
MODERN GENERAL RISK THEORY 

BERTIL ALMER 1) 

RISK ELEMENTS - -  DEFINITIONS AND GENERAL PROPERTIES. 

I. Introduction 

Modern life is characterized by risks of different kind: some 
threatening all persons and some restricted to the owners of 
property, motor ears, etc., while still others are typical for some 
individuals or for special occupations. The corresponding accidents, 
losses or claims will occur suddenly and unexpectedly and may 
involve considerable financial loss. I t  is quite evident that  modern 
life is a fit subject for risk theory, and that  some results in the 
pure mathematic theory might have applications in the study of 
problems in real life. 

In practice, however, we can identify risk theory with insurance 
risk theory or with the application of the theory of probability on 
insurance risk problems. This general definition has the advantage, 
that  it covers a wide field of different risks and risk problems as 
specified in the insurance tex ts - -and  a great collection of risk 
situations = claims occurred (with corresponding loss amounts) 
is available in the claims acts. In fact, I believe that  any actuary 
or mathematician, starting his researches in risk theory or in risk 
statistics, should begin his studies by a series of actual claims acts. 

2. Definitions and some general properties 

Detail studies of the claims acts in any chosen branch will prove 
that  almost all claims are the result of well-defined risk situations 
of short durat ion--and that  the actual accident is usually caused 
or generated by the combination of a primary cause and some 
unlucky eircumstances. 

As an example, we might choose a road accident--started by a 
small driving error, made worse by a bad patch of road, and made 
critical by a meeting car, or a car on the cross-road, passing that  

1) Because of the  decease of Dr. Almer  the  proofs of this paper  are corrected 
by  Dr. Carl Phi l ipson wi thou t  accept ing responsibi l i ty  for the  exac t  formul-  
a t ion of the  au thor ' s  intents .  



MODERN GENERAL RISK THEORY 137 

very second or those fifty feet which represent all the difference 
between collision or no-collision. This example illustrates tha t  some 
types of risk situations might occur very often without any 
accident because the unlucky circumstances have not combined 
into a critical risk s i tuat ion--and also the great influence of the 
time factor and of the "meeting traffic" in motor car insurance. 

Another example might also be of some interest: the fire risk 
in a one-family house. For our purpose, the heating arrangement 
represents a very small risk; still we will divide that  risk, say, into 
half-day elements to avoid the introduction of continuous risk 
elements. The residue is made up of lighted matches, cigarettes, 
candles and eventually a fire-place in the sitting-room, and an 
electric oven (or cokes oven) in the kitchen, all representing risk 
situations of short duration (or divided into short sub-elements). 
At the same time it is evident, that  the "tariff risk", calculated by  
some parameters describing house and furniture, is most insufficient 
to characterize the complete risk, which depends more on the 
family's manner of living (high-life ?, non-smoker ?, late hours ?), 
carelessness and similar factors. 

This is a great problem in most insurance branches, because no 
tariff parameters can express the exact individual risk, and all 
control by  the most advanced statistics can only prove that  tariff 
premiums are correct in the mean. 

The problem is closely associated with another problem, which 
is analyzed in this paper, that  of "stochastic disorder". In short: 
when authorities declare that  "premiums should be exactly deter- 
mined by  statistics even for the greater part of the individual 
risks" I have proved that this should be translated into "(as an 
ideal) tariff premiums (diminished by  standard additions) should 
in the long run prove approximatively equal to risk premiums for 
any combination of risk groups of sufficient magnitude." 

Starting from the advanced analysis of claims acts--including 
the much more frequent analogous risk situations without claims--  
we will define our risk elements as follows. 

Definitions: 

Claim = effect of risk element (i), ruled by  chance and including 
some form of damage, and loss of a certain amount of money, 
which can be insured ( =  x~). 
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Risk element (i) is characterized by  Lb~[ ~(x) I Ody)], 
where 

probability of a claim occurring = p~ (o ~ ~b~ < < x) 
"claims curve" = probable risk amount distribution ~F~(x) for 
x~ _~ x, with ~/~ (x) dx  

probable risk amount, mean : S x ~t(x) dx  = x~ 
0 

contribution to total claims amount = y distributed as 8~(y) 
---- p~ ~ (y), mean ----- p 
set or system of risk elements = {P~ I +~ (x) I t)~(y)} i = i, 2, 3, 
. . .  N 

risk object ----- object insured--generally the insurance will 
cover damage (from fire etc.) on object insured or damage caused 
by  the (object) insured on other objects (=  third party). 

In analysis, we should observe the following properties of risk 
elements or sets of risk elements: 

a. Claims acts seem to indicate that  the total number of risk 
elements in one (insurance) year is finite but  very large = N. 
This small simplification is accepted here, but  of no great importance 
because 

all distribution functions are of limited variation (i variation 
born~e) and completely determined by the values in the enumer- 
able rational points of the plane. 
all Stieltjes integrals on (simple or) positive functions can be 
uniformly approximated by  finite sums. 

b. Individual risk elements and individual claims are character- 
ized by  an almost unlimited number of parameters and other 
markings, which may be used to form "statistical groups" in 
different analyses--among others 

a fixed point on the line of t ime--eventual ly  followed by  a short 
per iodl represent ing  the time when any particular risk element 
(i) is active or the occurrence of any particular claim 
insurance parameters: tariff, subtariff, geographical district, 
occupation classes, profession, age, sex, bonus class, etc. ; sums 
insured, HP,  maker, speed. 
claims parameters (including insurance parameters and further): 
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type of accident or claim, causes, other circumstances, weekday 
and time; claims amount, "excess classes" ( =  classes according 
to claims m o u n t ,  say o-I.OOO-IO.OOO-iOO.OOO-), days of illness, 
grade of disablement, etc. 

c. Both risk objects and claims are sometimes divided into 
subelements, defined by some parameters or markings, for instance 

traffic: collisions, personal damage, disablement, amount x ~ z, 
some particular causes, amount minus loss excess, catastrophes, 
multiple claims, 
accident: disablement claims, claims from chosen causes, 
fire: catastrophe claims, "contagion" from neighbouring risks 
(as a cause or a consequence), 
but also in principle non-actualized claims, say 
traffic: latent claim with big danger and strong reactions on the 
driver's future driving, similar to the effect of a bad catastrophe, 
sickness: acute claim = illness in bed versus latent claim = 
risk for contagion. 

d. Conversely, we can form combined risk elements, representing 
the total risk for an insurance in a calendar year. This is quite good, 
if the total claims frequency p, in the year does not exceed some 
pro mille (life, fire) and if we have a good control of the risk for 
more than one claim (Cf. ASTIN 1961 ). 

e. Generally, detail studies of the individual risk elements in 
a system are impossible to perform, and even the combined risk 
elements above, which are identified with individual insurances, 
will only lead to an apparent simplification. Our real problem is 
to s tudy the 

risk a priori as the origin of claims, governed by chance, 
risk a posteriori or claims occurred, 

and the corresponding 
probabilities, claims frequencies and claims amounts, 
risk groups or statistical groups (tariff groups), 

and to decide whether the risk system is large enough to give good 
statistical figures or not. 

In risk analysis and statistical studies the following system of 
figures and symbols is utilized 
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Risk elements (i) a priori 

Claims p r o b a b i l i t y  = p ,  

Claims a m o u n t  = x, 

Claims c u r v e  = ~b,(x) 
Mean  va lue  = m, 

Risk groups a priori 

Risk groups a priori 

N u m b e r  of c la ims = n = z p ,  

( i = I ,  2 , 3  . . . .  N) 
A c t u a l  c la ims : x I (j = I, 2, 

• . . n )  

Claims c u r v e  ~(x) = ~p ,  +~(x)/n 
Mean  va lue  = Xp,m,/n = m = 

Risk groups a posteriori 

N u m b e r  of insu rances  = N(I) ,  or s u m s  insu red  = S(I), p r e m i u m s  
= P ( / )  

N u m b e r  of c la ims = n 

Cla im f r e q u e n c y  = f = n/N(I)  
I n d i v i d u a l  c la ims  = xj 

S u m  to t a l  of c la ims  = y = ~ x 1 
J - I  

Mean  va lue  of c la ims  = m = x 

N u m b e r  of c la ims  (occurred) = 
Cla im f r e q u e n c y  = ? = .~/N(I) 
I n d i v i d u a l  c la ims  = ~j 

S u m  t o t a l  of c la ims = ~ = ~ ~j 

Mean  va lue  of c la ims = ~ = ~/u 

Mean  va lue  of s u m  to t a l  = n.m = f yO(y)dy = 
0 

Risk  p r e m i u m  = r = y/N(I)  Risk  p r e m i u m  = ~ = ~/N(I) 

R e l a t i v e  r i sk  p r e m i u m  °/0o = y/S(I)'IOOO 
Loss  pe rcen t  = Ioo.y/P (ca lcu la ted  or  t a b u l a t e d )  

T h e  "c l a ims  c u r v e "  ~(~) is def ined  b y  the  d i s t r i bu t ion  of ~t accord -  

ing  t o  m a g n i t u d e ,  a n d  is c o n s t r u c t e d  s imp ly  b y  c o u n t i n g  the  n u m b e r  
of  c la ims  a b o v e  a va r i ab le  l imi t  z. 

3. Error formulas--the road from risk elements to homogeneous 
binominal distributions and from homogeneous distributions to 
poisson series. 

I n  t he  genera l  r isk t h e o r y  we  shou ld  avo id  t he  i n t r o d u c t i o n  of  
r e s t r i c t ive  h y p o t h e s e s  as  m u c h  as possible.  So fa r  we h a v e  o n l y  
m a d e  use of :  

a. R i sk  e l ement s  are  c o n f o r m  (or similar) t o  r isk s i tua t ions ,  as 
these  are  desc r ibed  in t he  c la ims  ac ts  of  d i f fe ren t  i n su rance  
b ranches .  
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b. Risk elements are formed by a definite small probability p~ 
for the effect "claim". 

c. In case a claim has occurred, there is further a definite proba- 
b i l i ty-expressed by the "claims curve" ~(x)--for  the claims 
amount. 

d. All risk elements and all claims are actualised at definite points 
on the line of time, and characterized by a series of parameters 
or markings giving them a definite place in most statistic 
classifications. 

Returning to the claims acts in any specified branch we 
should observe, that  the sequence of claims represents a 
mixture of: 

different tariffs and risk classes, 
risk situations where p~ is comparatively large (say 1%0) or 
very small--or else where large claims are menacing or even 
completely destructing valuable objects, and, as a contrast, 
situations leading to small scratches and discolourings; 

in short that  the corresponding stochastic variables (v, ~, ~)will 
move in a most irregular way, without any contact or conformity 
to homogeneous systems or simple binominal distributions. 

In order to get a full control of this complicated problem, we 
should t ry to obtain 

a. a simplified or homogenized risk system with the same In I ~b(x)] 
and approximately the same properties. 

b. exact error limits or at least some estimate--also an estimate 
of the effective difference between the general system of risk 
elements and the corresponding Poisson system with the same 
values for 

risk group = (0¢, ~, y, 8) or total 
number of claims a priori = n 
claims curve = ~(x) 
total claims amount a priori = y 

This problem is completely solved by the first error theorem 
(CI. New York 1957). 
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Definit ion:  For  any  general sys tem of risk elements {p, I ~* (x) ]O,(y)} 
and for any  risk group {~, ~, T, ~ ] n, ~(x), y}, where 

n = ~ p ~ ( i =  1 , 2 , 3  . . . .  N) o _ ~ p ~ < z  

~(x) = xp ,q , ( x ) /n  x > o ~ ( x )  = S ~, (x)dx ~_ I 
x 

y = X p,  m,  

we form the sum of squares 
M 

X p,* = n*.Q ~ naiL (L = integer) 
t t -  t 

and define 

Q = (exact) measure  of inhomogeni ty  (or asymmetry)  for 

(~, ~, Y, 8) 
L = reduced number  of risk elements or measure  of inhomo- 

geni ty  (for all groups and amounts)  
N = number  of risk elements (finite). 
Q(x) = ~ [p~ "I'~(x)? : Ix  p~ "I'~(x)], _ i/1. 

= measure  of inhomogeni ty  for amounts  ~ x. 

Theorem I :  The generat ing funct ion for a general sys tem of inde- 
pendent  risk elements = general binominal  sys tem is expressed b y  

II  (i  - -  p~ + t .pd  = H (i----p~). H i + i - - p #  = 
N 

I 
= _ _  = - -  p~) = I I  . Yi (z + t.qi) 

i +q~  
t - *  Lk-* j 

w h e r e -  p '  = ~ I  ,. I I I ( I  - -  p,) = I I  ( I ~ q ~ )  
I - -  p, --  q*; I - -  ~bf I + q ,  

and  II ( I  - -  p ( )  e x l ° g ( a - ~ O  = e -  z ~ , - ½  x p , , - }  z~., . . . .  = e-n-In,q-.. 
- '  

cx~ e - n - ~  +o 

where the coefficient of tk is a symmetr ic  function of the  proba-  
bilities and expresses the  probabi l i ty  tha t  the stochastic variable 
(number  of claims a posteriori) will take  the value k; compare  

n k  
with Poisson:e  -n. k--~ 



MODE R N G E N E R A L  RISK T H E O R Y  I43 

Theorem 2: Under the sole conditions 

X p ~ = n  ( i = 1 , 2 , 3  . . . .  N) o _ ~ # ~ < i  

X p,2 = n ~. Q ~ n~/L (L = integer) 

the symmetric elementary functions S~ where ~ ~ N, 

S1 -~ Xp* $2 = Xp,pj $3 = Xp~pjp~ 
*<J *<J<k 

take their maximum values S w m a x  

N ( N - -  I) n 2 N(N-- I )  (N--2) n8 
S1  m a x  = n ;  S 2  m a x  - ~  - - "  S~ m a x  - -  

I . 2 N 2 '  1.2.3 N 3' 

Svtmax __-- 
N~ 

or Stm'x=.; $2 re'x= I(I]~/N)n~; Samax--I(I--I/N)(I--2/N!.8 
• 3 !  "'" 

at the same time for the system with maximum symmetry 

p ,  = n / N  (i = 1 , 2 , 3  . . . .  N) 

and their minimum values St~min  

L ( L - - I )  n 2 Ss min L ( L - - I )  (L - -2 )  n 3 
$ 1  m i n  : n ;  S a  r a in  -- 1 .2  L z '  = 1.2.3 ~ ;  

o r  S l m i n : n ;  S 2  r a i n -  

S~mln = L'-~ 

1 ( i - - i /L )  
2!  n 2 ;  S z m l n =  

S ~ m t n  : l-I 

1(1--i /L) (I--2/L).3.." 
3! 

at the same time for the system with maximum asymmetry, where 

p ~ = ~ / L ( i = I ,  2,3 . . . .  L ) ; p , = o ( i  > L )  
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The proof by the "three point test" is very simple: we "freeze" all 
variables but three and reduce the problem to 

x + y + z = A  x 2 + y 2 + z 2 = B  

Xy "-~ XZ "~ yz  -~- { V ~ - - B  x y z  = Z = I maximUmmlnlmum 

with only one "degree of f reedom"-- the resulting condition 
x = y < z or x = y > z is permutated--which leads to the state- 
ment above. 

Theorem 3: The series in symmetric functions, representing 
maximum symmetry 

N N 

~ (~)(~)~ 

and (in complete form) 

N N 

i+  ~ A ~  ~ + ~ (~-~/~ (~/(~)~ ~ 
will generally converge very quickly with N to the "exponential 
distribution" ("Poisson") 

I J r  e - n  . - -  

and all terms or probabilities in any considerable distance from 
the maximum term with ~ = n will be exceedingly small. 

The convergence of the system with maximum asymmetry will 
greatly depend on the reduced number of elements L. 

Convergence will be retarded in particular if there exists a small 
group of "very bad risks" i.e. with large values of Pt. For instance p, 
might represent millionth parts, with a very small group with 
p~ c~ I/IO generating most of the number of claims n. 

Theorem 4: The claims curve ~(x) for the maximum system and 
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the minimum system and also for the resulting Poisson system is 
not changed, owing to definitions and the properties of 

Q(x) ~ I/L. 

(First) Error Theorem: All systems of independent risk elements 

{p, [ +,(x) ] O,(y)} In IT(x) [NIL[y]  

with the same characteristic values (a priori): 

number of elements = N 
number of claims = n 

claims curve -~ ~(x) - -  or n.tF(x) = number of claims ~ x 

reduced number of elements = L = measure of inhomogenity, 
will define a stochastic var iable ,  (number a posteriori) with values 
equal to coefficients of the generating function in t falling between : 

homogenized system = system of maximum symmetry 
and 

reduced homogenized system = system of maximum asymmetry. 

Note: This apparent anomaly--both series having the same sum 
of coefficients--is made possible by the small supplementary factors 

n'  n'  n'  _~) 
e -n - t  N - " "  and e -n - t  L-"  " " ; c o m p a r e e - i ( Z  - = 

e - t  - ~ .  n* _| n* = ~x~ e E- and A~ resp. B~ 

adjusting the limits given to exact values. 

Further, the difference between the system of maximum symme- 
t ry  and the corresponding infinite Poisson series will probably 
always be negligeable in insurance problems. - -  

The lower limit is more important and if strong asymmetry is 
to be feared, the eventual methods to determine L should always 
be carefully analyzed. Numerical error expressions are easily 
calculated from the generating function compared with note above, 
simply by applying the Stirling formula and by concentrating to 
the neighbourhood of ~ = n where coefficients at tain their maxi- 
mum value. 

Corollary: In the insurance theory asymmetry is generally the 

9* 
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effect of a small set of very bad cases and when the group is growing 
we might assume that  new risks represent in average fairly good 
risks. 

In this case the adjustment 

e - t  n '  N - L  n '  
LN c~ e - t L  ~ X with increasing n, 

proves that  the original system of risk elements will rapidly 
converge to the ordinary Poisson distribution when n (number of 
claims, c~ number of insurances) increases. 

Note: The corollary proves the importance of good estimates of 
L (degree of inhomogenity). 

Many methods have been tested in practice, but generally either 
the statistic material is far too meagre, or else the conditions are 
too restrictive. Some examples: 

a. Analysis of accident insurance (about I9xo ). Claims frequency 
varies from 5 ° to 300 °/0o with the mean xoo °/00. For ten years 

old insurances the claims frequency was calculated for first and 
second five-year period. Criticised because the personal risk will 
change in ten years.--The same method has been proposed for 
motor car, where the result should be still better as many large 
groups will have ~ = 300 °/0o, ~ = 500 °/0o or even larger. Un- 
fortunately bonus experience proves that  the personal risk will 
generally be reduced to one third or less in some few years,--and 
then is subject to jacks or jerks, probably depending on children 
growing up or changes in the manner of living. 

b. General s tudy of technical risk character, compared with 
values of q~ for different statistical groups; probably one of the best 
methods, but very difficult to work through. 

c. By analyzing the relative frequency of insurances with no, 
one, two, three, four, etc., claims (accumulation curves). This 
important method assumes that  claims can be repeated without 
change in the primary generating force or frequency and without 
any vacant period, in short that  claims can be described by the 
"Poisson process". The same hypothesis is standard in many 
statistical researches, often with excellent results, but sometimes 
with considerable differences. Often these differences will take the 
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form of a "stretched" curve, where the frequency of "many  claims" 
is increased compared with "no claims". Evidently, the same result 
is obtained by an exponential binomial (the sum of two Poisson 
terms) and practical experience proves that  at least in the insurance 
theory, an exponential trinomial will always be sufficient, and- -  
what is more important--easy to determine owing to the quick 
change in curvature of the Poisson curve for changes in frequency. 

% 

\ 
'\ 

Rea,,u ,,e 
; , ' 1 

~ ' : - Number  

0 1 2 3 4 5 6 7 8 o f  Claims 

Fig. z 

Definition: Accumulating curve i.e. curve expressing the relative 
frequency of risk objects = insurances within a risk group 
(0¢, ~, 7, 8) with number of claims ~ = I, 2, 3, 4, 5, 6, 7 . . . .  
respectively. 

In insurance risk statistics we should distinguish between 
branches with 

very small claim frequency ~ oo I-IO °/o0 - -  fire, burglary 
moderate claim frequency ? c,~ ioo °/oo--accident, third party 
large claim frequency ~ oo 50-500 % (or more) - -  motor car, 
" t ra f f ic" . - -  

In the first case the number of insurances with multiple claims 
should be negligeable, in the second case some large risk groups 
supposed to be fairly homogeneous will furnish test material, and 
in the last case we will find many risk groups proving, that  it is 
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next  to  impossible to define homogeneous groups by  ordinary 
tariff  parameters.  

Some typical  figures for motor  car were given in my  New York 
(1957) paper, for instance (mean claims frequency = Poisson = 

139,2 °/oo) 

Calculated by 76,750/o IOO °/00 + 
Group Statistics Poisson 

23% 250 °/oo + 0,25 % 2.000 °/oo 

o claims 874 °/oo *) 869 874 
I claim 112 122 115 
2 claims lO,8 8,5 9,7 
3 claims 2,i  0,4 i ,o 
4 claims o,2 o,oo 0,3 
(or more) 

*) Risk group (homogeneous ?) c,~ 20.000 insurances 

Theorem 5: In insurance risk statistics no tariff parameters  will 
produce real homogeneous risk groups and for motor  car the 
proport ion 75 o/~ s tandard  risks, 24 °/o poor risks, I °/o very bad 
risks, seems to dominate  (extra good risks, say, ¢?----5 ° °/o0 are 
impossible to discover by  existing methods) . - -The  accumulat ing 
curve can always be reduced to an exponential  trinomial,  at  the 
same t ime utilized for smoothing out  the curve . - -The  corresponding 
measure of inhomogeni ty  (L), however will prove tha t  for practical 
purpose and not  too small values of n we should always take the 
homogeneous Poisson and reserve " the  inhomogeneous Poisson 
sys tem"  for very specialized researches. 

4- Error theorems--stochastic error of (n I y jr) ~ (v I ~ ] P) 

Definit ion: Relative error in the form (I ± I/~n) or (I i v/~n) 
and (I i I/Vv) or (I ± v/~M) is introduced for m a n y  reasons: 

a. only these two forms are necessary to characterize any risk 
group, 

b. relative error can be used for both  tota l  claims amount  and 
risk premium, 

c. in statistics relative error is utilized in the same sense as the 
" s t anda rd  error" ~ ± ~ as a special form of "confidence interval" ,  
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d. even when  the  exac t  d is t r ibut ion  of ~, -~, p is unknown  or 
undef ined the  following t h e o r e m  should be qui te  correct .  

Theorem 6: In  a n y  series of s tochast ic  expe r imen t s  e i ther  simul- 
t aneous  or following each o ther  in t ime,  the  difference be tween  
" t r u e  va lue"  or "va l ue  a pr ior i"  and  " resu l t s  occur red"  or " v a l u e  
a pos ter ior i"  should be  less t h a n  the  re la t ive  error  for  a t  least  5 ° %,  
and  exceed double  the  re la t ive  error  for a t  mos t  5 %,  (Cf. all 
o rd ina ry  dis t r ibut ion) ,  of the  to ta l  n u m b e r  of s tochas t ic  exper i -  
ments .  

Second error Theorem (7)" S t a n d a r d  fo rmulas  for re la t ive  error  in 
insurance stat ist ics,  when the s y s t em  has  converged  to  Poisson 
(a = ~/n) 

v oo n . (I ± I/Vn) and  n = u n k n o w n  oo v. (I ± I/~/,) 

~q oo y . (I =t= v/~/n) and y = u n k n o w n  oo ~ . (I  ! v/V~) 

where  

v = "Modif ied  Coefficient of Var iance"  = ~/I + V 2 = 

= V S~ x2 ~(x)dx • f~ x~(x)dx; and  S~ x~(x)dx = m = x; 

+ ( x ) d x  = 1. 

The first  fo rmula  is found in m a n y  t ex t  books ;  the  second is 
a m ode rn  p roduc t  of ex tens ive  s ta t i s t ica l  r e sea rches - - in  Sweden 

(1954) and  o ther  c o u n t r i e s - - a n d  p rov ing  t ha t  general ly  

v c~z 6 for " t ra f f i c" ,  th i rd  pa r ty ,  fire 
v c,z 3 for mos t  o ther  b ranches  
v c,z I for shor t  in terva ls  
v2~z 2 . for excess in terva ls  in m o t o r  car  O-l.OOO-2O.OOO-6O.OOO 

Sw.Cr. 

My formulas  wi th  n u m b e r  of c laims and  not  insurances,  seem 
to be  a good s impl i f i ca t ion- -a l so  n u m b e r  of c laims is p r in ted  in 
mos t  s ta t is t ical  tables.  

Corol lary:  F r o m  these fo rmulas  and  wi th  our  previous  no ta t ions  
we migh t  der ive:  

Claims f requency  = ~ = v/N(I) c,z n / N ( I ) .  (I i I/Vn) 

f = n/X(I)  c,z ~ .  (I 2JE / I  ~/,) 
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Risk p remium = p = B / N ( I )  c,o r . (x -4- v /V n  ) ---- y / N ( I ) . ( i  i v/~/n) ; 

r = y / N ( I )  = O. (x 4- v/]/v) 

React ions  on tariff  c o n s t r u c t i o n - - a n d  tariff  work gene ra l ly . - -  
When first publ ished these formulas ac ted as a small bomb on 

tariff  work. Most tariffs are cons t ruc ted  in one of two ways:  

a. Tari f f  centers  round  some principal  tariff  classes. For  each 
class p remiums  are decided, "accord ing  t o "  statist ics with s t anda rd  
addi t ions  for costs, risk deve lopment  and ca tas t rophe  risk. Minor 
tar i f fs  should also use statist ics and  small subtariffs  should be 
formed b y  a sys tem of addi t ions or factors.  

b. Professions, industr ies  or similar subgroups are referred to 
one s t anda rd  scale, say, with p remium differences of zo %, and 
placed on tha t  scale according to risk statistics. 

In bo th  cases we need statist ics with a re la t ive error  of about  
4- Io  % or less. However ,  this would correspond to a risk group 
with 2.5oo claims (or for some branches  6oo c l a ims) - -and  tha t ' s  
the  bomb. 

In  pract ice and  for one year  the to ta l  number  of claims for the 
cooperat ing group of tariff  companies  in Sweden might  a t ta in  

in motor  car and  traffic insurance I5o.ooo 
accident  or th i rd  pa r t y  5o.ooo 
fire and most  o ther  branches  io .ooo 

At the  same t ime there  is a s trong t endency  for the greater  par t  
of the claims to accumula te  in a small n u m b e r  of tariff  groups. 
Ev iden t ly ,  the high-flying hopes of a tariff,  where most  (individual) 
p remiums are de te rmined  by  statist ics will never  be rea l i zed- -on  
the o ther  hand  the effect of the error  theorems will be tha t  in 
"prac t ica l  risk t heo ry"  we will concent ra te  on methods  to ex t rac t  
the m a x i m u m  effect f rom our risk statistics. 

(In m y  New York paper  (I957) and in some ASTIN papers I 
have  analyzed some methods,  which might  work in tha t  direction) 1). 

Finally,  we should observe tha t  requisit ions to the stat ist ical  
depa r tmen t  of a company  f rom tariff  men  are often impossible to 

x) Excess claims analysis: Risk  p r e m i u m s  ca lcu la ted  in excess classes 
(O-l.OOO-2O.OOO-6O.OOO) Composite factor analysis. !~e thod  to  express  r isk 
p r e m i u m s  as p r o d u c t  of, say, tar iff  factor ,  d i s t r i c t  f ac to r  a n d  yea r ly  factor .  
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realize--except by pure guesswork--and experienced actuaries 
should help their young colleagues by this declaration, not once 
but  many times. 

5. Error theorems--the problem of prognosis. 

The scientific risk theory is based on theory of probability and 
all errors or distributions are given in the stochastic sense. For a 
large risk class with some IOO.OOO insurances we might assume 
that  the number of claims occurred is exactly say IO.OOO. 

Using the modern form of error formulas, expressed by a factor 
with n or v instead of number of insurances (claims frequency 
= ~ and "no-claims frequency" = i -  ~), we will find an error 
interval 

n Io .ooo .  (I ± I/I/io ). 

We have the somewhat astonishing result, that  the unknown 
number of claims a priori (probability ? or sometimes defined by 
an integral) is almost exactly known, as an error of ~ 1 %  being 
negligeable in practical risk statistics. Even the corresponding 
risk premium a priori is almost exact, say 

= 50. (i ± 6 / L / i o ~  ) = 50 :k 3 = interval 47-53, 

or well within our critical "IO °/o limit". 

(I have been proud to declare to outsiders, that  sometimes even 
the risk premium (or frequency) a priori is accessible to modern 
statistical methods). 

The same fact, however, applied to some very stabilized system 
of insurances (tariff)--or to general systems (or branch totals) 
when introducing claims frequencies and risk premiums a priori-- 
will also prove that  differences in the statistical figures from year 
to year are only partially due to pure "stochastic oscillations" and 
even that  "variations" in the primary risk or risk a priori will 
generate the greater part of the differences. In motor car insurance 
we have analyzed these variations and obtained some results, 
e.g. the influence of the weather and the influence of "new insuran- 
ces from the last two or three years, .  These being quite arbitrary 

even the strictest deterministic philosopher can only declare, 
that  they are determined by chance in another sphere, without 
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any stochastic relations to insurances or risk theory--we have 
full right to insist on the term "arbitrary functions". 

Prognosis: 

All prognosis in risk statistics and general statistics is based 
on a series of statistics for previous years and the principle of 
continuity. As a rule quotients are better stabilized than absolute 
figures, and results are often much improved, if we find the right 
type of quotient. Technically our best figures (for large tariffs) 
should be expressed by primitive curves, drawn by hand as a sort 
of mean curves. Trend should always be included as a hypothesis 
- - a t  least in the linear form. 

Risk premium 
p or  Hean risk premium 

ci r. Factor analysis S 

i t Year 
Fig. 2 

In the construction of extrapolation curves we should observe 
that  the sequence of risk elements is not stabilized, as some sort 
of population and that  the "population" of insurances only repeats 
risk objects but neither risk situations nor risk elements or claims. 

More precisely, our studies of the probable oscillations of risk 
figures according to chance have proved that  these should be small 
- -much  smaller than those often registered in practical statistics 
- - and  consequently that  effective variations of the primary risk 
a priori is by far the most important factor in the analysis of risk 
differences between consecutive years. 
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Finally, we might observe, that  increasing risk figures will always 
go by leaps and jumps, something like: after two or three years 
"unaltered", a large increase which soon ceases--very uncom- 
fortable for the tariff actuary. 
Third  error theorem (8): In actual statistics and in real life the 
sequence of risk elements (and the Poisson expression, where 
In I ~(x)] is often smoothened out further to a continuous parameter 
function in time) will always represent a complex of risk situations 
with most varying characteristics and depending on arbitrary 
functions ("aging" of risks and climatic factors being among the 
most prominent), and prognosis is considerably more uncertain 
than it should be, if chance was the principal cause of error. 

Corollary: In principle at least the error theorem is applicable 
to most statistical research work--including sampling--with the 
general effect, that  ordinary error limits should be tested anew 
(for eventual modifications). 

The reason is, that in one particular field we have proved, that 
the effect of the variations between years is more important than 
the oscillations by  chance--and that  similar irregularities might 
be quite common, once we really look for them. 

Also there is a great difference between genuine populations, 
made up by  individuals with stabilized properties and with a small 
proportion of enterings and exits, and nominal populations, for 
example one year's claims, generated by  a fluctuating risk system. 

Note x: "Research work in medicine analysis of road accidents 
by cases from a single hospital etc. might be valuable--but  formal 
error limits are not".  "In sampling we must always be on guard 
against the feeling, that  the active probability is equalized, all 
times we have found no good reason for differences". 

Note 2: In some discussions this theorem has been described as 
a small bomb-- in  actualizing problems from the next chapter. 

R I S K  THEORY--RELATIONS TO THE THEORY OF PROBABILITY. 

I. In troduct ion  

Even the most primitive forms of insurance, for instance burial 
associations in old Rome, general contributions in case of fire in 
the Middle Ages, early forms of marine insurance by  groups of 
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individual merchants, and pension funds (based on actual mortality) 
in our times are based on some general concepts, say: 

a universal risk for damage and pecuniar loss, 
an estimate of the mean risk for any large group, 
extra loss (except the mean risk) for large groups is not very 

probable. 

Evidently, these concepts belong to the theory of probability 
and when this theory was worked out in the early X I X t h  century, 
the insurance theory got a mighty instrument both for exact 
definitions and for risk analysis. 

For a long period, however, actuarial problems were concen- 
trated, say, to general risk structure in life insurance (in particular 
the dependence on age and sex, on entrance year  etc.), and to a 
small volume of insurance risk statistics, both in life insurance and 
in some branches of non-life insurance. In most cases the number 
and classification of insurances were based either on lists of new 
insurances, alterations and cancellings, or on a manual counting 
of some form of insurance cards (sorted before on risk classes); 
claims and eventual claims amounts were calculated directly from 
claims cards or claims acts. 

For these problems probabili ty is very well described by a system 
of urns containing a (large) number of white and black balls, 
and defining: 

Probabil i ty a priori = p = n/N 
Stochastic experiments = drawing of balls according to specified 

rules. 

Stochastic variable = ~ = number of successes (=  white balls) 
for an experiment. (A bet ter  model is obtained if the number of 
balls drawn is determined by a first drawing from an urn with 
numbered balls, and all succeeding drawings are made from a 
new urn, where every ball carries a number = amount). 

Similar models were often used in the analysis of insurance risk 
problems and risk theory even in the late twenties (Analysis by  
Wold on "rain insurance" to describe and calculate premiums for 
different "periods under risk", by the Polya-Eggenberger urn 
system). 
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2. Modern Probability Theory 

In the modern theory of functions of one (or more) real variables 
the Lebesgue measure and Lebesgue integrals take a central place, 
simply because they lead to a "closed" system and to the proof 
of some theorems which could not be proved before. 

In order to utilize the Lebesgue system most modern theories 
will define probability as an abstract number p where o ~ p < I 
--given a priori--and a stochastic (or random) variable ~ by a 
general distribution function F(x), increasing from o to i in the 
interval - -  ~ to + oo (or by a frequency function f(x) = F' (x), 
if this function exists). The old limit definition p = lim n/N, where 
n = favourable cases and N = total cases = number of stochastic 
experiments has almost disappeared as a formal definition of p. 

On the other hand, there was no intention to sacrifice precision 
and to introduce probabilities without contact with real problems 
(Cf. Keynes' purely abstract theory), and the conditions p = n/N 
for populations and p = lim n/N for a series of identical stochastic 
experiments are still conserved, we might say as test conditions, 
where differences will invalidate the previous probabilities a priori. 

By these conditions it is possible to divide probability theory 
into two principal classes: 

a. Population and sampling theory characterized by p = n/N 
or E p, = I or both. 

In demographic statistics--and generally in descriptive statistics 
--analysis is concentrated on a population of individuals, which 
are classified according to many different parameters, separately 
or in combination. All classifications will lead to definite frequencies 

p = n/N or p, = n,/N En, = n and Ep, = I 

Generally the population is stabilized with a moderate number 
of exits and enterings during one observation period (year). Also, 
more important figures and frequencies are taken from official 
registers or reports. 

On the contrary, minor questions are often analyzed by sampling 
and this stabilized population represents an ideal subject for 
sampling, as all probabilities a priori and all distribution functions 
exist in the form of definite frequencies. Evidently the hypothesis 
or definition of probabilities as abstract numbers existing a priori 
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is well founded. In many cases sampling can be defined by similar 
stabilized populations, in other cases stabilization might be less 
advanced, and should be taken as an hypothesis or idealization 
of the actual statistic material (in such cases error formulas should 
be taken with some care). 

As a counter-example we might choose the insurance claims in 
some branch during one year, these being generated by a fluctuating 
and instable chain of risk situations, and varying from year to year. 

b. Stochastic (or random) experiments, which can be repeated 
indefinitely under exactly the same conditions, characterized by 
p -~  lira n/N (number of experiments decided by operator). 

The principal idea in this system of random experiments-- 
defining (according to classic theory) or verifying (in modern 
theory)--one (or more) numerical probabilities by the quotient of 
n -~ number of successes and N = number of experiments, is 
evidently, that  the difference expressed by the error factor 

(I ± pq/N) 

tends to zero, when N tends to infinity (which might be taken.as 
a full proof of the limit formula). 

Applications in a wide range to games of chance, to technology 
and to biology are without any immediate interest for our problems. 
Some of these have the character of sampling to determine the 
primary probability by the experimental frequency, others are 
more concerned with results or differences. 

Our principal object, however, was the s tudy of how the modern 
theory of probability could be applied to modern risk theory- -  
how to state our exact definition of probabil i ty--and generally 
to form our theoretical and statistical model by means of the 
probability theory. 

And there comes the real surprise: 

Theorem 9: Standard definitions in the theory of probability are 

p = n / N  or p =  l imn/N 

not applicable to risk theory according to the "third error theorem". 
In other words claims represent an ever-changing series of risk 

situations and claims characters and a priori probabilities or 
characteristics n and ~(x) are "distr ibuted" and vary from period 
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to period and from year to year with a " t rend"- -a l l  making any 
time definition to join probabilities as abstract numbers a priori 
with statistic results a posteriori more or less void or vacant. 

3. Stochastic disorder--a neglected attribute to the results of statistics 
and stochastic experiments. Insurance and claim characteristics. 

One of my  first contacts with randomized systems--free for 
speculative analysis--was the kinetic theory of gases, and the 
numerical expression for entropy "constant  plus the logarithm 
of the probabili ty of the actual s tate"  is still an excellent example 
of a measure for stochastic disorder, and for that  tendency in 
stochastic systems to sink into a bot tom state of undefinedness. 
Gas molecules will even give us one of the best definitions of sto- 
chastic disorder: by  placing or projecting our cards or figures or 
results on well-defined gas molecules and waiting a few minutes 
we will get a system with perfect disorder and all systems to follow 
will represent new forms with comparatively high probability. 

Elementary analysis of stochastic disorder is founded on: 

Definition: Stochastic disorder ---- sequence of results from 
(constant and) completely independent random experiments. 

Test method (also supplementary definition): All properties of 
the sequence should be identical in any arithmetical series with indices 

i = k t + l  ( l = I ,  2, 3 . . . .  k ; t = o ,  i,  2 . . . .  ) 

Note i :  Test by  arithmetic series compensates eventual varia- 
tions in risk (claims frequency) in the analyzed year, also when 
analyses goes from tariff to tariff or from district to district (not 
to be recommended; time is the best order). 

Note 2: Standard test utilizes the successive arithmetic series 
with the same difference = k; generally several test series with 
different differences, say values from ko to k0 + j, = (ko + j/2) 
(j + I) different test series with practically the same difference. 

Theorem IO: Normal insurance praxis leads to a series of claims 
(and claim numbers) in perfect stochastic disorder, the sequence 
being generated by risk elements with a small probability for claim 
and a much larger for no-claim. Any change to no-claim should 
have exchanged all individual claims from that  point in all arith- 
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metic series simultaneously. Generally policy numbers--l imited 
to last three figures--can also be considered to give insurances 
in perfect disorder, rearranged by many years' cancellations. 
Theorem I I :  Different arithmetic series with objects in perfect 
stochastic disorder will generate a perfect system of stochastic 
experiments, with the sole restriction that  the number of claims 
is fixed and that  "superexcess claims" (very large claims) are 
restricted to "the selection of the year".  (In principle interest is 
here concentrated on risk theory). 
Theorem 12: These series will follow ordinary stochastic rules and 
if we make a correction for above small defects, they can be used 
for an independent determination of the modified coefficient of 
variance in the relative error (I ± v/~n); also for a preliminary 
analysis of the distribution of v and consequently of the distribution 
0(y) of total claims amount y. 
Theorem 13 : Test on abstract probabilities. The existence according 
to the modern theory of probability of abstract probability numbers 
a priori is tested by the demand that  for any arithmetic series or 
a complex of series and for any set of systematic grouping or 
classifications determined a priori, differences between the sum of 
abstract numbers a priori and corresponding claims result a pos- 
teriori should follow our standard rule for relative errors, and 
differences should be distributed conformly to 0(y). 

Note I: Further studies in stochastic disorder will prove both, 
that  we have found a convergence test with the same "power" 
as the more conventional limes test and also some new statistic 
methods of analysis of some importance. Consequently, I demand 
the same right to speak of probabilities a priori as any competing 
system. 

Note 2: Collective risk theory has chosen another method to 
solve the problem. Restriction to a "stat ionary stochastic process" 
conserves the right to form limit expressions, and the convergence 
to Poisson might be proved by the methods in this paper, but is 
generally introduced either as a hypothesis (or "idealization"), 
or else by forming the mean values for not to small periods (year ?) 
of both abstract probabilities a priori and claims occurred a 
posteriori. 
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S P E C I A L  P R O B L E M S  ; 

Inhomogeneous risk groups: 

In principle all risk classes (~, ~, y, ~) are inhomogeneous and for 
motor car we have proved the proportion 75 % ordinary risks 
(25 % very good ?) 24 % poor risks and about 1 %  very bad risks. 

Every time different groups are blended, homogenity might 
increase or diminish but the risk figures (mean values) are governed 
by the measure of inhomogenity L (or first error theorem) and 
generally homogenity will advance (L proportional to volume) 
even if the above proportion is maintained. The latter, however, 
is only of interest in the s tudy of individual insurances. 

Otherwise they are easily expressed by exponential polynomials 
or in a more restrictive sense by "Polya-Eggenberger" or by the 
negative binominal distribution. 

Theorem 14: When joining similar risk groups, L will increase in 
proportion to n, proving that  the effects of inhomogeni ty- -  
expressed by exponential polynomials in n or by the negative 
binominal--will disappear long before that  point (n oo Ioo) where 
risk figures can be utilized. And if not, well, then it is time to return 
to the primary binominal elements. 

Conditional primary probabilities--"ramified" risk lines. (New 
York 1957) 

By supernatural sight, we should have the power to follow the 
risk line ~ from the beginning to the end of the year, and to study 
risk elements (i) and claims occurred (~j). So far all (N) risk elements 
on the line ~ are independent. 

Further,  however, we might find (ramification) points on the 
risk line, where the risk in the future was subject to random 
decision with at least two alternatives. Assuming there are always 
only two alternatives we have: 

unaltered risk line ~ with the probability I -  P~; 
a new risk line ~j (with some new and some old risk elements) 

with the probability P~, drawn from the ranaification point to the 
end of the year. 

We will now extend our risk system with a series of new risk 
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lines ~z ~2 ~ 3 . . .  in finite number, all starting from ~0 and with 
the respective probabilities Pz P2 P s . . .  

However, the system is still incomplete as there might be new 
ramification points on these new lines. By systematic extension 
we finally arrive at a complete system, still in a finite form. 

Start / • • • 

Branch f o r m  - t ree  

• = R lske lement  o = Ramification 

Fig. 3 

A simple counting will always give us the combined probability 
to arrive at some chosen part X of the branch system. This ramified 
branch form or tree represents the first expression of a complete 
system of conditional lines of risk elements. 

PreseJection f o r m  

-- • • • 

Fig. 4 

The second system or preselection is obtained if we "take a 
sharp knife and cut through all risk lines lengthwise from a rami- 
fication point backwards to the starting point of the year, leaving 
the same risk elements on both lines and conserving the probability 
of the ramification point". Continuing in this way we get a bundle 
of parallel risk lines, each with a final series of risk elements, which 
are independent simply because all random decisions are moved 
to one starting point and expressed by the relative probability to 
choose any specified risk line. 

So far we have only admitted two-way choice, but we have 
only to interpolate several ramification points between two risk 
elements to get room for a many-way choice. In this way we have 
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proved the following important  theorem for finite systems (As to 
different types of conditional probabilities, affecting future risk 
elements, vide New York 1957 and other papers). 

Uniformisation theorem (15): In a finite system of risk elements (i) 

{ p , I  I 0 , ( y ) }  i = 1, 2, 3 . . . .  N 

the risk from a specified point in time (T) might depend on a 
precise random choice 

Ri: (PI(I) . ~I (~) [ Pi (2) . ~i (2) ] Pi 0) . ~i (3) J (I--Pi(~)--PI(*)--P~ (3)) . ~o) 

representing the tree-form of the risk system. This system can 
always be transformed to a preselection at the starting point 
To (~ T _~ T~) between the same total number of alternatives 

{ P ~ [ ~ }  k =  1 , 2 , 3  . . . .  K X P k =  I 

followed each by  one single risk line made up of independent risk 
elements. 

All finite risk systems with locally well-defined ramifications 
can be transformed into both tree-form and preselection form. 
In particular all risk systems made up by  risk elements (insurances), 
with well-defined rules for more than one claim can be reduced to 
this form. 

(In order to apply this theory to Poisson we must make an easy 
extension to enumerable systems). 

In this problem both exponential polynomials in n and the 
two-constant negative binominal distribution may be used for 
increased applicability as the convergence to simplified forms is 
not evident. 

THE TRANSFORMATION PROBLEM 

Risk statistics will furnish a series of figures for large and mod- 
erate statistical risk groups such as n, f, m, r -  ~, 9, ~, ~ and also ~b(x) 
(relative frequency of claims with different magnitude). 

+(x) represents no "distribution" in the ordinary sense of the 
word and different parts of this "claims curve" are absolutely 
independent and permit no conclusion from one part  of the curve 
to another; also with increasing material the curve will only 
slowly change its form and does not converge to the normal distri- 
bution (it is "addit ive" and not "multiplicative"). 

I O  
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The important real distributions of the stochastic variables 
(v, ~) c~ (n, y) can never be determined by real statistics owing 
to the third error theorem. In most cases the hypothesis that  ~ (n) 
is distributed by  the simple Poisson should be very good, but  

(y) is more difficult. 
Many authors will t ry expressions derived from the normal 

distribution or the Edgeworth series, and apply higher moments 
(3, 4, 5), which is not very good, as the mean value is not stabilized, 
and these higher moments are very sensitive to a small part  of 
+(x), so that  the expressions are determined from a few very large 
claims, also most formulas are constructed as asymptotic formulas. 

Consequently we have here a neat transformation problem 

En, m,  +(x)~ ~ 0 ( h i M  = n . m  ] y) 

which in principle should be quite simple (by calculating some 
asterisk powers), but  in practice represents an intricate calculation 
problem. 

In my researches I have always concentrated on exponential 
polynomials from two reasons: 

Ia. The claims curve is logarithmically convex = convex against 
the system of exponential curves 

0 t .  ~e - ~  

b. The convexity is weak and an exponential monomial (and 
still bet ter  binomial) will give a very good approximation for quite 
large intervals (Note: quite good also for Bessel functions) and 
furnish a very good smoothing out. 

c. An exponential binomial as approximation for both functions 
leads to quick and simple numerical integration of asterisk products 
for many types of functions. 

d. An exponential trinomial (or tetranomial) will express the 
whole claims curve from + oo to 0 with an effective maximum 
error of, say, 2 or 3 ~o, and the corresponding claims amounts 
by  a "may  be correct (exact)" series of values. 

2. Poisson + exponential monomials 

o~ x 7  e - ~ z  

represent the characteristics (according to the theory of differential 
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equations) or e lementary  s tandard  solutions bo th  to the  problem 
of asterisk powers, and the t ransformat ion problem. 

I will now simply apply  to [I] giving some actual  examples  of 
asterisk mult ipl icat ion and Laplace t ransforms 

oo 

= J" f ( x ) d x  
0 

Theorem 16: Assuming tha t  the  s tochast ic  variable (number  of 
claims) ~ is Poisson dis t r ibuted with the  a priori value (or mean 
value) n, the  probabi l i ty  for exac t ly  k claims is expressed b y  

n/¢ ~ n/¢ 
e -n. - ~  where  e-n" ~.t = e-n (en--I)  = I - -  e -n, 

k - - I  

where e-n (no claims) is negligeable and 

2 nk 
k e-n. = n  e-n n~--I = n . e - n  e n = n m e a n v a l u e  " 

~ - - 1  / c - I  

Assuming fur ther  tha t  the  claims curve +(x) is expressed b y  the 
exponent ial  monomial  e -~ the  asterisk powers or claims curves 
in case there  are exact ly  k claims is expressed b y  

x 2 x 3 x/¢--x 
• _ _ e - ~  k ~ I : e  -~, k ~ 2 : x e - * ,  k = 3  ~ e - * ,  k = 4 : ~ e - ~ , k : ( k _ _ i ) !  

Consequently,  the  claims dis t r ibut ion for k claims and for all 
separate  values of k t aken  with their  respect ive probabil i t ies is 

nk X/¢--I 

k claims: e -n . k--! " e-~ (k--I)------~ 

® nk Xn - 1  

All values __~-~ e - n - *  k ]" (k--I)--t = H(nx)  

Note  I : H(nx)  c~ e ÷*v~ for nx ~ oo and - - n - - x + 2  ~ /~  = 
- -  - I V ' * - / * ) *  = c o n v e r g e n c e  

Note  2 : H y p e r b o l i c B e s s e l f u n c t i o n I 1  (2l/~.) = ~/~ k [ ( k + I ) !  

11 
(21/~) ' / /(nx) --  n . e - n - *  I1 (2V~) Pr iva te  form B1 (x) = ~/~ , ~ /~  
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Finally we have proved that  the elementary transformation problem 

(n I ~(x) = e -~ l  ~ o(y)  

is resolved by above hyperbolic Bessel function 11 (2 ~nx)  and that  
more precisely 

(ny)* 
0 (n I ~(x)  = e - * l  y) = n .  e - ' - v  

• _ _  k ! ( k + l ) !  

n 
e - " - v .  11 (2V~) - -  ~ "  

(claims curve, relative frequency of ~ around the mean value) 

Corollary: In an exponential polynomial--say te t ranomial - -  
we will often put 

not1 note n0cs n0t4 0~1 +062  + ~x3 +~x4 = I 

m~ m2 m8 m4 ~zl m l + o ~ , m 2 + ~ 3 m 3 + ~ m 4  = x 

leading to four similar Bessel functions 

n ~  
n ~ e  - ' ~ - ~  . B1 ( n ~ y )  - -  i / ~ ;  ~ . e - ~ - ~ .  I1  ( 2 1 / ~ )  

Theorem 17: (my "first solution", Colloquium Leppilampi 1956, 
New York 1957): Systematic researches (in traffic, motor car and 
other branches) have proved that  an exponential trinomial or 
tetranomial will always be sufficient to express 

tY(x) : distribution of number of claims ~ x ~b(x) = - - ~ '  (x) 

S x +(x)dx  = d is t r ibu t ion  o f  c la ims  amoun t s  slightly smoothened 

out and with a maximum relative error of some percent. 
Consequently, the transformation problem is resolved with a 

small relative error by three asterisk multiplications. 

t / ~ y  e-~,-~,,. ~1 ( ~ / ~ )  , . . . . . . .  

* It/ n o ~ 4 ~ 4  _ 

.LV~7~-~. e ~'~'~. ~i 12t/n~4yl ] 
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Actual integrations are simplified by  using a special integrating 
method, similar to the methods by  Simpson and Gauss bu t  based 
on exponentials. Making a small table for, say, n = IOO, 2oo, 5oo, 
I,OOO, 2,000, 5,ooo, IO,OOO, IOO,OOO conserving some values of y 
from the integration process, we obtain a complete solution of the 
transformation problem and not only an asymptotic solution 
slowly converging (Cf. next theorem). 

Up to this point analysis has been made without detail reference 
to exponential polynomials .--Now it is necessary to combine 
different elements. A good example from practical analysis is given 
by  motor car and traffic 195o, but  quite similar to modern figures 
(values in the unit I,OOO Sw.Cr. c~ m = mean value of individual 
claims) 

~F(x) = 0,75 • e -4~ + o,z8.  e -x + 0.05. e -°'3~ + 0.02. e - ° ' °~  

( x )  = - -  ,r'(x) 

Assuming n = IO.OOO the mean value of y = M = io.ooo.ooo = 
IO.OOO units m (Excess mean values approximately o . .  i .ooo:c~  
300, I.OOO... 20.o00 : ~ 2.500, 2o.000 : ~ 40.000). 

Second solution: Integrating by asymptotic formulas and b y  
the properties of one " n o r m a l  distribution" serving as reference. 

(Only some head points of the proof are given) 

x. 0(n I ~F(x) = u le -~  ~ + m~e-~, ~ + ~3e-~, • + ~e-~,~ { y) 

2. Elementary solution 0 (n I ~b(x) = ~e-°X I y) = 

, - °  

3. Asymptotic formula (according to Hankel) 

e ~ (  o,375 ) 
zl( ) + "  

4. The following important lemma is proved: 
Assume nlrnl  + n2m2 = n . m  ( n = n l + n 2 )  andfl(x) * f~(x) = F(x )  

Then f l ( z )  * f , ( z )  = F(z)  is valid with centralized variables 

We now introduce the centralized variable 
y = n . m + z ;  ~ = I /m;  ~y = n + ~z; 2 [ / ~  = 2 n . [ / i ~ n  
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5- Elementary solution 0(hi ~ e - ~ X [ y )  

n e - ( ~ n + ' z - - ~ ' ~ "  ( 0,375 + . . . )  

~ .IA + ~zln" V-~-~.~.-2-~n ~ - - ~  ~ 2..l/I +~zl n 
~Izl • • , ) 1  

6. First form of exponential e -n  ( ~  - -  T4~ + proves that  
it is dominated by e -~*z*j4n and converges although in 
another form e +~'z*lsn* is made free 

7. Second form of exponential e -~'zt14n . e +~*z'lsn'-+'' '  proves 
that  it can be divided into a strict normal term e -~*z'/*n 
and the series (factor): 

~z~ ~z~ ~z~ 
I + 8n 2 - (  ) i6n---- ~ + ( ) ( )n---- ~. . . 

We have now the full material to prove the following theorem 
although there is still some lengthy detail work. 

Theorem 18: Applying the Hankel asymptotic formulas to the 
elementary solution of the transformation problem by a Bessel 
function 11(2 Vnn~) this is transformed to the product of a "normal 
distribution" e -~*z*14~ and a set of short series with no, one or 
two terms to obtain the order (~z/n) 2 or ~z/n 2 . However, all 
groups of the order I/n~ have the maximum error O(I /n  3) and for 
groups with at least I00 claims this signifies i/i.000.000 = "nu- 
mericaUy exact" in further work. 

So far I have not mentioned the last point in the proof: integrals 
are taken from 0 . . .  + oo in y and - - n . m . . .  + oo in z. In this 
point, ( - - n m )  however, the exponential is extremely small, say, 
10 -I°° for some actual forms and should be taken t o - - o 0  without 
changing anything. By this simple device all integrals 

+ ~  

e -½~'. x~,dx can be calculated from the Laplace transforms 
--Q 

e - z *  + ( x ) d x .  
o 

We will now finish by the following two theorems on exact 
solutions of the transformation problem. 
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Theorem 19: Assuming t h a t  number  of claims n ~ I0,OOO and 
~(x) in the form of an exponential  te t ranomial  are given exactly,  we 
can form a numerical ly  exact  expression for the dis tr ibut ion function 

0(n I +(x) = ~lBle -~'x + ~ 2 e  -~,~ + ~s~3e -~,~ + ~4~4e-a,x I y) 

as the product  of an exponential  e -av' with a short  asympto t ic  
ser ies--val id from tha t  point upwards so long as ~b(x) is not  changed.  

Theorem 20: Under  the same conditions we can form another  
expression as a short  series in 

I i ,  I~ 13 /4 

All coefficients in both series can be calculated direct ly from n 
and the coefficients of the exponential  te tranomial .  

Detail  analysis will probably  prove tha t  the "normal  fo rmula"  
is only valid from n = IO.OOO, but  the Bessel series from, say, 
n = I 0 0 0 .  

Summary  of the t ransformat ion problem. 

The t ransformat ion  problem dealt  wi th  in the last par t  of this con- 
tex t  is an intr icate problem : statistics will give us frequencies and risk 
premiums and  the"c l a ims  curve = ~ (x)" (relative frequency of individ- 
ual claims x of different magnitude) ; the still more impor tan t  question 
of the distr ibution 0(nl +(x) [ y) of to ta l  claims amoun t  y cannot  
be solved by  statistics, s imply because risk will va ry  between 
risk classes and  between years. The impor tan t  problem is to 
calculate O(nl+(x ) [ y) from n = number  of claims and +(x). 

After  some discussions with Swedish colleagues I will give some 
fur ther  remarks on the integrat ion method.  

The new method  to determine 0(n ]~b(x) [ y) is based on the 
following technical sys tem:  

I. B y  risk statist ics we have determined +(x) = relat ive frequency 
of claim amounts  and n = a priori value of number  of claims. 
We wan t  to apply the me thod  from n = IO.OOO (or n = I.O00), 
where n should follow Poisson "exac t ly" .  

2. F rom +(x) we calculate an exponential  polynomial,  repre- 
senting ~b(x) almost  exactly,  or an upper  and  a lower limit curve 
+ +  and  ~1--. To have full control of later  figures, it  is impor tan t  
tha t  the m a x i m u m  relative error should be small. 



168 MODERN GENERAL RISK THEORY 

Note. Some authors prefer modified Poisson systems. In most 
cases the general method can still be appl ied--mutat is  mutanclis-- 
so long as the material includes exact statistical values of +(x) etc. 

3. Poisson + qb(x) ( =  exponential monomial) leads to  a simple 
elementary solution 

O(n l qb(x) [ y) = n . e - n - f i n  k [ (k  + I)[  
k - -D  

n 
e -n-~v I x  (2V'n--~-y) 

4. Now it is time to introduce the Hankel asymptotic formulas 

e~ ( 0,375 o , I I7I  9 o,Io253 o, I442_____o ) 
Ix(vt) ~ - - ~  I ~ + ~£----~--- -----~----  + ~L 4 . . .  

Instead of normalizing we will now put  

y = n .  m + z 13 = I / m  ~y = n + ~z 2 [ / ~  = 2nVI + ~z/n  

and conserve the mean value = n .  m (of total claims amount 
= y or -~) 

e - (l"n"~-z + |n)* 

o (n I ,¢,(x) = ~ e - ~  I y) - hi~. ~ I / ~ .  2nl/~ + ~z/n x 

[ 0'375 O, II719 ] 
x - + (2 1/i- 1 

By this method the elementary solution is divided into three 
components 

a. An auxiliary function = exact normal distribution, in z 
b. Supplementary terms to the auxiliary function 
c. Asymptotic terms representing the difference between asymp- 

totic formula and exact Bessel function. 

The auxiliary exponential factor has the form 
_ n ( ~ z  ~'z' )~ ~z  ~ ~'z ~ 

e \ 3 n  an  t ~ - ' ' "  OO e a n  e + s n  s 

Combining all facts it is easy to prove 

a. All integrals can be taken from - -  oo to + oo instead of - - n  
t o +  oo 

b. Assuming as before that  total n > i.ooo (and for all partial 
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groups n > IOO) all adjustment series can be limited to two 
terms and an error term in O(z3/n 8) and combined to one adjust- 
ment of the form 

i + az/n + bz21n~ + O(z3/n3) 

c. The asterisk product of two exponential monomials is effectively 
reduced to a problem of the form 

e -~'1~ (I + ~lt + ~it2) * e-t'12 (~ + ~ + ~t~) 

Finally the complete problem with an exponential trinomial 
or tetranomial is solved by successive asterisk multiplication. 


