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1. REVIEW OF THE THEORY OF COMPOUND POISSON PROCESSES 

I. Definitions 

A compound Poisson process, in this context abbreviated to cPp, 
is defined by  a probability distribution of the number m of events 
in the interval (o, "r) of the original scale of the process parameter, 
assumed to be one-dimensional, in the following form. 

nm(~) = S e -vt (vt) ~ d~, U(v,  ,r) / ml,  (1) 
0 

where f kit du shall be inserted for t, X. being the intensity function 
0 

of a Poisson process with the expected number t of events in the 
interval (o, .) and U(v, ,~) is the distribution function of v for every 
fixed value of ~, here called the risk distribution. If the inverse of 

f Xu du = t is substi tuted for ~, in the right membrum of (I), the 
@ 

function obtained is a function of t. 
If the risk distribution is defined by  the general form U(v, .~) 

the process defined by  (I) is called a cPp in the wide sense (i.w.s.). 
In the sequel two particular cases for U(v, ~) shall be considered, 
namely when it has the form of distribution functions, which define 
a primary process being stationary (in the weak sense) or non- 
stationary, and when it is equal to Ul(v) independently of ,.  The 
process defined by (I) is in these cases called a stationary or non- 
stationary (s. or n.s.) cPp and a cPp in the narrow sense (i.n.s.) 
respectively. If a process is non-elementary i.e. the size of one change 
in the random function constituting the process is a random 
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variable, the distribution of this variable conditioned by the 
hypothesis that  such a change has occurred at -~ is here called the 
change distribution and denoted by  V(x, ,), or, if it is independent 
of -~, by  Vl(x). In an elementary process the size of one change is a 
constant, so that, in this case, the change distribution reduces to the 
unity distribution E(x - -  k), where E(~) is equal to i, o, if ~ is non- 
negative, negative respectively, and k is a given constant. 

2. Characteristic functions of a non-elementary s. or n.s. cPp subject 
to certain conditions 

The following is a brief summary of a proposition given by the 
present author (in its original form in a report to the R~tttvik Collo- 
quium of ASTIN and in a slightly more general form in a report 
to the International Congress of Actuaries in London, the first- 
mentioned report has been published in Skand. Akt. Tidskr. 1961 
and the latter report in the Transactions of the Congress). 

Suppose that  the primary process is a cPp i.n.s, with the change 
distribution H(v), and that the change distribution of the s. or n.s. 
cPp is Vl(x), both being independent of ,. Then the probability 
distribution of the number n of events in the primary process is 
obtained by  the substitution of Q~(~), G(u), u, s, n for Pm('r), 
U(v, "r), v, t, m respectively in (I). Without restricting the generality, 
we may  assume that both G(u) and H(v) are of mean i, then s, 
st represent the expected number of events in the interval (o, ,) 
for the primary process and for the s. or n.s. cPp respectively. If 

Q,~(.c) H't*(v) is inserted for U(v, .~) in (I), here and in the sequel 
t t - - $  

the n th asterisk power of any distribution function denotes the 
n th convolution of the function with itself for n > o and unity for 
n = o, Pm('r) of the s. or n.s. cPp is obtained. By introducing the 
parameters s, t into the functions Pm('r), Qn('~), these are transformed 

to functions of s, t and s, which are designated tim(s, t), Qn(S) 
respectively. By these transformations and by  the reversion of the 
order of integration and summation (permissible on account of the 
asymptotic properties of the integral and of the sum) the following 

relation, where Rm(t, n) has been written for ~ e-Ve(vt) m dH n* (v)/m!, 
is obtained. ° 
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/Sin (s, t) = ~ Qn (s) Rra (t, n), (2) 
s - @  

where by the properties by the Laplace transform/~0(t, n) = Rn(t, i). 
This leads to the following relation for the characteristic functions 
defining the s. or n.s. cPp subject to the conditions mentioned above, 
~(-~; s, t), where ~ is a real variable. 

~(~; s, t / =  do {s [~ - -  i~o Et (1 - -  ~ e ~" dr1 (x) I, 1] ] } (31 
Q 

The functions Ro [t(I - -  ~ e ~.2 dVl(X) ), I] define a process, which 
o 

may be called the secondary process, the expected number of events 
in this process in the interval (o, z) is equal to t. 

3. Characteristic functions defining processes with z-dependent change 
distribution 

Esscher extended the well-known characteristic functions defining 
a Poisson process with the change distribution Vl(x) to the case, 
where the change distribution is z-dependent, or after transforma- 

tion of the parameter to the operational scale, equal to V(x, t) say, 
(Skand. Akt. Tidskr., 1932) by the proposition, that  in this case 
the characteristic function corresponding to Vl(x) should be re- 
placed by the mean of the characteristic functions corresponding 

to  V(x, t) with respect to t. The present author extended this deduc- 
tion to include the so called generalized Hofmann-processes, for 
which the intensity function for n = o could be written 

l 

,-1 ~2qJ(I+sflL]-a'' a I >o,q,_ > o , s ,  > o , / > I , _  (the report to the 

Ritttvik Colloquium, quoted above) by using a transform of the 
characteristic functions defining such processes with change distri- 
bution Vl(x), in the form of such functions for a Poisson process. This 
transform, also deducted in the paper quoted, is a generalization 
of such a transform of the Polya process introduced by Ammeter  
(Skand. Akt. Tidskr., 1948 ). Recently, Thyrion has generalized 
the Poisson transform to a much wider class of cPp (Bull. de l'Ass. 
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Roy. Act. Belges, 1959 and a manuscript published in 1963). By 
using Thyrion's results, briefly reviewed in the next section, a 
similar generalization of Esscher's theorem to include this wider class 
of cPp can be obtained. As this leads to rather unhandy relations, 
a generalization leading to a relation in the same form as for the 
Poisson process shall be given in section 5. 

4. Br ie f  summary  of Thyrion's  results 

Let a parametric space ~ ,  in one or more dimensions define the 
parameter ~ and another such space with the same number of 
dimensions fl~ define the parameter 9. If ~, can be mapped with 
one-to-one correspondence on f~  and vice verse, by the transforma- 
tion Fl(Z, o~) = F2(z, ~), where Fl(X, ~) and F 2 (y, 9) are the distribu- 
tion functions of the variables X and Y respectively, then X and Y 
are said to be equivalent. 

Let g~,(z), ~ = I, 2, 3, h,(z), ~ = I, 2, j(z) = gl[hl (z)], where z is 
a real variable, be the generating functions of X~, Y~ and Z 
respectively. The necessary and sufficient condition for Z being 
equivalent to a variable with the generating function g2[h2 (z)] 
is that  X1 is equivalent to a variable with the generating function 
g~[g3(z)]. If X1 and Y1 both assume only non-negative integral 
values, the distribution of Z with the generating function gl[hl (z)] 
is called a bunch distribution, where X1 and Y1 represent the 
number of bunches and the number of elements in one bunch 
respectively. Every bunch distribution, which can be interpreted 
as a cPp i.n.s., has a generating function of the form exp 
{-- 0(t) [hi(z, t) - -  I]}, where 0(t) < o for t > o, 0(o) = o. If, in addition, 
lim 0(t), for t tending to infinity, is equal to - -a ,  o < a < oo, the pro- 

bability of non-occurrence of an event in the interval (o, ,), /~0(t) 

f ,7 a m 
say, can be written e-Vt dv e-a m, • , -o  mt K a  (v , where 

0 

S e ~t~ d K  (4) = I + 6(-- ~i). Thyrion's result involves that  a cPp i.n.s. 
0 a 

subject to the condition mentioned can be considered as a s. or n.s. cPp 
for which the primary process has been reduced to a Poisson process 
with a constant expected number of events equal to a. The necessary 



EVALUATION OF OUTSTANDING LIABILITIES  219 

and sufficient condit ion for the existence of a Poisson t ransform 
of a cPp i.n.s, with v-independent  change distr ibut ion is tha t  the  

probabi l i ty  of non-occurrence of an event  in (o, v), P0(t), tends to a 
posit ive limit less than unity.  

The characterist ic functions defining a cPp i.n.s, fulfilling this 
condit ion and having a z- independent  change distr ibution Vl(x) 
can be wri t ten  in the  form 

~F (~, t) = exp - -  

o~ 

0(,, 0,,, log 
V - I  

Z = f e r~fx d V l ( x ) ,  where ~ is a real variable;  
0 

(4a) 

(-- t) ~ 
q~(t) - o(~) (t); ~ q~(t) = - -  o(t) .  vl 

V - 1  

For a cPp i.n.s, defined b y  the distr ibution functions 

o* 

/v t) = ) ' ,  ? . ( t )  2 w " *  (x, t) (x, 

where 2W (x, t) is the t ransformed change distr ibut ion and Pn(t) 
the  probabi l i ty  dis tr ibut ion of the number  n of changes in the 

interval  (o, t) on the operational  scale, a relation be tween 2W (x, t) 

and 2P" (x, t) can be defined b y  the following relation be tween  the 
corresponding characterist ic functions z~¢ and 2zt respect ively b y  
using (4a) and Esscher 's  deduct ion 

dO [t (I - -  2~t)] = 0 [t (I - -  ~ze)] (4b) 0(t). dt 

5. A direct extension of Esscher's theorem 

Consider a cPp i.n.s, for which the probabi l i ty  dis t r ibut ion and 
the change distr ibution are denoted as in the end of the  previous 

section. Let  tF (~, t) represent  the  characterist ic  functions corre- 

sponding to F (x, t). The left indices of W, V, ~, z shall be omi t ted  in 
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this section. By the definition of W (x, t) we obtain tF (0, t ) =  

= ~'o It ( i  - -  ~t)]. 
The probability of the combined event that n changes has occurred 

in the interval (o, t + A t) and the random function attached to the 
process does not exceed nx at t + A t is by the basic forward dif- 
ferential equation given by the following expression (5a). This is 
based on the fact that  the occurrence of n changes in the interval 
(o, t + A t), n > o, implies the occurrence of either n or n - - I  
changes in the interval (o, t). The parameter is here measured on the 
operational scale. 

~. (t + At) ~ , , *  (x, t + At) = P - . - 1  (t)At P - . - 1  (t) 1 ~ < - - ' *  (x, t) 

* V (x, t) + (I --/~,~ (OAt) fin (t) V n* (X, t) for n > o (Sa) 

1~o (t-FAt) = (I  - - /~o ( O A t ) / ~  (t) for n = o 

Here pn(t) is the in tens i ty  funct ion of the process. 

By the theory of cPp i.n.s. 

(a) t p . - 1  (t) ~ . _ ~  (t) = n ~ . ( t )  

n Pn (t) ~t n I [ e_Vt n (v~tt) n dU1 (b) (~)/n! 
7 7 = 7  *#  

Using the identity (a) and multiplying (5 a) by e ~x and integrating 
over x from zero to infinity the following relation (5b) is easily 
obtained. 

- -  _ n J v I  n P .  (t + At) P .  (t) n Pn (t)~ -1  zt P . + I  (t)~t (5b) 
At t t 

Using the identity (b) we may  write 

I_t nPn( t )~ ,  --~t e - - v t ( I - - ~ t ) v d U l ( v ) -  I - - ~ t - - t ~ ;  3t 
~ - 0  a 

and inserting this expression into both terms of (5b), summing 
from o to oo, the limit passage for At tending against zero leads to 
the differential equation 

s 

t~ t = zt - -  ~, (5c) 
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if A solution of (5c) is ~ = ~ zu du. Thus, the distribution func- 
0 

tions defining the cPp i.n,s, with 2V (x, t) as change distribution 
can be written 

Po [t(I - -  z~,)]. (6) 

or by the substitution of 2W (x, t) for V1 (x) in (3), this relation is 
generalized to include also a change distribution dependent of t, 

where 2W (x, t) is the mean of ~V (x, t) in the interval (o, t). It  shall 
be remarked that  this result was earlier derived by the present 
author for the special case, where the cPp i.n.s, is a Polya process 
(Trans. XV th Int. Congr. Act., New York 1957, II pp. 268-269). 
Further, (6) is a particular case of a general theorem given by Jung 
(in a paper read at the AsTI~ Colloquium 1963) not known to the 
present author, when his report to the Colloquium was prepared. 

If we observe that  both s and t in section 2 have a one-to-one 
correspondence to 7, it is evident that  one-to-one correspondence 

exists also between s and t, and /~o It (I - -  ~ e ~** dVl(x) ), 11 can 

be regarded also as a function of s, ~, say. If in a particular case 

there exists a z, = f e *** dV(x, s) such that  it has the relation 
0 

(5c), then, (3) can be written in the form Q0 {s(i - -  ~,)) and be 
interpreted as the characteristic functions for a cPp i.n.s, with the 

change distribution 17(x, s) dependent on s. Further,  if in a particular 

case ,~t in (6) can be written in the form S0[q(I - -  ~q)l, where t and 
q are similarly related as s, t, the insertion of the latter expression 
for the integral in (3) leads to a generalization which involves an 
iteration of the compounding of the primary and secondary process 
as described in section 2. 

6. Further generalizations of (3) 

In the sequel the following considerations will be useful. Let each 

event in the primary process, defined by Qn(s) in section 2, be 
associated with a change in two random functions instead of only 
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one, and assume that  the changes in these functions are mutually 
independent. Let, to begin with, the change distribution for the 
first random function be H(v) of mean unity as defined in section 2, 
independently of ,~, and let the change distribution of the other 

random function be iV(y, s) with the corresponding transformed 

change distribution 1W(y, s), defined by the relations given in the 
previous section. Let, further, the expected number of events and 
the change distribution of the secondary process depend on y, t v 
and 2V(x, ~, y) say. The transformed change distribution of the 

secondary process ,W(x; t ,  y) will, then, have the character- 

istic function 2~t v (~, y) ~ Se u~ d x 2W(x;t  v, y) equal t o -  I / du 
0 t o  

j" en*X dx ~V(x, u,y). The characteristic functions of the s. or n.s. cPp, 
0 

considered in section 2 but  with these wider assumptions, can, then, 
be written in the following form 

S, t) = ~ Q~(S) i 1~ [ty ( I  - -  2~ty (~, Y) )' I ]  dy 1 W--~* (y, s) (7) 
u - O  0 

The remark at the end of the previous section with respect to the 
extension of the compounding procedure described in section 2, is 
valid also for (7). The last-mentioned extension can be iterated ad 
infinitum (cf. Thyrion, 1.c., who calls this type of distributions 
for three components "distributions par grappes de grappes" and 
for more than three components "distributions par cascades de 
grappes"). In this paper only processes with two components are 
considered. The remark with respect to the double interpretation 
of (3) generalized by (6), does not, however, generally hold for (7), 
as was pointed out by Jung. 

II. A N  APPROACH TO A GENERALIZED MODEL OF THE RISK PROCESS 

I. General principles for the choice of stochastic models 

In order to give certain view-points on the applicability of (7) to 
a model for the risk process, the application of (3) in many other cases 
shall be reviewed in this section. The applications refer to composite 
stochastic phenomena more or less related to the mechanism of the 
risk process, which shall be discussed in the subsequent sections. 



EVALUATION OF OUTSTANDING LIABILITIES 223 

Bartlett  (Probability and Statistics, The Harald Cram4r Volume, 
New York, Uppsala, I959, pp. 45-47) has given two examples of 
the application of models based on s. or n.s. cPp, one example 
refers to the distribution of bacteria in a culture created by  a 
group of parental bacteria and the other example to the spa- 
tial distribution of the progeny of randomly distributed parental 
plants in a plant association. In both examples the model for 
the parental distribution is a primary process and the model for 
distribution of the progeny of one parent is a secondary process. 
In the second example it is assumed, that  the plants of the progeny 
are independent apart  from the mutual  dependence within the same 
family arising from the position of the maternal plant. Bartlett  has, 
further, specified the assumptions with respect to the form of the 
probability functions involved, so that in both cases the marginal 
distribution i.e. the distribution of the progeny from all parental 
plants reduces to a negative binomial, characteristic of the Polya 
process. From these results he concludes " that  little information 
about the structure of a process can be expected from the marginal 
distribution and it is usually advisable to s tudy the interrelations 
in detail". He says, further, that  the specification problem of the 
probabilities concerned in processes for individuals labelled by  one 
or more continuous parameters is now solved "and this should lead 
to a better  grasp of the statistical analysis problem than previously 
available". The title of the paper quoted is "The Impact  of Stochas- 
tic Process Theory on Statistics". It  contains many valuable 
comments. In one of these comments he underlines the impor- 
tance of the much wider scope and outlook that  the stochastic 
process theory has given to the statistician. He says, (1.c.p. 48), 
"Thus even 'stock' examples and problems may be affected by  this 
wider approach; though more striking developments have naturally 
occurred in time series analysis and in other fields, where classical 
methods are quite inappropriate.". The statistician's greater 
breadth of outlook "will warn him to be rather wary of empirical 
analysis at least on non-experimental material, not based on a com- 
plete, and sometimes necessarily extensive, theoretical appraisal". 

In other papers on such models the primary process is often said 
to concern the distribution of "centers" and the secondary process 
is said to concern a ,,cluster of satellites" associated with each 
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center (cf. e.g. Matdrn, Meddel. Sta. Skogsforrskn. I n s t . -  Bull. 
Swe. Sta. Inst. Forestry Research, 49, 196o). A similar ter- 
minology has been used by R6nyi et al (Act. Math. Acad. Sci. Hung., 
I-II, 1951-1952 ) in the theory of composed Poisson processes, a 
remark by Kolmogoroff on these processes (1.c. I, p. 211) included. 
The connection between composed Poisson processes and cPp has 
been established by the present author (ASTIN Bull. 1963, II-3). 
As we have seen above, also Thyrion has used a similar terminology 
on the bunch distributions ("distributions par grappes") which on 
the conditions given in the previous part can be interpreted as 
probability distributions of the number of events in cPp i.n.s. 

In the report by the present author to the London congress a 
Markov process subject to the general conditions for the forward 
and backward differential equations and defined for a population 
of N(,) units, was analyzed as a result of the processes associated 
with each individual unit. This analysis lead inter alia to a proba- 

bility distribution in the form of tYro(t, n) as defined in (2), for the 
number of events in the interval (o, ,) of the process defined for a 
population consisting of n groups, the volume of each group 
being independent of n but may depend on ~. If the ~th semi-invar- 
iant of the risk distribution for each such group, i.e. of H(v), is 
denoted by ×~, ×1 by assumption being equal to unity, and the 

variance of Rm(t, n) is denoted by n~2, it was proved in the paper 

that  the characteristic function of (m - -  nt) / ~/n~2 can for large n be 
asymptotically expanded in the following expansion, valid also for 
cPp i.w.s., provided that the risk distribution of each group fulfils 
certain conditions. 

I I + 3 t×2 + t2xa (--ui) 3 i 
exp. ( - -u2/2)  . I + 3! (i + t×,) 8/2 V---~--  + ° ( n - l )  (8) 

which is a generalization of the well-known expansion for the 
Poisson process and of Ammeter's limit theorem for the Polya 
process. In the Poisson case the second term within the bracket 

reduces to (-- ui)8/(3 ! ~nt), and in the Polya case ×3 = x~. Evidently, 
the difference between (8) in the general case and the expansion 
in the Poisson case is of the order of (nt)-l/~. The difference between 
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(8) in the Polya and in the Poisson case is less than w (---ui) 3 e- t,/3 ~/nt, 
where, for t ×, = I, I/2, w is equal to o.128, 0,083 respectively; for 
more general processes, where x 8 is at most equal to 2 ×3 3,  w is at  
most equal to o.19o, O.lO 5 respectively. If t~, is of small order, 

Rm(t, n) can for large values of n be approximated by a Poisson 
probability distribution. 

2. The classical model of the risk process 
The risk process /n insurance is generally conceived, as if the 

amount payable on a given claim could be determined only by 
circumstances, which prevail at the time of the occurrence of the 
event insured against. Thus, no regard is paid to the dependence 
of the amounts actually payable on the development during the 
time period, when the payments are made. Accordingly the distri- 
bution functions of the accumulated claims are written in the form 

Pn(t) Wn*(x, t), where fin(t) is defined as the probability distri- 
I ¢ - - O  

bution of the number n of events in a cPp i.n.s, and the dependence 

of W(x, t) on parameter values exceeding t are not in principle 
accounted for, as (o, t) refers to the interval of the operational 
parameter scale during which the events insured against occur, 
but does not contain the time after t, during which payments for 
the claims may still be made. In numerical applications, however, 
to cases, where the group of claims under consideration, at least 
to the greater part, have been paid before the calculation, more 

or less conventional corrections on V(x, t) are applied with regard to 
the development during the period of the payments up to the time 
of calculation. Such an a posteriori correction does not account for 
the true interrelations involved. Bartlett 's  remarks on the use 
of a marginal process instead of a more complicated model, which 
accounts for these interrelations, seems to be a memento for the 
statisticians to widen their views on the mechanism of the risk process. 

3. An  approach to a generali,ed risk process 
The a posteriori correction mentioned at the end of the previous 

section can, however, serve as a starting point for an approach to a 
stochastic model for the part of the risk process for a single claim, 

x5 
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which refers to the period after the event insured against until all 
payments are made. Suppose that  for a given claim payments occur 
at the time points "~1, T~ . . .  T r on the original parameter scale, 
measured from the time point of the receipt of the loss advice, and 
that  the claim is finally settled by the payment  at T r. Then, the sum 
total of the payments at T1, T1 • • • T (eventually by accounting also 
for the interest, to be accrued or to be discounted, with respect 
to a suitable time of reference) or the accumulated amount paid 
for a given claim up to and inclusive the point T after the receipt 
of the loss advice represents a random function, which constitutes 
a stochastic process, defined by a probability distribution of the 
number m of payments from o to T after the receipt of the loss 
advice and by a change distribution, in this case dependent on the 
time point of the payment. This process may to begin with be 
called the secondary process of the risk, this term will in the sequel 
be restricted to a modification of the process just defined. The 
process, defined by the probability distribution for the number n 
of claims occurring for a given group of insurances in the interval 
(~0, ~), where the point ~0 is independent of the time-points for 
occurrence of the events in this interval, and by the change distri- 
bution H(v), independent of T, shall to begin with be called the 
primary process of the risk, subject to a modified definition in the 
sequel. The accumulated amounts of the payments made in the 
interval (To, T), where ~0 is used as point of zero and To > ~, for all 
claims having occurred for the interval (~0, "~) in the primary process, 
shall be said to constitute the generalized process of the risk. The 
modifications in the definitions for the primary and secondary 
process imply that  the former shall be defined as a process with 
two change distributions in the sense of section 1 6 from which 
follows a modification also of the secondary process. This will be 
discussed in detail in the sequel. In terms of the usual terminology 
in the theory of s. or n.s. cPp the occurrence of an event in the 
primary process may be said to constitute a center. To such a 
center is associated a "cluster of satellites" here being a sequence 
of payments representing a series of points in the period after the 
time point, when the loss advice was received, and up to the time 
T r after this time point. The secondary and the generalized risk 
processes are defined by the distribution of the cluster associated with 
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one center, and of the clusters associated with all centers respect- 
ively. 

4. The probability distribution of the number m of payments 
If the whole or a part  of the indemnity for a given claim is in the 

form of a life annuity or an annuity certain, the time point, when 
the amount of the annuity is fixed, shall, as is usually done in 
practice, be considered as the time point for a single payment  of 
the value of annuity. To begin with the following simplifying 
assumptions are made. 

(i) the loss advices are received immediately after the occurrence 
of the events insured against. 

(i J) the expected number of payments is independent of the 
amount payable. 

It is evident that  the number of payments for one claim occurring 
in two non-overlapping adjoining intervals of lengths ~ and ~ are, 
necessarily, strongly correlated. That  this is so is seen by  the follow- 
ing simple example. Suppose that  the claim is finally settled by  the 
r th payment  occurring at the end of the second interval, then, if I, 
2 . . .  r-I payments occur in the interval of length a the probability 
for r, r-I and r payments . . . . .  r to 2 payments  respectively in 
the interval of l e n g t h ,  is equal to zero, provided that r is fixed. 
If r is not fixed, a smaller probability for r payments  in the second 
interval will be the result of I or more payments  having occurred 
in the first interval and similarly for the other cases. One may, 
however, intuitively expect that  the number of payments for a 
given number n of claims will for large values of n in a time interval 
be approximately uncorrelated with the number of payments  
for the n claims in the previous non-overlapping interval. In fact, 
if the probability distribution of the number of payments for n 

claims is in the form of Rm(t, n) as defined in (2), Rm(t, i) is strongly 
heterogeneous in time and the secondary process for a given claim 

has dependent increments, while Rra(t, n) should be approximately 
equal to a distribution defining a homogeneous process with in- 
dependent increments. It  must be understood, that  the expected 
number t of payments  for a single claim must necessarily be smaller 
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than a given number. I t  is likely, that  this number is less than ×~1. 
(For the Polya process Ammeter has used ×~1 = 4o in numerical 
examples, and Esscher has found values of about 20-40 in material 
from general insurance). It has been proved above that, in this case, 

Rm(t, n) can be approximated by a Poisson process. Therefore, if 
the secondary process of each single claim were assumed to be 
Poisson processes, we should arrive at approximately the same 

result for all claims of the group. The implications in /~,n(t, n), 
due to the delays of the loss advices and to the dependence of the 
expected number of payments for each claim on the amount pay- 
able, will be dealt with further below. Also the influence of ~r being 
different for different claims shall be considered. 

5. The change distribution of the generalized risk process 

The change distribution of the secondary process depends on 
factors, which for motor insurance are the cost of living, of repairs 
and of spare parts etc. and for fire insurance with reinstatement, 
the building cost etc. It depends also on the att i tude of courts, 
and lawyers towards damages and the usage of claim settlement. 
All these factors are subject to a variation in time, which variation 
should be accounted for in the evaluation of the total amount 
payable for a claim. In such an evaluation one may also want to 
pay regard to interest accrued on or discounted from the payments 
with respect to a certain time of reference. The total amount payable 
for a claim depends, however, chiefly on the (absolute) extent of 
the damage determined only by the circumstances prevailing at or 
before the occurrence of the event insured against. If all other 
factors, the interest factor included, should be disregarded, the 
total amount payable for the claim is equal to the (absolute) extent 
of the damage as measured in money units with reference to the 
time for the occurrence of the damage. The change in the accumu- 
lated extent of the damages represents a random variable, y say, 

with the distribution function iV(y, 7) = iV(y, s), s being the 
operational parameter of the primary process, conditioned by the 
hypothesis that  an event has occurred at 7. Still with neglect of 
other factors, if the number of payments for an actual claim up to 
and inclusive the final settlement is mr, the mean of the transformed 
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change distribution of the secondary process should be equal to the 
mean of y divided by  m r and, consequently, dependent on y. If now 
all factors are taken into account, the primary process must be 
considered as having two change distributions in the sense of section 
I6 .  It is, then, natural to assume that the mean of the change 
distribution of the secondary process (before transformation) 
shall be equal to y/t r multiplied by  a function of % X(v) say, 
where Z(v) is assumed to be independent of y, and I/ t  r is 
the expected value of i / m  r. Z(v) shall, thus, account for the variation 
in time due to other factors of influence, the interest inclusive. 

If, thus, the assumption of a primary process with only one 
change distribution is dropped, the change distribution, iV(y, s), 
and its transform, 1W(y ,  s) shall together with H(v)  be assigned 
to the primary process, and a change distribution of mean 
y X(z)/t r to the secondary process. This latter distribution may  be 
denoted by  2V(trX/y, ~) = ~V(trx/y,  t) and the transfornled change 
distribution by ~W(trx/y ,  t). 

6. Discuss ion  of  the assumpt ion  (i) o f  section 4 

The secondary process for a given claim is principally defined 
only for the time interval on the original scale between the occur- 
rence of the event insured against, or, if dropping the assumption (i), 
from the receipt of the loss advice to the point "~r for the final 
settlement. In order to reach more simple formulae than such, 
where different intervals for different claims are accounted for, 
the secondary process for each claim shall be extended to include 
the interval between the absotute point of zero "~0 to the receipt 
of the loss advice and an interval of sufficient length from the final 
settlement to contain all the values of v r for the claims considered. 
The intensity function of a secondary process for a single claim is, 
then, identically equal to zero in these intervals. Thus, the estimate, 
for a group of n claims incurred in the interval (T0, "~) of the expected 
number of payments before the extension, being obtained by  the 
total number of payments  divided by  the harmonic mean of the 
number of claims incurred in subintervals in which the number of 
claims known to be outstanding is constant, will after the extension 
be obtained by division of the same numerator by  the total number 
of n claims. The expected number of payments for n claims in the orig- 
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inal process and in the extended process will both be equal to nt, 
where t is the expected number of the extended secondary process. 
Thus, by  ascribing the value t, obtained by  using n as denominator, to 
the secondary process for each claim, the same result for the expect- 
ed number of payments  in the period from ~0 to ,~ for all the claims 
will be obtained by the extended approach as by the original 
approach. In fact, the distribution of the number of payments  for 
each time period from ~o will by a high degree of accuracy be 
approximated b y  the extended distribution. Apart from terms of 
the order of n - 1  the difference between the characteristic functions, 
defining the original and extended distributions, is by (8) equal to 
e-u'/~(--ui)s/V~ ,invariant under the extension, multiplied by a 
function, w say, of the expected number of payments in the original 
approach in the interval (o, t), and of the ratio between the denomi- 
nators for the estimate of the expected number in the two ap- 
proaches, f say. It  is extremely unlikely that  the expected number of 
payments  of a single claim can ever exceed ×2--1/2, as explained here 
above. Assuming for a Polya process, where (×2t) ~ = x3 t2, that  the 
expected number in the original approach is at most equal to 0.5 ×~ 1, 
w will be equal to 0.048, 0.070 for f = 1/2, 1/4 respectively and in 
the limit, when f tends to zero, equal to 0.083, R.ra(t, n) in the limit 
being a Poisson distribution. If ×~-1 = 40, even 0.5 X2 "-1 is too high 
for the upper limit of the expected number of payments ill the orig- 
inal process. If this number is at most equal to 0.25 ×U~, w reduces 
in the limit for f--~ o to o.o31. Furthermore, by  the (formal) con- 
version of (8) the term considered will depend on the third differen- 
tial quotient of the normal function. The error when using the 
expansion for the distribution function of the extended process, 
will, if terms of lower order are neglected, be approximately equal 
to w~ V~ multiplied by  this differential quotient. For the standard- 
ized variable v being equal to o, the absolute value of this quotient 
is equal to about  0. 4, decreases to zero for v = I, increases to about  
o.18 for v = 1. 7 and, thereinafter, rapidly decreases. It  follows 
that  the relative approximation error in the distribution function 
of the standardized variable is of the order of (Io*nt)--~/2; it shall 
also be remarked, that  the difference between the variances for 
t = 0.5 ×~-~, ×~1 = 40 is about 0.03. The generalization of the numer- 
ical example by assuming the original process being a process with 
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x3 = 2 ×~ will not essentially alter the estimations made. If Rm(t, n) 
is associated with a t-independent change distribution, similar 
assertions hold for the distribution of the random function, as by  
the theory of cPp i.n.s, the k th semi-invariant of this distribution 
is a linear function of t*×, up to and inclusive i = k. 

As, however, by  the remarks of the previous section the change 
distribution of the original secondary process for one claim depends 
on t, the secondary processes cannot be extended without studying 
the effect of the extension on the change distribution. The sum 
total of all payments made in the interval from the absolute point 
of zero, ~0, to • for n claims, each of extent y, incurred in the interval 

~0 to -~ is in the mean equal to nt ~ dJ(u) f x d r 2W(ux/y,  t), J(u),  
0 0 

being the distribution function defining the distribution of t r 
among the different claims of the group, n and t being defined in 
terms of the extension. This sum, is evidently, equal to the corres- 
ponding sum expressed in terms of the original approach. As nt 
also is invariant under the extension, this applies also to the 
integral in the expression just given, which is the mean of the trans- 
formed change distribution of the secondary process weighted 
with dJ(u) as weight functions. This mean can be estimated in a 
sample function by  the sum total of the payments with appropriate 
interest factors. The invariance under the extension holds, thus, 
both for the expected number of payments and for the mean just 
defined. The effect of the extension on the semi-invariants of the 
2nd and higher order of the transformed change distribution, 
cannot be ascertained, however, unless specific forms of this function 
are assumed; such assumptions shall not be made in this paper. 

From now on also the assumption (ii) of section 4 is dropped, 
so that  the operational parameter of the secondary process, tv say, 
is assumed to depend on y. Let *v be the value of ,~ defined by  the 

~W 

inverse of the relation t v = ff ku du, then also the functions J(u,  y) 
0 

and X(,v) shall be substituted for J(u) and Z(,) here above. If 

X(tv)dt v = X('ry)d'r v then the increments of f X(u)du = S X(u) du are 
0 0 

needed for the prediction of the payments after the time for calculation. 
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The characteristic function of X(tv), Se'~'Zd~ [~,W(ux/y,  tv) duJ (u, y)], 
0 0 

shaU be denoted a~t~ (~, Y) = ~t v (~/Y)" By the assumptions leading 

to the generalized expression for the characteristic functions defining 
the s. or n.s. cPp in (7), the parameters s, t should correspond to the 
same interval (o, ,). The generalization of the deduction of (7) 
to cases, where s corresponds to (~0, ~) and t to (~0, ":), can be straight 
forwardly performed. Even in this general case (7) can be used as 
it stands, and, then, the characteristic functions defining the extend- 
ed generalized risk process are given in the form of (7) with 2~ v 

instead of ~ty.  One of the remarks under (7) was based on the one- 

to-one correspondence to • for each of the parameters s, t. For the 
extended generalized risk process this remark is, thus, valid, if v-~ 
has a fixed value. 

7. Discussion of the assumption (ii) in section 4 

The dependence of t on the amount payable for a given claim 
has in the previous section been restricted to a dependence on y, 
the extent of damage. Such a restriction made it possible to base 
the characteristic functions defining the extended generalized 
risk process on (7). Also the following considerations are based on 
this restriction. These considerations will give a tentative approach 
for a possible dependence of this type. This approach shall not be 
needed in the sequel and is meant only as an illustration, in many 
cases other approaches will be of greater use. 

I t  is likely that  the intensity function of the original secondary 
process for a given claim, will for values of , ,  which are near to the 
receipt of the loss advice, be slowly decreasing with y, as a small 
claim is on an average settled at an earlier time point. For higher 
values of "r, however, the intensity function is likely to be increasing 
with y, as the total number of payments for a large claim is on an 
average higher than for a smaller claim. Defining ~u as in the last 

section by the inverse of t v = J" xu du, then the approach v v = 
0 

(aT--b) 1°log y + c seems for Swedish conditions to give satis- 
factory results. For Swedish Third Par ty  Liability Motor Insurance 
y ranges from IOO Sw.Cr., values of IOO ooo Sw. Cr. or more occur 
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very seldom, the mean is equal to about 14oo Sw.Cr. If a = 0. 7 b 
and Vy = b w~(y) + c t h e n , -  wl(y) ~ 0.6, 0.9, 1.2, 1.5 and w 5 (y) = 
5, 7.5, io.o, 12.5 for 1°log y = 2, 3, 4, 5 respectively. This 
approach seems flexible enough 
given data. 

8. Remarks on the applicability 
previous section 

to permit of graduating any 

of the model introduced in the 

In the following part of this paper an illustration for the applica- 
tion of the theory propounded shall be given, which applies to some 
particular problems in the insurance field. It is evident, that  the 
model can be used for many other problems in this field. 

I t  shall here be remarked that  the domaine of application may  
be much wider. Before the extension of the secondary processes 
for each individual claim, these were defined for different intervals of 
the absolute time scale. Thus, the generalized risk process, as defined 
before this extension, did in this respect not agree with the definition 
given for cPp in the first part of this paper, where the parameter 
of the secondary processes, t, corresponded to the same interval 
(o, ~.) on the absolute time scale. In the original generalized risk 
process the secondary processes were defined for different time 
intervals. After the extension of these secondary processes according 
to section II  6 characteristic functions could be derived, which were 
in the form of such functions for s. or n.s. cPp as defined in (7). 
In cases, not necessarily in the insurance field, where the secondary 
processes for each individual are defined for different intervals 
on the absolute time scale, and fulfil the conditions with respect 
to the highest value of t given in section 6, a model of the form of a 
cPp may be used by the application of the extension procedure 
propounded in section 6, so that  by this procedure the 
domaine of application of cPp seems to have been materially 
enlarged. 

III.  ILLUSTRATION OF THE APPLICABILITY OF THE THEORY 

I. Estimation 
The conditioned mean, in terms of the extended process, of the 

amount of the payment in the interval (-r, • + d,) for a claim occur- 
red in the interval (3 0, ,~) with the fixed value y for the extent of 
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the damage will be denoted ~(y), where with purpose a suggestive 
similarity to common notations in life insurance technique has been 
aimed at. 

l'~(Y) = ~o(Y) Zo(*v), (Io) 

wherelo(y) = y i dJ (u , y )  and Zo(Z) signifies the function Z('~), defined 
. U 

0 

in section II 5, for the intensity of interest equal to zero and ~v is 

defined by the inverse of the relation ty = j" X u du. Let, further, 
o 

~(y)  d ~ (y) d Zo (~u) < 
. . . .  O ( I I )  

l, (y) dz  v Xo (*v) d "z v > 

and l,, ~t~ be the means with respect to 1W(y, s) of f~(y), ~,(y) 
respectively. Evidently, a table with double entry of the payments 
made in the period (.70, "~) for ny claims of extent y, which have 
incurred in the period ('71, .7), the rows and columns referring to v 
and y in suitable intervals respectively, should correspond to a 
select life table, if ~:(y) were to be positive. As a rule, however, 
~,(y) is negative, in this case the analogy is made complete by 
reversing the order of the rows. It is, therefore, possible to apply 
ordinary methods of mortali ty statistics for estimating ~,(y) 

from n v 1,(y), which corresponds to the estimating of the death 
intensity from the number of persons of a given number at a given 
age (y), who live to a certain age (T). It  is, evidently, advisable 
to graduate ~ (y )  with a suitable function, if such a function can be 
found. The expression for ~ ( y )  is likely to be simpler than the 
Makeham formula. When ~,(y) has been estimated the estimate of 

fo(Y) is directly calculated by using (IO).,It is easily seen, that  the 
estimation of Vt, from l~ in a table with single entry (v) corresponding 
to an aggregate life table can be made in a quite analogous way. 

Vt~(y) and ~ depend, generally, on the three values .70, .7 and % 
if they are independent of these values but depend only on the 

length of the intervals 0 -~ .7 --~0,  0 = , -  "~0 say, they might be 
called weakly stationary. For the prediction of Vt for an interval 

(-r, ~ + 0), retaining (.70, ~) for the incurrence of the claims, one can 
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use the estimate based on a table for an interval of length 0 be- 

ginning at ~ 0 - - 0 ,  provided that ~ is weakly stationary. If one 
cannot assume that this provision is true, a correction must be 
applied on the estimate when using it for prediction. 

Let, further, N~(y)and  N~ be defined by  

l~T:(y) = f lv(y ) e "Sv dv; N , =  f I v e -nv dv, (12) 
Q 0 

where the lower bound of the integral refers to the absolute point of 

zero ~o. n N~ represents the mean of the total payments in the in- 
terval ('~0, 7) for all the n claims considered, while n v N , ( y )  repre- 
sents the same mean for each value of y. The direct estimates 
for these means ought to be compared with the corresponding 
values calculated by  using the graduation for bt, ~ respectively for 
periods (~0, 7), where • is at most equal to the time of calculation. 

2. Comments on the estimations 

The choice between select and aggregate tables for the estimation 
depends of course on whether the amounts of the payments appear- 
ing in the compartments of the select table are large enough to 
permit of a select estimation. Also in other cases the aggregate 
estimation must be preferable. By  such estimation it is possible, 
without a material increase in the calculation work, to refine the 

analysis by  establishing aggregate tables for different 0 and 0. 
Such a differentiation will make it easier to predict ~, for periods 
after the time of calculation. As will be seen below in section 4 
the present author has earlier made a s tudy of this kind for evalua- 

ting outstanding liabilities. Further, by  using smaller values of 
the errors involved ill the extension procedure can be diminished. 
By the use of different tables for different groups of claims, it is, 
further, possible to estimate also the variances and, in principle, 
even semi-invariants of higher order than the 2nd order of the 
variables implied. If the data are completed with the number of 
payments,  and if the number of payments are grouped with regard 
to y, the select means and variances can be used also for a s tudy of 
the dependence on y. If a separate estimate of the integral appearing 

in 10(y) should be of interest, this might easily be performed in an 
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analysis of the total number of payments  for a group of claims 
finally settled before the time of calculation. Such an estimate 

seems not to be necessary, if only estimates and predictions for n N,  
are wanted. Neither the estimation of 1 W ( y ,  s) is in this case nec- 
essary. 

3. Outs tanding Liabil i t ies 

If T denotes a point in the r-scale, such that 0 = T -  ~ is 
sufficiently large to ensure that  the final settlement of claims, 
which have occurred in the interval from the absolute point of zero, 
"~0, to ~, shall occur before T, then the value at ~ of the liabilities 
for n claims known to be outstanding at the same time point is 
defined by  the following expression. 

T T _ _  

n # ,  ( N T - -  N~) = n e 8~ f l v  e -sv dv = n e s~ S e-SV dv f iv (y)dv l W n* (y, s) 
T T 0 

The corresponding "select value" is obtained by  substituting N(y) 

for ~" and lv (Y) for l, in the Ist and 2nd membrum, and by  

omitting the integration with respect to d v 1W n* (y, s) in the last 
membrum. 

The similarity with the technique of life insurance is striking. 
If regard shall be paid also to unknown claims a correction must be 
applied to (13). The correction can be made by  the addition of a 
term of the form of (I3), provided that the number of unknown 
claims can be predicted. The prediction can be based on estimates 
of the delay of loss advices for claims having occurred in the interval 

of length 0 = ,~--~0 beginning at ~ 0 -  T + ~. 
The calculation of outstanding liabilities is needed for the state- 

ment in the balance sheet and for the risk statistics. The require- 
ment of grouping is different in the two cases. For the balance sheet 
the differentiation of the estimate needs only pay regard to the 
grouping in the system of accounting. It  is, for the balance sheet, 
not aimed at exactitude but  rather at safety i.e. that  the statements 
are not to be made lower than the exact outstanding liabilities. 
For the risk statistics the outstanding liabilities of each statistical 
group must be estimated and added to a term representing the 
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total payments  before T of all claims incurred in (~0, ~) including 
also claims settled before T. 

4. An intuitive method for the estimation of outstanding liabilities 

If for n claims known to have occurred in the interval (~0, "~) 

the value n e 8: 2V, is estimated by  the payments actually made for 
these claims up to and inclusive the time point T, A s say, the ex- 

pression n e 8~ ( N T -  N,) can be written in the form 

A : .  ~ l v e -~v dr. (14) 

By the assumption that the factor of A s represents a weakly sta- 
t ionary function (cf. section i), the prediction of this factor can 
be based on statistics for claims having occurred in the interval of 

length0 = " ~ -  ~0 beginning at "~o -  T + T. 
In fact, about  twenty years ago, the present author intuitively 

introduced this method for the calculation of outstanding liabilities 

with 8 = o, 0 - ~  I. Aggregate tables were established for each 
value of T O and T in intervals of I year. The method was for several 
calendar years applied to a large business of Group Accident 
Insurance. This business was approximately homogeneous with 
regard to the at t i tude towards damages, to the technical treatment 
of claims and also with regard to the sum assured and to the 
accident risk. The estimates were originally made for statements 
in the balance sheets, but  even for the risk statistics the rough 
grouping of the estimates was deemed to be appropriate. This 
business started in 1925 and the first analysis of this kind was made 
about  194o. Thereinafter, the analysis was made each calendar 
year with addition of the new experience to the old experience. 
In 1948 the total number of claims from 1925 was 8oo ooo. Each 
prediction was tested several times against the actual payments 
made after the prediction. In the first calendar years of application 
the agreement was deemed to be very good. Thereinafter a slight 
time trend could be found in the factor of A. in (14), which lead 
to an introduction of a correction term, which should account for 
the deviation from weak stationarity of this factor. 
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5. Other estimates 

If also s is estimated, the value of outstanding liabilities can be 
based on s, the expected number of claims in the period concerned, 
i.e. s shall be substituted for n in (13). In this case no correction 
shall be made for unknown claims, provided that  the interval 
between ,~ corresponding to s and the time point of calculation is 
large enough to permit of the assumption that  all advices for claims 
having occurred before ~ have been received before the calculation, 
which can be tested by the dislocation of the observation period 
referred to above. This leads to an estimate of the risk premium 
with regard to the development during the period of payments. 

The data in the tables referred to in section 2 may be used for a 
graduation of the distribution function corresponding to 

f Ro It v (I - -  ~*v (y/y))' II dlWn*(Y'  s). where ~ty has been defined 
0 

at the end of II 6. 
Qn(s) can be graduated according to usual methods in terms of 

the classical theory of risk. By using such graduations and the 
estimations described in the sections I to 3 both the distribution 
of the direct risk premium, and the risk premium for reinsurance 
against excess of aggregate loss can be analyzed in terms of the 
generalized risk process. 


