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1. INTRODUCTION

In this paper we arc going to study some properties of a stochastic
process, which has been proposed by Cramér (1968) as a model of
the claims arising in an insurance company. This process has been
studied by Cox in a different context. A few elementary results,
concerning moments, are given by Cox and Lewis (1966). The
present paper will be a survey of some results derived by the author
(1970:1) and (1970:2). For detailed proofs we refer to these papers.

2. DEFINITION OF THE PROCESS

Let 2(¢) be a real-valued stochastic process, such that P{a(f) < o}
== 0. We further assume that £A(f) = 1 and that Ex3(f) < co for
every fixed valuc of £. We denote the covariance

Cov {)(s), (1)} by 7(s, t).

The process a(¢) will play the role of an intensity function. That
means, that for cvery fixed realization of the process, the pro-
bability of

0 ) S [ — AIA(f) + o(A?)
1 event in (¢, £ + Af) = | An(f) 4 o(Af)
more than 1 \ o(At)

and that the number of events in disjoint intervals are independent.

We now define a point process N(t), where N(¢) is the number of
events which have occurred in (o, £]). With this definition we get
A(t)n

e (AL) .
!

Pu(t) = PIN(t) =) = E

where

t

A@) = [ A(x) dr
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The integral is assumed to exist almost surely. This process will be
called the N-process.

We will now define the non-elementary process, which corres-
ponds to the total amount of claims. We then associate a quantity
to each event. Thesc quantities are defined by a sequence of in-
dependent equally distributed random variables X, Xa, Xs, ...
with the common distribution function V(x). The quantitics arc
furthermore independent of the process N(f). We now define
vy = EXJ and v(u) = E(exp(suX)). It is now possible to definc
a stochastic process by

X{t)= 2 X (X() =o0if N{t) =0).
This process will be called the X-process.
For this process we have

A(t) n

e - A(L) ) )
n!

Flx, t) = P(X() < x) = Z Yu(x) E?

In the last section we will exemplify with the Poisson-process, the
process studied by Ammeter (1948) and the Polya-process studied
by Lundberg (1940).

3. SOME MOMENT FORMULAE

The following moment formulae are derived by using conditional
expectations.

E.Y(’) - ‘Z)ll
and
Var X (f) = vyt + v} Var A().

By putting v1 = v2: = 1 we get the corresponding formulace for
the N-process.

4. LIMIT TIHEOREMS
4.1. Some definitions

Definition 1

The process A(f) will be called ergodic if lim Vars ' A() - - o.

t
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Definition 2

The normal distribution function will be denoted by ®(x).

4.2. Limat distributions of the N-process
We will now studyv the limit distribution of the variable
N() —¢
VVar N(@)

The limit distribution will depend on the variance of A(¢). A little
vaguely we can express this by saying that the limit distribution
depends on the relationship between the randomness of A(f) and
the randomness of N(¢) given the value of A(z).

The following theorems hold.

Theorem 1
If +-' Var A(¢) — 0 as ¢ — o0, then
p (ﬂ‘);‘

VVar N x) — P0).

Theorem 2
If¢~' Var A(t) — k&, o <k < o, and if

Alt) —¢
r <— ——m—— < x) —G(x) as t— oo, then
VVar A()
N —¢ e T o TR
(I/W gx)—>G(,x ’/I+k> O(x V1 +k).

Theorem 3
If =1 Var A(f) — oo and if

P ( A—(L——t— < x) — (+(x) as t— co, then
VVar A() '
NO—t N o

P (l/m(t) < x) G(x).

Indication of proof

The theorems are proved by showing that the difference between
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. . N(t) —t

the characteristic functionof P [ 7j—e—u—o -
V/Var N())

teristic function of the limit distribution tends to zero as £ — .0

< m) and the charac-

4.3. Lumait distributions of the X-process

In treating the questions of limit distributions of X(¢) Lundberg
(1940) points out in his special case, that there is a fundamental
difference if v; is equal to zero or not. From the variance formula it
seems probable that this will be the case as soon as Var A(f) is of the
same or a higher order than &. We will anyhow separate the two cases
completely.

We now assume that v1 % 0 and v2 < oo. In this case we get the
same threc different cases as we got for the N-process.

Theorem 4

If £-' Var A(f) — 0 as £ — o0, then

X —ve o
(]/Var X0 r) - P

Theorem 5
if t7' Var A(f) = %, 0 << b < o0, and if

Alt) — ¢

P (-—_: < v) —G{x) ast{— co, then
V/Var A(#)
X(t) — vt

r < UM x) tends to
VVar X(2)

g G (.‘L‘ ‘/1 + vf) * O (m I/I + Ik) ifor >0
vik i V2
( (I—G(——~x /1 4 M) if v, < 0.
, e

Thecorem 6
[f 7' Var A(t) - o0 and if

Aty — ¢
3N <x G(x) as {— o0, then
( VVar A(t) — ) oW -

(A

vik
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xY(l)—Ult
Pl ,—- . — <x| tends to
(]/VarX(t) = )

g G(x) ifvy >0
( I—G(—x—o0) ifv, <o.
We now assume that v = 0 and v2 < co. In this case we get the
following theorems.
Theorem 7

If A(¢) is ergodic then,

X0y
P (V\mXH) = x) P).

Theorem 8
If i~/ Var A(t) =7, 0 <7 < o0, and if

Al —t
P =
( V/ Var A(2)

P <l /%_(%;(ﬂ < x) - f (D( l;—?) dGi (y)

y—1
where Gi(y) =G - .

4

< x) — G{x) as ¢t — o, then

Indication of proof

From the limit distributions of N{{) the corresponding limit
distributions of X (¢) follow from the results due to Robbins (1948).

5. LLINEAR ESTIMATES OF THE INTENSITY

Our purpose is to investigatec how onc obscrvation of the N-
process in the interval (o, T) can be used in order to give estimates,
A*{l), of the realization of %(¢) which generated the observed N-
process. We suppose that ¢, ..., tx(r) arc the successive times of
occurrence for the events in this interval.
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An cstimate 2*(¢) will be said to be the best cstimate of A(f) if
E{Qx(t) — w()}? is minimized.

Theorem g

The best estimate A*(4) of A{f) is given by

N(T)
E,[A(0) {T1 A{t,)} e~ M)
)\*(t)z A

N

E[{T1 2(t)} =]

It is casily understood that for most cascs, this estimate will
require calculations, which are impossible to perfoom. We will
thercfore restrict ourselves to linear estimates. This means that we
are going to study estimates of the type

() = all) + [ Eals) AN(s) — ).

Theorem 10

The best linear estimate A*(#) of A(f) is given by
W) =1+ [ Bi) AN —
where 8(s) is the solution of the integral equation
Blo) + S Ble) 75, 5) d —r(l,5) o
For this estimate we have
E{Q*@) — 2 = Bi(0).
I'ndication of proof
The general linear estimate 1s given by
W0) = o) + ] Bls) ANG) — ).

We define the eigenfunctions and cigenvalues of #(s, £} by the
solutions of the integral equation

Bl) = u | $(s) (s, 1) ds.
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Trom the theorem of Mercer it follows that

r(s, 1) = Z —_——

Lo

if #(s, ) is continuous ino <s, ¢t < T.

By expanding f(s) in terms of the eigenfunctions of #(s, {), it
follows that E{a*(f) — A(#)}2 is minimized if

off) =1
and
_ S grls) 449
ﬁf( ké_; I + wr :

This series is the unique solution of the integral equation in the
theorem.

. NEAR ESTIMA IN A FIED Pk *53
6. LINEAR ESTIMATES MODIF ROCESS

In certain applications it is impossible to observe the exact time of
cach event.

Assume that our observations are restricted to N(A), N(24),
N(nA), where A is a positive quantity and » = [T/A]. In order to
avoid trivial complications, we will assume that 7 is a multiple of A.

We now define

Iy = 1/A {A(AR) — A(A(Rk — 1)) (h=1,...,m)
and

Np = N(Ak) — N(A(k—1)) (h— 1, ..., n).

Defining
Tk, j == Cov lk, lj
we have
ENg=A

and

Cov ]Vk, Nj = AS;CJ -+ Azch,j

(rifh=y

where 8y 5 == ?oif Bt
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It is now possible to show that the best linear estimate 4 of Z, is
given by

=14 %8, (N, —A)
ko1

where the sequence {8, ..} is defined by the solution of

A Z B 7%k =75 Bui (k=1,...,n).
31

This equation corresponds to the integral equation in Theorem ro.

For the best linear estimate we have
* 12
E{Zv - lv! - E’v,v'

If we arc interested in estimating the whole sequence 4, ..., Iy,
it is reasonable to usc

n
tn ¥ B,
Mol !

as a measure of the cfficiency of the cstimates.
Assume that /i is defined for all integers 2 and that 7, , = 7, _,.

From the general theory of stationary stochastic processes it
follows that 7, _; has the representation

k19
— k-0 JF [
r-;= [ ¢ aF(x)
k3
where F is a non-decreasing bounded function.

We further assume that
1. I7'{x) is bounded almost everywhere for —n < x < m.

2. I"{x) has at most finitely many discontinuities.

Under these assumptions the following theorem holds.

Theorem 1r

If the process I is stationary and if the given regularity assump-
tions are fulfilled, then

Iy R I'(x) dx
lim ‘_ZB”: ’ ~ - P
0 oo 1 ' J 1 4 2xAF(x)
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Indication of proof

In order to prove the theorem, spectral representation of matrices
as well as some facts about Toeplitz matrices, given by Grenander
and Szegd (1958), are uscd.

7. SOME EXAMPLES

We are going to illustrate the results on three well-known models.
1. The Poisson-model.
2. The model due to Ammeter (1948).
3. The Polya-model.

With our formulation, these models can be described in the
following way

1. PA(3) = 1) =1 for all values of £
2. POW(t) = Myn)) =1 for all values of ¢. v is a positive con-
stant and Xo, A, ... a sequence of

independent random variables, with
common distribution function U(}).

3. PA(t) =0 =1 for all values of £ » is a random
variable with distribution function
U(A).

In both ex. 2 and ex. 3 the distribution function U(A) will be
assumed to be a I'-distribution with the frequency function given by

hh 7\h 1 G—m
S ifa>o

1[.()\) = / F(h)
0 ifa<o

7.1. Limit distributions
In these examples, the following variance formulae hold
I. Var A(t) = o

voso =[5+ (=)

12

=i

N

. Var A(f)

[88]
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The quantity %, defined by & = lim ¢™* Var A(¢), takes the fol-

lowing values b
I. k=o

2. k=~=/h

3. k= o

To be able to apply the limit theorems we must calculate

AlY) —¢ :
lim P | s=——- < x| in exs. 2 and 3.

e\ Y Var A(2)

In ex. 2 it follows from the central limit theorem that

im P (200 ) o
o (vva?m —”)— =)

In ex. 3 we have

P Am:j_< _})bxat<.‘_
<VVarA<) ‘x)“ (m “”)_

PR —1) <) = G(x)

where Gx) = U (V% + I>.
)

Assume that the claim distribution is such that ve << o0,
In the case v1 %= o we have the following limit distributions.

S O(x) in exs. 1 and 2

lim P = ( G(x) inex. 3ifn >0

11—

(Ve <7)

I—G{(—x-—o0)inex.3if vi < 0.

Now assume that v1 = 0. In ex. 3 we have

lT;t~1VVn/u) V

Since the processes in exs. 1 and 2 are ergodic, the limit distri-
butions are given by Theorem 7. In ex. 3 we have

o X ;
linaol (VVarX f) = v) - f (Vy) 4G
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where
Yy —1

wadﬂ;7J=GWHw—m=Uw»
This result is given by Lundberg (1940).

7.2. Estimalion of the intensities

Only in exs. 2 and 3 there is any estimation problem. From the
calculations by Lundberg (1940) it follows, that the best estimate
2* () of A(f) is given by

<h+NMﬂT+ﬂ—NMﬂﬂ

I+ < (for ¢t < [1/x]=) inex. 2

W)=’ i
h -+ N{T)
(‘n + 7

Since these best estimates are linear, they are at the same time
the best linear estimates. Ex. 2 is however not included in the
general treatment of linear estimates, since the theorem of Mercer
requires a continuous covariance function.

It follows, however, from Lundberg (1940), that the best estimate
is lincar, only when the distribution U(x) is a I'-distribution. The
best lincar estimate, however, is dependent only on the two first
moments of U(x).

We now turn over to the modified process. Since we will only
illustrate lincar cstimates, the examples may be given in terms of the
covariances. 1t is natural to study the following examples.

2 vy = 3 i ifh =7y

in ex. 3.

o if k4
3. 7k, = 1/l for all £ and j.

Tn ex. 2" we have the cquations
A(r/h) B, = (/) S, p — By (v A=1,..., 1)

or
(e

0 itk £y
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and thus the estimates
N,—A A+ N,
- (V =1

=1+ TR T ra

are the best linear estimates.
Tor these estimates we have
I

E{; —4) .

In ex. 3’ we have
A(x/h) 2 B, 5 = (1/h) — 8, 4 (hyv =1, ..., 1)

5o
or
1
Boie = I 4 nA

and thus
h+ ¥ N

o

= -
v kb4 mA

~,yw 2 L
L@ — L) = h 4+ nA’

For these estimates we have

In ex. 2’ the spectral distribution is absolutely continuous, with

spectral density given by f(x) = rj2=h.

As an illustration of Theorem 11 we have

I
. 1 2rh T
lim ~ZBH= : dy = — - -
noso M ' 2w -+ A
vt -n I 4
anh
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