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I.  INTRODUCTION 

In this paper  we are going to s tudy  some propert ies of a stochastic 
process, which has been proposed by Cramfir (I968) as a model of 
the claims arising in an insurance company.  This process has been 
studied by Cox in a different context .  A few e lementary  results, 
concerning moments,  are given by Cox and Lewis (I966). The 
present  paper  will be a survey of some results derived by  the au thor  

( I97o ' I )  and (~97o:2). For  detai led proofs we refer to these papers. 

2. DEFINITION OF THE PROCESS 

Let X(t) he a real-valued stochastic process, such that  P~X(t) < o} 
-- o. We fur ther  assume that  EX(/) = I and that  Eke(/,) < co for 
ever): fixed value of t. We denote the covariance 

Coy x(l)} by t) 

The process X(/) will play the role of an intensi ty function. Tha t  
means, that  for every  fixed realization of the process, the pro- 
babil i ty of 

o ) ( ~ - - A n ( t )  + o(ZXl) 

1 ' ~ event  in (t, t + zXt) = i ~tX(t) + o(&t) 
more than I ~ o(At) 

and that  the nUlaaber of evenls in disjoint intervals are independent .  

\¥e  now define a point process N(I), where N(t) is the number  of 
events  which have occurred in (o, t]). With this definition we get 

st(t)'  
- -  e - ( A t ) .  P , , ( t )  = I " ( N ( 0  = , , )  = E .,,! 

where 

A(t) -- jt X(-~) d-~ 
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The integral is assumed to exist almost  surely. This process will be 
called the N-process. 

\,\re will now define the non-e lementary  process, which corres- 

ponds to the total  amount  of claims. We then associate a quan t i t y  
to each event. These quanti t ies  are def ined by  a sequence of in- 
dependent  equally dis t r ibuted random variables X:, X~., Xa . . . .  
with the common distr ibution function V(x). The quarttities are 
fu r thermore  independent  of the process N(t). We now define 
vj = EXJ an.d v(u) = E(exp(iuX}), It  is now possible to define 
a stochastic process by  

NO} 
X(t) = Z Xk ( X ( t ) - = o i f N ( t )  = o ) .  

/¢ 1 

This process will be called the X-process. 

For  this process we have 

F(x , t )= P(X{t) <x) = ~ Vn*(x) E) A(t)n- e~"(t) 1 
- -  n !  t " 

n , , o  

In the last sectioil we will exempli fy  with the Poisson-process, the 
process studied by  Ammeter  (I948) and the Polya-process studied 

by Lundberg  (194o). 

3'  SOME MOMENT FORMULAE 

The following momeut  formulae are derived by using condit ional  
expectat ions.  

E X ( t )  --- v,: 

all(.I 

2 Var A(/). Var X(t) = v.,t + vt 

B y  p u t t i n g  vL = v2 = I we get t i l t  corresponding formulae for 
the N-process. 

4 '  IAMIT "I'IIF.ORF.MS 

4.1. Some definitions 
D e f i n i t i o n  i 

The process ),(1) will be called crgodic if lira Var l t A(I) - - o. 
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A(I) -- t 

P /V~-/A(t) 
( x(~)--t 

T h e o r e m  3 

D e f i n i t i o n  2 

The normal distr ibution funct ion will be denoted  by O(x). 

4.2. Limit  distributions of the N-process 

We will now s tudy  the limit distr ibution of the variable 

N(t) -- 

V V / T ~ ( t )  " 

The limit distr ibution will depend on the variance of A(t). A little 
vaguely we can express this by saying that  the limit distr ibution 
depends on the relationship between the randomness of A(t) and 
the randomness  of N(I) given the value of A(t). 

The following theorems hold. 

T h e o r e m  I 

If t - t  Var A(t) -+ o as t ~ o~, then  

T h e o r e m  2 

I f t - t  V a r A ( t ) ~ k ,  o < k < oo, and if 

< x) --->G(x) as t----> oo, then 

) ( J//I I )  * O(X 1/I .-~-k). < x - - > G  x , + k 

If t -L Var A(t) --> coo and if 

(n(t) --t ) 
P \-l?~a~-~( ~ < x --~ G(x) as t--> oo, then 

( N(t)--t ) 
P l/~ar-N(t) < x --+G(x). 

Indication of proof 

The theorems are proved by  showing that  tile difference between 
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(N(,) 7{ ) 
the characteristic function o f P  l / ~ a r - ~ )  < x and the charac- 

teristic func t ion  of the  l imit  d i s t r ibu t ion  tends  to zero as t ~ .  coo 

4.3. Limit distributions of the X-process 
In  t rea t ing  the ques t ions  of l imit  d i s t r ibu t ions  of X(l) L u n d b e r g  

(194o) poin ts  ou t  in his special  case, t h a t  there  is a f u n d a m e n t a l  
difference if vl is equal  to zero or  not .  F r o m  the  va r i ance  f o r m u l a  it 
seems p robab le  t h a t  this  will be the  case as soon as Var A(t) is of the  
same  or a higher  order  t h a n  t. We  will a n y h o w  separa te  the  two cases 
comple te ly .  

We now assume t h a t  vt ~ o a~ld v2 < 0o. I n  this case we get  the  
same  three  di f ferent  cases as we go t  for the  N-process .  

T h e o r e m  4 

If  t -  1 Var A(t) ~ o as t - +  oo, theft  

p ( X(t) -- v~t x) *(x). 

T h e o r e m  5 

if t - I  V a r A ( t ) - - + k ,  o < k < co, and  if 

P -~/\r~r A(t) -< x -+  G(x) as t ~ co, t h e n  

(x(~)--vlt ) 
P ] /~ .~-X( t )  ~ x t e n d s  to  

G x + vrk 

t . 
T h e o r e m  6 

If  t - t  Var  A(t) ~ m and  if 

(I ±1 x / I  + ifvt > o  
i' V2 ! 

p (]/X~ar~)A(t)--I _< x) -+G(x) as l ~ or, then 
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p (X(t)--v~t ) 
l/STar X(t) -<- x tends to 

G(x) if vl > o 

I I - - G ( - - x - - o )  i fv ,  < o. 

\'Ve no\v assume that  v, = o and v2 < coo. In this case we get the 

following theorems. 

T h e o r e m  7 

If x(t) is ergodic then, 

( x(t) < . )  -+ ¢,(x). 

T h e o r e m  8 

If t - t  [ / ' ~ ( t )  ~ r, o < r < co, arid if 

1 ) (iX(l)--I ) 
I / V ~ 7  .A (a) -< * - *  G ( . )  as  ~ --+ co,  

i / ~ - ~ - { i  ~ _<_ x -÷ ~b ~ dG,(y) 
o 

where Gt(y) = G 

then 

Indication of proof 
Frorn the limit distributions of N(l) the corresponding limit 

distributions of X(1) follow fiom the results due to Robbins (1948). 

5' LINEAR ESTIMATES OF THE iNTENSITV 

Otu" l)urpose is to investigate how one observation of the N- 
process in the interval (o, T) can be used irt order to give estimates, 
X*(l), of the realization of X(l) which generated the observed N- 
process. We suppose that  lj . . . . .  tN(T) are the successive times of 
occurrence for the events in this interval. 
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An estimate ),*(t) will be said to be the best cslimate of X(t) if 
E{X*(I) --Z(t)} 2 is minimized. 

T h e o r e m  9 

The best estimate X*(t) of ~,(t) is given by 

N ( 7 ' )  

Ex[x(t) [ rl x(t~)} e -A(7,)] 
k ,  l 

X*(t) = ,~,~1 
Ex[{ n x(tk) t e -A(~)] 

k '  L 

I t  is easily understood tha t  for most cases, this est imate will 
require calculations, which are impossible to t)erfo~m. We will 
therefore restrict ourselves to linear estimates. This means tha t  we 
are going to s tudy  estimates of the type 

X*(t) = or(t) + J~ ~t(s) d(N(s) - - s ) .  
o 

T h e o r e m  IO 

The best linear est imate X*(t) of ~.(t) is given by 

x*(t) = ~ + [ ~ds) d(N(s) - -  s) 
0 

where ~t(s) is the solution of the integral equation 

~t(s) + ; ~t(z) r(z, s) d z - -  r(t, s) = o. 
o 

For tiffs est imate we have 

E{X*(t) - -  X(l)}  2 = ~t(t). 

Indication of proof 

The general linear est imate is given by 

x*(t) = ~(t) + } ~ds) d ( N ( s ) -  s). 
o 

We define the eigenfunctions and eigenvalues of r(s, t) by the 
aolutions of the integral equat ion 

q, 

$(t) = ~ I ¢(s) r(s, t) ds. 
o 

9 
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From the theorem of Mercer it follows tha t  

tO 

, ( s ,  b) V Ck(s) ¢~(l )  
= ~ ~.~ 

L , I  

if r(s, l) is cont inuous in o < s, t _< T. 

By  expanding ~3t(s) in terms of the eigenfunctions of r(s, t), it 

follows that  E{X*(/) --X(l)} 2 is minimized if 

~(t) = i 

and 

~ Ck(s) Ck(t) 
f~ds)= A.. I + ~ k  

k 1 

This series is the unique solution of the integral equat ion in the 
theorem. 

6. L I N E A R  ESTIMATES IN A MODIFIED PROCESS 

In certain applications it is impossible to observe the exact t ime of 
each event.  

Assume tha t  our observations are restr icted to N(A), N(2&), . . . ,  
N(nA), where A is a positive quan t i ty  and n = IT/A]. h i  order to 
avoid trivial complications, we will assume tha t  T is a multiple of &. 

We now define 

z~ = ~/~ {A(zXk) - -  a(~X(a, - -  ~))I 

and 

N e  = N ( A k )  - -  N ( A ( k - -  I)) 

Defining 

we have 

and 

(k = I . . . . .  n) 

(k = ~ . . . . .  n).  

rk,j = Cov lk, lj 

E N ~ . =  A 

Cox; Nk ,  N 1 = ASk,j + A2yk, j 

~ I i f k = j  
where 3~.,j = i ° i f  k # j "  
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I t  is now possible to show that  the hest linear est imate l~ of Z~ is 

given 1) 3, 
n 

z , ; = ~ +  x ~ , ~ ( N  e - ~ )  
k 1 

where the sequence I[3~ e~ is defined by tile solution of 

A ~, ~',,s rs,e = r~,e - -  ~,,,e (k = i . . . . .  ~ ) .  
J l 

This equat ion corresponds to the integral equat ion in Theorem Io. 

For  the best linear- est imate we have 

If we are interested in est imating the whole sequei-tce l~ . . . . .  l~, 
it is reasonable to use 

n 

as a measure of the efficiency of the estimates. 

Assunae that  le is defined for all integers k and that  re, J = r e_j .  

From the general theory  of s t a t iona ry  stochastic processes it 
follows that  r e_j has the representat ion 

r: 

r e - j  = I eZ(~-J)* dF(x )  

where F is a non-decreasing boui-tded function. 

We further  assume that  

I.  F ' ( x )  is botulded almost everywhere  for - - r~  < x < =. 
2. 17(x) has at nlost finitely many  discontinuities. 

Under  these assumptions the following theorenl holds. 

T h e o r e m  zr 

If tile process It  is s ta t ionary  and i[ the given regular i ty  assump- 
tiol-ts are fulfilled, then 

,,lim--co-~ [3~,~ = . 1--4- 2=&F'(x) " 
,1 i 
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[ndicalion of proof 

In order to prove the theorem, spectral  representa t ion of matr ices 
as well as some facts about  Toepli tz matrices, given by  Grenander  
aud Szeg6 (1958), are used. 

7. SOME EXAMPLES 

We are going to il lustrate the results on three well-known models. 

I. The Poissou-model. 

2. The model due to Ammete r  (1948) . 

3. The Polya-model.  

With our formulat ion,  these models can he described in the 
following way 

1. P ( x ( t )  = 1 ) =  1 

2.  p ( x ( t )  = x w , l )  = 1 

for all values of t. 
for all values of l. v is a positive con- 
s tant  and Xo, Xz . . . .  a sequence of 
independent  random variables, with 
common distr ibut iou funct ion U(?,). 

3. P ( X ( / ) = X ) =  I for all values of t. X is a random 
variable with distr ibution function 
g(x). 

In both ex. 2 and ex. 3 the distr ibution function U(X) will be 
assumed to be a P-dis t r ibut ion with the f requency function given by 

l ]~h xh l e-Xh 
u(),) = - ~ )  if X ~. o 

IO i f X < o  

7. I. Limit dislribulions 

In these examples,  the following variance formulae hold 

I. Var A(/) = o 

[ ! ] , ~  ( [ ! ] )~  I 2. Var A(t) = -/[ + t - -  z 

12 
3. Vat A(t) --  h '  
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The quan t i t y  k, defined by  k = lira 1 - t  Var A(t), takes the fob 
lowing values t ~  

I .  k = o  

2. k = -./h 

3. k =  oo. 

To be able to app ly  the limit theorems we mus t  calculate 

t-.oolimP - ~ r ~ ( ~ )  < x  i nexs .  2 a n d 3 .  

In ex. 2 it follows from the centra l  limit theorem tha t  

(A(t) -- ~ ) 

In  ex. 3 we have  

( _ a ( l ) _ T - t )  t.x--t ) 
< x  = P (  < x  = 

= v(/7~(x- ~) _< x) = G(x) 

where G(x) = U + I . 

Assume tha t  the claim distr ibution is such tha t  v2 < oo. 

h i  the case Vl ~ o we have  the following limit distr ibutions.  

( ( X ( t ) - - v ~ t  ) t d)(x) in exs. I and 2 

lim P \ War X( t )  -< x = i G(x) in ex. 3 if v, > o 
t~oo I - - G ( - - x - - o )  in ex. 3 if VL < O. 

k 

Now assume tha t  v~ = o. In  ex. 3 we have  

lira t -1 V \ ~ X ( t )  --  ~ 
t--~o~ l/h," 

Since the processes in exs. i and  2 are ergodic, the limit distri- 
but ions are given by  Theorem 7- In  ex. 3 we have  

(x,,,);(x) 
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where 

G~(y) = G  (~~-T --I) = G ( / ) i ( y -  I ) ) =  U(y). 

This result is given by Lundberg (z94o). 

7.2. Esfimalion of the inlen, silies 

Only in exs. 2 and 3 there is any estimation prol)lem. From the 
calculations by Lundberg (194o) it follows, that the best estimate 
X*(l) of X(l) is given by 

h (fort < [T/v]~) inex.  2 
+ N ([t/.r] T + 'T ) N([t/T] T) 

h. + "r x*(t) = J 
i h + N(T) 

-n--q--T in ex. 3. 

Since these best estimates are linear, they are at the same time 
the best linear estimates. Ex. 2 is however not included in the 
general treatment of linear estimates, since the theorem of Mercer 
requires a continuous covariance function. 

It follows, however, from Lundberg (i94o), that the best estimate 
is linear, only when the distribution U(x) is a P-distribution. The 
best linear estimate, however, is dependent only on the two first 
moments of U(x). 

We now turn over to the modifiecl process. Since we will only 
illustrate linear estimates, the examples 1nay be given in terms of the 
covariances. It is natural to study the following examples. 

( I/h if h = j 
9 t rk,j 

) 
~ w 

I o if k ~ j 

3'. rk,j = I/h for all k and j. 

In cx. 2' we have the equations 

£~(II]1) f~,~,~ --- ( I / h )  a , j , k -  ~v,~ ('1, '/¢ = I . . . . .  ll:) 

o r  

i I h + A  i f & : ~  

Io  if k ~ , ,  
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and  thus  the es t ima tes  

N ~ - - A  
z,; = : t +  h + k  

are  the  best  l inear  es t imates .  

h +  N,, 
A + A  

(~I =-- I, . .., ;~) 

'For these es t imates  we  have  

E ( ~  - -  4 )  = 

I n  ex. 3'  we have  

' = ( , / h ) - - ~  a(qh) ~ ~,j ~,k 
J l 

or 

and  thus  

l ,  __ 
x I 

I 

h -~-k"  

I_ 

k - , l  

h + nk 

(k,,, = I, . . . ,  ~) 

F o r  these estimate.~ we have  
t 

E ( C -  4 )  ~ = - It + "hA" 

I n  ex. 2 '  the spec t ra l  d i s t r ibu t ion  is abso lu te ly  con t inuous ,  wi th  
spec t ra l  dens i ty  g iven  b y f ( x )  = I /2~h .  

As an i l lus t ra t ion of T h e o r e m  I i  we have  

I 

I 2 f 2~h I lira - ~3~,~ = - dx - -  

v . l  - ' re  I --1-- - -  
2rrh 

REFERENCES 

[~] A~tMl~'rJ~R, H. (1048): A gcncrahzatton of the collective theory of risk in 
regard to ffluctuatmg basic probabflitms. Shandzna.vtsk Aktuarietidshrift. 

[2] Cox, D. H and LEWIS P. A. \at. (t966): 7"he Statisl*cal Analyszs of 
Events Methuen. 



128 STOCHASTIC INTENSITY FUNCTIONS 

i3] CRAMI~R, 1"-[ (1069): 011 s t r eams  of r a n d o m  even t s  SkandTnavisck An -  
tuar tehdskr i f t  Suppl .  

[4] G ~ a x  O~.LI~, J. (t 97 o. z) : On s tochas tm processes genera ted  by  a s tochas tm 
in t enmty  funct ion .  Research  R e p o r t  No. 49, I n s t i t u t e  of .Mathemat ica l  
S ta t i s t ics  and  Actuar ia l  Ma t hem a t m s ,  t ;mver s i ty  of S tockho lm 

[5] G-RANDI'iI.L, J ( I970 :2 ) :  On th.e e s t i m a t m n  of mtcnmt ies  in a s tochas tm 
process genera ted  by a s tochas t i c  in tens i ty  sequence Research  R e p o r t  
No. 54, I n s t i t u t e  of M a t h e m a t i c a l  S ta t i s tms  and  Actuar ia l  Ma thema t i c s ,  
I ' n i v c r s i t y  of S tockholm.  

[6] GRENANDER. ['. alld SZEGO, (;. (1958) T o e p h t z f o r m s  and their apphca-  
t~o~zs / :ntvers~ty of Cal i forma Press. 

[7] LUNDBER6, O. (1940): On random processes c, nd thezr c~pplicctttoTz to 
sickness and accident statistzcs. Almqv l s t  & X,Vmksell. 

[8] RoBmNs,  H. E 0 9 4 8 ) :  "rhe a s y m p t o t m  (hs t r lbu t ion  of the  sum ol tL 
r a n d o m  n u m b e r  of r a n d o m  varmbles  Bull. diner.  Mc~th Soc VoI. 54 


