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1. Short vecapiiuialion of Sparre Andersen’s resuils

E. Sparre Andersen [1]") presented to the XVih International
Congress of Actuaries, New York, 1957, a model of a collective risk
process with a positive gross risk premium where the epochs of
claims formed a renewal process. Let W(u) (where # denotes the
original risk reserve) denote the ruin probability in this model.
Generalizing the classical result Sparre Andersen deduced the
inequality

‘P'('lt) <e -Ru

where R 1s a suitable positive number depending on the distribu-
tion function (continuous to the right), P(y), — o0 <y < w0,
P(0) < 1, for the amounts of claims in case a claim occurs and also
depending on the distribution function, K{¢), ¢ > o, K(0) = o, for
the times between the epochs of successive claims, (The times
between the epochs of successive claims, the inter-occurrence times,
are assumed to be independent and identically distributed random
variables. The time between the starting point and the epoch of the
first claim is assumed to be independent of and to have the same
distribution function as the inter-occurrence times. The amounts of
claims are assumed to be independent of each other and of the
epochs of claims and to be identically distributed.)

In fact,

R = supia|o < Q./(6) = pla) b(—ca) <]

Y Numbers in brackets refer {o the hst of references at the end of the

papcr.
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where

pls) = [ esvdP(y),

—-w

R(s) = [ et dI(l),

@ is the greatest positive value, for which p{s) is analytic and regular
in the strip o << Re(s) < @ and ¢ > o0 is thc constant gross risk
premium per unit of time.

Thus it is assumed that () > o, corresponding to the same as-
sumption in the Cramér theory ([3] p. 52). Of course, as in thc
Cramér theory it is also assumed that

b= [ ydPWy) is finitc.

Furthermore, it is assumed that
ki = [ tadK(t) Is finite,
and that
1
°Zh

corresponding to the Cramér assumption ([3] p. 40) that x =
=Cc—pPp1 >0.

Specializing to the Poisson case, di{(t) = ¢ "* d¢, we easily retrieve
the Cramér definition ([3] p. 53),

R=sup{o|c<Q,1+ co—p(c) >0}

since in this case we have

At this point we observe that the nef risk premium in the case of
the non-Poisson renewal process is #of proportional to time.
However, as a consequence of the well-known renewal theorem
({41 p. 347), the net risk premium for a time-interval of length
hoin the long run is proportional to k. (If K() is arithmetic as c.g. in
the deterministic casc: K(f) == 2(f — k1) some caution is nceded)
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In fact the formula for the net risk premium in the time interval
(T, T2) is

VITy, Te) = pn £ [K®*(T2) — Kn*(T)],

where A'7* as usual denotes the #nt/h convolution of K with itself.
We get
b1

V(Tl, Tz) — 7)— (Tz — Tl), To—11 =0 T1— o0,
vl

- : 2! . . :
The assumption ¢ > W thus is an assumption that in the long run
vl

the safety loading is positive.

Considering the risk reserve
X{t) =n +ct—Y(l),

where Y () is the accumulated amounts of claims, Sparre Andersen
wrote this reserve in the form

:Y(t) =1rl-{— "Z (Clt-—-y[) +C(¢'—ll—t2'—'.... —tn)

where &) + 742+ ... + 4, 1= 1,2, .... are the epochs of claims
and y; are the corresponding amounts and

hdleot+ oo+t <t <t b+ .00 F fpte

(1f t << &1, we have X(f) = 2 + c¢t). Since ruin only can occut when ¢
is an cpoch of claim as a conscquence of the assumption¢ > o, Sparre
Andersen could reduce the ruin problem to the consideration of a
denumerable number of lincar inequalities involving the 4;’s and
the y;'s . The existence of the ruin probabilities for a finite or in-
finite period could thus easily be proved.

Sparre Andersen derived an integral equation for YW(u) and
proved that there are no other solutions subjected to be bounded
by e” R,

If we introduce ®(u) = 1 — V(1) the probability of non-ruin,
Sparre Andersen’s integral equation can be written

M(2) == f dK(v) ujm(b (v + cv — x) dP(x).

— o



GENERALIZATION OF RUIN THEORY ITI

This equation is well-known in the Poisson case (sec [4] p. 181). As
in this particular case the general equation has the following
simple meaning: Let v denote the epoch of the fzrst claim. Then non-
ruin can only occur if # 4 cv is not less than the amount x of the
claim at v and the probability of non-ruin in this case is ®(» +
-+ ¢v — x) since the process starts anew after the claim has oc-
curred but on a new risk reserve level. Taking account of the
distribution functions for v and x the cquation follows.

2, Further resulls

Let ®(x, T) denote the probability of non-ruin in the intcrval
(o, T]. Then, in the same simple way as for ®(x) we obtain the
cquation

r u + £y o
O, T)= [dK(@) [ O+ cv—x, T —v)dP(x) + [dK(v).
0 - uw T

The type of unicity which Sparre Andersen proved for 7" = <o
can in the same way be proved here.

The cquations for ®(x) and ®(u, T) can be solved by application
of the Wiener-Hopf technique used by Cramér ([3] scction 5.8) in
the Poisson case. The application in the general case turns out to be
simple. There are two reasons for that. Tirst, we have restricted
ourselves to the case ¢ > 0, second, the above simple equations lend
themselves equally well to the application of the Wicner-Hopf tech-
nique as the deeper Cramér integral equations ([3] p. 61). (These
latter equations do not seem to have direct analogues in the general
case. However, assuming A(f) to be exponential onc may derive
them from the above equations.)

Following Cramér we introduce

W, z2) = [ d. W(u, t),u>0 &= Re(z) <o.

Letting

O, 2z) =1—Yu,2)=1+ [ &4 O, ), 0>08<0

(by definition ®(x, 0) = 1 — W'(24, 0) = 1) we casily obtain the
following equation from the integral equation for ®(u, T)



ITZ GENERALIZATION OF RUIN THEORY

O, 2) = | (1 — o) dK(@) + [ v dK() | @ (1 + cv—

—x,2)dPx),u >0, <o

Since B(u, 0) -= B(u, ) = B(1) we obviously retrieve the inte-
gral equation for ®(x) if we let z -= o in the last equation.

In analogy with the Cramér trcatment we now define

D1, z) = oforu <o (W(n, 2) = e(u) — ®(u,z)  for every real u),
Q(w, z) = oforu > o,
O, 2) = [ (1—e2) dK(0) + [ e dK(@) [ © (1 -+ cv—x,2) dP(x)

for . < o,

and get

(T)(u,z) —I—ﬁ(u,z) = fm(r—cw)dl\’(v) —+ fa” dK(v)u }c'a)('zt-f—cv—x,z)dl)(x)

for — w0 < < 0.
Letting

3(s,2) = [ estdy O(u, 2), Re(s) < R, & < o,

-w

&(s,2) = [ e dy Qu, 2), Rels) >0, < o,

we get

&(s, 2) (1 — k{z —cs) p(s)) = — afs, 2).

Here we obscrve that in the Poisson case di{(v) —= ¢77 dv, we have

p(s)

L—k(z—cs)?(s)“—_l"—I +cs —z

which function plays an cssential role in Cramér’s treatment. In fact,
Cramér shows the factorization identity ([3] p. 60)

Cpe B(s3)
I4+cs—z Afs,2)

1 —
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where
log A(s, z) = fa”‘ d M (x, 2), analytic and regular for Re(s) < R,

log B (s, z) = — [ e5% d,M (%, z) analytic and regular for Re(s) > o,

®

M(x,2) = X 1/n! [o' e 00 (PP (x| co) — 1) dv.

However, in the gencral casc an analogous factorization of
T — k(z — ¢s) p(s) can be effected. The gencralized M (x, 2} has the
form

M(x,2) = 3 1n [ e8P (x 4 cv) — 1) KM (o)

n 1
1f K(v) is continuous the conncctions between the genceralized
Als, z), B(s, 2) and M{x, z) arc unchanged. If K(v) is discontinuous
some obvious caution is needed.

With the generalized A(s, z) and B(s, z) we get

@ (s, 2) &(s, 2)
—— = — 7 =, 0<< Re(s) < R.
A(s, 2) B(s, z) < Res) <R
Obscrving that the left member is analytic, regular and bounded
for Re(s) < R — z and that the right member has the same property
in Re(s) > g, where e is an arbitrary positive number we conclude

that both members represent a constant for fixed z.

Thus we get

@ (S, Z) (\b (O: Z) I ;
Als,2) — A(o,2) /i(o,z)’R"(s) <R E<o
or
. Als, 2)
P69 = iy

From this identity it is now possible to deduce analogues of
Cramér’s explicit expressions for W(u), {I—"(u, z), and W(w, T) ([3]
pp. 67-68). In order to sccure absolute convergence in the expres-
sions for ‘?('u, z) we assume some condition of the following type

k(z—es) = O0(x%), v = lm(s) > 4+ o0, a >0,

which 1.a. issatisfied by each I'-distribution for a suitable choice of «.
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After this precaution we can write down the following analogues
of Cramér’s formulas ([3] p. 67 formulas (9g) and (102))

V(u, 2) — . T J‘ o k(z—cs) P(s) B(s, 2) ds.
2ntA (0, 2) $(X — k(z — cs) p(s)
w>0,¢<00<ag<R,
(z == 0 gives W(w))
. L Cr—e T
W, T) = — lim — W(u, ing)d.
27T sy, 7

-y

Itis also possible to deduce (after some precaution) an asymptotic
formula for W(x) analogous to Cramér’s corresponding formula

([3] p. 68)
W) =Ce v L Qe B+0%) 45 oo

where { > 0 and

3. Final vemarks

A complete account of the considered generalization including
detailed proofs will be given in a forthcoming paper in the Skan-
dinavisk Aktuarietidskrift [6]. I will also draw the attention to
three recent papers by Brans [2] where he has treated the general
problem of a risk process, where the epochs of claims form a rencwal
process. Brans—Ilike Prabhu {5] in the Poisson case—uses queue-
theoretic methods.
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