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0. INTRODUCTION AND SUMMARY

In this paper we will investigatc the following reinsurance
problem: An insurer, whose total claims for a certain period may
be regarded as a random variable ¥ with cxpected value Ex = m,
wishes to cede part of his business to a reinsurer. A reinsurance
treaty will consist of rule for the division of x between the two
parties. For any observed value of x it should define uniquely
what amount should be borne by the ceding insurer. The amount
borne by the reinsurer is then simply the remaining part of .

We shall assume that the insurer has already decided fow much
of his business he wishes to cede, in the sense that he wants to
retain a part of the total risk with expected value m — ¢, where ¢
is a fixed constant, 0 < ¢ < m.

Using the terminology introduced by Kahn in (2) we will describe
a reinsurance contract by a transformation (or function) 7 that
for a given x yields the amount Tx borne by the cedent. The
random variable x is thus divided into two parts

x=Tx + (1—T1)x,

and the properties of the reinsurance contract described by T are
summarized in the distributions of the two random variables Tx
and (1 — T)x = — Tx.

The motivation for reinsurance is gencrally held to be a desire
for stability, in other words the cedent wishes to choose a T such
that the random fluctuations in Tx are in some sense smaller than
those of x. This choice will in our case be performed under the
restriction that ETx = m — c.

It is clear that we can never talk about an optimal choice of T
without defining exactly what criterion we shall use when comparing
two transformations, 71 and 72. According to the above, the crite-
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rion should refer to the properties of the distributions of 71x and
T2x, so that if one distribution is ‘‘more concentrated” around
some central value, the corresponding transformation is deemed
preferable to the other. However, we still have to define what we
mean by ‘‘more concentrated’’.

One way is to consider the variance. This was done by Borch in
{1), where he proved that, for given ¢, the variance of Tx is mini-
mized by a stop loss contract. This result was extended by Kahn in
(2). Borch originally approached the problem by considering a
reinsurance contract as a transformation of the distribution
function of x. By introducing the technique of considering a
transformation of a rather than of its distribution function, Kahn
not only simplified the proof considerably, but also extended the
result to a wider class of transformations than the one originally
considered by Borch.

Vajda in (3) investigated the problem from the reinsurer’s
viewpoint. Apart from the rather obvious condition 0 < Tx < x,

1— T)x
introduced by Kahn, Vajda made the restriction that (——x )

must be non-decrcasing in x, and proved that in this case minimum
variance for the rcinsurer is realized by a quota contract. The
introduction of an extra restriction is necessary in this case, since
otherwise the problem would be perfectly symmetrical, and the
minimum variance solution for the reinsurer would be of the same
type as for the cedent, i.c. a kind of reverse stop loss of little
practical interest.

These results are of course open to criticism along the following
lines: the choice of the variance as a “criterion of optimality”
is somewhat arbitrary, and perhaps another measure of dispersion
would have yielded considerably different results. The purpose of
this paper is to prove that under the conditions used by the previous
authors, the stop loss and quota contracts retain their minimizing
propertics when the variance is replaced by any mcmber of a
rather wide class of measures of dispersion.

Before introducing this class of measures of dispersion, let us
consider the variance in a little more detail.

Let x be a random variable with cumulative distribution function
F(x). Suppose we associate a “loss” with a deviation of x from a
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central value p, and put this loss equal to the squarc of the deviation.
The expected loss will then be
E@x—p3= | (v—u?2df(»)

We now choose p as the value that minimizes the expected loss.
This is done by putting u = Ex and we have thus arrived at the
variance, not primarily as a mecasure of dispersion, but as the
expected loss caused by random fluctuations and under the assump-
tion of a quadratic loss function. This interpretation of the variance
is very much in line with the previous discussion of criteria for
optimal choice of 7. However, the assumption of a quadratic loss
function is still arbitrary. If we take the absolute value of the
deviation instead, the expected loss will be

inf [ jx—p| dF(x)

b -
It is a well-known fact that in this case minimum is obtained by
putting p = the median of x. The result is known as the wmean
deviation of «x.

Both the loss functions that we have considered, #2 and |,
are convex. It is natural to demand that a loss function has this
property, since it means that the rate of increase of the loss is
non-decreasing as we go further away from the central value. Any
function ¢ that is non-negative, convex and equal to zero at £ = o
can be used to gencrate a mecasure of dispersion {or “expected loss”)

W, by putting
W, (x) = inf E o(x — p).
1

The propertics of such measures of dispersion are discussed in
detail in section z.

Of course the usc of any singlc mcasure of dispersion of this
type would be open to the same criticism as the usc of the variance.
Hence we shall not investigate single members but rather the whole
class. We shall say that onc random variable x is less dispersed
than another random variable y if

W (x) < W (y)
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for any W, generated by a convex function ¢. Thus, if we state
that a certain reinsurance contract results in less dispersion than
any other in the class of possible contracts, it will mean that it
minimizes not only the variance and the mean deviation but any
measure of dispersion of this type.

The results of section 4 may now be summarized as follows:

Under the conditions considered by Kahn, stop loss reinsurance
minimizes the dispersion for the ceding insurer.

Under the conditions considered by Vajda, quota reinsurance
manimizes the dispersion for the reinsurer.

Undecr the extra conditions that both Tx and (1 — 7T)x are
non-decreasing, stop loss reinsurance saximizes the dispersion
for the reinsurer and quota reinsurance snaximizes the dispersion
for the ceding insurer.

The last two results emphasize in a drastic way the “peculiar
opposition of interests of the two partners of a reinsurance
contract’” mentioned by Vajda in his paper. Under not very
restrictive conditions, what is optimal in our sense to one
party is seen to be the opposite of optimal for the other party.

1. CONVEX FUNCTIONS
In the following we will make extensive use of some properties
of continuous convex functions. We will therefore give a brief
review of these properties. For further details the reader is referred
to chapter 3 of (4).
A function f(x) is said to be convex in the interval (H, K) if the
inequality

FEE2) <2 g+ son)

2
holds for all %, y in (H, K). It can be shown that if f(x) is continuous
in (H, K), it also satisfies
fZ gy <X qiflw); g >0, Zgi = 1; %€ (H, K).
By a passage to the limit we obtain
JEx) <E (1),

where E denotes expected value and x is a random variable that
only takes values in (H, K).
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In this paper we will only consider continuous convex functions.
Continuity is not a strong restriction in this case, since convex
functions are either very regular or very irregular. This follows
from the fact that a function f which is convex in (H, K} is also
continuous in (H, K) if it is bounded above in some interval interior
to (H, K). If this is true, the function is not only continuous but
the derivative f'{x) exists and is continuous everywhere cxcept
perhaps for an enumerable set of values of x. Left-hand and right-
hand derivatives exist cverywhere; the right-hand derivative is
not less than the left-hand derivative, and both derivatives are
non-decreasing (Theorem 111 in (4) ).

Continuous convex functions have two geometrical properties
which could have been used for alternative definitions of convexity.
Every chord lies entirely above or on the curve. Through cvery
point of the curve at least one line can be drawn which lies wholly
under or on the curve. Such a line is called a line of support. Whether
one or more lines of support can be drawn through a given point
depends of course on the behaviour ot f'(x). If f'(x) exists there is
only one line, the tangent, otherwise any line through the point
with a coefficient of inclination A, suchthatf; << K < f,, will be a
line of support.

In the following we will use the abbreviation c.c.f. to denote a
function that is continuous and convex on the entire real line
(—c0, ).

2. A CLASS OF MEASURES OF DISPERSION

Let us now consider £ f (x —u) = | f(¢— ) d F(), where [ is

a c.c.f. and x a random variable (r.v.) with {inite mean and cumula-
tive distribution function (c.d.f.) (). Let I(x) == ax + b bc a line
of support to f(x) at ¥ = o, and introduce the notation ¢ for the
deviation from this line of support, i.e. ¢(x) = f(x) — ax — b. We get

Eflx—p) = E(e(x — ) + alx —u) + b) =
=FE o(x —p) + aEx —ap + b.

Since Ex is assumed to be finite, Ef(x — @) will exist if and only
if Fo(x — p) exists. But, since ¢ is non-negative, the integral
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[ ot — u) dFF will either be finite or = 4 co. Furthermore, if

the integral converges for two valucs of ., say pr < ., the relation
0 < ot — (pur + que) ) < poll — ) + 9ol —we) p+ 9 =1,

implies that it converges for all p € [ps, p2]. On the other hand,
if Fg(x —p) is finite for g = p1 but infinite for p = pe, where
e > w1 (w1 > ue), then E¢ (x — p) will be infinite for all p > p»
(» << we2). Hence, the domain where E@ (v — u) is finite is always
an interval on the p—axis. This interval may be open, closed or
half-closed, and it may be bounded or unbounded.

I{ we introduce the further restriction that ¢ ({) > o for some
¢ >0 and some ¢ <C 0, it is easily seen that lim ¢(f) == 4 oo. This

© {—>ztw
implies that lim [ ¢(¢ — p) dF(f) = -+ co. From this we conclude
B>t -
that as soon as E ¢(x — ) is tinite for some p, then inf E ¢(x — p)
"
is finite and is obtained for some finite value of u, say p = po.

We shall now introduce a class of measures of dispersion.

Definttion
Let x be ar.v. with c.d.f. FF, and ¢ a function with the following
properties:

(a) ¢ is continuous and convex on (—o, ),

(b) ¢ (1) =0, ¢(0) =0,
(c) @ (t) > o for some ¢ >0 and some ¢ << 0.

The measure of dispersion W, generated by ¢ is then defined
by

Wox) =inf [ ¢ (t — p) dF(f) = E@(x — wo)
Y -
This definition calls for a few comments. If ¢ and I are such that
E ¢ (x — u) is infinite for all u, the valuc of W,(x) is of course
interpreted as 4 oo. If condition (c) is not fulfilled, if o (¢) = o for,
say all¢ <o, then

lim [ ¢(t— p) dF() = o and hence Wo(x) = o

p—>+to ~o
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for all r.v:s x. This would not cause any trouble in what follows,
since we will mainly be considering incqualities of the type W (x) <
W, (y) for all ¢. Such inequalities would still hold true (as trivial
equalities) but, since W, :s of this type arc of little interest as
mecasures of dispersion, they are excluded by imposing condition (c).

As already stated, both the wvariance and the mean deviation
belong to the class ol measures of dispersion just defined, since
they can be regarded as generated by ¢ (f) = ¢ and o (f) = |¢,
and both these functions satisfy conditions (a)—(c) above.

The following terminology will be used. The abbreviation
“m.o.d. W;” will be used for the rather lengthy expression ‘‘measure
of dispersion W, gencrated by the continuous convex function ¢
satisfying conditions (a)—(c)”’. 11, for two random variables x and
y, the inequality

Wo(x) < We(y)

holds for any m.o.d. W, we will say that «x is less dispersed than y
or that y is more dispersed than x. Strictly speaking we should also
require that W (x) < W,(y) for some m.o.d. W, but this will
obviously always be the case unless there exists a constant «, such
that x and ¥ +4- @ have the same distribution.

3. THREE LEMMAS

In this section we shall prove three lemmas giving sufficient
conditions for one r.v. to be less dispersed than another r.v.

Lemma 1: Let x and y be r.vis. If

L f(x) < E f(y) for any c.ci. f,
then x is less dispcrsed than y.

(Note: It can be proved that if Ex = Ey, the reverse is also true,
so that the condition is not only sufficient but also necessary. The
proof is rather lengthy, and since the result is not needed here,
it is given in an Appendix at the end of the paper).

Proof: Consider any m.o.d. W, and let pz and py be values of
@ for which inf E ¢(x — p) and inf E¢@(y — @) are obtained. Then

Woy) — Wolx) = Eo(y — pry) — Eo(v — ) =
Eo(y —uy) — Eolx —uy) =0



250 OPTIMAL REINSURANCE

That the last member is non-negative follows from the assumption
with f(t) = ¢(t — ny). Hence the lemma is proved.

The sccond lemma shows that a simple relation between two
c.d.f:s is sufficient for Lemma 1 to be applicable.

Lemma 2: Let x; and x2 be two r.v:s with the same finite mean
Exy = Exe, and [', and F. their c.d.f:s.

If there exists a {0 such that,

I, (t) < Fz(t) for ¢ < io
Fi(t) = Is(t) fort >t,
then E f(x1) < E f(x2) for any c.cf. /.

Proof: Let f be any c.cf.
E fles) — E fle) = J J0) dFs) — [ /10 aFa(y) =
| ) (aFe

Since [ t{dF:

the integral is not changed if we replace f(¢) by its deviation from a
line of support at ¢o, g(¢) = f(t) — at — b.

Hence E flxe) — E f(xa) = [ g(t) {dF-

—©

11}’

where g(f) has the following properties:

40

gty > o0,g(le) =0
g'(8) <o, for t < to
g'(t) = o, for £ >ta

is a c.c.f.

Assume first that f (and hence g) is integrable both with respect
to dF1 and dF2.. We may then integrate by parts and get

[ ¢0) {dFs — dFs} = g(f) (Fa—F) | — [ &) {Fo— Fa}it

-w ~m™ -
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That g is integrable implies that

lim g I4(f) = o

-
1=1,2
lim g() (t —I4(t)) = o
=
Hence the first term vanishes, and, since g’ and F: — F are of
unequal sign, we get
E f(xe) — E flur) = — [ g'(t) (F2— F)it > o.

—w

This completes the proof of the lemma for the case that both
E f(x2) and E f(x1) < oo,

Assume now that I f(x1) (and hence E g{xi)) = + oo. We
define a new function g4(¢) as follows. Let L 4(¢f) and Z4(¢) be lines
of support to g(¢) at £ = —4A and £ = 4.

Put
galt) =g()  for |t <4
galt) =14_4(f) for t < —A
g4ty = La(t) for £ > A.

g4(t) will be integrable both with respect to dF, and dF,, and it
follows from the above that

Ega(x1) < E gax)

I

Since g4(f) — g(¢{) monotonically as 4 — co, we get E gq(x) —
E g(x) and may conclude that E g(v2) (and hence L f(x2) ) = + .

Accordingly, we may regard the inequality
E flx1) S E [lxe)

as proved in thc following sense: cither both expectations are
finite and the inequality holds, or £ f(xs) = + o0, in which case
the inequality is trivially true, whether E f(x1) is finite or not.

The third lemma gives a sufficient condition based on a relation
between the variables themselves, rather than between their
c.d.f:s.
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Lemma 3: Let y be a r.v. and xi(y) and x2(y) two non-decreasing
functions of y, such that E xi(y) and Exz(y) arc finite and cqual.
If there exists a yo, such that

w(y) = x2(y) for y < o
x(y) < xe(y) for y >y,
then x1(y) is less dispersed than xs(y).

Proof: Let Fi(x) and Fa(x) be the c.d.f:s of x1 and x., and put
%0 = %2(Y0)
For x << x0 we get

Fa(x) = Plra(y) < 2) = P (mfy) <2) + P (voy) < 2 <xu(y)) =
> Fi(x).

Likewise for ¥ > 2o

Filx) = P(a(y) <2) = P (1a(3) <2) + Pluly) <2< xe(y)) >
> Fafx)

Hence Fi1 and Fq satisfy the conditions of Lemma 2, and consequent-
ly xi(y) is less dispersed than x2(y) and the lemma is proved.

4. APPLICATIONS TO REINSURANCE

We shall now apply the results of sections 2 and 3 to the reinsur-
ance problem presented in theintroduction. We will use the technique
introduced by Kahn in (2). Thus, a reinsurance scheme will be
described by a measurable transformation T of the random variable
x (representing the total claims during the period), such that Tx
represents the amount borne by the ceding insurer and, consequent-
ly, (1 — T)x = v — Tx the amount borne by the reinsurer.

Obviously, to be meaningful, the analysis has to be carried out
with certain restrictions on 7. First of all, we only consider trans-
formations such that £ (x — Tx), i.e. the (nct) reinsurance premium,
equals a fixed constant ¢. Second, we demand that the amount
borne by the insurer shall ncver exceed the total claims x. These
two conditions define the class of what Kahn calls ‘““admissible
transformations”. Since we want to study the problem not only
from the viewpoint of the ceding insurer, but also from that of the
reinsurer, we have to introduce extra restrictions. Otherwise we
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would, due to the symmetry of the problem, arrive at exactly
the same type of solution in both cases—only with the rdles
reversed.

This leads us to consider the classes of transformations which
satisfy the following four sets of conditions. Here admissible
under A corresponds to Kahn’s admissible, and admissible under C
to the extra restriction introduced by Vajda in (3).

A. A measurable transformation 7" is said to be admissible nunder A if
o< Tx<x

¢ = [(x— Tx)dF(x), where c is a fixed constant such that

0 < ¢ <<m= FEx.

B. A measurable transformation 7 is said to be adwmiissible under B
if it is admissible under A and furthermore 7« and x — Tx
are both non-decreasing in x.

C. A measurable transformation 7 is said to be admissible under C

e _ (1—T)x x—1Tx
if it is admissible under A and furthermore » =

X
1s non-decreasing in x.

D. A measurable transformation T is said to be adwiissible under
D if it is admissible under € and furthermore Tx is non-decreas-
ing in x.

Obviously D—+B-—>4 and D--C — 4.

Two transformations arc of particular interest:
The Stop Loss Transformation T%
T* is defined by
T*x =x for x < no
T*x = no for x > me, where #n, is chosen such that
¢c= [ (x —mno)dl(x)
The Quota Transformation T.
T is defined by

m—=cC

T =

x for all «.
m
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It is casily seen that both 7T* and T are admissible under all
four sets of conditions.

We shall now state and prove a thecorem on “optimality’’ prop-
ertics of these two transformations.

Theovesn: Let T4, Tg, T¢c and Tp be any transformations ad-
missible under 4, B, C and D respectively. Let T* and T be the
stop loss and quota transformations defined above. Then the follow-
ing statements are truc:

(1) T*x is less dispersed than T 4x

(2) (1 — I'*)x is morc dispersed than (1 — Tg)x
(3) (x — D)x is less dispersed than (1 — T¢)x
(4) Tx is more dispersed than Tpx

(Note: (1) is an extension to any m.o.d. W, of the Borch-Kahn
theorem on minimum variance and (3) a similar extension of the
Vajda thcorem.)

Proof: Let I', F* and I'4 be the c.d.f:s of x, T*x and T 4x.

Then F4(t) > F(¢), because
Falt) = P(Tax <) = Plx <1{) + P(Tax <t < %) > F(¢).
Now consider statemcnt (1). Obviously

IF*) =F(¢) for ¢t <mo

F*fy =1 for £ > no

Hence
F=(t) <F4) for t < no
) > Fat) for & > no.

Since ET*x = ET 48 —=m —¢, wc may apply Lemma 2 and
conclude that (1) is true.

Now consider statement 2). Since 7 px is non-decreasing, and
Tpx < T *xfor all x would imply T px = T *x a.s. (almost surely =
with probability onc), we may conclude that 7'gx > T *x for some
x. Obviously this & > e, since otherwise Tpx > x contrary to
assumptions. Hence there must exist a finite x9 > #o, such that

Ty < T*x for x < %o
Tpx > T*x for x > xo
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Writing this as
(I -— TB)
(I — TB)

x> (1 —T%x for v < xo
x < (1 —T*x for x > xo,
and applying Lemma 3, we conclude that (r — T p)x is less dispersed
than (1 — 71 *)x. Hence (2) is true.

To prove (3) we consider the behaviour of (1 — 7'¢)x and
¢

(1 — T)x. Assume first that (1 —To)m < (1 — T = — 1, in
I— Tc)ﬁh c . (I — Tc)x
other words, that ( . < o Since — is non-
Al p

decrecasing, this implies that (1 — T¢)x < (1 — T)x for all ¥ < 1.
Similarly, (1 — T¢)x2 > (1 — T)xe implies that (1 — T¢)y >
(x — T)x for all ¥ > x2. Since (1 — T¢)x > or < (1 — Tx for all x
are trivial cases (thcy both imply T'cx = Tx a.s.), we may conclude
that there exists a finite xo > 0, such that

(1—T)x > (1 —T¢)x  for x < xo
(1—T)x < (1 —T¢)x for x > xo.

Since both (1 — T)x and (r — T¢)x are non-decreasing we may
apply Lemma 3 and conclude that (1 — T)x is less dispersed than
(1 — T¢)x. Hence (3) is true.

To prove (4) we apply the same reasoning with Tp instead of T'¢
to state that either Tphx = Tx a.s. or there exists a finitc xp > 0,
such that

Tpx>Tx for x < xo

Tprx < TX for x > %o

Since T p is non-decreasing, we may once again apply Lemma 3 and
conclude that T px is less dispersed than Tx. This completes the
proof of the thcorem.

5. INDIVIDUAL VERSUS COLLECTIVE REINSURANCE

In section 4 we only considered fully collective reinsurance
forms, i e. the amount borne by the ceding insurer was assumed to
depend only on the total sum of claims. We shall now show that
this is not really a restriction by proving that neither the ceding
insurer nor the reinsurer can gain anything, in terms of achieving
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small dispersion, by allowing Tx to depend on the claims on the
individual policies.

Consider a company with a portfolio consisting of % policies,
and let the claims on the individual policics be a k-dimensional
r.v. (xi1, x2, ..., xzx) with the simultaneous distribution function
F(x1, ..., ). An individual reinsurance trcaty is now described
by a real-valued measurable transformation 7. For each value of
(%1, ..., xx), T(w1, ..., xg) represents the amount borne by the
ceding insurer. The restrictions in condition A of section 4 are
replaced by their obvious counterparts:

k
OST(?U,...,X}L-)SE Xy

c= [ {Zxg—T(x1, ..., %) }dF (%1, ..., x%)

)

where E®) denotes the A-dimensional Euclidian space and ¢ a fixed
constant such that o < ¢ < m = EXx;. The extra restrictions
in conditions B — D will now be that T'(xi, ..., xx), 2x; — T(x,

2xg— T(x, ..., xg) ) )
.., %p) and/or — — are non-decreasing in Xxy.

El’i

For every transformation I we shall now dcfine a transformation
T that is fully collective in the sense that the result depends only on
x = X x;. We do this by

Tx =FE {T(xl, ey xk) | in = x},

i.e. Tx equals the conditional expectation of T(xi, .. ., xz), given
that ¥x; = x. If 7" i1s admissible under A4, B, C or D, the same will
obviously hold for T, since

o < Tx <z and

¢ = | (x— Tx) dG(x),

where G(x) = [  dF(x1,..., %) is the cdf. of x = X x4

tn<
and any extra condition under B, C or D will also be satisfied by
Tx, regarded as a function of .
Theoremn: Let T be any admissible transformation and 7 the
corresponding collective transformation. Then T is less dispersed
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than T(v1, ..., x,) and x — T« less dispersed than Zx; — T (x,
A '\’k)
Proof: Consider any m.o.d. W,. The convexity of ¢ implies that
E{o(T(x1, ..., 55) — ) | 2= 2} > o(Tx — p)

for every p. By taking expected value of both members we get that
Eo(T(x, . . ., xg) —p) = E¢ (Tx —p)
for every p, in particular for the p that minimizes the left member.

Hence

W (T (%1, ..., 51) ) = W, (T%).

Exactly the same line of reasoning leads to
Wo(Exg — T(xy, . . -, x5) ) > Wo (x — Tx)

and this completes the proof of the theorem.

We have thus proved that any transformation, admissible under
A, B, C or D can be replaced by a fully collective transformation,
admissible under the same conditions, which yields a result that is
less dispersed for both parties. It should be noted that it was not
necessary, in the proof of the above theorem, to assume that the
claims on the individual policies are independent r.v:s
(Note: In this section we have used the word individual to denocte
any reinsurance form that is not fully collective, i.e. that is depen-
dent, however negligibly, on the claims on the individual policies.
Individual in this sense thus includes all forms of individual or
half-collective reinsurance.)
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APPENDIX

In Lemma 1 of section 3 we gave a sufficient condition for one
r.v. to be less dispersed than another. We shall now prove that this
condition is also necessary.

It will be convenient to use the following terminology:

We say that a c.c.f. fit) is linear outside (A, B) if it is linear for all
{<< A and all { > B.

We say that a c.ct. f(t) is asymptotically linear if lim [f'(t) exists
and is finite for both ¢t — —o0 and { — + 0. If a function is linear
outside some bounded interval, it is obviously also asymptotically
linear.

We will need the following lemma.

Lemma: Let x be ar.v. with finite mean and f{¢) an asymptotically
linear c.c.f., such that f'(f) exists and is continuous everywhere.
Furthermore, let g(¢, z) be f's deviation at ¢ 4 z from the line of
support at z, i.e.

gt z) = fit +2) —f'(2) t — flz).
Then we can always choose z = zo, such that

inf Eg(x — u, z0) = Eg(x — 20, 20).
Proof: Let Fix) be the c.d.f. of x and consider
Eg(v —p,2) = [ f(x—u + 2) dF(x) —['(2) (Ex — w) — /l2)

Since Ex is finite and f asymptotically linear, the integral exists
for all & and may be differentiated under the sign of integration-

Eg(x — u, 2 «
a—g(TH”—) — — [ Sla—u+2) dFE) + 7@,
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Since f’(z) is continuous and non-decreasing, there exists at least
one root to the equation

@

F@) = [ f'v) aF@).

Let zo be such a root. Then p = z satisfies the equation

dEg(x — ., 20)

RIS

’

and since Eg(x — ., zo) is continuous and convex in u (see section 2),
this must correspond to a minimum. Hence

inf Eg(x — u, z0) = Eg(x — 2o, 20), which was to be proved.

We shall now prove the following theorem which is the reverse
of Lemma 1 of section 3.

Theorem: Let x and y be r.v:s with finite and equal means.

If x is less dispersed than y, then

Ef(x) < Ef(y) for any c.c.f. f{(t) such that Ef(x) is finite.

Proof: Assume that there exists a c.c.f. At} such that Eli(x) >
Eh(y), with Eh(x) finite. The theorem will be proved if we can
show that this implies that there exists a c.c.f. go such that

W‘Po(x) > I/V‘IPO(.'}I)'
Assume first that A(f) is asymptotically linear and that A’(f)
exists and is continuous everywhere.
We put
(L, 2) = Bt + 2) — I'(2) £t — h(2).
According to the lemma just proved, we can choose z = zo,
such that

inf Eo(x — p, 20) = Eg(x — 20, 20).
23

We now define go(t) as ¢(4, zo) and get
Woo®) = inf Eg(x — u, 20) = E@(¥ — 20, 20) =
w
= Eh(x) — I'(20) (Ex — zo) — h(z0) > Eh(y) —
W (2,) (Ey—z0)— h(z0) = E@(y —20,20) Zinf E¢(y —p, 20) = Woq(9)
W

18
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Hence there exists a c.c.f. o, such that
cho(x) > I/anﬂ(y):

and the theorem is proved for this case.

The theorem will be proved for the general case if we can show
that the existence of a c.c.f. i(f), such that El(x) > Ek(y), with
Eh(x) finite, implies that there exists an asymptotically linear
c.c.f. hi(l) with 2(f) continuous everywhere, that also satisfies
the inequality L/(x) > Ehi(y), with Ehi(x) finite. We do this by
modifying the original 4(¢) in two steps. IFirst, we make A{f) linear
outside the interval (—A, 4) by replacing it with lines of support
at £ = + A outside the interval (cf. the proof of Lemma 2, section
3.). By choosing A sufficiently large, we can make the resulting
decrease in EA(x) arbitrarily small and, since EX(y) will certainly
not increase, we can make sure that the strict inequality still
holds. Second, we approximate X(f) inside the interval (—A4, A)
with a function that has a continuous derivative everywhere.
The casiest way to do this is perhaps to divide the interval (— 4, 4)
in small intervals and replace %(¢) by the convex polygon formed
by the chords over those intervals. After that we “round off”
the corners of the polygon by replacing the chords in the vicinity
of cach corner by small circular arcs that make sccond order
contact with the chords. In a bounded interval, the slopes of all
lines of support to a c.c.f. and the slopes of all chords are bounded,
both below and above. This means that by choosing the intervals
and the radii of the circular arcs sufficiently small, we can make
the maximum deviation of the approximating function from the
original one arbitrarily small. Hence the resulting increase (the
approximating curve will never fall below Z(¢) ) in E/(y) can be kept
so small that the strict inequality still holds. Hence we have
managed to construct a c.c.f. /nu(f), consisting of straight lines
outside (— A, A) and line segments joined by circular arcs inside
(— A, A), such that Eln(x) > Eh(y). That Eli(x) is finite and
I (#) cxists everywhere follows directly from the method of con-
struction. This completes the proof of the theorem.,



