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I. Setting the problem 
One of the basic functions of risk theory is the so-called general- 

ised Poisson function F(x), which gives the probability that the 
total amount of claims ~ does not exceed some given limit x during 
a year (or during some other fixed time period). For F(x) is ob- 
tained the well known expansion 

e_~n/c 
r ( x ) =  k! sk*(x), (~) 

k - J o  

where n is the expected number of claims during this time period 
and Sk*(x) is the k: th convolution of the distribution function 
S(z) of the size of one claim. The formula (I) is, however, much too 
inconvenient for numerical computations and for most other 
applications. One of the main problems of risk theory, which is 
still part ly open, is to find suitable methods to compute, or at least 
to approximate, the generalised Poisson function. 

A frequently used approximation is to replace F(x) by the normal 
distribution function having the same mean and standard deviation 
as F as follows: 

(x - -  no~l~ 
F(x) ~ @ \ ~ ], (2) 

where ~t and ~2 are the first zero-moments of S(z)" 

~, = J zt d S~, (z). (3) 

SM(Z) is here again the distribution tunction of the size of one claim. 
To obtain more general results a reinsurance arrangement is 
assumed under which the maximum net retention is M. Hence the 
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portfolio on the company's own retention is considered. If the 
reinsurance is of Excess of Loss type, then 

IS(z) when z < M 
SM(z) 

I when z > M, 

where S(z) is the distribution function of the size of one total claim. 
The normal approximation is very simple to use and it gives a 

good review of the interdependence of the different variables 
involved in the risk process. In accordance with the central limit 
theorem of probability calculus the normal approximation tends 
asymptotically to the function F when n ~ co. Unfortunately,  
however, especially for small values of n and when the risk distri- 
bution is very heterogeneous it does not always give satisfactory 
accuracy. Another drawback of the normal approximation is its 
poor applicability in the Polya cases, where the formula (I) is 
iurther generalised to allow for certain fluctuation of the basic 
probabilities (and of n). 

Another, and in practice much more accurate, approximation 
formula is given by Esscher. This formula, although somewhat 
cumbersome, allows the computations of the numerical values of 
F, but it is not very suitable for giving a good general review of 
the mutual  dependence of the different variables. 

Recently two methods of calculating F by means of electronic 
computors have been presented. A Swedish team has performed 
computations by means of a formula based on the inversion of the 
characteristic function. Another method based on the Monte 
Carlo method has been developed by some Finnish actuaries. 

Our work consists of parallel computations made by the normal 
approximation, Esscher formula and Monte Carlo method. Com- 
parison of the results gives an illustration of the goodness of fit 
of the different approximation methods. Further  analysis of the 
mutual  deviations of the different results reveals certain clear 
regularities. They made it possible to propose some corrections to 
the normal approximation, which seem to improve the goodness 
of fit in an essential degree without losing too much in simplicity. 
This method was applied also to the Swedish material mentioned 
above. 
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The basic material of the study consists of claims statistics 
concerning industrial fire insurance and third par ty  motor insur- 
ance furnished by Suomen Vahinkovakuutuksen Tilastokeskus (The 
Statistical Centre of The Non-Life Insurance of Finland). At first, 
these two classes of insurance were treated separately, until tile 
results obtained proved this to be unnecessary. Tile execution of 
the study followed the pattern familiar trom the natural sciences: 
first a number of experiments and then an analysis of the results. 
One generalised Poisson function derived from tile basic material 
can be regarded as an experiment in this sense. The results were 
obtained by computing the material by both the Monte Carlo 
method and the Esscher formula as well as the normal approxi- 
mation. It  was possible to increase the number of the experiments 
by altering the fundamental distribution by giving different values 
to the expected number of claims oll one hand - -  and by reinsurance 
on the other hand. The computations relate to the net retention 
of the company, supposing that  the top risks are cut by an Excess 
of Loss reinsurance under which the maximum net retention M is 
given values corresponding to those applied as a rule in practice. 
The values corresponding to M = co, i.e. a nonreinsured portfolio, 
are also computed. The computations are thus carried out both with 
"well behaving" claim distributions including only limited risks as 
well as "dangerous" distributions including very large risks in order 
that  the results should represent the circumstances of claims usual 
in practice on the company's  net retention and also an extremely 
dangerous one. In this manner 4 ° distributions were obtained, each 
of which can be regarded as a different generalised Poisson func- 
tion. Half of the distributions represent cases of industrial tire 
insurance and the balance of third party motor insurance. 

2. Analysing the resulls obbained by lhe Esscher formula 

When analysing the results it was found that  the ruin limits 
corresponding to a certain probability ~ = I - - . F ( x ) ,  which were 
computed by the Esscher formula, deviated from those obtained 
by means of the normal approximation, the larger deviations 
arising with the greater values of the skewness 

~X3 
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The observed correlat ion between x~ and "yl is seen quite  clearly 

me 
from Figure I. Values of the expression - - - - I  as a function of 

ye 
-y1 are drawn in the figure on a double logari thmic scale with 
different ruin probabilities, xe denoting a s tandardised  variable 
in accordance with the Esscher formula and Ye denoting the 
corresponding normal  variable. I t  is seen that  the pairs of points 
corresponding to one value of ¢ are placed quite nicely on one 
s t ra ight  line, the lines corresponding to different values of ~ being 
parallel. The  figure gives the following equat ion between xe and y~ 

x~ = ye (1 + c , .  v o.98 ) (4) 

where C, is a constant  depending on ¢ only and having the values 
o.16, 0.30 and 0.44, for s 0.05, o .oi  and o.ooi.  In Figure I the 
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results obta ined from both  the industrial  fire insurance and the 
third pa r t y  motor  insurance are included, which were, even con- 
cerning the numerical  values of the constant  C,, the same in spite 
of the great  difference in p r imary  distributions.  

3. Comparison with the Monte Carlo method 

The computa t ions  were also carried out  with the Monte Carlo 
m e thod  (Pesonen: "Solvency measurement" ,  Congress of Actuaries  
1964, Hovinen:  "A method  to compute  convolut ion" ,  Congress of 
Actuaries 1964 , "A Procedure  to Compute  the Values of the 
Generalised Poisson Funct ion" ,  ASTIN Colloquium I965). In accor- 
dance with this me thod  the run of an insurance company  corres- 
ponding to every  distr ibution was s imulated in the IO.OOO "obser-  
vat ion years" .  The value of ~ corresponding to each value of the 
variable ~ is the ratio of the ruined cases to the total  number  of 
years  ( =  IO.OOO). The number  obta ined  in this manner  is a random 
quant i ty ,  to which is a t t ached  the usual r andom inaccuracy,  for 
which, however,  the upper  bounds can be est imated.  The propor-  
t ional amoun t  of this inaccuracy increases when ~ decreases and 
the me thod  was not  (for lO.OOO observat ion years) more suitable, 
when e < o.ooi.  

When analysing the results it appeared  tha t  as to the analyt ic  
form, the expression 

x,  = y ,  + B,. v~ (5) 

seemed to be suited to approx imate  the results computed  by the 
Monte Carlo method,  /_3~ being a quan t i ty  depending only on a. 
In this expression B, is to be de termined  by  experiment .  If B,  is 
solved from expression (5), we have 

Xe - -  Y i  
. 1 3 , - -  

Tx 

The above mentoned  inaccuracy,  being a consequence of the 
Monte Carlo method,  is also reflected in the numbers  23,, and the 
lesser "r~ is, the greater  the inaccuracy.  

Figure 2 shows values which have been computed  using the 
results of B, as the function of E, drawn on a semilogari thmic scale. 

x5 
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The points corresponding to the y1 values o . 4 - - 2 . 5  and > 2.5 
are distinguished. 

The following observations may be made: 

i o. When y1 < 0.4, the inaccuracy of B~ as a consequence of the 
Monte Carlo method is so great that it has not been possible to 
draw any conclusions. In these cases, however, even a rather large 
relative deviation in B, does not give rise to any very significant 
absolute error in the approximation obtained by formula (5). 

2 o. When o.4 _< y~ _< 2.5, the (,, B,) points respectively fall 
within a certain range of the diagonal of the field, it is not unreason- 
able to regard them as lying on a straight line. The deviations from 
this hypothesis can, at least partly, be explained by the above 
mentioned inaccuracy of the Monte Carlo method, 

3 o. When y1 > 2.5, it is not possible to find a satisfactory ap- 
proximation procedure which is based oll y1 alone. 

If the equation of B~ is determined from Figure 2 and put  into 
expression (5) a formula 

I x , = y ~  + 0.64 y, log(°~'I 2~5) (5)' 

is obtained. Even if it includes some anomalies in marginal values, 
this can be regarded as an acceptable approximation formula 
within reasonable limits of accuracy in the area of practical sig- 
nificance. 

It  is immediately seen that, if in formula (4) the exponent 0.98 is 
rounded off to I the formula is in fact the same as (5)' provided that 

0°4 (w) 
C , -  Y, log 

4. The formula derived theoretically 
Had  this paper been prepared a few months ago, the formula 

(5)' would have been offered as a final approximation formula, 
but  at this stage of our s tudy Mr. Loimaranta put forth the formula 

x , = y ~ +  - ~ ( y ~ - - I )  + o 7~ ' (6) 
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where o (Ifla) denotes an expression approaching to zero, when 
n - +  co, in the same way as x/n. This formula is an application of a 
more general expansion due to Cornish and Fisher and presente" 
by Kendall  in his book "The Advanced Theory of Statisticsh 
(Part x, page I58). This series has been derived from the Edgewortd  
expansion 

¥t 
= ~ -  o ( x )  + -g ~3~ (.) + . . .  (7) 

by solving x from this equation as a function of ¢ and expressing ¢ 
as a function of y from z - -  ¢ = O(y) and then developing x as an 
expansion of y. Comparing values computed directly by means 
of the Edgeworth  expansion (7) and by means of its inversion for- 
mula  (6) it was quite surprisingly noticed tha t  the lat ter  gave es- 
sentially closer approximations.  This is seen in the comparisons 
given in Figures 3-6 where the values computed by formula (6), 
formula (7) and the Monte Carlo method  are compared in graphs 
drawn on a probabil i ty scale. I t  can be seen clearly tha t  when y~ is 
> o.5, the Edgeworth expansion does not give accurate values for 

(even the order of magni tude  being uncertain), when x > 3. 
On the other hand, the curves in accordance with the formula (6) 
seem to run at  least approximately in the right area. Only if y, 
is very large (the case y~ = 4.I 4 in Figure 3) are the results in- 
accurate. 

In Figure 2 the curve (~, B~) is drawn according to formula (6). 
The experimental  points seem to fall more below rather  than above 
the curve corresponding to the formula (6). 

To examine the accuracy of formula (6) theoretically, the remain- 
der term o (I/n) must  be analysed. The next  term of the expansion is 

2 
¥_~ Y* 
24 ( y a _  3 Y * ) -  36 (2ya~ - -5  Y~), (8) 

where "y2 is the excess 0~4/0~ n (cf. (3)). Natural ly,  nothing definite 
regarding general applicability can be implied from the magni tude  
of expression (8) because when y~ is fixed and finite, y2 can even be 
infinite. 

By appealing purely to theory  hardly  any  certain conlusions 
about  the influence of the expression can be drawn, as the expan- 
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sion on which the formula (6) is based is divergent. However, it 
seems that  when including expression (8) into the approximation 
according to the formula (6) the accuracy as compared with the 
results computed by the Monte Carlo method in general increases. 
There are however exceptions. On the other hand, within the limits 
of the material here examined the expression (8) brings the ap- 
proximation according to the formula (6) closer towards the values 
computed by the Esscher formula in every case. 

Table I includes all the results of the distributions computed by 
tile Monte Carlo method, the Esscher formula and. the formula (6) 
as well as the values of the remainder term (8). The distributions 
are arranged in increasing order of the values of 3'1. The accuracy 
of the formula (6) proved to be about the same as that of the 
Esscher formula. 

I t  is interesting to notice that  formula (6) is in fact the same as 
formula (4), provided the exponent o.98 is rounded off to I and if 

C , - -  
6y, " 

When computed from this formula the values o.I6, o.32 and 
o.46 for e = o.o 5, o.oI and o.ooi are found for the constant C~, 
which deviate only slightly from the "empirical" values mentioned 
above. 

5. Comparison with a Swedish malerial 

To check the reliability of formulae (5)' and (6) they were ap- 
plied to risk distributions which a Swedish team of actuaries had 
used for computation of the function F(x) by means of a method 
based on the inversion of the Fourier transforms (Bohman and 
Esscher "To Compute the Distribution Function when the Char- 
acteristic Function is known", Skandinavisk Aktuarietidskrift 
I964). This comparison is illustrated in Figure 7 which is con- 
structed as Figure 2. The figure shows that the above mentioned 
results can also be applied to these distributions. It should be 
observed that  no reinsurance was assumed. Hence the distri- 
butions were of a very heterogeneous type for which the ap- 
proximation methods can be expected to be least suitable. However, 
the compatibility seems to be fairly satisfactory except for large 
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values of y~. In this region, as in the Finnish material  for the 
great  values of y~, larger deviations appear  and the formula m ay  not 
be applicable in this area, confirmation of the earlier conclusion. 

I t  is interest ing to observe tha t  the figure also includes Polya  
cases, where f luctuat ion of the basic probabilit ies is assumed. No 
significant differences between Poisson and Polya  cases can be 
noted. In fact  a closer examinat ion  reveals tha t  the formula (6) 
is even more suited for the Polya  cases than for the Poisson cases 
as can be seen from the table below. In this table k is the Po lya  
constant  (k = coo corresponds the Poisson case). The first two rows 
are outside the area of sui tabi l i ty (because y1 is so great).  

L I F E  I N S U R A N C E  B 

Values of x, computed  by the formula (6) 

C o r r e c t  v a l u e  C o r r e c t  v a l u e  
¢, k 'y~ x = 2 . o o  x = 3 .oo  

I 0 0  20  3 .45  

3 .85  
5 0 0  20  1 .20  

1.72 
lOOO 20 0.77 

1.22 

I 0 0 0 0  20 0 . 4 5  

0.38 

3.2~ 
3 4 8  
2.o3 
2 2 2  

2 .02  
2 . 0 6  

2 0 1  

2 0 1  

3 .89  
4 . z 2  

3.o5 
319 
3.o~ 
3.o5 
3.O1 

3 0 1  

6. Comparison and crilicism of the results 

The  s tudy  has given three approximat ion  formulae to deal with 
the generalised Poisson function. The first, formula (4), is an en- 
deavour  to approx imate  the Esscher formula,  the second, formula 
(5)' gives results computed  by the Monte Carlo me thod  and the 
third,  formula (6), was deduced theoretically,  without  however  
paying close regard to accuracy.  

Formula  (4) is valid as an approximat ion  in the same area as the 
Esscher formula,  at least no significant deviations are to be found. 
As to the formula (5)' it can be deduced in the distr ibutions ob- 
served herein tha t  s tat is t ical ly it gives a somewhat  be t te r  result  
than  formula (6). As regards formula (6) it is clearly more accurate  



Table  1 

Comparison of x-values ob ta ined  by  means  of Monte  Carlo method ,  Esscher  formula  and formula  (6). 

I = Indus t r i a l  fire insurance  M = Third  p a r t y  mo to r  insurance  

Branch  

l 
[ 

M 
1 
I 

M 
M 
I 

M 
I 
M 
I 

M 
I 

3¢ 
M 
I 
I 
M 
M 
I 
M 
I 
M 
M 
I 
I 
M 
I 

M 
I 

M 
M 
I 

M 
I 
M 

n M ¥, 

I0 .000 Z + I/2cl 00387 
lO.OOO 72 + 20 0.0603 
IO.OOO 2 + 5o 0.0702 

2.000 2 + 1/2o 0.0874 
IO.OOO Z + 5 ° o 0886 
IO.OOO 2 + 1oo o.o951 
I0 .000 Z -~ 18o o, I220  

2 o o o  Z + 2 ,  o.1349 
2 ooo Z + 50 o.157o 

500 2 + 1/2o o.I732 
IO.OOO co o.1866 

2 0 o o  Z +  50 o.1953 
2.ooo Z + ioo  o.2127 

500 Z + 20 0.2694 
2.o0o Z + 18o o.2729 

50o Z + 50 o.3144 
too  ~ + 1/2o 0.3879 
5o0 Z + 50 o.3912 

2.000 co o.4174 
5oo Z + IOn o.4266 

IO.OOO co o.541o 
500 Z + I80  0.5470 
IOO ~ + 2o o.6o37 
IOO Z + 50 0.7o33 
500 co 0.8366 

20 Z +  I / 2 .  0.8674 
IOO Z + 50 o.8746 
IOO 2 + lOO 0.9527 

2.000 co 1.2092 
IOO Z +  18o 1.2217 

2o ~ + 2~ 1.35oo 
20 Z + 5 ° 1 .5727 

I00 co 1.8564 
20 ~ + 50 1.9557 
20 Z + IO~ 2.13o 4 

500 co 2 .4178  
20 2 + I8t~ 2 732 

¢ = o.oi  y¢ = 2.326 

Monte  Esscher  (6) (8) 
Carlo 

2.33 2.35 2.35 
2.33 2.37 2.37 
2.35 2-38 2.38 
2.38 2.39 2.39 
2.34 2.39 2.39 
2.35 2.38 2.4o 
2.34 2.42 2.42 
2.42 2.43 2.43 
2.47 2.44 2.44 
2.43 2.45 2.45 
2.39 2.46 2.46 
2.53 2.47 2.47 
2.45 2.48 2.48 
2.53 2.52 2.52 ---o.oi  
2.54 2.53 2.53 - - -o .oi  
2.75 2.55 2.56 - - o . o i  
2.62 2.60 2.61 - -0 .02  
2.6o 2.59 2.61 - - o . o 2  
2.60 2.63 2.63 
2.77 2.63 2.64 ---o.o2 
2.72 2.7o 2.72 - - o . o i  
2.83 2.72 2.73 - -o .o 2  
2.73 2.74 2.77 - -0 .0 4  
2.80 2.80 2.84 ---..-0.05 
3.O6 2.95 2.94 + 0 . 0 I  
2.81 2.89 2.96 - -0 .0 9  
2.84 2.92 2.97 -----o.o8 
2.86 2.97 3.03 ----o.o9 
3.19 3.~6 3.21 - - o . 0 7  
2.86 3.15 3.22 - - o . i i  
3.22 3.2o 3.32 - - o  21 
3.4 ° 3-34 3.48 - -0 .25  
3.75 3.71 3.69 + o . o 2  
3.49 3-55 3.76 - -0 .3 9  
3.44 3 .66 3.89 - - o . 4 4  
3.85 -- 4.1o - - 0 . 3 0  
4 02 4.IO 4-33 - -0 .5 7  

¢ = o . o o i  y ,  = 3 . o 9 I  

3,o9 3.15 3.15 
3,o4 3.18 3.18 
3.16 3.19 3.19 
3,25 3.21 3.22 
3.16 3.22 3.22 
3.o9 3.23 3.23 
3,09 3-26 3.26 
3.37 3.29 3.28 
3.50 3.31 3.32 
3.48 3-33 3.34 - - o . o i  
3.17 3.36 3.36 + o . o i  
3.52 3.36 3.37 ---o.oi  
3.5 o 3.38 3.39 - - o . o i  
3.65 3.45 3.47 ---o.o2 
3.50 3-47 3.48 ---o.oi  
3.66 3.52 3.54 - -0 .02  
3.6o 3.60 3.64 ---.0.o 4 
3.85 3.63 3.65 .-.--..o.04 
3.64 3.71 3.69 + o . o 3  
3.98 3.67 3.7 ° ---o.o4 
3.81 3.84 3.86 - - -o .oi  
4.1o 3.83 3.87 ---o.o4 
3-94 3 .88 3.95 - - -o . Io  
3.6o 4.Ol 4.o9 ---o.I  I 
4.62 4.34 4.28 +o .12  
4.32 4.19 4.33 ---o.22 
4 -11 4 .22 4.34 ---o.17 
4.17 4-32 4.45 .-.--o.18 
4.87 4.71 4.82 ---o.o6 
4.1o 4.68 4.83 - - o . 1 9  
4.68 4.75 5.o2 - -o .48  
4 .82 5 .oo 5.33 - - o . 5 4  
5.37 - -  5.74 + 0 . 5 7  
5.20 - -  5.88 ---o.85 
5.45 - -  6.I3 ---0.90 
6.38 - -  6.53 ---o.23 

! __ 6.99 - -0 .97  

Monte Esscher  (6) (8) 
Carlo 
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than the Edgeworth expansion; in fact it is suitable for use on the 
same area as the Esscher formula and almost equal in accuracy. 

The study outlined above has revealed that  it is possible, based on 
the normal distribution, to develop an improved method of ap- 
proximating the generalised Poisson function. The use of the 
method itself is very simple. The values of y~, which are obtained 
from tables concerning the normal distribution, have to be altered 
in the manner of the formulae (4), (5)' or (6). The mapping out of 
the area of suitability is still an open question, but the material 
available was, in fact, already fairly abundant and represented 
different types of risk distributions. It has, without exception, 
established the suitability for at least approximate calculations to 
be acceptable, provided the skewness y1 < 2.5. Some other materials 
have proved that  the reliability of formula (6) can become ques- 
tionable if ~ > 1.5. 


