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O. INTRODUCTION AND SUMMARY 

Ill this paper  we will inves t iga te  the following reinsurance 
p rob lem:  An insurer,  whose to ta l  claims for a cer tain period m a y  
be regarded as a r andom var iable  x with expec ted  value E x  = m., 

wishes to cede par t  of his business to a reinsurer. A reinsurance 
t r e a t y  will consist of rule for the division of x between the two 
parties.  For  any  observed value of x it should define uniquely 
wha t  amoun t  should be borne  by  the ceding insurer.  The  a m o u n t  
borne  b y  the reinsurer is then s imply  the remaining pa r t  of x. 

We shall assume tha t  the insurer has a l ready decided h o w  m u c h  

of his business he wishes to cede, in the sense tha t  he wants  to 
retain a pa r t  of the to ta l  risk with expected  value m - - c ,  where c 

is a f ixed constant ,  o < c < m. 
Using the te rminology in t roduced by  K a h n  in (2) we will describe 

a reinsurance con t rac t  b y  a t r ans fo rmat ion  (or function) T t ha t  
for a given x yields the a m o u n t  T x  borne  b y  the cedent.  The  

r andom var iable  x is thus divided into two par t s  

x = T x  + ( I - -  T ) x ,  

and  the proper t ies  of the re insurance con t rac t  described b y  T are 
summar i zed  in the dis t r ibut ions  of the two r andom var iables  T x  

and (I - -  T ) x  = - -  T x .  

The mot iva t ion  for re insurance is general ly  held to be  a desire 
for s tabi l i ty ,  in other  words the eedent  wishes to choose a T such 
t h a t  the r andom f luc tuat ions  in T x  are in some sense smaller  than  
those of x. This  choice will in our case be pe r fo rmed  under  the 
restr ict ion tha t  E T x  = m - -  c. 

I t  is clear t ha t  we can never  ta lk  abou t  an op t ima l  choice of T 
wi thou t  defining exac t ly  what  cri terion we shall use when compar ing  
two t ransformat ions ,  T~ and .T2. According to the above,  the crite- 

I7 
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rion should refer to the propert ies of the distr ibutions of Ylx and 
T,.x, so tha t  if one distr ibution is "more  concen t ra ted"  around 
some central  value, the corresponding t ransformat ion is deemed 
preferable to the other.  However ,  we still have to define what  we 
mean by  "more  concent ra ted" .  

One way is to consider the variance. This was done by  Borch in 
(I), where he proved  tha t ,  for given c, the  variance of Tx is mini- 
mized by  a stop loss contract .  This result  was extended by  Kahn  in 
(2). Botch originally approached the problem by considering a 
reinsurance cont rac t  as a t ransformat ion of the distr ibution 
funct ion of x. By  introducing the technique of considering a 
t ransformat ion of x ra ther  than  of its distr ibution function,  I{ahn 
not  only simplified the proof considerably,  but  also extended the 
result to a wider class of t ransformat ions  than the one originally 
considered by  Borch. 

Vajda in (3) invest igated the problem from the reinsurer 's 
viewpoint .  Apar t  from the ra ther  obvious condition o < Tx < x, 

(I - -  7")x 
in t roduced by  Kahn,  Vajda made the restrict ion tha t  

x 

must  be non-decreasing in x, and proved that  in this case minimum 
variance for the reinsurer is realized by  a quota  contract .  The 
in t roduct ion  of an ext ra  restriction is necessary in this case, since 
otherwise the problem would be perfect ly  symmetr ical ,  and the 
minimum variance solution for the reinsurer would be of the same 
type  as for the cedent,  i.e. a kind of reverse stop loss of little 
pract ical  interest.  

These results are of course open to criticism along the following 
lines: the choice of the var iance as a "cr i ter ion of op t imal i ty"  
is somewhat  arbi t rary ,  and perhaps another  measure of dispersion 
would have yielded considerably different results. The  purpose of 
this paper  is to prove tha t  under  the conditions used by the previous 
authors,  the stop loss and quota  contracts  retain their minimizing 
propert ies  when the variance is replaced by  any  member  of a 
ra the r  wide class of measures of dispersion. 

Before int roducing this class of measures of dispersion, let us 
consider the variance in a little more detail. 

Let  x be a random variable with cumulat ive  dis tr ibut ion funct ion 
F(x). Suppose we associate a "loss" with a deviation of x from a 
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centra l  va lue  tz, and  pu t  this loss equal to the square  of the de~dation. 
The  expected  loss will then be 

E (x - -  ~)2 = ~ (x - -  ~)o dF(x)  

\¥e  now choose ~. as the value t ha t  nfinimizes the expec ted  loss. 
This  is done b y  pu t t ing  ~. = E x  and we have  thus  a r r ived  a t  the 
var iance,  not  p r imar i ly  as a measure  of dispersion, bu t  as the 
expec ted  loss caused by  r a n d o m  f luc tuat ions  and  under  the assump-  
tion of a quadra t i c  loss function.  This  in te rp re ta t ion  of tile var iance  
is very  much  in line with the previous  discussion of cr i ter ia  for 
op t ima l  choice of T. However ,  the assumpt ion  of a quadra t i c  loss 
funct ion is still a rb i t ra ry .  I f  we take  the absolute  value of the 
deviat ion instead,  the expected  loss will be 

inf ~ [x - -  V-] dF(x) 

I t  is a well-known fact  t ha t  in this case min imum is ob ta ined  b y  
pu t t i ng  ~ = the median of x. The result is known as the  mean 
devialio~ of x. 

Both  the loss funct ions tha t  we have  considered, t 2 and ]t], 

are convex.  I t  is na tura l  to dem and  tha t  a loss funct ion has this 
p roper ty ,  since it means  t ha t  the ra te  of increase of the loss is 
non-decreas ing as we go fur ther  away  f rom the centra l  value. A n y  
funct ion q~ tha t  is non-negat ive ,  convex and equal  to zero at ~ = o 
can be used to genera te  a measure  of dispersion (or "expec ted  loss") 
14z~ by  pu t t ing  

I,V~ (x) = inf E q0(x - -  ~). 

The proper t ies  of such measures  of dispersion are discussed in 
detai l  in section 2. 

Of course the use of any  single measure  of dispersion of this 
type  would be open to the same cri t icism as the use of the variance.  
Hence  we shall not  inves t iga te  single m e m b e r s  bu t  r a the r  the whole 
class. We shall say  tha t  one r andom  var iable  x is less dispersed 
t han  ano ther  r andom var iable  y if 

w~ (x) _< w~ (y) 
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for any W~, generated by  a convex function ~. Thus,  if we s ta te  
tha t  a certain reinsurance cont rac t  results in less dispersion than  
any other  in the class of possible contracts ,  it will mean tha t  it 
minimizes not  only the variance and the mean deviation bu t  any 
measure of dispersion of this type.  

The results of section 4 may  now be summarized as follows: 

Under  the condit ions considered by  Kahn,  stop loss reinsurance 
minimizes the dispersion for the ceding insurer. 

Under  the conditions considered by  Vajda, quota  reinsurance 
minimizes the dispersion for the reinsurer. 

Under  the ext ra  conditions tha t  bo th  Tx and ( i -  T)x are 
non-decreasing, stop loss reinsurance maximizes the dispersion 
for the reinsurer and quota  reinsurance maximizes the dispersion 
for the ceding insurer. 

The last two results emphasize in a drastic way the "pecul iar  
opposition of interests of the two par tners  of a reinsurance 
con t rac t "  ment ioned by  Vajda in his paper. Under  not very  
restr ict ive conditions, what  is opt imal  in our sense to one 
pa r t y  is seen to be the opposite of opt imal  for the other  par ty .  

I .  CONVEX FUNCTIONS 

In  the following we will make  extensive use of some propert ies 
of cont inuous convex functions. We will therefore give a brief 
review of these properties.  For  fur ther  details the reader is referred 

to chapter  3 of (4). 
A function f(x) is said to be cow,vex in the interval  (H, K) if the 

inequal i ty  

( / f x+2 y/ - - 2  < -  (f(x) + f (y ) )  

holds for all x, 3' in (H, 1<). I t  can be shown tha t  i l l (x)  is cont inuous 
in (H, K), it also satisfies 

f (X q, x~) < 2 q~f(x,); q~ > o, Xq~ = z; x~ e (H, K). 

B y  a passage to the limit we obtain 

f (Ex) < E (f(x)), 
where E denotes expected value and x is a random variable tha t  
only takes values in (H, If). 
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In  this pape r  we will only consider cont inuous  convex funct ions.  
Cont inui ty  is not  a s t rong restr ict ion in this case, si.nce convex  
funct ions are ei ther  very  regular  or very  irregular.  This  follows 
f rom the fact  t ha t  a funct ion f which is convex  in (H, K) is also 
corlt inuous in (H, K) if it is bounded  above  in some in te rva l  interior  
to (H, K). If  this  is true,  the function is not  only cont inuous but  

the der iva t ive  i f (x )  exists and is cont inuous  everywhere  except  
pe rhaps  for an enumerab le  set of values  of x. Le f t -hand  and  r ight-  
hand  der iva t ives  exist everywhere ;  the r igh t -hand  der iva t ive  is 
not less than  the lef t -hand der ivat ive ,  and bo th  der iva t ives  are 
non-decreasing (Theorem IIX in (4))- 

Cont inuous convex  funct ions have  two geometr ica l  proper t ies  
which could have  been used for a l t e rna t ive  definit ions of convexi ty .  
E v e r y  chord lies ent i rely above  or on the curve. Through  every  
point  of the curve  at  least one line can be drawn which lies wholly 
under  or on the curve. Such a line is called a line of support. Whethe r  
one or more lines of suppor t  can be drawn through a given point  
depends of course on the behav iour  ot if(x).  If  f ' (x )  exists there  is 
only  one line, the tangent ,  otherwise any  line through the point  

/ 

with a coefficient of inclination K,  such tha t f~  < K < fr ,  will be a 
line of suppor t .  

In the following we will use the abbrev ia t ion  c.c.f, to denote  a 
funct ion tha t  is cont inuous and convex  on the entire real line 
(--co, co). 

2. A CLASS O1~ MEASURES OF DISPERSION 

Let  us now consider t7 f (x - -  tz) = f f (t - -  a) d F(l),  where f is 
- m  

a c.c.f, and x a r andom var iable  (r.v.) with finite mean  and  cmnula-  
t ive d is t r ibut ion funct ion (c.d.f.) F(x).  Let  l(x) --  ax + b be a line 
of suppor t  to f (x)  at  x = o, and introduce the no ta t ion  q~ for the  
devia t ion f rom this line of suppor t ,  i.e, q~(x) = f (x)  - - a x  - -  b. \,Ve get 

E f ( x - -  Vt) = E(q~(x- -  ~t) + a ( x - -  Vt) + b) = 

= E ~?(x--~) + a E x - - a ~  + b. 

Since E x  is assumed to be finite, E f ( x - - ~ )  will exist  if and only 
if E q ~ ( x - - ~ )  exists. But ,  since qo is non-negat ive ,  the in tegral  
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J •  q ? ( t - - ~ ) d F  will e i ther  be f ini te  or = + c o .  F u r t h e r m o r e ,  if 
- a o  

t h e  in teg ra l  converges  for  two values  of ~x, say  ~t < ~.2, the  re la t ion 

o < ~o(t-- (put + qV.2) ) --< pq~(t--  ~ )  + q ? ( t - -  ~2), p + q = I, 

implies  t h a t  it converges  for all ~ ~ [Ext, tz2?. On the  o the r  hand ,  
if E q ? ( x -  ~.) is f ini te  for  ~x = ~z~ b u t  infinite for  tz = ~zo~, where  
~0. > tz~ (~x~ > ~2), then  E~  (x - -  ~) will be infini te  for  all ~x > V.2 
(~. < ~x2). Hence ,  the  d o m a i n  where  Eq? ( x -  ~x) is f ini te  is a lways  
an  in t e rva l  on  the  ~.--axis .  This  in t e rva l  m a y  be open,  closed or  

half-c losed,  and  it m a y  be b o u n d e d  or  u n b o u n d e d .  

I f  we i n t roduce  the  fu r t he r  res t r ic t ion  t h a t  q0 (t) > o for  some  
t > o and  some t < o, it is easi ly seen t h a t  lim ?(t) = + co. This  

implies  t h a t  lira ep(t - -  ~) dF(t) = + co. F r o m  this we conc lude  

t h a t  as soon as E ?(x - -  ~z) is f inite for  some  ~, t hen  inf E q~(x - -  V.) 

is f ini te  a nd  is ob t a ined  for  some fini te  value  of ~., s ay  ~x = V-o. 
W e  shall now in t roduce  a class of measures  of dispersion.  

Definition 

Let  x be a r.v. wi th  c.d.f. F ,  and  ~ a func t ion  wi th  the  fo l lowing 
p r o p e r t i e s '  

(a) q~ is c o n t i n u o u s  a nd  c o n v e x  on ( - - c o ,  co), 
(b) ~ (1) > o, q~ (o) = o, 
(c) q~ (t) > o for  some I > o a nd  some t < o. 

The  measure of  dispersion W~ generated by q~ is then  def ined 

b y  

W~(x) = inf ~ q~ (t - -  ~x) dF(t) = Eqo(x - -  ~xo) 

This  def in i t ion  calls for  a few c o m m e n t s .  I f  ~o and  F are such t h a t  

E q~ ( x - - ~ z )  is inf ini te  for  all ~x, the  va lue  of Wq,(x) is of course  
i n t e r p r e t e d  as + co. I f  cond i t ion  (c) is no t  fulfilled, if 9 (t) ~ o for, 
s ay  a l l t  < o, then  

lim ~ q~(t-- ~x) dF(t) = o and  hence  W~(x) = o 
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for  all r .v:s x. This would not cause any trouble in what  follows, 
since we will mainly be considering inequalities of the type  W~(x)  < 
We(y )  for all % Such inequalities would still hold t rue (as trivial 
equalities} but,  since W~ :s of this type  are of little interest  as 
measures of dispersion, they  are excluded by  imposing condit ion (c). 

As already stated,  bo th  the variance and the mean  deviat ion 
belong to the class of measures of dispersion just  defined, since 
they  can be regarded as generated by  q~ (t) = t e and q~ (t) = Itl, 
and bo th  these functions satisfy conditions (a)--(c) above. 

The following terminology will be used. The abbrevia t ion  
"m.o.d.  Wv" will be used for the ra ther  lengthy expression "measure  
of dispersion W, generated by  the cont inuous convex funct ion q~ 
satisfying conditions (a)--(c)" .  lf, for two random variables x and 
y,  the inequal i ty  

w (x) _< W (y) 

holds for any m.o.d. I,V~, we will say tha t  x is less dispersed than  y 
or tha t  y is more dispersed than  x. Str ict ly speaking we should also 
require tha t  Wv(x)  < W v ( y )  for some m.o.d. Wq,, bu t  this will 
obviously ahvays be the case unless there exists a constant  a, such 
tha t  x and y + a have the same distr ibution.  

3- THREE LEMMAS 

In this section we shall prove three lemmas giving sufficient 
condit ions for one r.v. to be less dispersed than another  r.v. 

L e m m a  I :  Let  x and y be r.v:s. If 

E l ( x )  < E f ( y )  for any c.c.f, f ,  

then  x is less dispersed t h a n  y. 

(Note: I t  can be proved tha t  if E x  = E y ,  the reverse is also true, 
so tha t  the condit ion is not  only sufficient bu t  also necessary. The 
proof is ra ther  lengthy,  and since the result is not  needed here, 
it is given in an Appendix at  the end of the paper). 

Proof:  Consider any m.o.d. W~ and let ~** and Vtv be values of 
V- for which inf E ~0(x - -  ~,) and inf E ~ ( y  - -  bt) are obtained.  Then  

Wv(y) - -  Wv(x) = E , ( y  - -  ~v) - -  E~o(x - -  Vtz) > 

E V ( Y  - -  g.v) - -  Eq~(x - -  V.,,) >-- o 
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Tha t  the last member  is non-negat ive follows from the assumption 
M t h  f ( t ) =  ~o(t--~v).  Hence the lemma is proved. 

The second lemma shows that  a simple relation between two 
c.d.f:s is sufficient for Lemma  i to be applicable. 

Lemma 2: Let  x~ and x2 be two r.v :s with the same finite mean 
Ex~ = Ex2, and F i  and Fo, their  c.d.f:s. 

If there exists a to such that ,  

/71(l) < F z ( l )  for t < t o  

F~ (t) > F~(t) for t > to, 

then Ef(x~) _< Ef(x2) for any c . c . f . f .  

Proof: Let  f be any  c.c.f. 

E f(x2) - E f (x  0 = f o r ( t ) d F 2 ( t ) -  i f ( t )dF~( t )  = 
- m  - 0 0  

f f(t) ~dF~ - -  d~l}. 

Since f t { d F 2 -  dFi} = i { d F 2 -  dF1} = o, 

the integral  is not  changed if we replace f(l) by  its deviat ion from a. 
line of suppor t  at lo, g(t) = f(t) - -  at - -  b. 

Hence  E f(x2) - -  E f (xl)  = I g(b) { d &  - -  dF1}, 

where g(t) has the following proper t ies '  

g(t) is a c.c.f. 

g(l) > o, g(to) = o 

g'(t) < o, for t < to 

g'(t) > o, for t > to 

Assume first tha t  f (and hence g) is integrable both with respect 
to dF~ and dF~. We  may then in tegra te  by par ts  and get 

m ~o  

[ g(~) ( d ~  - -  dF , }  = g(t) (F~ - -  El )  I - -  I g'(~) (F~ - -  El}dr 
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T h a t  g is in tegrable  implies tha t  

lira g(t) F~(t) = o 

lira g(t) ( i - - F i ( t ) )  = o 
t--+~ 

i = I ,  2 

This completes  the proof of the l emma  for the case t ha t  bo th  

E f(x2) and E f ( x  0 < co. 
Assume now tha t  E f(x~) (and hence E g(x~) ) = + co. W e  

define a new funct ion gA(t) as follows. Let  l-A(t) and lA(t) be lines 
of suppor t  to g(t) at  t = - - A  and t = A .  

P u t  

gA(t) = g(t) for Itl < A 

gA(t) = l_A(t) for t < - - A  

gA(t) = lA(t) for t > A. 

gA(t) will be in tegrable  bo th  with respect  to dF~ and dF2, and it 
follows f rom the above  t ha t  

E gA(xl) ~ E gA(X2) 

Since gA(t ) -+g( t )  monotonica l ly  as A -+  co, we get E gA(X)---+ 
E g(x) and m a y  conclude tha t  E g(x2) (and hence E f(x~) ) = + co. 

Accordingly,  we m a y  regard the inequal i ty  

E f (x , )  < E f(x2) 

as p roved  in tile following sense: ei ther  bo th  expec ta t ions  are 
finite and  the inequal i ty  holds, or E f(x2) = + co, in which case 

the inequal i ty  is t r ivia l ly  true,  whether  E f (x l )  is finite or not. 
The thi rd  l e m m a  gives a sufficient condit ion based  on a relat ion 

be tween  the var iables  themselves,  ra ther  than  be tween their  
c.d.f:s. 

Hence  the first  t e rm vanishes,  and, since g '  and F 2 - - F 1  are of 
unequal  sign, we get 

El (x2 )  - -  E f (x t )  = - -  ~ g'(t) (F2 - -  F1)dt >_ o. 
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Lemma 3" Let  y be a r.v. and x,(y) and x2(y) two non-decreasing 
functions of y, such tha t  E xl(y) and Exe(y) are finite and equal. 
If there exists a yo, such tha t  

xl(y) > x2(y) for y < yo 

xt(y) < xz(y) for y > y o ,  

then xl(y) is less dispersed than x2(y). 

Proof: Let  F~(x) and F2(x) be the c.d.f:s of x~ and x2, and put  

x0 = x2(y0)  

For  x < xo we get 

F2(x) = P(x2(y) < x) = P (x~Cy) < x) + V (xo.(y) < x < x~(y) ) > 

F i ( x ) .  

Likewise for x > Xo 

Fl(x) = P (x,(y) < x) = 1' (xz(y) < x) + P(x~(y) < x <  x.o(y) ) > 

>_F~(x) 

Hence  F1 and F2 satisfy the conditions of Lem m a  2, and consequent-  
ly x~(y) is less dispersed thart x2(y) and the lemma is proved.  

4- APPLICATIONS TO REINSURANCE 

We shall now apply  the results of sections 2 and 3 to the reinsur- 
ance problem presented in the int roduct ion.  We will use the technique 
in t roduced by  Kahn  in (2). Thus,  a reinsurance scheme will be 
described by  a measurable t ransformat ion T of the random variable 
x (representing the total  claims during the period), such tha t  Tx  
represents  the amount  borne by  the ceding insurer and, consequent-  
137, ( I -  T)x = x - - T x  the amount  borne by  the reinsurer. 

Obviously,  to be meaningful,  the analysis has to be carried out  
with certain restrictions on T. First  of all, we only consider trans- 
format ions  such tha t  E (x - -  Tx), i.e. the (net) reinsurance premium,  

equals a fixed constant  c. Second, we demand tha t  the amount  
borne by  the insurer shall never exceed the to ta l  claims x. These 
two condit ions define the class of what  Kahn  calls "admissible 
t ransformat ions" .  Since we want to s tudy  the problem not only 
from the viewpoint  of the ceding insurer, bu t  also from tha t  of the 
reinsurer,  we have to in t roduce ext ra  restrictions. Otherwise we 
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would, due to the s y m m e t r y  of the problem, arrive at exact ly  
the same type  of solution in both cases - -on ly  with the r61es 

reversed. 
This leads us to consider the classes of t ransformat ions  which 

satisfy the following four sets of conditions. Here admissible 
under A corresponds to Kahn ' s  admissible, and admissible m~der C 
to the extra restriction introduced by  Vajda in (3). 

A. A measurable t ransformat ion  T is said to be admissible under A if 

o < 7 " x < x  

c = i ( x - - T x ) d F ( x ) ,  where c is a fixed cons tant  such tha t  
o 

o < c < m = Ex. 

B. A measurable t ransformat ion T is said to be admissible under B 
if it is admissible under A and fur thermore  Tx and x - - T x  
are bo th  non-decreasing in x. 

C. A measurable t ransformat ion T is said to be admissible under C 
( :  - -  T ) x  x -  T x  

if it is admissible under A and fur thermore  --  - -  
X X 

is non-decreasing in x. 
D. A measurable t ransformat ion T is said to be admissible under 

D if it is admissible under  C and fur thermore Tx is non-decreas- 
ing in x. 

Obviously D -+ B --+ A and D -÷ C -> A. 

Two t ransformat ions  are o[ part icular  interest:  

The Stop Loss Transformation T* 

T* is defined by  
T * x = x  for x < n o  

T * x = n o  f o r x  > n o ,  where n o is chosen such tha t  

n o 

The Quota Transformation ~'. 

~" is defined by  
m - - C  
- -  x for all x. 
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I t  is easily seen tha t  both  T*  and ~ are admissible under  all 
four sets of conditions. 

We shall now state  and prove a theorem on "o p t im a l i t y "  prop- 
erties of these two t ransformations.  

Theorem" Let  TA, Tn, Te and TD be any t ransformat ions  ad- 
missible under  A, B, C and D respectively. Let  T*  and # be the 
stop loss and quota  t ransformat ions  defined above. Then the follow- 
ing s ta tements  are t rue:  

(I) T * x  is less dispersed than TAX 

(2) ( I -  T*)x  is more dispersed than  ( I -  TB)X 

(3) ( I -  ~)x is less dispersed than  ( I -  Tc)x 

(4) ]'x is inore dispersed than TDx 

(Note: (I) is an extension to any m.o.d. Wq, of the Borch -Kahn  
theorem on minimum variance and (3) a silnilar extension of the 
Vajda theorem.) 

Proof: Let  F, F* and FA be the c.d.f:s of x, T*x and TAx. 

Then F.a(t) > F(I), because 

f A(t) = P(TAx ~ t) = P(x ~ l) -t- P(TAx < t < x) > F(t). 

Now consider s t a tement  (I). Obviously 

F*(t) =F( t )  for t < n o  

F*(g) = I for t > no 

Hence 

F*(Z) <FA(l )  f o r t < n o  

F*(t) >FA(t) for t >no .  

Since ET*x  = ETAx--:  , m -  c, we m ay  apply  Lemma 2 and 
conclude tha t  (I) is true. 

Now consider s t a t emen t  12). Since Tnx is non-decreasing, and 
Tnx < T*x for all x would imply TBX = T*x a.s. (almost surely = 
with probabi l i ty  one), we may conclude tha t  TBX > T*x for some 
x. Obviously this x > no, since otherwise TBX > x cont ra ry  to 
assumptions.  Hence there must  exist a finite Xo > no, such tha t  

TBx < T*x for x < Xo 

TBx > T*x for x > Xo 
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Wri t ing  this as 

( I  - -  TB)X ~ ( I  - -  T*)x for x < Xo 

(I - -  Tn)x < (I - -  T*)x for x > Xo, 

and  app ly ing  Lernma 3, we conclude t ha t  (I - -  Tn)x is less dispersed 
t han  ( I -  T*)x. Hence  (2) is true. 

To p rove  (3) we consider the behav iour  of ( I - - T c ) x  and  
C 

( I - - ~ ' ) x .  Assume first t ha t  ( I - - T o ) x 1  < ( z - - ' ~ ' ) x , =  - - x l ,  in 
sn  

(I - -  r e ) x 1  c ( i  - -  r c ) x  
other  words, t ha t  < - - .  Since is non- 

Xt  ~ X 

decreasing,  this implies t h a t  (I - -  Tc)x < (I - -  ~')x for all x < x~. 
Similarly,  ( I - - T o ) x 2  > ( I - - 7 " ) x 2  implies t ha t  ( I - - T c ) x  > 
(i  - -  T)x for all x > x2. Since (i - -  Tc)x > or < (I - -  ~)x for all x 
are t r ivial  cases ( they bo th  imp ly  Tcx = l"x a.s.), we m a y  conclude 

t ha t  there exists  a finite x0 > o, such t ha t  

( I - - ~ ' ) x > ( I - - r c ) x  for x < x o  

( I -  l")x < ( I -  Tc)x for x > xo. 

Sirlce bo th  ( I -  7")x and ( I -  Tc)x are non-decreasing we m a y  
app ly  L e m m a  3 and conclude t ha t  (I - -  7")x is less dispersed than  

( I -  Tc)x. Hence  (3) is true. 
To prove  (4) we apl)ly the same reasoning with To  instead of To  

to s ta te  t ha t  ei ther  Tax = ~'x a.s. or there exists  a finite xo > o, 

such tha t  
Thx > 7"x for x < Xo 

ThX < ~'X for x > x0 

Since To  is non-decreasing,  we m a y  once again al)ply L e m m a  3 and  
conclude t ha t  T hX is less dispersed than  1"x. This completes  the 
proof  of the theorenl.  

5. I N D I V I D U A L  VERSUS C OL L E C T IVE  R E I N S U R A N C E  

In  section 4 we only considered fully collective reinsurance 
forms,  i e. the anaount borne  b y  the ceding insurer was assmned  to 
depend only on the to ta l  sum of claims. We shall  now show t h a t  
this is not  real ly a restr ict ion b y  proving  tha t  nei ther  the ceding 
insurer  nor the reinsurer  can gain anyth ing ,  in t e rms  of achieving 
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small  dispersion, by  allowing Tx  to depend on the claims on the 
indiv idual  policies. 

Consider a c o m p a n y  with a portfol io consist ing of k policies, 
and let the claims on the individual  policies be a k-dimensional  
r.v. (xl, x2, . . . ,  xk) with the s imul taneous  dis t r ibut ion funct ion 
F ( x l , . . . ,  x~.). An individual  re insurance t r e a t y  is now described 
by  a real -valued measurab le  t r ans fo rmat ion  T. For  each value of 
(xl . . . . .  xk), 7"(xl, . . . ,  xk) represents  the a m o u n t  borne b y  the 
ceding insurer.  The  restr ic t ions in condi t ion A of section 4 are 
replaced b y  their  obvious  coun te rpa r t s :  

k 

o < T(xl  . . . . .  xk) < X x~ 
l 

c = I {.xx~ - -  T(x~ . . . .  , x~) } d F  (x~ . . . .  , x~) 
E(k) 

where E(~') denotes  the/e-dimensional  Eucl idian space and  c a fixed 
cons tan t  such t h a t  o < c < m = EEx~. The ex t ra  restr ict ions 
in condit ions B -  D will now be t ha t  T(xt . . . . .  xx), E x ~ -  7"(x~, 

X x ~ -  T(x~ . . . . .  xk) 
. . . ,  x~) and/or  Xx~ are non-decreasing in Ext. 

For  every  t r ans fo rmat ion  T we shall now define a t r ans fo rma t ion  
t ha t  is fully collective in the sense t ha t  the result depends only on 

x = E x~. We  do this b y  

~ x  = E {T(Xl . . . . .  xk) I X x,  = x}, 

i.e. Tx  equals the condi t ional  expec ta t ion  of T ( x ~ , . . . ,  xk), given 
tha t  Xx~ = x. If  T is admissible under  A,  B, C or D, the same will 
obviously  hold for T, since 

o < T x _ < x ,  and 

o 

where G(x) -- f dF(x l  . . . . .  xk) is the c.d.f, of x = xZ x~, 
E x  l < z 

and any  ex t r a  condit ion under  B, C or D will also be satisfied by  
Tx, regarded as a funct ion of x. 

Theorem" Let  7" be any  admissible  t r ans fo rmat ion  and T the 
cor responding  collective t rans format ion .  Then Tx is less dispersed 
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than T(xl, . . . ,  xk) and x - - T x  less dispersed than Z x l - - T ( x l ,  
. . . ,  X,k). 

Proof: Consider any m.o.d. Wv. The convexity of q0 implies that  

for every ~.. By taldng expected value of both members we get that 

E ~ ( ~ ( x l  . . . . .  x~) - -  ~) >_ E ~  ( T .  - -  ~) 
for every tz, in particular for the ~z that  minimizes the left member. 

Hence 

w~ (T (x, . . . . .  *k) ) >_ W~ (~x). 

Exactly the same line of reasoning leads to 

and this completes the proof of the theorem. 

We have thus proved that any transformation, admissible under 
A, B, C or D can be replaced by a fully collective transformation, 
admissible under the same conditions, which yields a result that  is 
less dispersed for both parties. It should be noted that  it was not 
necessary, in the proof of the above theorem, to assume that  the 
claims on the individual policies are independent r.v:s 
(Note: In this section we have used the word individual to denote 
any reinsurance form that  is not fully collective, i.e. that  is depen- 
dent, however negligibly, on the claims on the individual policies. 
Individual in this sense thus includes all forms of individual or 
half-collective reinsurance.) 
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APPENDIX 

In  L e m m a  I of section 3 we gave  a sufficient condit ion for one 
r.v. to be less dispersed than  another .  We shall now prove  t ha t  this 
condit ion is also necessary.  

I t  will be convenient  to use the following terminology:  
We say tha t  a c.c.f, f(t) is linear outside (A, B) if i t  is l inear for all 

l < A and all t > / 3 .  

We say t ha t  a c.c.f, f(t) is asymplotically l imar  if l im f ' ( t )  exists 
and  is finite for bo th  t --+ - - c o  and  l --7 + co. I f  a funct ion is l inear 
outside some bounded  interval ,  it is obvious ly  also a sympto t i ca l l y  
linear. 

We will need the following lemma.  
Lemm~t: Let  x be a r.v. with finite mean andf( t )  an a sympto t i ca l l y  

l inear  c.c.f., such tha t  f ' ( t)  exists and  is cont inuous  everywhere .  
Fu r the rmore ,  let g(t, z) be f ' s  devia t ion at  t ÷ z f rom the line of 
suppor t  at  z, i.e. 

g(b,  z)  = f ( t  + z)  - -  f ' ( z )  t - -  f ( z ) .  

Then we can a lways choose z = z0, such t ha t  

inf Eg(x - -  bt, Zo) = Eg(x - -  Zo, Zo). 

Proof: Let  F(x) be the c.d.f, of x and consider 

Eg(x  - -  ~, ~) = I f (~ - -  ~ + ~) dF(x)  - - f ' ( z )  (Ex - -  ~) - - f ( ~ )  

Since Ex  is finite and f a sympto t i ca l l y  linear, the integral  exists  
for  all V. and m a y  be di f ferent ia ted  under  the sign of integrat ion" 

~Eg(x z) bt, 
= - -  ~ f ' ( x - -  ~ + z) dE(x) + f ' (z) .  
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Since f ' ( z )  is cont inuous  and  non-decreasing,  there  exists  a t  least 
one root to the equat ion 

f ' ( z )  = f f ' ( x )  dE(x ) .  
- m  

Let  Zo be such a root.  Then g. = zo satisfies the equat ion  

3 E g ( x  - -  ~, zo) 
- ~ .  O~  

and since E g ( x  - -  ~, Zo) is cont inuous  and convex  in ~ (see section 2), 
this m u s t  correspond to a min imum.  Hence  

inf E g ( x  - -  V, zo) = E g ( x  - -  zo, Zo), which was to be proved.  

We shall now prove  the following theorem which is the reverse 

of L e m m a  I of section 3. 
Theorem:  Let  x and  y be r .v :s  with finite and  equal  means.  
I f  x is less dispersed t han  y,  then  

El ( x )  < E f ( y )  for an 3, c.c.f, f ( t )  such tha t  E l ( x )  is finite. 
Proof :  Assume tha t  there  exists  a c.c.f, h(t) such tha t  E h(x )  > 

E h ( y ) ,  with Eh(x )  finite. The  theorem will be p roved  if we can 

show tha t  this implies tha t  there  exists  a c.c.f. ~oo such tha t  

Woo(X) > Woo(y) .  

Assume first  t ha t  h(t) is a sympto t i ca l l y  l inear and tha t  h'(t) 
exists  and is cont inuous  everywhere .  

We put  

~(t, z) = h(t + z) - -  h'(z) t - -  h(z). 

According to the l e m m a  just  proved,  we can choose z = zo, 

such tha t  

inf Eq~(x - -  ~z, Zo) = Eqo(x - -  zo, Zo). 
[z 

We now define q~o(t) as q~(t, zo) and get 

Woo(x)  = inf Eqo(x - -  Vt, Zo) = Eq~(x - -  Zo, zo) = 
V. 

= Eh(x )  - -  h'(zo) ( E x  - -  Zo) - -  h(zo) > E h ( y )  - -  

h'(zo) ( E y - - z o )  - - h ( z o )  = E q ~ ( y - - z o ,  zo) > inf E~0(y- -  g, Zo) = W~o(y  ) 
g. 

18 
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Hence there exists a c.c.f. 9o, such that  

Woo(.) > Wooly), 
and the theorem is proved for this case. 

The theorem will be proved for the general case if we can show 
tha t  the existence of a c.c.f, h(t), such tha t  Eh(x) > Eh(y), with 

Eh(x) finite, implies tha t  there exists an asymptot ica l ly  linear 
c.c.f, hi(l) with hi(t ) cont inuous everywhere,  tha t  also satisfies 
the inequal i ty  Ebb(x) > Ebb(y), with Ebb(x) finite. We do this by  
modifying the original h(t) in two steps. First,  we make h(t) linear 
outside the interval  ( - -A,  A) by  replacing it with lines of support  
at  t = :~ A outside the interval  (cf. the proof of Lem m a  2, section 
3.). By  choosing A sufficiently large, we can make the resulting 
decrease in Eh(x) arbi t rar i ly  small and, since Eh(y) will cer tainly 
not  increase, we can make sure tha t  the strict  inequal i ty  still 
holds. Second, we approximate  h(t) inside the interval  ( - -A,  A) 
with a funct ion tha t  has a cont inuous der ivat ive everywhere.  
The easiest way to do this is perhaps to divide the interval  ( - -  A, A) 
in small intervals  and replace h(t) by the convex polygon formed 
by  the chords over those intervals.  After tha t  we " round  off" 
the corners of the polygon by replacing the chords in the vicini ty 
of each corner by small circular arcs tha t  make second order 
contac t  with the chords. In a bounded interval,  the slopes of all 

lines of suppor t  to a c.e.f, and the slopes of all chords are bounded,  
both below and above. This means tha t  by choosing the intervals  
and the radii of the circular arcs sufficiently small, we can make 
the max imum deviat ion of the approximat ing  funct ion from the 
original one arbi t rar i ly  small. Hence the resulting increase (the 
approximat ing  curve will never fall below h(t) ) in Eh(y) can be kept  
so small tha t  the strict  inequal i ty  still holds. Hence we have 
managed to construct  a c.c.f, ha(t), consisting of s traight  lines 
outside ( - - A ,  A) and line segments joined by circular arcs inside 
( - - A ,  A), such tha t  Eh,(x) > Eh,(y). Tha t  Ebb(x) is finite and 
hi(t ) exists everywhere  follows chrectly from the method  of con- 
struction.  This completes  the proof of the theorenl.  


