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I. I n t r o d u c t i o n  

As is well-known, in the early 6o's a Swedish committee set to 
work at the numerical calculation of the distribution1 function of the 
total amount of claims and of the related stop loss prenliums in the 
Poisson and Polya cases (Bohman and Esscher [6]). Since the 
characteristic function for the said distribution function was 
easily available in terms of the characteristic function for the 
distribution functiozl of an individual claim, the committee chose to 
base the mtmerical calculations on the C-method l)y H. 13ohmall 
(Bohman [5]). The calculation of the ruin prol)ability for a finite or 
infinite period was not considered by the committee. 

The last-mmltioned problem has llow been taken up 1)y a new 
committee formed by the Swedish Council for Actuarial Science and 
Insura~lce Statistics. The COlnmittee--consisting of H. Bohman, 
J. Jung, N. \¥ikstad and the present author--has to consider 
several aspects of the practical applicability of the collective risk 
theory. However, without possibilities of calculating--at least ap- 
p rox ima te ly - the  ruizl probability for a finite period the applicabili- 
ty of the existing ruin theories seems to be rather limited, so the 
committee has looked around for such possibilities. At the present 
stage the committee is considering the classical Poisson theory and 
Sparre Andersen's generalization of this theory [2]. It is the hope of 
the committee that, at a later stage, also the Polya theory and the 
theory recently presented by Segerdahl [Ii] combining the Sparre 
Andersen theory and the Polya theory may be treated. 

* A paper  presented to the 9th Astin Colloquium (Randcrs ,97 o) appear ing  
in this issue .for str tct ly technical  reasons. 
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As one of its first steps the commit tee  has en t rus ted  to rne to 
bring together  the analyt ical  results which seem feasible for the 
above purpose i,u lhe case with only positive risk sums (claims). 
Since at the present  t ime some of the analyt ical  results in view are 
still unpublished it is supposed that  it may  be of interest  to give a 
short  survey including also these results. 

In section 2 the results will be reviewed which concern the case 
with a general dis tr ibut ion of the individual claims. In section 3 simpli- 
fications are pointed  out  in the case when the characterist ic  function 
of the said distr ibution is a rational function (including the case when 
the tail of the claim distr ibut ion is an exponent ia l  polynomial) .  

2. The formulas for file ruin probabiliby i~ case lhe risk sums areposilive 

The following formulas are essentially taken from Cram6r 's  
book [8] as far as the classical Poisson type  process is concerned ~). 
However ,  some results obta ined by the present  au thor  [12] are also 
used. The formulas per taining to the Sparre Andersen generalization 
arc taken from the author ' s  report  to the AST[N Colloquium at 
Sopot  [13] completed with two unpublished papers  (~I4] , I i 5 ] ) .  

Let  +(u, 7") denote  the prol)ahili ty of ruin within the t ime interval  
(o, 7"] when the initial risk reserve is u > o. It  is assumed tha t  the 
dis tr ibut ion funct ion of the independent  individual claims, P(y), is 
such tha t  P(o) = P ( o + ) =  o. The times between successive 
claims are supposed to be independent  and identically dis t r ibuted 
with the dis tr ibut ion function K(g), t > o, K(o) = K ( o + )  = o. In 
the Poisson theory we have K(/,) = i - -  e -t'. In the Sparre Andersen 
generalization K(1) is arbi t rary .  However ,  in the following treat-  

n l e n t  we assume that  k(s) = ~ c st dK(l) is a rat ional  function of s, 
o 

or in other  words that  K(I) is a general Erlangian distr ibution.  
Tha t  k(s) is a rat ional  function means that  k(s) may  be wri t ten as the 
quot ient  of two polynomials.  As a consequence of the condition 
K(o) - - K ( o + )  = o the degree of the numera tor  must  be lower 
t han  that  of the denominator .  Note that  in the Sparre Andersen 

~) In Cram6r ' s  book there  are also comple te  h is tor ica l  references up to 
1954 More recen t ly  1~3eekman has  g w e n  an alternat;~ve a p p r o a c h  in I-l]. The  
an~dytmal connec t ions  bc twuen Cr,xm6r's ~tnd 13eekman's app roaches  h a v e  
been  inves t iga ted  in [12]. 
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t h e o r y  we cons ider  tile process  as beg inn ing  i m m e d i a t e l y  a f t e r  a 
c la im,  h-i the  Poisson  t h e o r y  this a s s u m p t i o n  is not  needed.  

I n  o rder  to i l lus t ra te  our  a s suml ) t ion  conce rn ing  K( t )  we po in t  ou t  
some  s imple  wel l -k l lown d i s t r i bu t ions  for  which  k(s) is a r a t iona l  
func t ion .  

a. K(t)  = z - -  e-~t  i.e. the  Poisson  case,  
I 

k(~) = i ~ s / ~  

b. K( t )  = i - - b t e - a ' t - - b , 2 e  -¢':t, o < t% < ~o, b i -t- b ~ - -  I, 

b I > o, bl~ t + b2~ z ~ o, 
bt b2 

k( .~)  - + - - -  . 
i - -  s i r3 ,  i - -  s l f ~  

This  d i s t r i b u t i o n  was  cons idered  by  Spa r r e  Ande r sen  himself  when  

b i >  o, b. z > o. W h e n b  l -  [3 2 _ [ 3  l, b 2 -  ~2 - -  ~3t we ge t  the  c ° n v ° -  

lu t ion  of I - -  e - i 3 ~ t  with  : - -  e -~ t .  

c. K ( t )  = I - - ( z + ~ t ) e - o t i . e .  t h e c o n v o l u t i o n o f i - - e  '~ twithi tself ,  

I 

/~ ( s )  - ( i  - -  s / ~ ) 2 .  

This  is a l imi t ing  case  of b. 

d. K( t )  = z - -  b I e -~ ' t  __ b~ e-r':t cos [y(t + /,,)], 

o < G  <~3o, b L + b 2 c o s Y t o =  I , b ~ > o  and  
b ~  + i n f [ b 2 e  -(~:-~,)t  [y sin [y(t + 1o)] + ~ cos [y(/ + /.)]}j _> o 

b, (~3~ + 3, 2) cos "#o - -  s (y  sin yt o + 132 cos yto) 
l e ( s )  - + b~. . . . . .  o 

{ E . g .  : b ,  = 4 / 5 ,  bo = 1/~/5 ,  ~ = z, b~ = 2, r = 2,  t,, = ~ / 8 . }  
n 

e.  K(~)  = z - -  X b ~ , e - ~  ~, 
v I 

o < t3t < [3.. < . . . . .  < [3 n, b~ + b.  + . . .  + b,~ = I ,  

l i  

~] bv~ v ~ o,  ~ = I ,  2 . . . . .  n ,  

by 

l ¢ ( s )  = z ~ s / ~ v  " 

This  is a s imple  gene ra l i za t i on  of b. 



G E N E R A L I Z A T I ( _ ) N  OF C L A S S I C A L  R U I N  T I I E O R ¥  57 

~ n + l  

I((~) = ~ - -  Z bv e-e'o~, 
v t 

o < ~t  < Re(p:) ---- RC(~a) < . . .  < Re(f.~e,z) = Rc(~=,+,), 
= - -  . . . . .  = - -  

Z by = I ,  bi > o,  b2~ = b.2~ + t, b t = I ,  2, . . . ,  u ,  
v I 

= a + l  

and Z brave -mot > o  for all I > o, 
i ,  1 

~ g  ..I- i 

k ( s )  = 

v 1 

Apart  from limiting cases with multiplicities in the f~'s (gener- 
alizations of c.) f. is the most  general form of a general Er langian 

distribution.  (Cf. Feller [9] P. 438.) 
In the usual sense of weak convergence of prohabi l i ty  laws the 

class e. is dense in the class of all probabi l i ty  laws cortcentrated on 
the positive half-axis (cf. Cox-Miller [7] PP. 257-258) • Afor t ior i ,  the 
santo is t rue of the class f. l-[owever, such s ta tements  are of less prac- 
tical value. More interest ing would it be if experience were in 
favour  of the conjecture  tha t  most pract ical  distr ibutions of interoc- 
currence times can be well approx imated  1)y distr ibutions of the type  
e. or f. with only a very  limited number  of terms. As to the corres- 
ponding prol)lem concerning the function P(y) it seems tha t  such 
experience is available (see Almer [I]). 

After this digression about  the functioll  K(1) we return to the 
formulas giving the probabi l i ty  of ruin within a finite period 
(o, T], i.e. +(u, T). \,re denote  the probabi l i ty  of ruin at any t ime in 

T) 
the future  by ~ ( u ) =  +(u, co). Then, for fixed u _> o, ~(u) 

with +(u, o) = o is a distr ibution funct ion in T (giving the proba- 
bility t ha t - - i f  ruin o c c m s - - t h e  epoch of ruin is _< T). Therefore,  it 
is natural  to consider its character is t ic  function.  More generally 

(Cram6r [8] p. 73) consider ~(u, z) = j7 eZ T dT +(u, T), Re(z) < o. 
u 

+(., T) 
The characterist ic  function of - -  is then If we can 
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deduce a t ractable  formula for ,~(u, z) we may thus get ,~(,u, .7') by , 
the Ldvy inversion formula.  Numerical ly this naight be done e.g. 
by Bohman ' s  C-method. 

However,  in order to obtain a formula for ~(u, z) it is, genmally 
speaking, necessary to considei a "character is t ic  funct ion"  ac- 
cording to it of ~(u, z). In fact, we consider Cp(s, z ) =  z -  

- -  i e ~ u d , ~ ( u , z )  where we have defined ~(u.,z) = o  for u < o .  
u -  

Here Re(s) < R where R is the least positive root, assumed to exist, 
of the equation k ( - -  cs) p(s) = i. The  function k(s) has been defined 

above. By analogy p(s) = J: c~vrtP(y) -= J~ e*v dl ' (y)  since we 
- ~  o 

have assumed P(o) = P ( o + )  = o. Furthernaore we denote  by ct 
the gross risk premium for a pmiod of length /. Of course, we as- 

P, 
sumc that  c > le~ where fl~ and kl denote  the mean of P(y) alld the 

mean of .K(t) respectively i.e. we assume what we call a positive 
safety loading. (Note that  ,b(u, .7") _< e-i,u.) 

Then we have [13] 
a (s, z) 

where Ats, z) in a .~imple way depends on the functmn 

H ( ~ ,  z)  = - -  l o g  (~ - -  k ( z  - -  cs)  p ( s ) ) .  

ll~ fact, it may be ,~hown that  there exist a function M(x, z) such 
tha t  for o < Re(s) < R 

l [ (s , z )  = f e *,r ,dzM(x,z)  --  I o g A ( s , z ) - - I o g B ( s , = )  

where 

Thus 

log A (s, z) = f es'c dxM(x ,  z), Re(s) < R, 
IJ 

o 

logB(s ,z)  - - - -  f e 's* d.zM(x, z), Re(s) > o 

i - -  k ( z  - -  cs )  p ( s )  - A ( s ,  z ) '  o < l ee ( s )<  R. 
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In the paper [,2] the present  au thor  has pointed out tha t  in the 
Poisson cast, K(t) = z -  e -t, there is another  formula connect ing 
A, H and H namely  

ds I = , Re(z) < o, 
2=x los  1Jr,, l < , )  > o 

- f m  \ ] 

a formula, which the au thor  i.a. used to deduce simple exFressions 
for A and B when P(o) -- l)(oq --) = o. However,  this formula  is 
also valid in the s i tuat ion when K(I) has a more general form (see 
[i5] ). If we assume tha t  le(s) is a rat ional function the l)l'oof can be 
repeated almost word for word. The expressions for A and ]3 

become, however, a little more complicated.  
In order to avoid trivial complications we give the formulas for 

n 

A and B when K(I) = , - -  Z boe  r;ot, £ b ~ =  I where ~v are 
v [ v - I  

distinct and such that  Re(R, D > o and together  with bo are so chosen 
tha t  K(I) is a distr ibution function. (The formulas are der ived by 
use of the Cauchy theorem apt)lied to a contour  in the left halfplane 
enclosing the logarithmic singularities and, in the case of A,  a 

simt)le pole.) We get 

.4 (s, z) = 
n 

I1 ( c s  - -  c s , s (z ) )  
1 t 

n n rl 

I1 (f% + c s - - z ) - - p ( s )  £ bv~v 1-1 (~j + c s - - z )  
t, I v t J [ 

1 /o  

, R e ( s )  < R 

~ics - -  c s , j  ( z )  
B ( s , z )  = } s + c s - - z  

J , t  

, l e e ( s )  > o .  

(2 .2)  

Here  s,s(z ) , j  = z, 2, . . . ,  't~ denote  the ,la roots in tile left halfplane 
Re(s) ~ o of the equat ion 

t ~ ( z - - c s )  p(s) = I, Re(z) < o .  

(By the Rouch6 theorem it is found that  the lmmber  of the stj(z) 
must  he the same as the number  of poles of k ( z - -  es) ill the same 
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zm~3v  
halfplane. These poles arc in the l)oints - - ,  v = I,  2 . . . . .  n.) 

c 
By con t inu i ty  the formulas  are true not only for Re(z) < o but  

also for Re(z) < o. 

We thus have  ob ta ined  t rac tab le  formulas  for 

A (s, z) 
q(s, z) = ~/(01 zi (2.2) 

as far as we can find the roots st~(z), j = I, 2 . . . . .  n. 

In  order to ob ta in  ,,~(u, 7") we mus t  first inver t  tile [ormula  

f i  a (s, z) e ~  d, ,  qdu,  z) = ~ - -  ¢(s ,  z) = I A (o, z) 
o -  

obta ining ~(u, z) and second we have  to inver t  the formula  

.6(., z) = I e~r dT+(- ,  7"). 
o 

If we only had in mind  to get ~(u) the first inversion with z = o 
would be sufficient since ~(u, o) = +(u). However ,  with the aim to 
compu te  ~(u, T) for a set of finite values of 7" we are facing the task 

of two successive numerical  inversions. In  principle this could be 
done by  use of a numerical  inversion method,  say B o h m a n ' s  
C-method.  However ,  the first inversion mus t  be done for a large 
n u m b e r  of z-values in order to get a sufficient basis for the second 
inversion. Fur the rmore ,  a high l)recision in this first inversion 
seems to be required. Of course, this might  be done but  t)erhaps this 

way  would be too expensive,  at  least as a s t anda rd  method.  There-  
fore, in the next  section we t ry  to get a round the first inversion. 
Needless to say, this cannot  be done wi thou t  t)aying a cer tain price. 

3. Simplif icalions i,l lhe case when lhe risk stuns obey a law expressible 
by a f ini le n,umber of exponenlial lerms 

I t  is na tu ra l  to t ry  to specialize P(y),  P(o) = P ( o + ) =  o, in 
such a way  tha t  p(s) by analy t ic  cont inuat ion  can be ex tended  to a 
ra t ional  funct ion of s expressible as a quot ient  of two l)olynomials  
wi thou t  c o m m o n  factors,  the degree of the numera to r  beinglower  than  
t h a t  of the denominator .  In  order to avoid  tr ivial  comt)lications we 
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assume tha t  the zeros of the denomina to r  are simple. Let  us denote  
m 

them by  ~l, e-, . . . . .  ~-m implying  tha t  P ( y ) =  I -  Z ave-=,,  v, 

m 

E av = I,  Re(av)  > o. ({av} and {=v} cannot  be chosen comple te ly  

a rb i t ra r i ly  since P(y) intist be a dis t r ibut ion function.) I t  is easy to 
see tha t  thepo les  o f p ( s )  must  be located in the halfplane Re(s)  > R.  
As a consequence of this and of our assumpt ion  tha t  k(s) also is a 
ra t ional  funct ion we see tha t  the crucial function I - -  k(z  - -  cs) p(s) 
for fixed z also is ra t ional  in s. At  least if lee(z) ~ o there are no 

poles in o < Re(s) < R .  The poles for Re(s)  > R are de te rmined  by 
p(s) and are located in o~v, v = i .  2 . . . . .  m .  However ,  still more  
interest ing than  the poles are the zeros of I -  k ( z - - c s ) p ( s )  for 
Re(s) > R since these zeros are the poles of A ( s ,  z) as is seen from 
the formula  (2.1) in the previous  section and from A(s, z) we can 
derive 7~(u, z) by  inver t ing (2.2). The num ber  of these zeros is m, i.e. 
equal to the numl)er  of poles of p(s) ,  as follows frorn the same for- 
mula.  Let us denote  these zeros by sev(z)i v = i, 2 . . . . .  m. Since 
A ( s , z )  according to (2.1) af ter  insertion of the expression for 

m a .  0 

p(s)  = Z --s/~.~, becomes the quot ient  of two polynomials  of the 
v l I 

degree n + m, which however  have  the c o m m o n  fac tor  
n 

I1 (cs - -  cs~s(z)) w e  get A(s i  z) as a quot ient  of two po lynomia l s  of 

the degree m. In fact  we find 
m 

I[ (s  - -  ~,,) 
A ( s i  z)  = ,.~-' 

II ( s - -  s=,,(z)) 
v . i  

F o r s  = o w e g e t  
m 

II c~v 

a(o,z) = - ' ' -  
m 

rl s~(z) 

I I  ( i  - -  ~/~.~) A (s, z) 
T h n s  - -  ], ' ( 3 . I )  

A (o, ~.) n (~ - -  s/so,,(z)) 
v 1 
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Let  us now assume t h a t  there  are  no mul t ip l ic i t ies  a m o n g  the  
. ~ ( z ) ,  v = ~, 2 . . . . .  ,,,. 

Then ,  deve lop ing  in par t ia l  f rac t ions  we m a y  wri te  

A (s, z) -"~-~ 
A (o, z~ = g0(~)  + ~ g,,( : )  ~ . I - -  s t s ~ ( z )  

v 1 

C o m p a r i n g  with (3.1) we f ind af ter  m u l t i p l y i n g  b y  I - -  s / s o 4 ( z  ) and  

le t t ing  s -> s 2 j ( z )  t h a t  

m 

I I (,- 
v I 

g i ( z )  -= , j - -  I ,  2 . . . . .  m .  (3.2) 

lf i  s=,<z, • ~,,(~) ) 
ta i 
v~"a 

T a k i n g  s = o we fu r the r  get  
m 

i = g o ( z )  + £ & , ( z ) .  (3.3) 
e i 

\Ve now have  

e " ' !  d l l  ~(11, 7.) = I - - g o ( z )  - -  .~ gv(Z) I - -  S/S2v(Z) 
n v 1 

Since 

lee (s) < 1¢. 

I 
- J (I s l l  d t l ( i  - -e-7/8,~.(z)) ,  ]~lf(s) ( R ,  

- . q ~ ( z )  , ,  

I : :  J~ e~" &( . . ) ,  we ge t  f o r .  > o 
t, 

m 

¢(~,, z) = ~ --g,,(*D -- Z g,,(~) (~ -- ~-, ,~, , l~l)  
v i 

O1)serving (3.3) we can wri te  this 

I m 

+(,. ,  z) = X g . ( z )  c-"s:o~z>, ..  > o 
v I 

where  g , , ( z ) ,  v - -  r, 2 . . . . .  ~u are given by  (3.2). 

(3.4) 
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I f  our a s smnpt ion  t ha t  the roots  s2v(z) are simple is not  satisfied 

we ins tead get l imit ing forms of (3.4). 
Note  tha t  the formula  (3-4) generalizes a fo rmula  given by  Cramfir 

([8] p. 82) for d(tt) when  P ' (y )  is an eXl)onential po lynomia l  with 
1)ositive coefficients and K ( l ) =  i - - e  -t  Note  also tha t  for the 
t ru th  of fo rmula  (3.4) it is not f u n d a m e n t a l  tha t  k(s) is just  rat ional .  
However ,  the assumpt ion  abou t  the ra t iona l i ty  of p(s )  seems essen- 
tial if nt, is to be finite. If  m is p e r m i t t e d  to be infinite the fo lmu la  
(3.4) is ot)eil for general izat ions to wider  classes of dis t r ibut ion 
funct ions P ( y ) .  

By the fo rmula  (3.4) we have  got ~(u, z) wi thou t  numer ica l  in- 
version of fo rmula  (2 2). However ,  we mus t  l)ay for this a d v a n t a g e  
ill two ways.  

Firsl ,  we mus t  restr ict  ourselves to use only a n u m b e r  of expo- 
nential te rms when we represent  in analy t ica l  form our experience of 
the dis t r ibut ion of individual  claims. This restr ic t ion is pe rhaps  not 
too serious. The experience presented  I) 3, Almer  [,] seems to just i fy  
the use of three or four exponent ia l  t e rms  in most  pract ica l  cases. 
Also Phil ipson [io] seems to accept  such a view. 

Second,  w e  must  be able to compu te  so, v(z), v = z, 2 . . . . .  m,  the 
zeros of I - -  k(z - -  cs) p (s )  for Re(s) > o with great  precision for a 
large n u m b e r  of z-values (whereas the roots  s,s(z ), j = I, 2 . . . . .  ~z 
do not  enter  the formula) .  Let  us see wha t  this means.  

"fake first the s imple Poisson process where K ( I ) =  z -  e ¢, 

Then the equat ion k ( z - - c s ) p ( s )  = z takes the well-known form 

/5 ( s )  = I + c , ~ -  z .  

If  P(y)  can be represented  1)y at most  4 exponent ia l  te rms then 
p(s) becomes a rat ional  function where the denomina to r  1)olynomial 
is at  most  of the 4th degree i.e. m _< 4. Our equat ion  then becomes 

an equa t ion  of the 5th degree at  most  i.e. ,m -r- I _< 5. At most  we 
have  to compu te  4 roots since the root in the left ha l fplane  does not  
enter  the formula  (3.4). 

Let  us now consider the Sparre  Andersen general izat ion with 
K(I) expressed 1) 3, n exponent ia l  terms. The  equat ion  k ( z - - c s ) .  
p(s)  = I then becomes an equat ion of degree m + n. At  the first 
s tage it seems reasonable  to let ,Ja ~ 2 corresponding to two 
exponent ia l  te rms in K(1). I f  m < 4 we thus have  m -4- ~z < 6 i.e. 
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we mus t  com pu t e  the 4 roots  in the r ight  halfl)lane Re(s) > o of an 
equat ion  of the 6th degree since tile two roots in the left halfplane 

does not enter  (3.4). 
Tile equat ions  we have  to solve ]rove complex coefficients as a 

consequence of the appearance  of z. Compute r  progralns  do exist 

which are claimecl to give all zeros of a complex polynomia l  ill a 
rapid  way.  I t  is the intel~tion of the commi t t ee  to t ry  to use this 
me thod  to get O(lt, z) and  to compute  O(¢t, T) by  a numerical  inver- 
sion e.g. according to the B ohm an  C-method.  The colnmit tee  will 
also make  a t t e m p t s  to de te rmine  ~(,tt,, z) in some cases by numerical  
inversion in order to compare  the precision obtained.  

In tile s imple case when nt = I forlnula (3.4) takes  the form 

( T) ,~(., z )  = i - -  e - " ~ < ~ l  ( 3 . 5 )  

(where we have  d ropped  the index ~I). If  also ~, = I then  s.-(2) is one 
of the roots of a second degree equat ion and  it is known (Arfwedson 

[3] P- 2z) tha t  ¢(u, T) can be expressed 1) 3, Bessel functions.  In this 
case it is thus possible to avoid even the numerical  inversion of (3.4). 
If, in one way or another ,  this m a y  be geacral ized to n > I or/and 
m > I is unknown to the author .  

4. Closing remarks 

As poin ted  out above  the simplif icat ions presented in section 3 
have  been possible only by  pay ing  a cer tain price. Obviously  there  
are cases where this price becomes too high. Let  us co~lsider e.g. the 
risk s i tuat ion character is t ic  for the portfol io retained by  the cedant  
in an Excess  of Loss treat},. In such a case it seems na tura l  to con- 
sider a dis t r ibut ion function P(y) with P ( M - - ) <  I ,  P ( M ) =  

= P ( M + )  = I, for a finite M. Then p(s) becomes an entire function 
(non-ratiorlal) and section 3 gives no help. Thus one has to use the 
double mmaerical inversion of section 2 or, if this turns out to I)e too 
expensive,  one c a n - - a s  Mr. Bohman  has p r o p o s e d - - t r y  to use 
s imulat ion techniques.  In order to get a certain idea abou t  the 
precision and the  cost of such techniques it is the in tent ion of the 
commi t t ee  to use them also in some cases where the method, of 
section 3 turns  out to succeed. A third way to tackle the indicated 
problem could be an a t t e m p t  to generalize the method  of section 
3 to include the ribk s i tuat ion ment ioned above.  
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