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The response to the invitation for the 5th Colloquium has been, 
especially for subject I, very gratifying; a large number of meri- 
torious papers have been sent in. Fortunately,  it took not much 
time in this case to find a good guide for all this work. R. E. Beard 
presents in his article "Some Actuarial Aspects of Non-Life Insu- 
rance Company Management" 1) a broad cross-section of the many 
problems that  confront the non-life insurer. I t  was therefore 
regarded as not quite unwise to follow his steps and to discuss the 
other papers at  suitable points. 

In the first half of his work R. E. Beard deals with a practical 
example from motor insurance, which is fully calculated with the help 
of numerical data. The question relates to the estimation of the value 
of outstanding claims, a quant i ty  which is of decisive importance 
for the evaluation of the results of a portfolio. Apart from chance 
fluctuations which might affect the statistics from year to year, 
there are three major factors that  render the task of estimation 
difficult: 

(a) the natural growth of the portfolio 
(b) the fact that  bigger claims require longer time for settlement 

than the smaller ones 
(c) the change in the value of money with time. 

In order to reach the goal set, the following particulars of several 
successive periods of account are necessary: 

the number of claims intimated, the number of claims settled 
and the amounts of claims settled. 

1) This art icle has been enclosed in Vol. IV Pa r t  I. 
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The model on which the author bases his calculations emanates 
from the following assumptions: 

(A) the number of intimated claims increase each year by  5o~o 
(B) the distribution of the amount  of claims can be represented by 

an exponent polynomial 
(C) the value of money experiences a decrease of about zz~o per 

year 
(D) the period of settlement can be represented by exponential 

expressions with negative indices. 

On the basis of the model described just now, R. E. Beard 
calculates the data  mentioned before, which are essential for the 
determination of outstanding claims. These data  are his "observed" 
values. By his method the stochastic fluctuations which would 
otherwise characterise the basic data are diminished. Part ly this 
is to be regretted since the real value of the s tudy is to a certain 
extent lowered thereby: on the other hand it is presicely because 
of this method that  the other influences can be so exactly and 
pointedly analysed as would otherwise be the case. Considering 
that  here it is more in the nature of a striking illustration, this 
point of view does offer its own advantages. The author then 
shows how the given statistical data should be rectified in order 
to give due consideration to the disturbing influences of growth, 
inflationary trend and time lag to settle. This leads finally to the 
goal mentioned at the start- to the estimation of outstanding 
claims. 

The second section of R. E. Beard's essay deals with the question 
of rating. At first the importance of a fair risk premium is under- 
lined. The possible consequences of a less suitable premium structure 
are shown by a well selected hypothetical example. 

The need for a scientific t reatment  of the question is imperative 
especially here. In this respect, the author commends J. Mehring's 
paper in the "BlOtter" (Oct. I964) with its modern statistical 
methods. Opinions differ as to how the tariffs should be fixed and 
to what criteria should regard be had in order to realise a fair 
premium. At the last congress in Trieste, P. S. Delaporte has given 
an interesting solution with the help of the so-called "prime model@e 
sur le risque". 



lO8 D E V E L O P M E N T  OF RISK T H E O R Y  

In order to derive correct premiums for an insurance portfolio 
it is essential to have the knowledge of the underlying claim distri- 
butions. At this point we may now tackle the first important class 
of problems that  are to be dealt with in the present Colloquium. 

The evaluation of the distribution function of total claims 

The probability that  the total amount of claims is -~ x is given 
in the usual notation by the distribution function 

F (x, t) = P . ( t )  s*-(x) 
n - o  

For the distribution of the number of claims Pn(t) assumption 
is very frequently made that  

(Xt)" dU(X) Pn(t) = e-~ n! 
0 

where the two standard cases for the structure function U(X) 
are given by 

U(X) = ¢(X--I) (--~ Poisson) 

ucx)  = 

and 
k~ 

i f  F(k) e-V y~-X dy 
0 

(--~ negative binomial) 

However simple the determination of the moments of the distri- 
bution of total claims may  be, the difficulty of calculating the 
distribution function F itself is considerable. Even for elementary 
functions, the formulae are rather complicated owing to the nth 
order convolution. From the very early stage, therefore, one has 
been on the lookout for approximate solutions. I should like to 
point out here specifically the excellent and detailed survey avail- 
able in the article by H. Bohman and F. Esscher in the SAT I963. 
Apart from theoretical investigation, voluminous statistical and 
numerical data  have been treated in this article. 

E. Pesonen in his contribution "On the calculation of the gen- 
eralised Poisson function" points out further possibilities for the 



DEVELOPMENT OF RISK THEORY 10 9 

calculation of the total claim distribution, here, in particular, for 

F (x, t) = e-t S*"(x)  
n - 0  

His suggestions are as follows: 

(A) In order to determine the function F (x, t), resort may be 
had to the well-known Esscher-transformation. The author's first 
proposal consists in a slight modification of this often used method. 
The transformation parameter h in the defining equation is now 
supposed to be a variable too. If the number of terms taken into 
consideration is sufficiently large, this modified Esscher method 
can lead to the same result as the expansion in the next section (B). 

(B) The distribution function of the amount of claims can very 
often be adequately represented by  exponent polynomials. As 
mentioned before, R. E. Beard, too, has made avail of such a model. 
If the function consists of k components, then the corresponding 
distribution of total claims can also be formed out of k components, 
which must be convoluted with one another. For one component, 
5(%) = I - - e  -az, an approximation method may be selected 
which makes use of the asymptotic properties of Bessel-functions. 
In this special case, the density of total  claims for x > o is 
equivalent to 

Vta ii (2 ~ / ~ )  f(x,  t) = ¥ e-(ax+t) 

This possibility also offers auxiliary means for getting quickly a 
rough picture of the distribution function F (x, t), in case the 
distribution of the amount of claims does not deviate too much 
from the exponential distribution. 

(C) The distribution S(x) is approximated by  a step function, 
permitting the total claims to be represented as convolution of 
simple Poisson distributions. Instead of the function itself, upper 
and lower limits are calculated. 

(D) A random sample, originating from a stochastic variable 
with distribution function F (x, t), is obtained by  simulation. The 
random sample then serves directly as an estimation of the distri- 
bution function. These Monte Carlo techniques have found entry 
in various branches of economics in recent years. 
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(E) In the next section E. Pesonen introduces a mixed procedure. 
Here "mixed" signifies that  various methods may  be applied to 
the individual components of the distribution function F. Let 
F = F1 * F2 * F3, where F1 comprehends the claims ~ ~, F2 the 
ones between ~ and ~, and F3 the ones > ~. Then, F1 can be ap- 
proximated by  a normal distribution, whereas for F2 and F~ the 
Monte Carlo method may  be envisaged. To select the points ~ and ~q 
as well as possible is of great importance. 

(F) Finally, it has been pointed out that  it would be a material 
simplification of the problem, if a distribution function could be 
found, which always remains below the original function, which is 
thus "more dangerous". The general proposition put forward by  
the author can be proved in a special case, but  the question of 
general validity remains open. 

The paper of E. Pesonen offers a good deal of stimulus and 
deserves to be pursued further. 

In close connection with the topic of this paper is the next one 
of E. Hovinen " A  precedure to compute the values of the generalised 
Poisson function". The author gives some more details of the method 
marked above with (E) and uses it to set up a computer program 
for the calculation of the distribution function wanted. This pro- 
gram is explained thoroughly and written down in full for an Elliott 
5o3 Computer in ALGOL language. According to the experience of 
the author this method combines the necessary requirements of 
accuracy with computational rapidness. Some possible modifica- 
tions and improvements of the procedure are indicated. As E. 
Hovinen made it known in the discussion, the committee in Finland 
that  undertook the s tudy of these problems has not yet finished 
its work. However, numerical figures should also be available 
soon, and it will certainly be interesting to look at the published 
results. 

The weighty work of B. Almer "Modem General Risk Theory; 
On the Road from Risk Elements to Poisson and from Risk Statis- 
tics to the Exact Distribution of Total Claim Amount"  investigates 
the same problem in its last section. 

A first solution has been already presented by  the author in 
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New York I957. Systematic investigations have shown that  an 
exponent polynomial with 3 or 4 components is adequate to repre- 
sent the claims amount curve. Hence, the resultant solution is an 
asterisk multiplication of 4 similar Bessel functions. The author's 
second solution utilises the asymptotic expansion of Hankel 
functions. The application of this formula to the original elementary 
solution (solution for one component) permits representation in the 
form of a product of a strict normal term and a set of short series. 
An addendum gives some further explanations of the procedure. 
Here too, relations to E. Pesonen's essay, part  (B), should be 
borne in mind. 

But the paper of B. Almer is not confined to this special problem; 
it contains an intensity of other thoughts and gives a perspicuous 
insight in the fundamentals of risk theory in a very general manner. 
The first part deals with the brickworks of this theory- - the  risk 
elements--characterised by claims probability, claims curve and 
contribution to total claims amount. Risk systems or sets are formed 
out of risk elements. The author analyses their properties and 
explains various expressions and symbols. Then, three error 
theorems are derived. 

The first one is already contained in the New York paper of the 
author. The purport  is that  all individual risk systems satisfying 
a well-defined condition are determined by  two limits, a system 
with maximum symmetry  (homogenized system) and a system 
with maximum asymmetry (reduced homogenized system). A good 
estimate for the degree of inhomogeneity is shown to be important ; 
a valuable approach for this is the s tudy of the accumulating curve. 

The second error theorem deals with the relative errors of statis- 
tical quantities, in case the risk system has converged to Poisson. 
For the a posteriori number of claims v with an a priori value n, 
and consequently also for the claims frequency, the corresponding 
formulae have been known for a long time, while the analogous 
formulae for the amount of total claims v with a priori value y, and 
hence for the risk premium also, are a modern result. The third 
error theorem is, finally, analysed taking into account the uncer- 
ta inty of prognosis. 

The second part  of B. Almer's paper establishes the mutual  
connection between risk theory and probabili ty theory. It  turns 
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out that  the standard definitions of modern probability theory 
cannot be straight away transcribed in risk theory. In this con- 
nection, the third error theorem proves to be important. With the 
definition of stochastic disorder, various facts can be stated 
in form of theorems. 

Furthermore, inhomogeneous risk groups have been closely 
examined. The concept of risk lines is introduced with two possible 
systems, the branch form and the preselection form. With the help 
of these expressions a uniformisation theorem can be formulated. 

G. Andreasson's article "Distribution Free Approximation in 
Applied Risk Theory" 1) continues the thought process originated 
b y  H. Bfihlmann at the Trieste Colloquium two years ago. Bfihlmann 
then directed attention to the fairly arbitrary assumptions often 
made regarding the distribution function of the number of claims 
and the amount of claims and emphasised that for many problems 
the knowledge of the first two moments of the distribution was 
sufficient. His aim was to obtain estimates of these moments on a 
distribution free basis. For G. Andreasson the estimate of moments is 
merely the means to the goal of computing the distribution function F. 

The starting point for the consideration differs somewhat from 
the classic structure of the model indicated before. G. Andreasson 
proceeds from the standpoint of individual risks, that  is, he investi- 
gates the probabili ty that  I policy produces nl claims during the 
observed time interval. If the risk group consists of N independent 
policies and 

n = n l  + n2 + . . .  + n N  

denotes the total number of all the claims of the group, then, in 
addition, for the distribution of the number of claims one has to 
take an N-fold convolution into account. For the two standard 
examples, Poisson and Polya, this presents no difficulties whatsoever. 

H. Ammeter has already shown in his work published in the SAT 
1948, which has subsequently proved to be epoch-making, that  in 
Polya case for N --~ oo the distribution of the standardised variable 
of total claims z tends to the normal distribution ~ (z). For large 
values of N, the asymptotical expansion 

x) Pub l i shed  in As t in  Bul le t in  Vol. IV p a r t  I. 
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F (z, Nt )  = ~P(z) - -  ~. ¢b~'")(z) 

may be used, where 7 has the usual meaning. The author makes 
the assumption that  this relation holds good even where the 
population of the number of claims is not exactly distributed 
according to Polya (Poisson). The principal task then consists in 
estimating the moments contained in z and ~,. This can be done, 
as mentioned before, without any knowledge of the underlying 
distribution, on the basis of the empirical moments alone. The 
expressions for the mean and for the variance agree with those 
given formerly by  H. Bfihlmann. 

In order to compare the merit of the method, the author has on 
the one hand calculated the distribution function of total claims 
for statistical data  from the Swedish third par ty  motorcar insurance 
in accordance with the distribution free method described. On the 
other hand, the observed values have been fit ted with a typical 
standard model (distribution of the number of claims = Polya;  
distribution of the amount of claims = exponent polonomial with 
4 components), and the distribution function has been calculated 
by  the Esscher method. At least, for large values of N ,  there exists 
no material difference between the two methods. This result is a 
valuable one, but  not really surprising. 

The next chapter of R. E. Beard's paper deals with some of the 
problems of fire insurance. The present report shall not enter into 
this subject, since the topic is not supposed to be discussed in 
detail at this colloquium. 

In a further section, the author comes to the discussion of re- 
insurance. The trend towards forms of non-proportional cover is 
brought into prominence. Non-proportional reinsurance is essen- 
tially based on the hypothesis that  claim amounts can be regarded 
as random samples out of a population with known distribution 
function. Only then the calculation of reinsurance premiums is 
possible. Loading by  considerable margins cannot be helped, 
generally, to provide for possible high fluctuations. 

The interest of the actuaries in this field finds expression in the 
number of papers published year after year; even here 4 contri- 
butions have been presented. 
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Reinsurance  problems 
By the definition given earlier for the distribution function 

F(x ,  t), the net premium for a stop loss reinsurance that  covers 
the amount of claims by  which the total amount may  exceed x, 
is expressed by  the formula 

~(x, t) = ~ (z--x)  dF  (z, t) 
z 

and the corresponding variance 

2 ~ (z - -  x) 2 dF(z,  t) - -  ~a b y  ~ = 
z 

I t  is to be observed that this variance is smaller than the variance 
reduction experienced by  the cedent through surrender of his part  
portfolio (Vide Borch at the I6th Congress in Brussels, I96o). 

F. Esscher, in his article "Some Problems Connected with the 
Calculation of Stop Loss Premiums for large Portfolios", has 

recourse to Ove Lundberg's theorem that, assuming S xdS(x)  = 
0 

sl = I, the distribution function of total claims F (st, t) tends to 
the structure distribution U(s) for large values of t. Analogous 
limit considerations can be envisaged for the premium and the 
variance. 

The author initiates three investigations: 

(A) On extremely variegated reasons (to take into account, for 
example, heterogeneity, contagion, cumulative claims), the r-func- 
tion has been used for the structure function. This choice is however 
not peremptory; other functions may  probably give better  results. 
Theoretically, various alternatives have been put  forward already, 
including e.g. in an article of the rapporteur ("B1/itter" 1962 ). I t  
is very creditable that  the author has for once indicated in terms 
of figures the effects of various structure functions to be investi- 
gated. 

The resulting differences between the various methods appear 
to be surprisingly small, especially in the neighbourhood of s = i. 
If, as usual, a loading of an c-multiple of the standard deviation 
on the net premium is consequently suggested, then the influence 
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exerted on the premium by  the choice of the structure distribution 
appears to be of slight importance. 

In view of these considerations the author continues his work 
on the basis of the classic hypothesis. 

(st, 0 (st, t) 
lim - -  an asymptotical (B) For the difference t ~_~ t 

representation has been derived. Even here numerical tables are 
given. They show that for large values of t the mistake made by  
calculating with the limit instead of ~ (st, t)/t is of little weight. 

(C) In the last part, F. Esscher comes across another interesting 
question. The hypothesis put  forward is that  the portfolio can be 
broken down into 2 (or more) subgroups, independent of each 
other. H. Ammeter has already (in the "Mitteilungen" of the 
Swiss Actuaries, 1957) paid attention to such a division of the risk 
aggregate into subgroups, having regard to excess claims and ruin. 

By  generalisation of Lundberg's theorem it is possible to deter- 
mine with the help of characteristic functions the limiting value 
of F (stsl, t), when t ~ oo. The calculation of the limit value for 
the net premium of stop loss reinsurance has been obtained with 
the help of the transformation named after the author. And here 
mmlerical values have been tabulated under various assumptions. 
For example, it is very gracefully shown how through the division 
of a portfolio into 2 subgroups, where for each subgroup the ex- 
pected total claims amount to 50% of the total claims of the undi- 
vided group, the stop loss premium (for the same k in each subgroup) 
reduces sharply. On the other hand it appears that  a stop loss cover 
that  comprises all the independent groups in one lot is to be pre- 
ferred to the individual coverage of these several groups. 

Other two contributions deal with optimum properties. 

E. Pesonen raises again the problem of the optimum reinsurance 
form in his article "On Optimal Properties of the Stop Loss Rein- 
surance". Borch, in his work referred to earlier, and later on Kahn 
(ASTIN-Bulletin 1961 ) in a more general form have shown that 
the stop loss reinsurance is most efficient in the sense that  it keeps 
the variance of the part retained by  the cedent to a minimum. The 
present note gives a rather different, elegant proof of this fact with 
the help of conditional expected values as defined by  Doob. 
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Great interest deserves the paper of H. G. Verbeek "On Optimal 
Reinsurance". 1) By conclusion of a reinsurance contract the cedent 
desires to attain a certain stability for his portfolio at lowest cost. 
The variance of the part of risk retained can adequately be regarded 
as a measure of stability. The author assumes that  a reinsurance 
policy is effected in accordance with a surplus system with reten- 
tion U. By increasing this retention the costs of the cedent can be 
reduced, but then of course allowance must be made for a smaller 
stability. The question therefore arises whether the earlier stability 
may not be reattained by an appropriate stop loss reinsurance, 
keeping nevertheless the costs below the earlier level. In a certain 
sense even this work is a continuation of the thought of Borch who, 
as just stated, has shown that  the stop loss, within the meaning 
of maximum stability, represents the most effective form of re- 
insurance. However, he ignores the loading on premiums, a matter  
which from the practical point of view, especially in stop loss 
contracts, should not be overlooked. It  is therefore not surprising 
that,  in consideration of this fact, a pure stop loss reinsurance does 
not represent the cheapest solution of the problem. 

The author resorts to the usual model, number of claims Poisson 
distributed by mean t, distribution of the amount of claims S(x). 
If a surplus reinsurance is in force, it is equivalent to a truncation 
of the distribution function S(x) at point u, the probability measure 
of the interval (u, oo) being concentrated at point u. For the compu- 
tation of total claims the variable x is standardised and the Edge- 
worth expansion is applied. 

The stop loss reinsurance which is now required to be effected 
takes into account the mean claim tsl(u) of the total claims 
distribution. All claims in excess of the limit vtsl(u) are covered 
by the reinsurer. Net stop loss premium and variance are calculated 
with the help of the transformation and expansion mentioned 
above; then the moment condition about stability stated before 
is formulated and discussed. A main result is that  a stop loss 
reinsurance cannot reduce the variance to less than approximately 1/3. 

The costs of reinsurance are composed of two parts: 

(a) Total profit margin y, which will be ceded on retention u. 

l) P u b l i s h e d  in  A S T I N  B u l l e t i n  Vol .  I V  p a r t  I.  
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(b) Loading for net stop loss premium, a fraction , < i of the 
standard deviation of this premium. 

The author calculates the minimum of this function of u and v 
under the auxiliary condition of constant stability. It is relatively 
easy to show that  neither a pure stop loss reinsurance (u = oo), 
nor a mere surplus form (v = oo) represents the minimum, but  a 
combination of both. An illustrative numerical example of the 
theory is given with y = 5% and ¢ = 50°/0 and a gamma distri- 
buted claim amount. 

In this connection, the somewhat belated paper of G. Benktander 
and J. Ohlin "A Combination of Surplus and Excess Reinsurance of 
a Fire Portfolio" is very interesting too: here, also, two reinsurance 
systems are joined. G. Benktander emphasised in his personal 
comments the importance of opt imum reinsurance properties, but  
the present paper is merely thought as a preliminary note con- 
cerning the interplay between the two premiums R(M) and ZcM(m). 
The first means the ceded risk premium volume on surplus basis 
with a PML-retention M, the second the corresponding excess of 
loss premium with a priority m and the just-mentioned surplus 
retention M. Some simple attr ibutes of tile two functions can be 
derived without difficulties. For a more accurate s tudy something 
about the claims amount distribution must be known. With two 
rather specific assumptions, this distribution turns out to consist 
of a uniformly distributed part  over tile interval (o, a) and a 
Pareto-distributed part over (a, oo), where a signifies the truncation 
point of the Pareto distribution. Now the quantities R(M), ~M(m) 
and their sum, the total volume of risk premiums ceded on both 
systems, are calculated by  relatively simple formulae. An illustrative 
numerical example concludes the note. 

The last section of R. E. Beard's survey is concerned with 
"accounts and s ta tutory returns". The thoughts contained in it 
enter, in particular, the realm of subject 3. One of the material 
questions in this connection is that  of the possible ruin of the 
insurer. A paper dealing with a more theoretical aspect has been 
kept for discussion in the section of risk theory. 

In "The Random Walk of a Simple Risk Business" 1), H. L. Seal 

1) P u b l i s h e d  in A S T I N  Bu l l e t i n  Vol. I V  P a r t  I. 
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reproduces  in a succinct form the contents  of a lecture del ivered 
at  his universi ty.  

A simple risk process is def ined as a business with only  one type  
of cont rac t  under  which, in considerat ion of p a y m e n t  of a unit  
premium,  an insured sum m (m integral) becomes payable  on the 
happening of the  claim event.  After  a historical sketch of the 
h i ther to  exist ing possibilities of get t ing hold of the problem, the 
au thor  follows up the me thod  known f rom sequential  r andom 
sampling. The  process is represented  as a r a n d o m  walk along the 
x-axis, beginning wi th  a posi t ive value (initial reserve). If no claim 
even t  occurs, a step is t aken  towards  r ight  (with probabi l i ty  p);  
if it occurs, m steps are t aken  towards  left (with probabi l i ty  q). 
The  process is supposed to have  the  upper  l imit M, which means  
t ha t  as f rom the m o m e n t  the  risk reserve amounts  to M no fu r the r  
p remiums have  to be paid. On the other  hand,  ruin results if at any  
m o m e n t  point  zero is reached or crossed. Two probabili t ies m a y  be 
dist inguished here:  

(a) v~,n = probabi l i ty  tha t  wi th  given reserve x 
ruin occurs on the n th  step 

(b) v~ = ~ v~,n = probabi l i ty  tha t  with given reserve x 
" - '  ruin occurs at  any  m o m en t  whatever .  

The  simpler case b) with m = 2 has been t r ea ted  b y  Feller in 
t e rms  of the t heo ry  of games. The  probabi l i ty  ux = I - - V x  obeys 
a difference equa t ion  wi th  m b o u n d a r y  conditions. To solve this 
sys tem of equations,  two methods  are given. For  large values of x, 
the  approx imate  solution for ux is 

u~ ,~  C1 + C~ X x 

where X signifies the  posit ive root  ~-I of the equat ion  

pzm - - z m - 1  + q = o 

C1 and  C, are de te rmined  according to the b o u n d a ry  condit ions 
for x = o, M. 

Feller 's  me thod  of generat ing funct ions gives a somewhat  more 
accura te  asympto t ic  result.  

Case a) can be t r ea ted  by  similar considerations.  
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The author underscores his exposition with several numerical 
quantities, which permit a better picture to be drawn of the order 
of magnitudes of the corresponding values. 

Finally, it must be said that  the submitted papers contain an 
intensity of thought, enriching our field of science in many directions. 
Regrettably, it was only possible to reproduce them incompletely; 
but  we hope that  this report will provide at least some stimulation 
for further study. 


