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I. The motorist problem 

1.1  I N T R O D U C T I O N  

Let  us consider t i le following problem. 
A motoris t  has decided to effect an accident insurance under  the 

following conditions. The insurance runs for one year. The premium 
for the first year  amounts  Eo. If no damages have been claimed 
during i successive years, i = z, 2 or 3 the premium is reduced to 
E~. After four years  of damagefree driving no fur ther  p remium 
reduction is granted,  so the p remium remains Ea. The premium 
is due on the first day  of the year  t). The  own risk amounts  ao. 

The number  of accidents of our motoris t  during a t ime period T is 
assumed to be Poisson dis t r ibuted with paramete r  XT. The ex ten t  
of the damage _s 2) has distr ibution function F(s) with finite mean  

and variance. 
The problem of our motoris t  will be to decide whether  to claim a 

damage or not. He will have  to develop a s t ra tegy  tha t  specifies 
his decisions in every  possible situation. His s t ra tegy  will be called 
opt imal  if it minimizes the expected  costs in the long run. 

We may  expect  tha t  in view of the premium reduction,  it will 
be unprofi table  to claim damages which are not  much larger than  
ao. Once a damage is claimed it will be profi table  to claim all fol- 
lowing damages tha t  exceed a0 during the remaining par t  of the year.  

Hence his decisions will also depend on the t ime of the year  and 
the p remium paid at the beginning of tha t  year. So we distinguish 
between four types of years, for each premium one. 

t) I t  is n o  r e s t r i c t i o n  to  a s s m n e  t h a t  tillS IS J a n u a r y  i s t .  
2) R a n d o m  v a r m b l e s  a r e  u n d e r l i n e d  
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Our task will be to determine for each type  of year  a function s(t) 
with the following p rope r ty :  If at  t ime t an accident  occurs with 
damage s and no damages have been claimed since the last p ay m en t  
of premium,  then s should be claimed if s > s(t). 

The  s t ra tegy  is complete ly  fixed by  this function. 
The opt imal  s t ra tegy  will be the function s(t) tha t  minimizes the 

expected costs of the motorist .  
In this paper,  a mathemat ica l  method,  called Markov-program- 

ruing, is developed tha t  yields the function s(t) under  the assumptions 
s ta ted  above. Before present ing a review of the me thod  in par t  2 and 
its applicat ion to the motoris ts  prol)lem in par t  3, some numerical  
results will be given first. 

1.2 NUMERICAL RESULTS 

Suppose the following numerical  da ta  are given 

Eo = 1.6 
E1 = I. 4 
E.~ = 1.2 
E3 = I . I  

ao = 0.4 

Pr imari ly  the effect of the damage distr ibution F(s)  on the op- 
t imal s t ra tegy  is investigated.  Three different types of distr ibutions 
have been used: 

a )  the exponential  distril)ution with densi ty  function 

f(s)  = ~e -~s 

and expecta t ion:  E s - -  

variance : Var s --  

coefficient of variat ion:  e = 

I 

I 

~2 

,__ 
(E s_)~ i 

b) the gamma distr ibution with densi ty  function 

~k sk-1 -[.,ts 
f (s)  - -  (k-I)!  e-~s 



64 DRIVING WITH MARKOV-PROGRAMIVlING 

(only integer values of k were considered here) 

and  expec ta t ion  : 

k 
E _ s =  

bt 

k 
var iance:  Var _s = 

o 

coefficient of var ia t ion : ~. = I /V~ at- ~, I 
- ( E  - l& 

c) The lognormal  dis t r ibut ion with densi ty  function 

I (In 8-  ~)" I 

f ( s )  - -  ~ / ~ - ~  e o~. s 

E s = e ~+~a= and  expec ta t ion  : 

variance" V a r s  ~ g 21t+2aa - e 21t+e~°" 

r 
coefficient of var ia t ion  • e = r ( E  s)~-- l / ~  - -  I. 

We compare  five dis t r ibut ions  with the same expecta t ion .  Thei r  

dens i ty  funct ions are sketched in figure 1.2.1. They  are identified as 
follows : 

N u m b e r  of c o e f f i c i e n t  of 
c u r v e  T y p e  of d i s t r i b u t i o n  e x p e c t a t i o n  v a r m h o n  

e x p o n e n t i a l  
g a m m a  
l o g n o r m a l  
l o g n o r m a l  
l o g n o r m a l  

i 

1/3 
1 

~/3 
3 

The n u m b e r  of accidents  in a year  is Poisson d is t r ibuted  with 
expec ta t ion  X = 2. The corresponding op t imal  s t rategies  are pre- 
sented in figure 1.2.2. F r o m  these results it can be deduced tha t  at  
least for the dis t r ibut ions  considered with the same mean and va-  
r iance the op t imal  s t rategies  are nearly the same. Fur ther ,  in- 
creasing the var iance  leads to less conserva t ive  claiming in these 
cfl.ses. 
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Secondly the effect of the expected number  of accidents is in- 
vestigated. In figure 1.2.3 the optimal  s t ra tegy is given for X = 2 
(curve I) and X = 4 (curve 6). In both  cases the damage distr ibution 
is exponent ia l  with expecta t ion I. An increase of the number  of 
accidents leads to more conservat ive claiming especially in the 
beginning of the year.  

$ 

I,I  

I ,o 

o,9 

o,8 

o,7 

o,66 

o,5 

y 
J 

ao = 0 ,  4 1  I I I I 
o I 2 3 4 

t in ye.a.rs 

The  op tmla l  s t r a t e g y  for two acc iden t  ra tes .  Fig 1.2.3. 

2. Markov-programming 

In problems of the type  to which Markov-programming can be 
applied there is always a quest ion of a physical  system. In our 
case the system comprises the car and the accident insurance. 

At each point  of t ime t the system is in some s ta te  x. In the 
mathemat ica l  model  the s ta te  x is represented by a point  in a 
finite dimensional Cartesian space, called the state space X. 
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Apar t  f rom determinist ic  t ransformat ions  the s ta te  of the system 
is subject  to r andom transitions.  Owing to these transi t ions the sys- 
tem performs a r andom walk through the s ta te  space X. If the 
decisionmaker does not  intervene,  such a walk is said to be a reali- 
sation of the natural process. A condit ion for applicat ion of Markov- 
programming is tha t  for each initial s tate  the under lying na tura l  
process can be described by  a stationary strong Markov-process. 

A s ta t ionary  Markov-process is character ized by the following 
proper ty :  "Suppose  the system will be in s ta te  x at a f ixed t ime t 
then the probabi l i ty  of being in some set of states A at t ime t + s 
depends only on A, x and s". In formula:  

p t  + s (A ; x, t) = Ps (A  ; x, o) = Ps(A ; x). (2.1) 

In this paper  a s ta t ionary  Markov-process is called strong if the 
above relation remains true when t is not given beforehand but  will 
be fixed by the random t ime the system enters an a rb i t ra ry  but  
given closed set of s tates  in X. In o ther  words: states, assumed by  
the system before the s ta te  x is reached, are i r relevant  for fu ture  
transi t ions when x is complete ly  specified. Fu r the r  the distr ibution 
of the transi t ion probabili t ies is independent  of t, even if t is random 
in the sense we ment ioned above. 

In our motoris t  problem, the natural  process results from the 
passage of t ime and the occurence of accidents. The assumption 
tha t  the number  of accidents in a t ime interval  .7" is Poisson dis- 
t r ibuted  with constant  pa ramete r  and the assumed independence 
between successive damages together  imply tha t  the natural  process 
in our problem is a s ta t ionary  strong Markov-process. 

In general the decisionmaker will t ry  to influence the natura l  
process by  intervent ions,  basically a finite number  in a finite 
interval.  After such an in tervent ion  the system is t ransferred into 
some other  state. Between intervent ions  the system is subject  
to the natura l  process. For  tha t  reason the natura l  process has 
to be defined for each initial state. I t  is convenient  to assume tha t  
at each point  of t ime a decision is made. The decision will be pri- 
mari ly  to decide whether  to in tervene or not  and secondly which 
in tervent ion  to choose. In the case the decision is not  to in tervene 
we will speak of a null-decision. Once it is decided to intervene 
in some s ta te  x we will have to decide among the different possi- 



68 DRIVING WITH MARKOV-PROGRAMMING 

bilities which in tervent ion  is going to be effected. We shall assume 
tha t  in every  s ta te  x there exists  a set D(x) of possible decisions d. 
Mathemat ica l ly  a decision is defined by  the p robab i l i ty  dis t r ibut ion 
of the s ta te  into which the sys tem is t ransfer red  (by the decision!). 
A null-decision in the s ta te  x is a p robab i l i ty  dis t r ibut ion con- 

cen t ra t ed  in x itself. In the motor i s t  p rob lem decisions lead to 
determinis t ic  transit ions.  Consequent ly,  these decisions are also 
defined by  " c o n c e n t r a t e d "  p robab i l i ty  dis t r ibut ions  but  now in the 
new state.  As soon as to every  s ta te  a decision (umluding null- 
decisions) has been a t t ached  we have  a strategy. Hence a s t r a t egy  

shall specify the set of s ta tes  where the decis ionmaker  will in tervene 
and  in addit ion to this for each in tervent ion  s ta te  it de termines  the 
probabi l i ty  dis tr ibut ion of tile s ta te  just  af ter  the intervent ion.  

The resul tan t  of tile na tu ra l  process and  the t ransi t ions  d ic ta ted  
by  the s t r a t egy  is called the decision-process. Under certain general 
condit ions it can be p roved  tha t  tile decision-process is also a 
s t a t i ona ry  s t rong Markov-process .  

With  regards to the decision-process in tile s ta te  space a set of 
socalled t rans ient  s ta tes  Call be d i f ferent ia ted  f rom one or more 
simple ergodic sets. The set of t rans ient  s ta tes  has the p rope r ty  
tha t  with p robabi l i ty  z the sys tem will never  re turn to this set once 
it has left it. Ergodic sets are charac ter ized  by  the fact  tha t  once 
the sys tem assumes a s ta te  of such a set it remains  in t h a t  set 
forever  with probabi l i ty  I. 

A s imple ergodic set cannot  be subdiv ided  into dis junct  ergodic 
sets. In general  a decomposi t ion of the s ta te  space in a set of 
t ransient  s ta tes  and simple ergodic sets is not comple te ly  unique. 

The set of in te rvent ion  s ta tes  plays  a p rominen t  pa r t  in the 
decisionprocess. For  a s t r a t egy  z the set of in tervent ion s ta tes  will 
be denoted  by .de. 

Let  [n  (n = z, 2 . . . .  ) be the sequence of fltlu, re in tervent ion  
states,  if the s t r a t egy  z is applied. The sequence _/n (n = z, 2 . . . .  ) 
cons t i tu tes  a s t a t iona ry  Markov-process  with a discrete t ime  para -  
meter .  The p robab i l i ty  dis t r ibut ion of In, given the  initial s ta te  x, 
will be denoted  by  

~) .d is s o m e  s e t  of  s t a t e s  in Az 
T i n s  p r o b a b d z t y  d i s t r i b u t i o n  c a n  be e x t e n d e d  to  t h e  who le  s p a c e  by  t a k i n g  

pt,o (A; z; .~') = p("> (Af'IAz; z; .r). 
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Often it can be l)roved tha t  the s ta t ionary  distr ibution of the 
" in te rven t ion  s ta te  I "  exists and is given by 

I " 

~ ( A ' z ; x )  = l i r a  Z p (k) ( A ; z ; x ) .  (2.3) 
n ~  $1, t t 

I t  can also be l)roved that ,  if xt and x2 are initial s tates  from the 
same simple ergodie set, the s ta t ionary  distr ibut ions are equal;  i.e. 

b(X; z; x 0 -= 4(A; z; x2). (2.4) 

The opt imal  s t ra tegy  has to be chosen according to some criterion 
\Vhich criterion has to be used ? Let  us consider" a realization of 
the 1)rocess. Such a walk w through the state  space X m ay  be 
represented by a point  w in the space of all 1)ossible walks ~.  
Applying s t ra tegy  z during walk w we denote  the costs ira a t ime 
period T by kT (w; z). [f T - ~  or, in most  cases lira kT (w; z) = coo. 

Another  d isadvantage is tha t  the walk 7a is not  known in advance.  
By considering the average costs per t ime unit we can overcome 
these objections. For  this criterion one can prove the following 
theorem : 
If zv denotes a walk of the system, s tar t ing in x°, being a s ta te  of 
a simple ergodic set, then 

t;,r (w;z) 
lira (2.5) 

exists with probabi l i ty  I and is equal to 

I ~(dZ; ~; ~o) t,(Z; z) 
"' (2.6) 
I ,~(d/; ~; xo) l(z; ~) 
Aj 

where k(I; z) denotes the expected costs during- and t([ ;  z) the 
expected length of- the t ime period between the in tervent ion  s ta te  
f and the next  in tervent ion  state  assumed by the system. In this 
paper  the criterion for opt imal i ty  deals with the average costs 
per unit of t ime and is denoted  by  the function r(z; Xo), where z 
is the applied s t ra tegy and x° is the initial state. If xo belongs to 
a simple ergodic set, the  criterion function is defined by  

I ¢(d/; ~; ,co) k(Z; ~) 
r(~" ~ o ) =  "" ' f ¢ (d l ;  z; x0) t(I; z) (2'7) 

Az 
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For two states xl and x2 of the same simple ergodic set we have 

[c.f. (2.4) ] 
r(z; x~) = r(z; x2). (2.8) 

If Xo is a t ransient  s tate  the limit (2.5) still exists with probabi l i ty  
I but  is unknown until  one of the simple ergodic sets has been en- 
tered;  the limit (2.5) is equal to tha t  of the en t ry  state. 

Consequently,  if Xo is a t ransient  state, (2.5) is at  Xo a random 
variable. 

Let  us assume tha t  there are m simple ergodic sets, denoted  by 
Er (r ~- I, 2 . . . . .  m). I t  is easily verified tha t  the probabi l i ty  of 
enter ing the ergodic set Er, s tar t ing in xo, is given by  $(Er; z; Xo). 

If xo is a t ransient  s ta te  the expected average costs per unit  of 
t ime are given by  

m 

X q~ (Er; z" x,,) r(z; er), (2.9) 
• I 

where er is some s ta te  in Er [c.f. (2.8)]. 
Obviously,  (2.9) is identical with 

I ~(dz; ~; y) k(r; 'z) 
Az 

J" q~(dy; z; xo ) - f -4 (d i  ; z; y) t(I; z) (2.1o) 
Az 

.4 z 

We now define the criterion function r(z; Xo) by 
I ,~(aI; ~; y) k(Z;~) 

" " j~' ~ ( d I ;  z;- y)--Hit-; (2.11) r(~; xo) = .f 4(dy ~, xo) T z) Az 
A,  

This definition comprises (2.7). 

A s t ra tegy  is called optimal with respect to a class Z of strategics, 
if for each x 

r(zo; x) = min r(z" x) 
z¢Z (2.I2) 

To determine the criterion function r(z; x) we need to know the 
functions k(I; z) and l(I" z). These two functions still depend on the 
s t ra tegy  z. VVe now show tha t  it is possible to define the funct ion 
r(z; x) with the aid of two somewhat  different functions k(x; d) 
and t(x; d). Both functions do not  depend on the s t ra tegy  applied, 
but  apar t  from the state  x only on the decision d made  in x. 
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To this end we consider a set Ao, not empty .  The set A0 consists 
of states where each s t ra tegy zaZ dictates  an intervent ion.  Hence,  
if A,  is the in tervent ion  set of an a rb i t ra ry  s t ra tegy  zaZ, 

Az~ Ao. (2.13) 

In this paper  it is assumed tha t  in the na tura l  process from each 
initial s ta te  the set A0 can be reached within a finite t ime with 
probabi l i ty  I. For  each s ta te  x and every  decision daD(x) we 
consider two walks denoted  by W ° and W a. During W ° the system 
will be subject  to the natural  process unti l  a s ta te  of Ao has been 

reached. 
During W o~ the decision d t ransforms the system to the random 

s ta te  u (with probabi l i ty  distr ibution d). F rom state  u the walk 
W ~t will be subject  to the natura l  process. I t  follows from (2.13) 
tha t  for each s t ra tegy  z the system will reach the set Ao via or 
in an in tervent ion  s ta te  _/aAz (figure 2.1). 

Az 

I 
- A o  

X 

Fig  2.[ .  Schen la t l ca l  r e p r e s e n t a t i o n  of the  wa lks  W ° and  \~/a. 

Let  for the WO-walk ko(x) and t0(x) be the expec ted  costs and the 
expec ted  durat ion respectively.  Let  for the Wa-watk k~ (x; d) and 
h (x; d) be the expected  costs and the expec ted  dura t ion respecti- 
vely. We now define the funct ions k(x" d) and t(x; d) to be the 
difference in expected  costs and expec ted  dura t ion between the 
walks W ~ and W °. In formula:  

k(x; d) = kt (x" d ) -  ko(x). (2.14) 

tCx' d) = t~ (x; d ) -  to(X). (2.I5) 

For  null-decisions W o~ and W o are identical and consequent ly :  

k(x; d) = o. (2.16) 

t(x" d) = o (2.17) 
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Note tha t  the functions k(x;  d) and t(x; d) do not  depend on a 
par t icular  s t rategy.  

I t  follows from their definitions tha t  k ( [  ; z) and t ( l  " z) 
are identical to the expected, cost and durat ion of the par t  of the 
walk W a between the in tervent ion  states / and / +, (see figure 2.2)1), 

Both  s t a t e s _ /  and I +, are d is t r ibuted according to the same 
limiting distr ibution ~(A ; z; y). Hence,  with respect to the initial 
s ta te  y, the expected  costs (duration) f rom /® and those (that) 
from L + ,  to A o are (is) equal. 

7= . . . .  . . . . .  v _Wo_ 

Fig. 2 2. SchematmM representation of the walks W a and W ° 

This implies : 

I ~(dL; z; y) (z ;  z) = j ~ ( d L  z, y). k(z;  ~(L)) (2.~8) 
..I~ A z 

f q~(dI ; z; y ) l ( [  ;z) = f ~b(dI ; z; y). l ( I  " z ( I ) )  (2.I9) 
A~ Az 

where z ( I )  denotes the decision dic ta ted by the s t ra tegy in s ta te  
I .  I t  follows from (2.18) and (2.19) tha t  instead of (2.II) the 
criterion funct ion r(z; xo) can also be defined by 

r(z; Xo) = j" ~btdy; z; xo) A, ._ _- (2.20) 
,,< I ~(dI; z; y) b(s; ~(z)) 

A= 

I t  follows from (2.8) tha t  the criterion function r(z; x) does not 
pronounce upon the most  profi table initial state. We like a pref- 
erence function d(z; x) having the p roper ty  tha t  for two states xt 
and x2 in the same simple ergodic set the difference in total  expected 
costs is given by 

d(z; x 2 ) - - e ( z ;  xt).  (2.21) 

J) Wha, t is m a notatton ? 
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If the state space can be decomposed in a set of transient  states 
and m disjunct simple ergodic sets Ej and if states ej arc arbitrari ly 
chosen states in Ej, let a function c(z; x) be defined by 

c(z; x) = k(x; zb~:))--r(z; x) l(z; z(x)) + (2.22) 

+ J 'po) (dI; z; x) c(z; I). 
i i  z 

c(z; ej) = 0 j = I, 2 . . . . .  m. (2.23) 

I t  can be proved that  a preference function E(z; x) of the type 
mentioned above is defined by 

C(z; x) = c(z ; x) + ko(x) - r(z ; x)lo(x). (2.24) 

Presently it will appear that  the functions r(z; x) and c(z; x) are 
all-important.  They can be obtained simultaneously by solving tile 
following functional equations: 

r(z; x) = f pO) (dl;z;  x) r (z ; l ) ,  (2.25) 
A t  

c(z; x) = k(x; z ( x ) ) -  r(z; x) l(x; z(x)) + (2.22) 

+ J'pO) (dI; z; x) c(z; I), 
el L 

c(z; et) = 0 j = I, 2 . . . . .  m, (2.23) 

where ej is an arbitrari ly chosen state in the simple ergodic set Et. 
Summarizing:  Independent  of the s t ra tegy to apply the functions 
k(x; d) and t(x; d) can be defined. As soon as a s t ra tegy z and a set 
of points ej E Ej ( j  = I . . . . .  m) have been chosen, the functions 
r(z; x) and c(z; x) are unambiguously defined by (2.25), (2.22) and 
(2.23). Note that ,  if x does not belong to Az [c.f. (2.16) and (2.I7) ] 
we have 

c(z; x) = f pm  (dI; z; x) c(z; I). (2.26) 
A j  

Now the properties of the optimal s t ra tegy will be outlined. 
Fur ther  based on these properties an i teration procedure will be 
constructed. 

The i terat ion procedure yields a sequence of strategies z~O 
(i = I, 2 . . . .  ) of which, under certain conditions, the following 
interesting properties can be proved: 

a) r(z(O; x,) ~ $v(z ({+l); x) 
b) lim r(zm; x) = rain r(z; x) (2"27) 

l-*® z ~ Z  
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where Z is the class of all admissible strategies. Proofs and con- 
ditions are given in [I l and will be omit ted  here. We will restrict 
ourselves to some definitions and to a glance at the procedure. We 
start  with a bare catalogue of definitions. Suppose tha t  in the initial 
state x the decision d is made. If decision d transforms the system 
into the random state _u and if after d the s trategy z is applied, then 
functions r(d.z; x) and c(d.z; x) are defined as follows: 

r(d.z; x) der E{r(z; v)Id} (2.28) 

c(d.z; x) aet k(x; d ) -  r(d.z; x) l(x; d) + E{c(z; _u)[d}, (2.29) 

We easily verify tha t  for both null-decision and d = z(x), we have 

r(d.z; x) = r(z; x) (2.30) 

c(d.z; x) = c(z; x) (2.3~) 

Suppose the system is now in x and let v be the first s tate in a 
closed set A assumed by the system, then the functions r(A .z ; x) and 
c(A.z; x) are defined by: 

r(A.z; x) de=r E{r(z; v)Ix; A} (2.32) 

c(A.z; x) de=t E{c(z; v)lx; A}. (2.33) 

Besides we define the class Ka of all closed sets AD Ao satisfying: 

{xlr(A.z; x) < r(z; x)}LI (2.34) 

U{xtr(A.z; x) = r(z; x ) ; c ( A . z ;  x) ~ c(z; x} = X)},  

where X denotes the state space. We easily verify tha t  Azd¢z.  
Finally we define the following subsets: 

Oz(x) a=er {dldeD(x) ; r(d.z ; x) = rain r(d*.z ; x)} (2.35) 
d*~D(x) 

and 
A~ = n A. (2.36) 

A ~h'E 

In order to gain an insight into the principle of solution, we 
consider the following problem: 

Suppose a decisionmaker has to make his decisions in accordance 
with a s t ra tegy z. In the initial state however he is free to choose a 
decision d. Which decision is the most profitable ? 
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The decisionmaker certainly looks for that particular decision 
which minimizes the expected average costs per unit of time. 
Each fall in these costs leads to an infinite saving in an infinite 
period of time. 

If he selects in x a decision d, the expected average costs per unit 
of time are given by r(d.z; x). So the decisionmaker has to solve the 
problem [c.f. (2.28)] 

min r(d.z; x). (2.37) 
ct~D(x) 

With respect to the effect of the initial state in the total expected 
costs we introduced a preference function E(z; x); this function can 
be defined by (2.24). With respect to the effect of a decision d in the 
initial state x we need a preference function d(d.z; x) such that  the 
difference in the total expected costs can be expressed by 

d(d.z; x ) -  C(z; x). (2.38) 

This difference has to be attributed to the decision d. It can be 
proved that the difference is also measured by [c.f. (2.29)]: 

c(d.z; x ) -  c(z; x) (2.39) 

A possible fall in costs will in general be finite. 
Consequently, if more than one decision d minimizes r(d.z; x), 

the decisionmaker can use his freedom by minimizing (2.39) with 
respect to these equivalent decisions; or, what is the same, by 
minimizing the function c(d.z; x) with respect to d~Dz(x). [c.f. 

(2.35)]. 
Summarizing: Essentially the decisionmaker has to solve the 

following two problems" 

~) To minimize the d-function r(d.z; x) with respect to deD(x). 
2) To minimize the d-function c(d.z; x) with respect to d~Dz (x). 
If these two problems have been solved for each x, then to each x a 
minimizing decision d can be added. If z(x) belongs to Dz(x) and also 
minimizes c(d.z; x), let the decision z(x) be chosen. The relation 
between states and decisions is nothing else than a strategy. Let 
this strategy be denoted by z~. The following important result can 
now be proved: 

r(zl; x) =< r(z; x) (2.4o) 



7 6 DRIVING WITH MARKOV-PROGRAMMING 

So the solution of the decisionproblem ment ioned above also 
offers a new s t ra tegy;  a s t ra tegy  being at least as good as s t ra tegy z. 
Let  us examine the new strategy.  I t  follows from (2.3o) and (2.3z) 
tha t  all in tervent ion states of s t ra tegy  z are also in tervent ion  states 
of s t ra tegy  zt. 

Hence 

Az,DAz.  (2.41) 

In o ther  words in the initial s tate  the decisionmaker can change 
but  not  defer the in tervent ion dic ta ted  by  the original s t ra tegy z. 

This impor tan t  result  leads us to a second decisionproblem. 
Suppose tha t  the decisionmaker has to make his decisions in ac- 
cordance with a s t ra tegy  z. But  he is allowed to determine the 
point  of t ime whereupon the s t ra tegy comes into operation.  This 
will be done by  choosing a closed set A; the s t ra tegy comes into 
operat ion at the moment  the system is in the set A for the first 
time. Which set is the most profi table ? The decisionmaker cer ta inly 
looks for a delay tha t  minimizes the expected average costs per 
unit  of time. This implies tha t  sets A will be considered which 
satisfy for each x [c.f. (2.32)] 

r(A.z; x) < r(z; x). (2.42) 

Again each fall in the average costs leads to an infinite saving in 
an infinite period of time. With respect to the effect of a delay in 
the to ta l  expected  costs we need a preference funct ion d(A .z ; x) such 
that  the difference in expected costs, measured by 

E(A.z; x) --C(z; x), (2.43) 

can be a t t r ibu ted  to the delay. I t  can be proved that  this differ- 
ence is also given by  [c.f. (2.33)] 

c(A.z; x) - -  c(z; x). (2.44) 

Consequently,  sets A which satisfy for each x 

r(A.z; x) = r(z; x) (2.45) 

and 
c(A.z; x) < c(; x) (2.46) 

will also be considered. 
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Summarizing: Closed sets A having the property [c.f. (2.34)] 

X = {xlr(A.z; x) < r(z, x)}U{xlr(A.z; x) = 
= r(z; x ) ;c(A.z;  x) __< c(z; x)} (2'47) 

will be considered. If I<~ is the class of all closed sets A satisfying 
(2.47) and if 

A', = D A (2.48) 
AEI':~ 

belongs to Ke, then obviously the set A~ is the solution of tim second 
decision problem. 

It can be proved that the strategy zo defined by 

z(x) if x~A~ 

z2(x) = Lnull-decisions, otherwise (2'49) 

satisfies: 

r(z~; x) < r(z; x). (2.50) 

From the solutions of the two decision problems considered here 
above we now deduce the following properties of the optimal stra- 
tegy zo: 

rain r(d.zo; x) = r(zo; x) (2.51) 
d~D(z) 

rain c(d.Zo; x) -- c(z,; x) (2.52) 
dEO,o(X) 

Aio = A z.. (2.53) 

The iteration procedure runs as tollows: 

Preparatory part 

Determine the (x; d)-functions k(x; d) and t(x; d). 

Iterafive approach 

Let z('~-1) be the strategy obtained at tile (n-i) th th cycle of the 
iteration procedure. 

I) Determine the function r(z{nn; x) and c(z(n-~); x) by solving 
the functional equations (2.25), (2.22) and (2.23). 
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2) a) Determine the functions r(d.z{n-O; x) and c(d.z(n'O; x) by 
using the relations (2.28) and (2.29). 

b) Determine for each xEX the subset of minimizing decisions 
D o , 1  ) (x). 

c) Minimize for each xEX the d-function c(d.z{n-z); x), subject 
to deDzl,_~ ) (x). 

d) Add to each state x a solution of c). If zO,-,(x) is a solution 
ot c), this decision will be added to the state x. [This instruc- 
tion has been made in order to advance the convergence of the 
sequence of strategies {zO), z~2) . . . .  }]. 

As soon as the operation d) has been performed a new strategy 
z~ (n-0 has been constructed. 

3) Determine the functions r(z~n~); x) and c(z~(n-~; x) by using 
the functional equations (2.25), (2.22) and (2.23). 

4) Determine the subset A~n-~). The new strategy z (n) is given by 

[ z~ Cn-~) (x) i fxeA~(n.~)  
zln) (x) = (2.27) 

null-decision otherwise 

End of the nthcycle. 
The functions r(z(n-L~; x) and c(z(n-~); x) are determined by func- 

tional equations. If these equations cannot be solved analytical ly 
they often can be solved numerically by Monte Carlo methods. 

The way in which the set A~, 0~-1~ can be determined depends 
heavily on the structure of the decision problem considered. In 
the boundary  points of the minimizing set A~ it will often be in- 
different whether to intervene or not. In the motorist  problem, 
by example, we will see tha t  this property leads to a differential 
equation for the optimal boundary  of tile set of states in which 
claims should be suppressed. 

3.  APPLICATION TO THE MOTORISTS PROBLEM 

In this section it is shown how the motorist  problem can be solved 
with Markov-programming. 

Primari ly we shall have to define in detail the state space, the 
natural  process, the set of intervention states and the set A o. 
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Secondly we shall determine the k- and t-functions and finally 
the c-functions from which the optimal strategy is established. 

3.1 DEFINITION OF THE STATE SPACE 

At each point of time the following information will be of interest" 

(I) whether an eventual damage is covered or not. 
(2) whether an accident happens or not. 
(3) the amount of the last paid premium E, ,  i = o, I,  2, 3. 

(4) the date and time of the day considered. 
(5) the extent of the damage. 
(6) whether a damage has been claimed since the last payment of 

premium or not. 

The following state space is suggested: 

I-----I- - --1---¢" ..... I I I I . . . . . . . .  I I 2 I I l 

.Eo E t  E s  .Ks z x2 x 3 x 4 2z 2 2 3 2 4 l --~ 

u 

Fig 3.1. The state space. 

At the t-axis we distinguish" 

a) Four points, namely Eo, E~, E2 and E3. In these states the 
corresponding premium has to be paid (January I); damages 
are no longer covered by insurance. 

b) Four intervals of one 3rearm), namely Ii < t  < I i +  I ( i =  
I, 2, 3, 4)- The t-component of the state runs through Ii _<, 
< Ii + I, if and only if the last premium paid was Ei- t ,  one 
or more damages have been claimed that  year and the coming 
losses are still covered by insurance. 

c) Four intervals of one year, namely 2i < t  < 2 i +  I ( i =  1, 
2, 3, 4). The t-component of the state runs through 2i < t < 
2i + i, if and only if the last premium paid was El-J, no damages 
have been claimed that year and the coming damages are still 
covered by insurance. 

1) t i  = t 2 ,  i f i  = 2 

I i  = 13 ,  i f i  = 3 .  
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The s-variable is zero unless at  least  one damage  has been c la imed 
tha t  year  and  moreove r  tile coming damages  are still covered by  
insurance.  In  t ha t  case the s -component  denotes  the ex ten t  of the 
last  claim. 

The u-variable is zero unless at  least  one damage  has been claimed 
tha t  year  and  moreove r  the coming damages  are still covered by  
insurance.  In  t ha t  case the u -componen t  denotes  the t ime elapsed 
since the first claim tha t  year.  

Note  t ha t  the s- and  u -componen t s  of the s ta te  can only be dif- 
ferent  f rom zero if I i  < I < I i  + I (i = I,  2, 3, 4). Consequent ly  
the s ta te  space consists of 

a) 4 points  Eo, Et,  E2, Ea. 
b) a 3-dimensional  subspace  (l, s, u) with I I  _< t < 15. 
c) 1-dimensional  in te rva l  21 ~ t < 25. 

We are now in tile posit ion to describe the na tura l  process. This 
process can s t a r t  in each s ta te  of the s ta te  space. In  accordance 
with the p r e m i u m  pa id  the sys t em runs through one of the  t ime- 
in tervals  2i <_ I < 2i + I (i = I,  2, 3, 4), if no damage  has been 
c la imed tha t  3,ear. I f  no accident  will happen  during the rest  of the  
year,  a t  the end of the year  the sys t em is t ransfer red  to Et. Since 
in the na tura l  process no p remiums  are pa id  the sys t em will s t ay  

there  for ever  ~). 
However ,  if at  t '  (t' < 2i + i) an accident  occurs the sys t em is 

t ransfer red  to ( t ' - - I 0 ,  s', 0), where s '  denotes  the loss incurred. 
Since during the na tura l  process, i r respect ive of their  extents ,  all 
losses are claimed, the sys tem will s t ay  in the 3-dimensional  par t  
of the s ta te  space for the rest of the year.  F rom now on the u- 
componen t  is increasing with time. The s -component  will only 
change if a second, th i rd  etc. accident  happens .  At  the end of the 
year  the sys tem is t ransfer red  to Eo where it s tays  for ever. 

I f  in the initial s ta te  (t, s, u) a damage  has a l ready been c la imed 
tha t  year  and coming damages  are still covered by  insurance the 

') In the natural process no premiums will be paid On the other hand 
the system can starl ul such a state that losses are covered by insurance for 
Solne tune. Tht~ is ~7o contradictionr It would be a contradmtlon if we had 
satd" In the natural l)roce~s no premmms have been paid 
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descr ipt ion of the deve lopmen t  in the s ta te  of the sys t em is similar  
to tha t  of the final pa r t  of a walk considered here above.  

We now consider the decis ion-mechanism.  

a) In  the points  Eo, Et ,  E2 and  Ea two decisions are f ea s ib l e  
the null-decision and  the decision tha t  involves the p a y m e n t  of 
the p r emium Ei. Respec t ive  t r ans fo rmat ions  are E ,  ~ Ei  and  
E~ ~ (2i + i ,  o, o). 

b) In  the 3-dimensional  space (t, s, u) only null-decisions are feasible, 
unless u = o. If  u = o an accident  jus t  occurs and  consequen t ly  
the decis ionmaker  can suppress  the claim if he wants.  In  t ha t  
case the sys t em is t rans fe r red  back  to (t + Io,  o, o). Note  t ha t  
a claim corresponds with a null-decision. This  is in accordance  
with the fact  tha t  in the na tura l  process all damages  are claimed. 
Since the u - componen t  denotes  the t ime elapsed since the 
first claim, it m a y  happen  tha t  an accident  occurs when u > o. 
The decision not to c la im the dam age  is of course a bad  decision 
and  for tha t  reason it is considered to be infeasible. 

c) To s ta tes  sat isfying 2i < t  < 2 i +  i ( i =  z, 2, 3, 4), only 
null-decisions are added. 
In figure 3.2. s ta tes  have  been m a r k e d  with more  than  one 
feasible decision. 

Eo Et .~e 

/ 
Fig 3 2 

I I I . . . . . . . . . . . . . .  I I I I 

1 2  X 3 ] 4  e l  2 2  2 3  2 4  

S t a t e s  w i th  more  t h a n  one  feastble decision.  

F r o m  now on we shall only  consider s t rategies  which dic ta te  
p a y m e n t  of p r e m i u m  in the s ta tes  E,, i = o, I, 2, 3. Consequent ly  
these s ta tes  m a y  be chosen as e lements  of the set Ao. We m a y  add  
if we want  the set of s ta tes  (t, s, u) for which i i  ~ t < I i  "-t- I,  
s < a0 and  u = o, because every  possible s t r a t egy  will d ic ta te  a 
suppression of the claim in this set. Howeve r  restr ict ion of the set 
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Ao to the s ta tes  E,, i = o, I ,  2, 3, leads to more  simple expressions 
for the k(x" d) and  t(x; d) functions.  So we choose" 

Ao = U El. (3.~.I) 
o 

3 . 2  THE DETERMINATION OF THE k(X; d) AND t(X; d) FUNCTIONS 

Let  us consider the in te rvent ion  which results  f rom an accident  
occuring z t ime units af ter  pay ing  p r e m i u m  Et-~ and  suppose tha t  
no damage  has been c la imed dur ing the t ime interval  [(0, z)]. 

After  the accident  has occured the sys tem will be in s ta te  x = 
(If  -F T, s, o) and  the decision not  to claim transfers  it back  into s ta te  
2i + x, hence d = 2i + , .  We note first t ha t  the Wa-walk af ter  the 
decision d = 2i + -~ and  the W0-walk are bo th  subject  to the 
na tu ra l  process until  at  the end of the 3rear the set Ao is reached. 
The walk W a t e rmina tes  e i ther  in s ta te  E~ or in s t a te  Eo and  the 
WO-walk in E0. In  both  cases however  the expected  costs and  the 
expec ted  dura t ion  are equal. The  only difference in expec ted  costs 
is given by  the decision costs of no claiming which a m o u n t  s - -  a0 
if s > ao and  o if s < ao. Consequent ly  we have  

l(~. a) = t~(x; a) - - to(x)  = o (3.2.~) 

S-ao s ~ ao r 

k(x" d) = k~(x; d ) -  ko(x) = [ (3.2.2) 
LO SS ( a o  

Secondly we need to consider the in te rvent ion  of the p a y m e n t  of 
p remium.  The sys t em will be in s ta te  E v l  and  the decision of 
pay ing  p r e m i u m  transfers  it to s ta te  2i. Because Ei-1 ~ Ao the 
expec ted  durat ion as well as the expected  costs in the walk are zero. 

Dur ing  the Wa-walk af ter  the p a y m e n t  of p r e m i u m  Ei.1 the 
sys tem is subject  to the na tu ra l  process until  at  the end of the year  
the set Ao is reached by  means  of s ta te  El  or s ta te  Eo. Hence  tlle 
expec ted  dura t ion  will be one year.  Because in the na tura l  process 
all damages  are c la imed we have  for the expected  costs per accident,  
denoted  by  k(ao), 

a o 

k(~o) = I ~ a F(~) + ao .f af(~) .  (3.2.3) 
o a 
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Consequently the expected  costs in the na tura l  process during 
the interval  [o,I] are Xk(ao). 

t(x; d) = I (3.2.4) 

k(x; d) = E,_, + ~k(ao). (3.2.5) 

3.3 D E T E R M I N A T I O N  OF THE OPTIMAL STRATEGY 

I t  is easily verified for all strategies z~Z the Markov process in 
A~ has only one simple ergodic set. Consequent ly  for every  s t ra tegy  
z and feasi.ble decision d, we have 

r(d.z; x) = r(z; x) = r(z). (3.3.1) 

Hence it is sufficient to consider only the funct ional  equat ion 

c(z; x) = k(x; z ( x ) ) - - r ( z )  t(x; z(x)) + ~ p")  (dI ; z; x) c(z; I). (3.3.2) 
A, 

In order to obtain a unique solution we put  

c(z; Eo) = o. (3.3-3) 

Let  us first consider the solution in s tate  x = (t, s, o) with t = 
i i  + .v and s > ao. Suppose we are applying an a rb i t ra ry  s t ra tegy  
z. If z dictates  to claim (null decision!) in x then the next  interven-  
tion s ta te  is Eo. So we have 

c(z; x) = c(z; E0) = o. (3.3-4) 

If we decide not to claim and fu ture  decisions are taken in ac- 
cordance with s t ra tegy  z, then the funct ion c(d.z; x) is given by  

c(d.z; x) = s -  ao + c(z; t + io). (3.3.5) 

F ro m  now on we consider only the opt imal  s t ra tegy  Zo. Let  the 
boundary  of Azo be given by  tile funct ion s = s(t). For  zo holds: 

c(zo; x ) =  rain c(d.zo; x). (2.52) 
~t~D(~) 

For  ao < s ~ s(t) it will be profi table  not to claim; thus d = 
Zo(X) = t + IO. I t  follows from (3-3.4) and (2.52) 

C(Zo; x) < C(Zo; Eo) = o. (3.3.6) 
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According to the fact that  c(d.zo;x) is a linear function of s it will 
be indifferent oll the boundary  s(l) of Az° whether  to claim or not,  
hence for s = s(t) we  have" 

C(Zo; (l, s o)) = o. (3.3.7) 

F r om (3.3.5) and (3.3.7) it follows tha t  

c(zo; (t, s(t),  o)) = s(l) - -  a,, + c(zo; t + i o )  = o. (3 .3.8)  

Consequent ly  : 

C(Zo" t + lO) = a o -  s(t) (3.3.9) 

and in accordance with (3.3-5), by  vir tue of (3.3.9), for s > ao :  

C(Zo; (t, s, o)) = s -  s(t). 3.3.1o) 

For  s < ao by (3.2.I) and (3.2.2)" 

~(~,,: (t, s, o)) = c(~0; t + io )  = ~ o -  ~(t). (3 .3 .~1)  

Fur the rmore  holds for the states E~, i = I, 2, 3" 

c(zo; E,) = lira C(Zo; t) (3.3.12) 
tff2t +1 

o r  

C(Zo; E~) = a o - -  lim s(t). (3.3.I3) 

Summarizing:  

c(z°:  x)  = 

O, x ~ EoLl{lI < l  < 15, s > s ( t ) ,  u = o}lJ 
{11 < t < 1 5 ,  s > o , u  > o }  

a o - -  lirn s(l), x ~ 6 E ,  (3.3.14) 

ao - -  s(t), x E {11 < t < 15, s < ao, u = o} 
- s  - - s ( t ) ,  x e { 1 1  < t  < i5 ,  a o <  s < s ( t ) , u  = o }  

a o - -  S ( / ! , - -  IO) x @ {21 .~  t ( 25]- 

From the functional equat ion (3.3.2) it follows for Et-1, i = I, 2, 

3 ,4"  

c(zo; E,_l) = k (El - l ;  2z) - -  r(zo) l(E,_l" 2i) + c(zo; 2i) (3.3.15) 
o r  

C(Zo" Et-t) - -c(zo"  2i) = El . ,  + Xk(ao) - - r ( z o ) .  (3.3.16) 
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Using the  re la t ions  (3.3.13) and  (3.3.14) for  x = E,_t, i = 1, 2, 3, 4 

s ( I I )  - -  Eo + X k ( a o ) -  r(zo) + ao (3.3.17) 

s( I i )  = lira s(l) + Ebl -~- Xk(ao) --r(zo),  i = 2, 3, 4 (3.3 .18) 
t '~ti  

lira s(l) = lira s(t) (3.3.19) 
t ¢ l , l  t~15  

For  x = (t, s, o) wi th  s > ao a n d  ! = 1~, + r fol lows f rom (3.3.o_) 

c(zo; (~,s,o)) = k((t, ~, o); l + l O ) -  r(~o) l((t, ~, o); l + ~o) 

+ f c(zo; E~) Xe -z*, dr~ (3.3.20) 
I I ~  i - t  

I | + 1  t t ( g + T T  1 ) 

+ J" Xe-'.,, dT, f c(zo; (t + z,, y, o))dF(y) 
o a 

l / +  i t 
+ Xe o,:, dr, j C(Zo; Eo)dF(y) 

o • ( t  + "TiI 

Accord ing  to (3.2.1), (3 .2 .2 )  a n d  (3.3.14): 

c(zo; (t, s, o)) = s - -  ao + e x<" +~ -t) ( a , , - -  lira s(t)) 
t t 'J~*l 

l t  + i - t  ~ [ t + T I )  

+ Xe-~,h dr, f (y - -  s(l -4- I)) dF(y) (3.3.21) 
o a o 

li½ i - I  a o 

+ xe-~, dr~ I (ao - -  s(l + TO) dF(y) 
o t~ 

I f  r2 = t + ,~, then  

c(z; (t, s, o)) = s - - a o  + e -x0~+t t) ( a o - -  Jim s(t)) 
t. ? l i n t  

I1 + I J(T.2} 

-~- e ~t f XeX¢.: dr2 f (y - - s ( r2 ) )d_ f f (y )  (3.3.22) 
t a o 

1 | - ~ I  

+ e~' I ze-~,,: F(a.,)(a.-- s(r~))d,~. 
t 

Afte r  s u b s t i t u t i n g  s -~ s(t) a n d  us ing  (3.3.7) the  d i f f e r en t i a t i on  
of (3.3.22) wi th  respec t  to t leads  to  

d s(t) % 
-- X J ( y - - a o )  d F ( y ) - - X  J ( y - - s ( t ) ) d F ( y ) .  (3.3.23) dt 

a 0 s ( t l  
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By part ial  integrat ion this equat ion can also be wri t ten in the 
more simple form 

d s(t) ,m 
- x I (1 - -  V(y))dy.  (3.3.24) dt 

a 0 

Excep t  for a t ransla t ion in the t direction the boundary  s(t) is 
de termined  by  (3.3.24). In o ther  words the boundary  of Az ° for 
i = I, 2, 3, 4 are in the t-direction t ransla ted par ts  of one of the 
curves satisfying (3.3.24). The location of each par t  on this curve 
has to be de termined  from the relations (3.3.i7) through (3.3.19). 
We will now show tha t  this is possible. 

Suppose tha t  r(zo) is known, than s(II)  is solved from (3.3.17). 
F rom the curve s = s(t) w e  deduce lim s(t). From (3.3.18) for i = 2 

t¢t2 
we obtain s(12). Similarly we can compute lira s(1), s(13), lira s(t), 

t¢13 1¢14 
s(I4) and lira s(t). 

tt15 
This implies tha t  if r(zo) is known, the opt imal  s t ra tegy  is com- 

pletely specified. As r(zo) is not known its value is de termined by  
equat ion (3.3.19). 

I t  should be noted tha t  the differential  equat ion (3.3.24) has an 
analyt ical  solution in the case the damage per accident is expo- 
nential_ly distr ibuted.  We have then for F(s)  = I - -  e - v . s  

d s ( t )  x 
= e-v.a. ( I  - -  g-lz(,s(t~)-a.)) (3.3.25) dt tx 

which leads to 
I 

s(1) = a o  + - ln{I  + e ~'(t'c'l'e-~°°} Ii  < l < I i  + I i = 1,2,3,4 
~z 

(3.3.26) 

where the c,, i---- i, 2, 3, 4 are a rb i t ra ry  integrat ion constants.  
Note tha t  (3.3.26) determines a curve except  for a t ranslat ion in the 
t-direction. If the distr ibution of the damage is not exponent ia l  
we have to solve equat ion (3.3.24) numerical ly in most cases. Of 
course we may  also use the i terat ion cycle described in §2. 
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