeping is 
simplified; the sample distribution ~ [(y - -  xt) /n only counts the 
number of samples < y, and not their  exact values. 

On the other hand, the credibility approach is somewhat  awkward 
for est imating probabilities for many  different values of y, unless 
there is a simple model for the variation of P(y] 0) over 0. The 
mean-square error will be larger than obtainable from Bayesian 
techniques, al though the limited computat ional  results in Section 9 
seem to indicate tha t  most of the variance is due to the samples, 
rather than tile approximation.  
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~. }~EHAV1OR OF THE F'()RECAST FOR K N O W N  0 

Addit ional  insight into the nature  of credible forecasts can be 
got ten  by examining tim behavior  of f(~), assuming tha t  tile t rue 
value of 0 = 0,/, is known. From (3.4), the prior unbiasedness of the 
forecast gives 

E{f(o,) t 0V} : :  E{-q} q-- Z a:[g{o,: ] 0T} - -  E{oo:}]. (8.*) 
I@0 

For  the credible mean, the results of Section 4 give: 

E{ku(~) I 0T} = (~ -  z~,]) >:{~} + z . ]~{~  I 0~} (,, = o, ~, e . . . .  ) 
(8.e) 

which is itself a "credibility" curve, moving the average est imate 
from the collective mean to true mean  as n ~,- co, with t ime constant  

N I l ] .  

A. similar result and in te rpre ta t ion  applies to the credible distri- 
but ion : 

E ( F ( y  ] ~) ] 0T} = [ m - - - Z p ( y ) J P ( y )  -~- Zp(y) l)(3 , 10T), 
(,~ = o,  ~, e . . . .  ) (8 .3 )  

and with obvious modification,  to the credible discrete densi ty 
(io.6). 

The wu'iance of the linear es t imator  (3.4), given 0T, is generally:  

v{f(oo) I O,p} := z ~ ~;~:c{oo~; o,:1 0~}; (8.4) 

however,  in the collective models, the t ransformed random variables 
(3 9) are independent ,  given 0T. For  the credible mean:  

(Zuj)~ 
\ :{JT,s(g) I 07,} = \ : { ¢ 1  o ~ }  - - - ,  (n - -  o,  i ,  2.)  (8 .5 )  

and for the credible distribution" 

_ i 1 0 T )  ( I  - - z D ( ) ' i O T ) ) "  \ :{F(v !~)!0~,} /'(y~ 
(ZP(y)V 

with, of course, zero variance for n o. 

The funct ion 
z" ( .  + N)2 ~ (,#A') 
75 '//, IV (I -T ( ' / ' I N ) )  2 

It : : O, I, 2.) 

(8.6) 
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increases rapidly from zero to its maximum value I/4N when 
n = N, thereafter decreasing slowly to zero as x/n. 

Sometimes direct use of the sample mean as a forecast is ad- 
vocated, 

S.~.M(_~) = ~ ~,/,~ (8.8) 
I l 

since it is "ful ly credible" for all n, thal is: 

E{f~.M(~) I % } =  E{~10m} • (V'~) (8.9) 

However, comparison of tile efficiency of (8.8) with (8.5) shows that :  

v{f.~.M(~) I 0g} : ( z m ) 2  < ~ (8.~o) 

In other words, the same credibility form which limits the rate of 
change of t i l t  est imator also shows its variance-reductio~l properties. 
(8.Io) also holds for the credible distribution est imate vis&-vis the 
.~ample distribution. 

If the same random variables are used to forecast the distr ibution 
at more than one value of y, there is, of course, covariance between 
the two estimators. Thus.  

C{SV(> I ~); F(y~ I ~) I Or} = 
# 

[/)(min (y,, ye) I 0T) - - P ( y t  i0@.  l)(ye }0m)] (,*-t-Nl,(yT-))-(n -{-NsT(ya)) " 

(8.,x) 
Examples  of this interrelationship will be seen in tile next section. 

Finally, it is obvious there is strong dependence between the 
forecasts made in successive years, since: 

Np(y) q- t 
l : ( y  l x~, x~, . . . ,  x , ;  ¢,+,)  = ~Vp(y) + ~ -4- ~ F ( y  I x , ,  x~_ . . . .  x,) 

~g | l  
÷ N p ( y )  ÷ ~ +  i " (t = o, i ,  e,  . . . )  ( 8 . I z )  

I t  follows tha t  

~ . { F ( v  l x,  . . . . ~ ,  ~ ,  ,) I s~(y I :~,, .~.o . . . . .  x~); o.,.} 

(N,.(y) + t) S:(~, i Xl..~-~ . . . . .  x,) + S'(yl %) 
-~ -- (8.~3) N,.(;,) 4: l. q- 
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and 

V{F (y  Ix ,  . . .  x t ;  ~t+,) I I ; ( y  i x~, x2 . . . . .  xt); OT} 
P(y  10T) [:r - -  P(y [ Or)] 

- (Np(y) + t + ~)~ (8.~4) 

A priori, the covariance between successive forecasts slowly 
diminishes in a manner  similar to (8.6) 

C{f(y  I ~t . . . . .  ~m); F(y I 8,t . . . .  , ~t, ~ ~] [ 0~,} 

t 

= 1)(), I o,)  [~ - -  P(y I o @ .  ~ ~-  x, .(y)i  [t + N~(yi + ~1 tS ~5) 

9. COMPUTATIONAL RESULTS-CREDIBLE DISTRIBUTION 

Detailed computat ions  were carried out for three conjugate prior 
families of distributions for which explicit results are available: 

I. Poisson + Gamma = Negative Binomial 

0 • e-O 
p ( x l 0 ) - -  x! ( x = o , x ,  2 . . . .  ) 

E[~I  0} = 0 

v { ~  I o} = o 

baOa- i e- bo 
~t(O) - -  r'(a) (0 > ol 

E{O} = a/b 

v (o )  = ~/b~ 

p(x) - r ta)  x! (x = o, ~, 2 . . . .  ) 

v { ~ } - -  ~ ~ + 

(9.I) 

13ayesian Conditmnal Dis~ribmions" 
n 

a < - - a  + E xt; 
t ,  I 

b<-b-4-  n 
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I I .  Exponential + Gamma = Shifted Parelo 

p(x l O) = Oe -°~ (x >_ o) 

E{~ I 0 } = 0 -1 

V{~ l  o} = o -~  

baOa-le-bO 
u(o) - P(a) (0 > o) 

b 
] z { o - q  - 

a - - I  

6 2 

v (o -~ }  = (a - -  z)~ (a-- -  2) 

a b  a 

p(x) - (b + x ) .  +~ (x > o) 

b 

ab~ 

Bayesian Conditional Distribulions : 
tl 

a < - - a + n ;  b + - b +  ~ xt 
t ,  1 

I I l .  Uniform + Parelo = (Constant-Pareto) 

Z 

p(x  l O) = -~ (o < x < O) 

0 
E { ( I O }  - 2 

0 2 
v i e  I o} - -  

I 2  

i o (o < 0 < b) 

,,(ol = ) a~,, (o > b) 

~ 0<, + , 

ab 

a - -  ;I 
~.fo} - 

(9.2) 
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ab 2 

( ~  ) ,b - ' + ' '  ( o < x < b )  
p(.v) = ~ b,, "I :~- "+l~ (x > by 

ab 
E{~} = ~ - -  

a . - - I  

V{~.} - (a--2) ~o + 4(a__ i)2 (9.3) 

B a y e s i a n  C o n d i H o n a !  D i s l r i b e d i o n s  

a < - a + . ~ ;  b < - m a x  (b; x~, x% . . . ,  x , , ) .  

The t ime constants  for the credible means are: 

I b (Poisson-Gamma) 

NOi : ) a - -  t (Exl)onential-Gamma) (9.4) 

( -~ (a - -  I) 2 (Uniform-Pareto) .  

The credible mean is exact  Bayesian for the first two families: 
the correct  Bayesian conditional mean for the Uni form-Pare to  is: 

' max (b; x , ,  x~ . . . . .  x , , ) .  (9.5) 

Figures I, 2, and 3 show the time constant Np(y) for the above 
three cases, with the hyperparameters (a. b) adjusted so that 

E{~} ---- I ahvays, and V{~} ---- 2, 4, 8. This would 1-es.lt in mean 

t ime constants ,  for example,  of: 

z, 1/3, z/7; 

N[q ~ 3, 5/3, 9/7 ; 

0.600, 0.455, o.39 I. 

(Poisson-Gamma) 

(Exponent ia l -Gamma)  

(Uniform-Pareto)  

(V(4) ---- 2, 4, 8). 

Thus,  in all these cases, Ntq < Np(y)  for all y. 

in  Figure I, we see tha t  tile Ne(y)  for the Poisson-Gamma have 
their largeqt values and most marked variat ion over v for small 
collective variance. This is consistent with the idea that  when the 
inter-risk variance is small (Np(y) large), the occurrence of a large 
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Fig. t. C rcd ib l e  d i s t r i b u t i o n  t i m e  c o n s t a n t ,  N v ( y ) ,  for d i f f e r e n t  co l l ec t i ve  
v a r i a n c e s .  P o i s s o n - G a m m a  d i s t r i b u t i o n s .  EIE} = r ( S t r m g h t  l ines  for  

c l a r i t y  on ly ) .  

30 

2C 

~15 

IC 

J 
I 

v : ( ; =  2 _....._ 

vl{'f=4 

I I 

v l q : 8  

I I 
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Y 

Fig .  2. C red ib l e  d i s t r i b u t i o n  t i m e  c o n s t a n t .  N v ( y ) ,  for  d l f l e r e n t  co l l ec t ive  
v a r i a n c e s .  E x p o n c n t i a I - G a n m l a  d l s t l i b u t i o n s ,  l~.l~l = I.  
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30 
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~v;~ ' ,  =4 

~vI¢1=8 

°/a "5 

0 . _ _ _ _ _ ~ . I _ _ . J L _ _ I _ _  
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Y 

.Fig. 3. Credible  d i s t r i b u t i o n  t r am c o n s t a n t ,  , r p ( y ) ,  for  d i f fe ren t  collect ive 
variances. Unfform-Pareto distributions. E{~} - T. 

sample is not weighted heavily;  it is likely due to chance. And since 
P(y  ] 0T) is likely "close to" P(y), it takes many  more samples to 
accredit the sample distributions. Conversely, for a very hetero- 
geneous collective, samples for any value of y are treated more 
evenly and with more credibility. 

Figure 2, for the Exponent ia l -Gamma shows much the same 
behavior as the previous case, except the time constants are larger, 
in general. Informat ion close to the origin is practically disregarded, 
as all risks have a preponderance of samples there, due to the ex- 
ponential  form. Tail values arc only slightly deemphasized, relative 
to middle values. The Un.iform-Pareto curves, Figure 3, are prac- 
tically indistinguishable from one another,  and are constantly 
decreasing towards the asymptote  N p ( y ) =  a /2 - - ( r . I7Z ,  1.o84, 
i.o42 ). Since all risks in the collective differ only by their range 
~o, 0], it follows tha t  information below the minimum range 0 = b 
( =  I .I46,  I.o77, I.o4) is pre t ty  much disregarded. Thus a good ap- 
proximation to the Uniform-Pareto is N e ( y ) =  a/2 (y > b), co 
otherwise. 

A variety of simulations were run using these distributions, and 
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compar isons  made  with tilt' known Bayesian  results. Figures 4 and  
5 i l lustrate  typical  results, using tile E x p o n e n t i a l - G a m m a  distri- 
butions,  with a collective nlean of i, collective var iance of 2, and 
samples  from an exponent ia l  with mean  of 3. Complemen ta ry  
dis tr ibut ions,  l 'c(.)  - -  I - - - I ' ( . ) ,  are used throughout .  Ill Fig. 4. 
the do t ted  line represents  tile prior collective distril)ution. The first 
sample  d rawn was *.549, and the credible es t imate  results in a 
mixed  dis t r ibut ion with a d iscont inui ty  at  tha t  point.  The  next  
sample  was o.891, giving the two jumps  shown ill Fc(y [x~, xe). 
Thus  far, there has  not been much prediction,  because the r andom 
samples  were all low. However ,  af ter  3 z draws, the sample  mean  is 
3.56, giving the point  es t imates  shown: the actual  curve is not 

I 
n lagmtude  3 °- ÷ N p ( y ) '  at  the d rawn because it has 32 jump.i, of " " - -  

values of the r andom variates.  The  d rama t i c  drop between the 
es t imates  for a, : -  6.o and 6. 5 is because 5 of the 32 first samples  
fell here. 

Fig. 5 cont ras t s  the result  when true Bayes ian  forecasting ia used 
with the same samples.  From (9.2) we see that  the conditional 
dis t r ibut ion is a Shif ted Pare to  dis t r ibut ion,  with upda ted  para-  
meters  a 4 - n ,  b ~ E.vt. This  a lways  gives a smooth  curve for 
pc(y[ v), as shown in Fig. 5. Note  tha t  the curves move  with the 
sample  mean -too low at first, overes t imat ing  the t rue curve with 
,32 samples.  

I t  is perhaps  unfair  to compare  the curve of Fe(y [ 3) with tha t  of 

l)c(y [ x), since the credible d is t r ibut ion only minimizes var iance  for 
a fixed value  of 3'. The next  example  is chosen from some Poisson- 
G a m m a  simulat ions,  in which E{ ~ ,~,- - I ,  V{~} = 2, as before, but  
where 0T-=  2. In  Figs. 6 and 7, we have  p lo t ted  five simulat ion 
runs for n = ~ to ,6,  es t imat ing  l 'c(o l a') and /~e(2 ]~).  There  are, 
in fact  five samt)le pa ths  connected by  s t ra ight  line segments ,  1)ut 
they over lap  whenever  the numl)er of counts  > v catches up with 
tile n u m b e r  in ano the r  sequence of draws, which happen~ often for 
an in teger-va lued  r andom variable.  In  general,  the credible forecast  
for a given value of y s tar ts  at  pC(y) and " re laxes"  towards  zero 
whenever  no counts  > y occur, get t ing boosted up again whenever 
a count  occurs;  this phenomenon  is considered fur ther  in Section ]3. 

The  Bayesian forecast in Fig. 7, however,  will only have  the same 
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v a l u e s  o n  d i f f e r e n t  s i m u l a t i o n  r u n s  w h e n  t h e  s a m p l e  m e a n s  e q u a l  

e a c h  o t h e r - - o n l y  fo r  s m a l l  ~., i f  a t  al l .  F o r  t h e  s a m e  r a n d o m  d r a w s  

t h e  s a m p l e  p a t h  is s m o o t h e r ,  h o w e v e r  i t  t e n d s  t o  w a n d e r  m o r e  u p  

a n d  d o w n ,  i n s t e a d  of  f o l l o w i n g  a r e l a x a t i o n  c u r v e .  A l s o ,  t h e r e  is 

o b v i o u s l y  m o r e  c o r r e l a t i o n  b e t w e e n  l~c(y  [ ~ )  f o r  t w o  v a l u e s  of  y, 

s i n c e  t h e  s a m p l e  m e a n  is u s e d  as  a p a r a m e t e r .  O n e  c a n  e a s i l y  t r a c e  

o u t  c o r r e s p o n d i n g  s a m p l e  p a t h s  fo r  y = o a n d  ~. 

2--'F;Iol',l ' ' ' ' ' ' ' ' ' ' ' I.O-- 

08 

• ~1 o6 

S-" 
u_ 0.4 

O2 

c--.o c - pC(oI 6, ) F (2Ix) : _ . ~ _  

. I I I I i I ~ I i I 
0 2 4 6 8 10 12 14 16 

n 

];Jg. 6, C]'cc]~b]o d i s t r i b u t ~ o n ~  Fc(o  I.r~, ..1% . . . . .  r . )  a r id  Fc(2 I x j ,  .1"~ . . . . .  x . )  
versus  n Five  smlula t ]ong of I>omson-Gamma chstril)ut~ons with E{~} = t ,  

V{~} - 2 , 0 T  . z. (S t rmgh t  lines for c l a n t y  only).  

' I pC'(ol Ix) I ~ I ' I ' t ' I 

t.O - -  c - - -o  pC(21~') pClo ls t )  

.._~106 
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0 I I I , I , I ~ t , I I i I t 
0 2 4 6 8 l 0  12 14 16 
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Fig.  7. B a y e s i a n  c o n d i t i o n a l  d i s t r i b u t i o n s  ( n e g a t w c  B i n u m m [ )  P r ( o  I .~'~, .v2, 
. . . .  xn) a n d  ..t~e(21.r,, .r2 . . . . . .  v,,) versus  ~. lqve  s imula t ions  of Poisson-  
G a m m a  d t s t r ibu t lon~  wi th  I;.'~'~F - t, V{r~} = 2, 0~, : 2. (S t ra igh t  lines for 

clariLy only). 
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The variance using the credible forecast is not too large compared 
with exact  Bayesian;  only about  7o% more for the example shown. 
By  far the biggest cont r ibut ion  to variance is seen to be the random 
deviates themselves. Even  in the Bayesian case, there is still a lot 
of var iance at n = 16. 

IO. CREDIBLE DENSITIES 

I t  is difficult to see how to get a credible est imate of the densi ty 
of a cont iauous  distr ibution,  because of the lack of a natural  sample 
densi ty  to replace X f ( y - - x t )  ]~t. Different iat ion leads to uMt 
impulses 8 ( y - - x t ) ,  and a forecast which is a mixed densi ty at  
observat ion points! 

However ,  one can formally use only -q = 8 ( y -  ~n÷l), and look 
for a forecast still in terms of the number  of courlts ~ y. The 
R HS  of (3.5) now becomes 

c{-n; o,~} = c0fp(y 10): : ' (y  I 0)) (~o.~) 
and we have tim formal  result 

Co{P(y l O); P(Y  I O)} 
P ( y l ~ )  ~ ~,(x) + V o p ( . y  I o)  - • z p ( y )  • 

IX I(xt  - -  y ) / n  - -  1)(y)]. (lO.2) 

Wi th  a densi ty of a discrete distr ibution,  on the other  hand, we 
are on much safer grotmd. One can forecast ]b(y I:~) = P(y  [ff) - -  
P ( y  - -  I I :'~) by: 

(I) A direct  credibil i ty approach,  count ing the number  of samples 
equal to y; 

(2) An approach similar to (10.2), using the number  of samples 
< y ;  or 

(3) B y  differencing the credible distr ibution (5.7)- 

We consider the three cases in turn. 

For  the di rect  approach,  we use' 

-~ = ~ . .  ' ,o ,  = 8~' (t  = ~ . . . .  , , )  ( ~ o . 3 )  

where 8{ is the indicator  function, equal to uni ty  if i = j,  zero 
otherwise. The analogues of (5.5) and (5.6) carry through in terms 
of discrete densities: 

E{~} - E(o~,} = :b(y)  (~o.4) 
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Coy { ~ ,  ~o:} - ! p(y) (i - -  p(y)) (i = j) (~o.5) 
- t v0b(y I 0) (i ~ j /  

Tile credible discrete densi ty is then of form" 
tL 

P(y I L~) ~ f (Y I#) = ( i  - ~zT,(y)) :b(y) + z~O,) [ x  ~#,/,q, (~o.6) 
i 1 

with new credibi l i ty factors:  

~ p(y)  (T - -  p(y))  
Z~(y) = n-+ Nv(y ) Nv(Y) = vop(y l O) (I° '7) 

I t  is easy to see how this might  be es t imated in collectives with 
discrete data,  such as automobi le  claim f requency;  only counts  of 
claims for the desired value of y are used in set t ing up the predictor.  

If we adopt  the second approach,  we keep -t~ = ~}/ , but  use: 

o,~ = Z (y - - -  ~t) = X ~, ,  ( Io.8)  

and get the same formal result as (lO.2) above. In  discrete densi ty 
notat ion,  this is rewri t ten.  

X co{p(j  I 0 ) ; / ' 0 '  1 0)} 

P(Y 13:) ~ P(Y) + __zz, ___ "2 Co{p(i l O); p( j  l 0)} 
~_<v J_<u 

Zlf)  X Z 3 # , - -  X p . (lO.9) 
t ~ I_<v J_<u 

Clearly tiffs me thod  uses the internal  covariances of all discrete 
probabilit ies < y and the counts  of all observat ions _< y. 

In the third approach,  we simply difference (5.7), and get 

p(y Ix)  ~ f ( y  [3;) - -  F(y - -  i [._x) 

' 4 = (I - - -Zp(y ) )  p(y) ÷ Zp(y) ~ ,N 

÷ [ Z p ( y )  - -  Z p ( y  - - -  I ) ]  • X Z 8 ; ,  - .~ p . ( IO. IO)  
t ~ l _ < v - t  I_<v- 

This is cer ta inly  simpler than (IO.9), even though all counts  ~ y 
are used. However ,  we have not been able to prove that  F(y [~) is 
monotone  in y for all g, and thus this method  might  give a negat ive 
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forecast. There is also obvious covariance 1)etween 1;(3, [{) and 
F(y  - -  I I ~), and we expect this forecast to have greater variance 
than (lO.9). 

I I .  U S E  OF ALL SAMPLE VALUES FOR DISC R ETE DISTRIBUTIONS 

An interesting overview of credibility models for discrete distri- 
butions can be obtained if we expand our forecast functions to in- 
clude all the discrete values of observations. 

Suppose ~ at tains only discrete values, say ~t ~ R. Define: 
n 

CO i = ~ ~f (¢ ¢ R ) "  ~ (o l = II. ( I I . I )  

This is just  the number of samples which a t ta in  value i in n 
trials. 

From (3.5), any  least-squares prediction 1)roblem using the I R I 

observed values w , - -  ~ 8 i (i~ R), requires the inversion of an 
~t 

t 1 

] 1¢ [ X [ R. [ covariance matrix,  whose elements can be shown to be: 

1 p(~) b - - / ' ( 0 ]  + (n --- *) V0p(i I 0) (i = j) 
C{c,~," O0y} 

- p( i )  p ( j )  -ff ( , ~ - -  i) C0{p(il 0 ) ;p ( j l0 )}  (,: # j) 

for the homogeneous collective. 

[f [ R L is finite, the inversion of (~z.2) may  be carried out  by 
digital comnputer; for semi-infinite ranges, such as the Poisson, one 
may deliberately t runcate  tile distribution, or hope for analytic  
simplifications. (Some special multi-dimensional credibility models 
are discussed in [2o]). In any case it should be noted tha t  because of 
the constraint  (Iz.I),  the matr ix  is not of fifll rank;  ~ C{co~; 

~o/} - o  (Vi). Thus the rank will be < [ R [ - - z .  In addition, 
certain pointq of mas~ may not have any across-the-collective 
variances, atld these values of y cannot be predicted beyond p(y)" 
counts at these values may  still be useful, however. In the sequel, 
we shalt assume tha t  the range R. has been diminished appropriately 
to the collective structure and predictand and will continue to use 
notat ion R. 
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The RHS to be used depends on the objective.  Suppose we arc 
t rying to forecast p(y  j 0~e) for fixed y. Then:  

• Cox, {.~ ~oz} ,',C0(p(i I 0 )" / '0 '  I 0)}. ( II .3)  -q = 8~/,.+ , 

The coefficients {ag;a~( j  s R)} are found from: 

~,ff -~ p(y) -- x ~yp(j) (lZ.4) 
l a s t  

Z C{oo,;ooj}.ay=nCo{p(ilo);p(ylO)}.  ( i s R )  (I*.5) 
~ ¢ l t  

and used in a forecast form: 

/~(y 10T) ~ f ( x )  = ,~g + x ~f ( z ~,) .  (1~.6) 
] ~ R  I -  1 

We shall refer to this set of coefficients as the fltll mztlti-dimen- 
sional sol,ulion, 1o fl~e discrege densily, for fixed y. In  a certain sense, 
it is the best possible solution to the prediction problem, using only 
a linear funct ion of the individual  counts  at each value in 1{. 

Now, suppose that  the above analyses have been repeated m an y  
different times, finding the sets of coefficients {a.g; a~(j~R)} for 
every value of 3' ~ R. This requires changing only the RH S  o1[ (I1.5), 
and no fur ther  inversions of C{~,; ~j}. Assuming all these sets of 
coefficients have 1)een found, we can now show the interrelat ionship 
between ma ny  of the previous models. 

First,  because of superposition, it  is clear tha t  the full ,multi- 
dimensional solulio,n 1o the discrcle cumulative distribulion has the 
form : 

P(Y 

with coefficients: 
)¢R I 1 

A f =  z ~,~ (j - o) 
A~v 

In other  words, we just  cumulate  tile coefficients from (11.4) and 
(11.5). Alternately,  we can solve the systen] (~r.5) with an RHS of 
',,C0{~(i I 0); I~('>' 10)). 

To obtain the simpler forms given earlier, we merely coJ~strain or 
dimin.ale certain of the coefficients {ay} using the remarks in Sec- 
tion 3. The price of these smlplifications is, of course, an increase in 
forecast variance. 

17 
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For example, when predicting discrete densities, if we set 

,,~' . o ( j ~  R 

then from (11.4) and (ii .5),  we gel 

,~v0{/,(y I 0} 
4 ~ ~ i : -  p(;)] > (. - ,) v0{p(y i 0) 

Y}). ( I I -9 )  

~g = / ' ( Y )  [~ --<3]' 
(i i . io) 

This is exact ly the credible discrete density (lO.6) and (IO.7), 
which uses only counts of observations equal to y. 

If, on tlle other hand,  we set 

a~- o (j  > y; j e  R), (II.II) 
and further constrain the nonzero coefficients to be identical: 

ay = gff ( j  ~.  )', j ¢ ]~), ( I I . I 2 )  

a simple calculation will give the second formula for the density 
(lO.9). 

Similar remarks apply to estimates of the complete distribution, 
via the formulas (I1.7) and (11.8). Vor instance, if we set: 

A] o ( j > y ; j - c R ) ; A ~ -  A 'j ( j < y ;  j~R) (II .I3) 

then we get our basic credible distr ibution formulas (5.7) and (5.8). 

To summarize briefly, we see tha t  in the discrete case, the most 
general way to predict the density, cumulat ive distribution, or other 
function of {~, +~ is to solve a multi-dimensional credibility prol)lemn, 
using the counts of observations at  all values of y. However, this 
leads to a requirement for est imating many  covariances from the 
collective and a matr ix  inversion problem of high order. Simplified 
formulae and da ta  requirements are obtained by further constrain- 
ins these least-squares solutions, at the price of increased variance, 
the results coinciding with those obtained by direct argument.  

I2 .  (~OMPU'fA'fIONAL I{ESUL'I'S-CREDIBLt~ 1)iSCRETI r. I)ENS1TY 

Computat ions  were carried out for the Poisson-Gamma distri- 
butions of {9.1). The density was computed using (to.2), the dif- 
ferences of tile credible distribution, and the exact Bavesian 
forecast. 
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Typical  results are shown in ]Pig. 8. Generally,  the results using 
(m.2) are far ther  away from the exact  Bayesian forecasts, versus 
differencing the credible distr ibution,  except  for est imates of 
p(o Ix) = I - P(o [Y), when the results a r t  identical. This performance 
is due to the limited information used from the samples (counts equal 
to y), and to the larger t ime constants,  shown below in Table  I. 

TABLE 
Credibzhty lzme constants for distributwn and 
discrete-density forecasts. 

d~stributw~ with E{~} 
. lJoz, s s o n - G a m l ~ a  - 

I, ViE} =: 2. 

y Np(y) Nv(y) 

0 2.000 2.000 

] r.793 15.2oo 
2 1.969 II.O64 
3 2.300 lO.185 
4 2.748 zo.735 
5 3.307 t2.o52 
6 3.979 r3.949 
7 4.773 16.377 
8 5 698 I9.338 

02 

Oi 

0 3  

02 

Ol 

0 3  

0 2  

0 ~  

0 6  

0 5  

O.4 

0 ~ / "  ' i , i i i , , b , ~ i i 

L r ~ " "  "-St" "" p(31.~) ~(31~).  

,' ~ " Q . > _  eSgl,~-#(al~) _] 

0 i f i f i i . i , i , i i I i I / 
2 4 6 8 ,o ,2 ,4 ,~ 

' ,  h~l;',...:=,=4_aa_~_~.~....~ 7 _  

\ F¢(II x_)-FC(Zl x_l 

0 p I ~ I p p i J ~ I i I i I i I 
2 4 6 8 I0 12 14 16 

p?. .T--%<~, ,., 0m0,q 
I ~'.--o* >'vpcI~} • - i 

I "~'/~c'°~U'F%I'O J 
0 2 4 6 8 I0 12 14 16 
I ' I , i , I , I , I , I , I , I 

 clo:, 0 ,o , ,  

I s ~ . . . . . . . . . .  

0 / I I t I i I , I i I ~ ~ i I i I 

0 2 4 6 8 n I0 12 14 16 

Fig. 8. l)]scretc probabi l i ty  forecasts for selected values of n. Single smlula- 
t i o n  o f  P o i s s o n - G a n n n a  d i s t r i b u t i o n s  w i t h  E { ~ } -  t ,  V { ~ }  = :  2 ,  0 7 ,  ~ 2 .  

(Straight lines for clari ty only). 
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z 3. l¢am~ Cot;NT~ 

To illustrate a l imitation of the credible distribution, consider 
est imating pe(y ]07,) for a large value of y, writing the formula: 

Np(y) pC(y) + (// of ~ > y) 

paths are i l lustrated on Fig. 9, assuming ~t. is Possible sample 
c o n t i n u o u s  

KIK. 9. S a m p l e  p a t h s  

pC(yl + 2/N ~ND SOON pc(y1+ I / N ~  
pCiy} 

n/N 

for c r e t h b f l i t y  e ~ t i m a t e  of  t - -  PCy I Or) . N = Nz,(y) .  

We see the familiar " re laxat ion"  of the forecast from the initial 
est imate of pc(y) following the curve ])C(y)/(~ .q_ (,@\r)), until the 
first count  > 3' causes the est imate to jump up to a curve of similar 
form which starts at pc(y) .~_ (~/N). The curve then relaxes again 
towards zero until the next count occurs. In other words, a given 
sample path  never really converges, but  must  continually jump up 
to the neighl)oring path to s tay in tlm neighborlmod of pe(y [OT). 

[f ]>e(y]O,r) is sufficiently small, then for fixed n not too large, 
the first jump may  not occur with high probability. To a good ap- 
proximation,  then, the credible forecast is a l~er~zoulli dislribulio~6 
i.e.: 

I z,c(y) 
I ~ ('~/N) with probability I -- ~t,I)C(y I 0~,); 

- - - F ( y l E )  = 

i pc(y) + T +  (,z/Ni with probabili ty ,~PC(yl%, ). 

Tim mean of this distribution, given 0,v, is just the coml)lement of 
(8.3), but  the variance slightly underestimates the true result (8.6), 
having instead a leading coefficient pc(y ] 0T) [I - -  ,n, pc(y I 0T)]. 
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This type o[ behavior may  not be sufficiently accurate for ex- 
tremely rare events, and suggests e~timating more covariances from 
the collective, and using more complex formulae to obtain more 
continuously correcting estimates. 

The ul t imate would be a complete Bayesian analysis which uses 
the value of every sample at every step to adjust  the forecast. 
However, this requires drastic assuml)tions about  P(y  [0) for all 
values of y. 

~4. ClcEmm.E 3Io.~u,zx'rs 

\¥e conclude with some remarks concerning the t)roblem of 
est imating various n l o m e n t s  of  ~ ,  +1. 

First, .for the forecast of the mean value, there is the classic for- 
mula (4.6), which is known to be exact for most o,f the well-known 
conjugate prior distributions such as Beta-Binomial,  Gamma- 
Poisson, Normal-Normal,  etc. [8] and [z2]; a more general result is 
shown in [2z]. I t  is easily shown to be incorrect for the Uniform- 
Pareto and for other .families .for which tile sample mean is not a 
sufficient statistic [15]. 

One could also est imate the mean by using the credible distri- 
bution or density formulae, (5.7) and (lO.6), etc.; numerical in- 
tegration is necessary in the continuous case because of the awkward 
dependence of Z upon y. 

As an example, Fig. to, shows the mean for the Gamma-Poisson 
(Eft} = ~" V{~} = 2; E f t  I 0,r} = 2) calculated four ways: 

(I) mean-credible forecast (4.6) (Exact Bayesian);  
(2) credible distr ibution (5-7); 
(3) credible density (io.6); 
(4) sample mean. 

The initial samples in this simulation were quite large, so there 
are some over-corrections at .first; however the response in general is 
much smoother than tha t  of the distribution forecasts. The Bayesian 
est imate is, generally the most sensitive to respond to the samples, 
followed by estimates from the distribution and density. This is 
oh\ ious from consideration of the magni tudes  of the \ 'arious N. 

In his book [4:, l~iihlmann develops credibility formulae for tile 
conditional variance, V{~n ~ l x } ,  based upon separation into a 
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"variance" part ,  E 0 1 z V { ~  10}, and a "f luctuatiort"  part,  V01 ~ 
E{~n +~ I 0}. The first part  is est imated using the sample variance; 
the second uses the sample mean. On the other hand, Sahnond [15] 
examines the exace form of the variance for several t ractable 
families, and finds the variance either as a linear or quadrat ic  
function of the sample mean only, when tim sample mean is a suf- 
ficient statistic. Thus the sufficient statistic appears to play the 
major  role in exact results for the variance, but the functional 
dependence is more complicated. 

i i J i i z i i 
~m-- " ~ SAMPLE MEAN 

6 • • CREOIBLE IVEAN'EXAET BAYESIAN 
0 - - - - - -0  FROM CREDIBLE OISTRIBUTION 

/ X '~  " ~  FROM CREDIBLE OEt'ISITY 
5~r~ FOR SELECTEO VALUES OF n 

q 

4 

t l  

3 " " "  

a ~ "  . . . . . . . . .  ~ - -  
. . . . .  --~ e {el O-r) 

;e...- ~ ' ' -  
/ 

I 

o I t I I I I I I 
2 4 6 8 n I 0  I 2  14 16 

F i g .  to .  F o r e c a s t s  o f  l ~ { E n , , I . v }  t lbhlg  f o u r  d i f f e r e n t  m e t h o d s .  G a m m a -  
P o i s s o n  f a m i l i e s .  E{~} = i ; \r{~,} _= 2 ; 0T  = 2. 

One can also est imate the variance by estimating E{({n +@ I Y}, 
and subtract ing the square of any estinaate of the mean. 

If we are trying to est imate the kth moment  (k > 2) then the 
direct approach via (3.5) and (3.9) is clear. First we set -q = (~n+l) ~, 
and select an appropriate predicting function ~ot = g~(~) of the 
observables. 

If the sample mean is known to be a sufficient statistic, one is 
tempted to set 

I ~ ~,, (I4.I) 
C 0 1  ~ -  H 

I , - 1  
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obtaiMng the result 

1~{(5,+~) ~ Ix} ~ E{~ ~} + 
Covo{E{~ ] 0}; E { ~  I 0}} 

Vo{E{  I 0}) 

Ztt ] • E x t - -  E . (I4.2) 
t 1 

Thus the f luctuat ions of the sample mean about  the collective 
mean cause the est imate  of the kth momen t  to change. 

Wi thou t  this foreknowledge,  the most na tura l  choice is to take 
the sample hth moment :  

~, = -  .E (~t)/¢, ( I4 .3 )  
n t i 

obtaining an ordinary  credibi l i ty forlnula: 

E{(~ ,~+ , )  k I~'} ~ (I - -  Zb~]), E { ~  re} + Z[~- 3 . ,~ ,E (xt) e, ( I 4 . 4 )  

but with a new time constant :  

lZoV{   I o} 
Nre 1 --- VoE({,~ [ 0} I - VoE{~e i--~5. (I4. 5) 

Of course the variances of ~a: are in fact  moments  of order 21e, for 
which est imates must  be found from the collective. 

Fur the rmore ,  there is no good prior reason why the predictors  
could not only include bout (z4.I) and (14.3) , but  aZ! sample lth 
moments ,  l = I, "2 . . . . .  k. Following this approach necessitates 
estimating all the means of the different moments ,  as well as 
covariances of the form: 

C{~i; ~s]0} ( i , j  =~ ~, 2 . . . . .  k). (z4.6) 

The problem then becomes a mult i-dimensional  one. 

Finally, one can imagine forming the kth moment  numerical ly  
from the credible distribution.  

Regretful ly,  we must  conclude with the observat ion tha t  there 
are still many unanswered questions on the efficiency of different  
approaches.  Credibility theory  flees us from the distr ibut ional  as- 
sumptions of Bayesian solutions; however,  we must  now consider 
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in more detail the form of the approximation, and the avail_ability 
of statistics from the collective. We must also keep in lnind that 
these estimates arc usually made for some decision model in a larger 
insurance context, and it may be more efficient to examine first the 
approximations needed at that level. 
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