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ABSTRACT

A generalized estimating equations (GEE) approach is developed to estimate
structural parameters of a regression credibility model with independent or
moving average errors. A comprehensive account is given to illustrate how GEE
estimators are worked out within an extended Hachemeister (1975) framework.
Evidenced by results of simulation studies, the proposed GEE estimators appear
to outperform those given by Hachemeister, and have led to a remarkable
improvement in accuracy of the credibility estimators so constructed.

KEYWORDS

Credibility theory, Hachemeister model, generalized estimating equations (GEE),
regression model, random effects models.

1. INTRODUCTION

Theoretical development has led the subject of credibility to be closely connected
with random effects models. A regression credibility model (Hachemeister,
1975; Norberg, 1986), characterized by a within-panel correlation structure
through the introduction of random regression coefficients, is essentially a gen-
eralized linear model (GLM) (McCullagh and Nelder, 1989) with solely random
effects. Whereas independence is assumed in a classical GLM, generalized
estimating equations (GEE) were developed to serve as an extension of the
classical framework to handle random effects and correlated errors (Liang and
Zeger, 1986). GEE were firstly introduced to estimate regression coefficients in
a GLM provided that the covariance structure is either known or estimated
a priori. Later developments have seen the use of GEE to estimate parameters
which specify the covariance structure (Prentice and Zhao, 1991; Liang et al.,
1992).

As a regression credibility model can be treated as a GLM with random effects
(Nelder and Verall, 1997), it may also be handled by the GEE methodology.
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The Bühlman (1967) and Bühlmann-Straub (1970) models are two important
credibility models which can be formulated under the regression credibility
framework. Under these models, statistical dependence between the observed
data of the same risk entity is brought by the random effects shared in common.
Recently, Lo, Fung and Zhu (2006) suggest to use the GEE method to estimate
the structural parameters of these two popular models. The proposed GEE esti-
mators are found to perform well in simulation studies. Meanwhile, Norberg
(1982) applied the estimated generalized least squares method to a special case
where, as in our proposed GEE approach, variances and covariances can be
expressed as linear functions of structural parameters. The regression credibility
model was first introduced by Hachemeister (1975). Since then, regression
models have been the subject of interest in a number of credibility literature
(see, for example, Bühlmann and Gisler (1997) and Bühlmann and Bühlmann
(1999)). In this paper, we aim at using GEE to estimate the structural parame-
ters of the Hachemeister (1975) regression model.

The remaining of the paper is organized as follows. Section 2 provides the
model specification and the credibility estimator. The GEE methodology is
introduced in Section 3. Section 4 describes the structural parameter estima-
tion by means of the Hachemeister and the proposed GEE methods. Section 5
comes up with empirical studies by simulations and a real data analysis which
reveal the advantages of GEE estimation of the variance and covariance para-
meters over Hachemeister’s. In addition to the improved accuracy using GEE
we do not observe the problems of reaching negative variances and correlations
beyond 1 which may be delivered by Hachemeister’s method (Dannenburg
et al., 1996; Bühlmann and Gisler, 2005). Some concluding remarks are given
in the final section.

2. THE REGRESSION CREDIBILITY MODEL

We consider the following model:

yi = Xi bi + ei, i = 1, 2, …, n. (1)

Each element yij in the ni ≈ 1 vector yi is the observed value of some measur-
able characteristic for entity i in the jth observation period. Xi is a ni ≈ m design
matrix of known constants. The dimension of the vector of regression coeffi-
cients bi, labelled m in our paper, is essentially the number of covariates pre-
sent in our model, including the constant term. Unlike classical regression
models, bi’s are of random nature, i.i.d. with common mean b and covariance
matrix F for all i, i.e., E ( bi ) = b and V( bi ) = F. The error vectors ei’s are
assumed to be independently distributed with mean 0 and covariance matrix
s2Vi = s2Wi

–1/2Gi Wi
–1/2, where Wi is a diagonal matrix of known weights and

Gi is a correlation matrix. When the errors are assumed to be independent, i.e.,

324 C.H. LO, W.K. FUNG AND Z.Y. ZHU

0345-07_Astin37/2_07  28-11-2007  15:12  Pagina 324



Gi = I for all i, model (1) is reduced to Hachemeister’s (1975) regression cred-
ibility model. The following about yi can be obtained:

(a) yi and yj are statistically independent for i ! j ;

(b) E (yi | bi) = Xi bi and mi = E (yi) = Xi b ;

(c) V(yi) = XiFXi� + s2Wi
–1/2Gi Wi

–1/2. (2)

Recently, Cossette and Luong (2003) obtained generalized least squares esti-
mators for regression credibility models. Nonetheless, the model we propose
here is quite different from the one considered in Cossette and Luong. First
of all, Cossette and Luong’s model has fixed all ni’s at the same value, which
carries an implication that an equal number of observations have to be made for
each entity i. Our proposed model (1) does not restrict the values of ni’s, the
same practice as that in the Bühlmann-Straub and Hachemeister frameworks.
Another difference, a crucial one, lies in the way the design matrix Xi is treated.
In Cossette and Luong’s model, the design matrix is common to all i. In other
words, no difference is admitted regarding the values of the covariates for
different entities. In insurance setting, quite often the covariates would have
values depending upon a particular entity; obvious examples include the age,
gender, marital status and smoking behavior of an insured. In Sundt’s (1987)
credibility regression analysis, he attempts to use power and weight-to-price
ratio to account for the variations in claim amounts for various car models.
Cossette and Luong’s model is not apt to cases involving the aforementioned
factors as covariates. Meanwhile, model (1), formulated in line with Hachemeis-
ter’s, steps in as a good candidate for use. Further, to implement Cossette and
Luong’s estimation methods, the weight matrices Wi’s have to be the same for
all entities. This constraint turns out to be very demanding. Contrariwise, we
do not impose this constraint as we develop the estimators using GEE.

The credibility estimator (Hachemeister, 1975) for the regression coefficients
bi in model (1) is indeed a linear Bayes estimator in statistical terminology
(Norberg, 1980). It has been shown by Rao (1975) that this Bayes estimator
minimizes the quadratic loss function. The credibility estimator for bi is a
convex combination between individual experience and the collective mean:

bbi
(B) = Zi bbi

(GLS) + (I – Zi)b, (3)

where

Zi = F [ F + s2(Xi�Vi
–1Xi)

–1] –1 (4)

is the credibility matrix, and 

bbi
(GLS) = (Xi�Vi

–1Xi)
–1Xi�Vi

–1yi (5)

is the generalized least squares estimator for bi .
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3. THE GEE METHODOLOGY

3.1. The GLM in brief

Model (1) can be viewed as an extension to the generalized linear model (GLM)
with an identity link between the mean response and the linear predictor, i.e.,
m = E (y) = x�b (McCullagh and Nelder, 1989). The probability distribution of
the response y belongs to the exponential family which takes the following
density function:

fY (y; q, l) = exp , ,
a

y b
c y

l
q

l
-

+
q

^

^
^

h

h
h* 4 (6)

where q is called the canonical parameter which determines the mean, and l
is called the dispersion parameter which controls the dispersion of the distri-
bution. The mean and variance are, respectively, m = b�(q) and V(y) = b�(q)a(l).
Many popular distributions including the normal, Poisson, binomial, gamma,
inverse gaussian and geometric distributions belong to the exponential family.

A common approach to estimate the regression parameters b is by means of the
maximum likelihood method. For a random sample with observations y1,…,
yn, the log-likelihood function is L = i ii 1=

/ ,y b a c yq l li i
n

- +q! ^ ^ ^h h h7 A# -. The
maximum likelihood estimate for b is then obtained by solving the score equa-
tions 
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L 0i
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2
2

2
2

= - =
=

y! ^ ^h h (7)

Some previous attempts to link credibility theory to GLMs include Nelder
and Verrall (1997) and Frees et al. (1999). Discussions on the applications of
GLMs can be found in McCullagh and Nelder (1989), Hardin and Hilbe (2001)
and He, Fung and Zhu (2005) among others.

3.2. The use of GEE

While the GLM extends the classical linear model by having a more general
family of distributions, the assumption of data independence is retained.
This assumption fails when correlation between data exists. In the credibility
context, correlation arises from the random effects as well as the dependency
of errors. The generalized estimating equations (GEE) methodology (Liang and
Zeger, 1986) has been developed to extend the application of GLMs to handle
correlated data.

In order to introduce the GEE approach, we now shift our attention back
to correlated or clustered data, the type of data analyzed in the regression
credibility model. A second subscript j is added where appropriate to indicate
the jth observation for an entity. In the classical GLM framework, observations
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are taken as independent, thus giving the following score equations which are
merely a sum of contributions from each observation yij :

1-

i .V y
m

mb 0i

j

n

j ij i
i

n

11

i

2

2
- =

==

j
jy!! _ _i i (8)

In matrix form, (8) may be rewritten as 

�
i i

i 1-
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- =
=

y y! e ^ ^o h h7 A (9)

where yi = (yi1, …, yini
)�, E(yi) = mi = (mi1, …, mini

)� and Diag[V(yi)] denotes the
diagonal matrix formed by the diagonal elements in V(yi). Note that the matrix
Diag[V(yi)] is restricted to have zero off-diagonal elements because yij’s are
assumed to be independent in the classical GLM. To take into account the
dependency due to random effects and/or a correlated error structure, equation
(9) can be turned into a system of GEE with Diag[V(yi)] replaced by Vw(yi)
which needs not be diagonal:
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=

-
y yV! e ^ ^o h h (10)

The matrix Vw(yi) is called the working covariance matrix in the GEE termi-
nology. A nice property of the GEE methodology is that the GEE estimators
can still be consistent even if Vw(yi) is not correctly specified. For a justification
of using equation (10) to handle correlation and other properties of the GEE
estimators, readers may see Liang and Zeger (1986) and Zeger and Liang (1986).

In credibility theory, our main interest is to estimate the variance and covari-
ance parameters. To accomplish this by means of GEE, we first define sijk =
(yij – mij)( yik – mik) and aa as the vector of all variance and covariance parameters
to be estimated. Then we build the following system of estimating equations
analogous to (10) to solve for aa :

,D H s z 0i i i i
i

n
1

1

- =
-

=

�! ^ h (11)

where si = vech(yi – mi) (yi – mi)� = (si11, si12, …, si1ni
, si22, si23, …)�, zi = E (si),

Di = ∂zi /∂aa and Hi = Vw(si). The vech operation constructs a vector by con-
catenating the lower-triangular elements of a matrix (see Graham (1981) for
more details about the vech operation and also the vec operation, which will
appear in Section 4.2). The equations may be solved numerically, for example,
using Newton-Raphson. For more details on using GEE to estimate the vari-
ance and covariance parameters, readers may refer to Hardin and Hilbe (2003)
and Prentice and Zhao (1991).
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The vectors si and zi in (11) above indeed denote the empirical and the cor-
responding true covariance matrices of yi in vector form. When it happens
that, as in our case, each element of zi can be expressed as a linear combina-
tion of the variance and covariance parameters in aa, the derivative matrix Di

will simply be made up of constants independent of any unknown parameters.
Hi, the working covariance matrix, may contain information about fourth-
order moments of yi. An example of Hi is V(si) with components specified by:

Cov(sijk, silm) = E [(yij – mij) (yik – mik) (yil – mil) (yim – mim)]
(12)

– Cov( yij, yik) Cov(yil, yim).

To solve the system of GEE (11), knowledge about mi, which depends on b, is
assumed. Hence, b has to be estimated via external means a priori. While b
may simply be taken as a simple or weighted average of bbi

(GLS) ’s defined in
Section 2, we, in accordance with the empirical evidence of the relative perfor-
mance, suggest to apply another system of GEE to provide an estimate of b :

i
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2

- =
=

�
y! e ^o h (13)

On setting Ui as V(yi) in (13), the working covariance matrix then includes
parameters which appear in aa. Hence, in order to estimate aa and b simulta-
neously, we have to solve (11) and (13) alternately by updating the estimates
of aa and then applying the updated values to re-estimate b in each iteration.

4. STRUCTURAL PARAMETER ESTIMATION

4.1. The Hachemeister and modified Hachemeister estimators

Hachemeister (1975) extended the Bühlmann-Straub model by introducing
covariates to help account for heterogeneity in the expected risk level, E (yij |
Q = qi) = x�ij b(qi), where qi denotes the realized yet unobservable risk charac-
teristic borne by a risk entity i, and b(qi) = bi in our notation. As in the Bühl-
mann-Straub model, the conditional variance of yij is V(yij | Q = qi) = s2(qi) /wij.
The conditional independence assumption remains to apply:

Cov(yij, yik | Q = qi) = 0 for j ! k. (14)

Hence, the covariance structure for the errors is assumed to be known up to a
scalar multiplier, i.e., V (yi | Q = qi) = s2(qi) Wi

–1. The structural parameters
then include b = E [b(Q)], F =V [b(Q)] and s2 = E [s2(Q)], which are important
for constructing the credibility matrix and ultimately the credibility estimator.
The form of the credibility matrix stated in Hachemeister (1975),

Zi = (FXi�Wi Xi + s2I)–1FXi�Wi Xi , (15)
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can be proved to be tantamount to (4) when the errors are assumed to be inde-
pendent.

Unbiased estimators have been proposed for the structural parameters. First
of all, the design matrices and the vectors of observations are respectively
stacked up to form two large single units:

X = [X1�, X2�, ···, Xn� ]� and y = [y1�, y2�, ···, yn� ]�. (16)

Next, a super matrix is constructed with individual exposure matrices as build-
ing blocks along the principal diagonal:

n

.W

W
W

W0

01

2

j
=

R
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S
S
S
S
S

V

X

W
W
W
W
W

(17)

A weighted least square estimate of b is obtained straight-forwardly (Hache-
meister, 1975), making use of (16) and (17):

bb = (X�WX)–1X�Wy. (18)

An unbiased estimator of s2 is taken as the simple average of n unbiased esti-
mators s2

i each of which makes use of a particular risk entity’s observations:

s2 = n–1 1-

is n n m
i

n

i
i

n
2

1

1

1

= -
=

-

=

! !^ h (yi – Xi bbi )�Wi (yi – Xi bbi ), (19)

where bbi is the weighted least squares estimator. The estimator for the covariance
matrix of F involves some cumbersome expressions. The following quantities
are introduced in advance:
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An estimator for F is given by 

F = (C + C� ) / 2. (20)
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Note that C itself is also an unbiased estimator for F (Hachemeister, 1975). It is
averaged with its transpose to be the final estimator since F has to be symmetric
while C, however, is not in general. Plugging the Hachemeister estimators of
b, s2 and F given by (18)-(20) into (3) and (4), and having Vi

–1 = Wi due to the
conditional independence assumption (14), we obtain the Hachemeister esti-
mators for bi and Zi respectively.

Recalling that m is the dimension of the vector b , the unstructured covari-
ance matrix F which is symmetric will have m (m + 1) / 2 unknown parame-
ters to be estimated. Take the case of m = 2 for illustration. Define ƒjj =
V(bij) and ƒjk = Cov( bij, bik) for j ! k respectively. The distinct elements
needed to specify F are, namely, ƒ11, ƒ12 and ƒ22. It is known that the Hache-
meister method may give negative variance estimates (f 5jj) and correlation esti-
mates (f 5jk / (f 5j f 5k)1/2) with magnitudes greater than 1 (Dannenburg et al., 1996;
Bühlmann and Gisler, 2005). To avoid these problems, we suggest to replace (20)
with 

f 5jj = ij .b 1i j
i

n

i
i

n2

1 1

- -
= =

w wb! !a fk p (21)

and

f 5jk = i ij k. . ,b b 1i j k
i

n

i
i

n

1 1

- - -
= =

w wb b! !a a fk k p (22)

where wi = ik
k

w! and b ·j is the weighted mean for the j th coefficient. These

modified forms are termed Hachemeister-M estimators.

4.2. GEE-I and GEE-II estimators

We now introduce the use of GEE to estimate the unknown parameters in
model (1) such that a credibility estimator of bi can be reached. We first con-
sider model (1) under the original Hachemeister framework in which the errors
ei’s are independent, i.e., Gi = I for all i. As a result, Vi is known and equal to
the inverse of the exposure matrix, i.e., Wi

–1. Define aa = (ff�, s2)� as the vector
storing all variance and covariance parameters to be estimated, where ff is a
vector specifying the unknown parameters in F; for example in the m = 2 case,
with F being a 2 ≈ 2 symmetric matrix, the unstructured covariance matrix F
is specified by ff = (ƒ11, ƒ12, ƒ22)�.

The system of GEE (11) is applied to solve for aa. The explicit forms of the
components which appear in (11) are shown as follows. As stated in Section 3.2,
si is explicitly equal to 
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vech (yi – mi) (yi – mi)� =
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(23)

zi, the expectation of si, has entries being the linear combinations of the elements
in aa. The entries of zi are specified in the following for the case of m = 2:

E [(yij – x�ij b ) (yik – x�ik b )]

⎧x2
ij1ƒ11 + 2xij1xij2ƒ12 + x2

ij2ƒ22 + s2wij
–1 for j = k,

= ⎨ (24)
⎩xij1xik1ƒ11 + (xij1xik2 + xij2xik1)ƒ12 + xij2xik2ƒ22 for j ! k.

It is more convenient to compute zi using (2) on noting that zi = vechV (yi),
but a componentwise specification like (24) is useful for the derivation of the
derivative matrix Di = ∂zi /∂aa. Since, as shown from (24), the entire zi is linear
in aa, Di is entirely made of known constants.

The middle component in the system of GEE (11), denoted as Hi, is the work-
ing covariance matrix which conveys information about the fourth-order
moments of the vector of observations yi. A convenient choice based on nor-
mality is provided by Fuller (1987):

Hi = 2cni
(V(yi) 7 V(yi))c�ni

, (25)

where cni
= (F�niFni )

–1F�ni and Fp is a matrix of dimensions p2 ≈ p (p + 1) / 2.
Defining the vec operation as the stacking up of the columns of a matrix, Fp

facilitates the vec-vech conversion for any p ≈ p symmetric matrix A such that
vec A = Fp vech A. From practical experience, this choice of Hi works rea-
sonably well for distributions not substantially different from normal.

As stated in Section 3.2, another system of GEE (13) is used to work out
the estimate for b . The working covariance matrix Ui which is set as V(yi) may
be computed using (2) by setting Gi = I, while the derivative matrix ∂mi /∂b is
merely the design matrix Xi of model (1). As V(yi) in (13) is in return specified
using aa, the estimates for aa and b are obtained by solving (11) and (13) recur-
sively until convergence. We term these estimates the GEE-I estimates.
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The GEE-II estimators described below are obtained when a moving aver-
age error structure for eij’s is considered. With an MA(1) error structure hav-
ing correlation r, the vector of unknown variance and covariance parameters
takes the form aa = (ff�, s2, s2r)�. For m = 2, the specification of the entries of
zi in (24) is replaced by 

E [(yij – x�ij b ) (yik – x�ik b )]

⎧ x2
ij1ƒ11 + 2xij1xij2ƒ12 + x2

ij2ƒ22 + s2wij
–1, j = k,

⎪ xij1xik1ƒ11 + (xij1xik2 + xij2xik1)ƒ12= ⎨ (26)

⎪ + xij2xik2ƒ22 + rs2wij
–1/2wik

–1/2,
j = k – 1, j = k + 1,

⎩ xij1xik1ƒ11 + (xij1xik2 + xij2xik1)ƒ12 + xij2xik2ƒ22, otherwise.

(26) reveals that, as in the independent error case, zi is still linear in aa when
moving average dependencies are taken for the errors eij’s. This, again, results in
the derivative matrix Di being entirely composed of known, constant elements.
Evaluating the GEE components under the MA(1) error structure, the GEE-II
estimates for aa and b can be obtained through solving (11) and (13) recursively.

5. EMPIRICAL STUDIES

Three sets of simulation studies are included. The first is a linear time trend
model related to the well-known study given in Hachemeister (1975). Each
study contains 500 replicates of simulated data. The independent error and a
correlated MA(1) error structure with r = 0.4 are taken. For each study, the esti-
mation methods, Hachemeister, Hachemeister-M, GEE-I and GEE-II as illus-
trated in Section 4, are considered. The constraints of Cossette and Luong’s
(2003) estimation method set forth in Section 2 inhibit us from incorporating
their approach as well in our investigation.

5.1. Study 1: the linear time trend model

Hachemeister (1975) adopted a linear time trend model to accommodate the
private passenger bodily injury’s claim data observed during the years 1970-1973
in the United States:

yij = bi1 + bi2 j + eij. (27)

It may be implemented by model (1) through setting n = 5, ni = 12, m = 2 and
xij = (1, j)�. We have generated 500 replicates of data which resemble the actual
claim data, taking the following parameter values chosen by Dannenburg
et al. (1996) in their simulation study of the Hachemeister model:

b = (1400,150)�, s2 = 3002, ƒ11 = 1002, ƒ12 = 0, ƒ22 = 202.
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The weights wij’s range from 250 to 9500 in Hachemeister’s data.
Tables 1 and 2 present the estimation results associated with an independent

error structure and a correlated error structure respectively. A clear advantage
is observed for the GEE approach over Hachemeister’s estimation regarding
both the credibility estimator of the regression coefficients as well as the variance
and covariance parameters in both cases. The modified Hachemeister method
does not suffer from negative variance estimates which the Hachemeister does,
but is still outperformed by the two GEE methods I and II.

Whilst a significant advantage has been recorded for the GEE approach
over Hachemeister’s in estimating the parameters which specify F = V( bi) (MSE
is reduced by 30%-70% each in estimating ƒ11, ƒ12 and ƒ22), the improvement
in estimating bi

(B) is modest (MSE reduction is less than 20%). Besides, albeit
a considerably larger MSE of the estimators for specifying F, Hachemeister is
quite trustworthy in estimating s2, notably including the case of r = 0.4 in which
the independent error assumption is violated. Note that, on the other hand,
when r = 0.4, the performance of the GEE-I method, which assumes indepen-
dence of the errors, is still comparable to or even better than that of GEE-II.
This serves as an empirical justification of the use of GEE-I when knowledge
about the correlated error structure is absent.

5.2. Study 2: a model with 2 covariates (m = 2)

In this study, in contrast to Study 1, we have set a different design matrix Xi for
each i, which is more adequate for practical use. A different scenario is also
reflected on the relative size between the number of entities n and the number
of observations ni made per entity. While in Study 1 n < ni, here we choose
n = 25 and ni = 5 respectively. Parameter settings are as follows:

b = (20, 10)�, s2 = 42, ƒ11 = 32, ƒ12 = 4, ƒ22 = 32.

Each weighting element wij is generated with a Poisson mean li which follows
a uniform distribution defined on the interval (5, 100) and differs for each i .
Likewise, each quantity xij2 corresponding to the second covariate (the first
covariate being the constant term) is simulated with a normal distribution
around a ‘mean-level’ value which is uniformly selected from the interval (–5, 5)
and specific to each i. Estimation results for the cases of independent and cor-
related error structures are shown in Tables 3 and 4 respectively.

Unlike results of the last study, enormous discrepancies as regards the
performance of the credibility estimator for bi between the GEE approach and
Hachemeister’s estimation method occur (relative efficiency beyond 20). As a
reasonable conjecture, the level of precision in estimating ƒ11, ƒ12 and ƒ22

applying Hachemeister’s formulae is not enough to produce satisfactory esti-
mates of Zi’s and bi’s — 15% of the estimates of the covariance matrix F are
found to be not positive definite. In contrast, all parameter estimates of ƒ11,
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TABLE 1

ESTIMATION RESULTS OF STUDY 1 ASSOCIATED WITH AN INDEPENDENT ERROR STRUCTURE

Parameter
Method

GEE-I GEE-II Hachemeister-M Hachemeister

bi1
Bias – 0.1149 – 0.0473 – 0.0076 – 0.0075
MSE 2.85 ≈ 101 (1.22▲) 3.30 ≈ 101 (1.05) 3.41 ≈ 101 (1.01) 3.46 ≈ 101

bi2
Bias 0.0256 0.0672 – 0.0063 – 0.0061
MSE 6.16 ≈ 10–1 (1.18) 6.39 ≈ 10–1 (1.14) 6.96 ≈ 10–1 (1.04) 7.25 ≈ 10–1

zi11
Bias – 0.0135 – 0.0098 0.0143 0.0065
MSE 9.23 ≈ 10–4 (2.76) 9.40 ≈ 10–4 (2.71) 1.43 ≈ 10–3 (1.78) 2.55 ≈ 10–3

zi12
Bias 0.0459 – 0.0153 – 0.0068 – 0.1294
MSE 1.46 ≈ 10–2 (3.34) 2.85 ≈ 10–2 (1.71) 3.86 ≈ 10–2 (1.26) 4.87 ≈ 10–2

zi21
Bias – 0.0283 0.0008 – 0.0067 – 0.0038
MSE 1.79 ≈ 10–5 (1.21) 1.42 ≈ 10–5 (1.53) 1.64 ≈ 10–5 (1.32) 2.17 ≈ 10–5

zi22
Bias – 0.0086 0.0040 0.0005 0.0005
MSE 3.24 ≈ 10–4 (4.07) 1.03 ≈ 10–3 (1.28) 1.12 ≈ 10–3 (1.17) 1.32 ≈ 10–3

ƒ11
Bias – 1257 – 1194 751 688
MSE 3.77 ≈ 107 (2.29) 3.94 ≈ 107 (2.19) 4.02 ≈ 107 (2.15) 8.63 ≈ 107

ƒ12
Bias – 8.14 4.20 22.4 34.3
MSE 7.25 ≈ 105 (1.81) 6.75 ≈ 105 (1.95) 8.71 ≈ 105 (1.51) 1.31 ≈ 106

ƒ22
Bias 78.5 102 38.1 30.8
MSE 6.24 ≈ 104 (2.33) 5.83 ≈ 104 (2.50) 6.95 ≈ 104 (2.10) 1.46 ≈ 105

s2 Bias – 623 – 208 927 927
MSE 2.67 ≈ 108 (1.14) 2.94 ≈ 108 (1.04) 3.06 ≈ 108 (1.00) 3.06 ≈ 108

▲ Relative efficiency of the estimator. Hachemeister’s estimator serves as the baseline.
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TABLE 2

ESTIMATION RESULTS OF STUDY 1 ASSOCIATED WITH A CORRELATED ERROR STRUCTURE

(MA (1) WITH r = 0.4)

Parameter
Method

GEE-I GEE-II Hachemeister-M Hachemeister

bi1
Bias 0.0943 0.0626 0.7049 0.5413
MSE 5.21 ≈ 101 (1.08) 5.57 ≈ 101 (1.01) 5.61 ≈ 101 (1.01) 5.64 ≈ 101

bi2
Bias – 0.0008 0.0141 0.0063 0.0074
MSE 9.83 ≈ 10–1 (0.93) 9.63 ≈ 10–1 (0.95) 9.11 ≈ 10–1 (1.00) 9.15 ≈ 10–1

zi11
Bias 0.0029 – 0.0093 0.0043 – 0.0164
MSE 8.04 ≈ 10–4 (1.66) 2.15 ≈ 10–3 (0.62) 9.82 ≈ 10–4 (1.36) 1.34 ≈ 10–3

zi12
Bias 0.0455 – 0.0241 – 0.1108 – 0.0533
MSE 2.68 ≈ 10–2 (1.40) 4.46 ≈ 10–2 (0.84) 3.25 ≈ 10–2 (1.15) 3.75 ≈ 10–2

zi21
Bias 0.0015 – 0.0038 – 0.0041 – 0.0008
MSE 1.13 ≈ 10–5 (1.69) 2.75 ≈ 10–5 (0.70) 1.67 ≈ 10–5 (1.14) 1.91 ≈ 10–5

zi22
Bias – 0.0014 – 0.0095 0.0095 0.0111
MSE 4.06 ≈ 10–4 (1.70) 8.19 ≈ 10–4 (0.84) 6.12 ≈ 10–4 (1.13) 6.89 ≈ 10–4

ƒ11
Bias – 1068 1254 828 721
MSE 3.54 ≈ 107 (3.52) 4.83 ≈ 107 (2.58) 5.94 ≈ 107 (2.10) 1.25 ≈ 108

ƒ12
Bias – 28.8 30.5 28.7 44.6
MSE 7.47 ≈ 105 (1.44) 7.71 ≈ 105 (1.39) 8.02 ≈ 105 (1.34) 1.07 ≈ 106

ƒ22
Bias 65.4 73.6 41.1 18.8
MSE 5.83 ≈ 104 (2.54) 5.91 ≈ 104 (2.51) 9.16 ≈ 104 (1.62) 1.48 ≈ 105

s2 Bias – 12574 – 1081 11268 11268
MSE 3.81 ≈ 108 (1.09) 3.94 ≈ 108 (1.06) 4.16 ≈ 108 (1.00) 4.16 ≈ 108
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TABLE 3

ESTIMATION RESULTS OF STUDY 2 ASSOCIATED WITH AN INDEPENDENT ERROR STRUCTURE

Parameter
Method

GEE-I GEE-II Hachemeister-M Hachemeister

bi1
Bias 0.0072 – 0.0085 0.3421 0.3714
MSE 3.80 ≈ 10–1 (>1000) 3.87 ≈ 10–1 (>1000) 4.93 ≈ 102 (1.06) 5.23 ≈ 102

bi2
Bias – 0.0014 – 0.0015 0.0715 0.0853
MSE 2.79 ≈ 10–2 (>500) 2.86 ≈ 10–2 (>500) 1.30 ≈ 101 (1.24) 1.61 ≈ 101

zi11
Bias 0.0121 0.0093 – 0.0922 0.1845
MSE 7.27 ≈ 10–4 (>100000) 7.67 ≈ 10–4 (>10000) 9.73 ≈ 101 (1.70) 1.65 ≈ 102

zi12
Bias – 0.0065 – 0.0048 0.2588 0.1753
MSE 3.82 ≈ 10–4 (>100000) 3.98 ≈ 10–4 (>100000) 6.07 ≈ 101 (1.32) 8.02 ≈ 101

zi21
Bias 0.0002 0.0000 – 0.0542 – 0.0427
MSE 3.27 ≈ 10–5 (>100000) 3.50 ≈ 10–5 (>100000) 2.96 (1.41) 4.17

zi22
Bias 0.0007 0.0005 0.0157 – 0.0198
MSE 2.08 ≈ 10–5 (>100000) 2.14 ≈ 10–5 (>100000) 1.88 (1.52) 2.85

ƒ11 Bias 0.0568 0.0532 0.6208 0.3382
MSE 7.15 (5.84) 7.22 (5.78) 2.65 ≈ 101 (1.58) 4.17 ≈ 101

ƒ12 Bias – 0.4282 – 0.4563 – 0.0843 – 0.1754
MSE 4.00 (4.83) 3.89 (4.97) 1.16 ≈ 101 (1.67) 1.93 ≈ 101

ƒ22 Bias 0.3859 0.4011 0.2931 – 0.1692
MSE 7.05 (1.78) 7.18 (1.75) 8.32 (1.51) 1.25 ≈ 101

s2 Bias – 0.3585 0.0907 – 0.2459 – 0.2459
MSE 6.74 (1.00) 7.93 (0.85) 6.72 (1.00) 6.72
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TABLE 4

ESTIMATION RESULTS OF STUDY 2 ASSOCIATED WITH A CORRELATED ERROR STRUCTURE

(MA (1) WITH r = 0.4)

Parameter
Method

GEE-I GEE-II Hachemeister-M Hachemeister

bi1
Bias 0.0060 – 0.0083 0.0469 0.0317
MSE 3.84 ≈ 10–1 (25.8) 3.22 ≈ 10–1 (30.8) 9.51 (1.04) 9.89

bi2
Bias 0.0006 0.0083 0.0245 0.0125
MSE 2.62 ≈ 10–2 (23.6) 1.94 ≈ 10–2 (31.8) 5.91 ≈ 10–1 (1.05) 6.18 ≈ 10–1

zi11
Bias – 0.0018 – 0.0054 – 0.0452 – 0.0199
MSE 7.16 ≈ 10–4 (>10000) 5.54 ≈ 10–4 (>10000) 6.13 (1.45) 8.90

zi12
Bias 0.0008 0.0010 – 0.0472 – 0.0215
MSE 3.63 ≈ 10–4 (>1000) 2.72 ≈ 10–4 (>1000) 8.26 ≈ 10–1 (1.10) 9.11 ≈ 10–1

zi21
Bias – 0.0024 – 0.0001 0.0074 0.0093
MSE 4.69 ≈ 10–5 (>10000) 2.31 ≈ 10–5 (>10000) 5.90 ≈ 10–1 (1.10) 6.49 ≈ 10–1

zi22
Bias 0.0016 – 0.0002 0.0059 – 0.0026
MSE 2.27 ≈ 10–5 (>1000) 1.30 ≈ 10–5 (>1000) 4.31 ≈ 10–2 (1.20) 5.15 ≈ 10–2

ƒ11
Bias 0.7305 – 0.6488 0.3218 0.2146
MSE 6.42 (6.45) 6.44 (6.43) 2.08 ≈ 101 (1.99) 4.14 ≈ 101

ƒ12
Bias – 0.5343 – 0.5481 – 0.2594 – 0.0955
MSE 4.16 (4.14) 4.19 (4.11) 8.31 (2.07) 1.72 ≈ 101

ƒ22
Bias – 0.6766 – 0.5135 0.2715 – 0.084
MSE 6.94 (1.66) 7.02 (1.64) 8.14 (1.41) 1.15 ≈ 101

s2 Bias – 2.85 – 0.3467 – 2.724 – 2.724
MSE 1.43 ≈ 101 (1.01) 8.48 (1.71) 1.45 ≈ 101 (1.00) 1.45 ≈ 101
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TABLE 5

ESTIMATION RESULTS OF STUDY 3 ASSOCIATED WITH AN INDEPENDENT ERROR STRUCTURE

Parameter
Method

GEE-I GEE-II Hachemeister-M Hachemeister

bi1
Bias 0.0088 – 0.0072 0.1844 0.2454
MSE 1.58 (104) 1.71 (96.6) 1.37 ≈ 102 (1.20) 1.65 ≈ 102

bi2
Bias – 0.0001 – 0.0001 0.0105 0.0083
MSE 5.75 ≈ 10–2 (112) 6.04 ≈ 10–2 (107) 6.16 (1.05) 6.46

bi3
Bias – 0.0005 – 0.0007 0.0418 0.0573
MSE 5.30 ≈ 10–2 (183) 5.54 ≈ 10–2 (175) 9.36 (1.03) 9.68

zi11
Bias 0.0084 0.0066 0.0072 – 0.0050
MSE 2.85 ≈ 10–3 (>10000) 4.61 ≈ 10–3 (>5000) 1.97 ≈ 101 (1.71) 3.36 ≈ 101

zi12
Bias 0.0019 0.0021 – 0.0053 – 0.0039
MSE 2.87 ≈ 10–4 (180) 3.75 ≈ 10–4 (137) 3.95 ≈ 10–2 (1.30) 5.15 ≈ 10–2

zi13
Bias – 0.0009 0.0000 – 0.0036 – 0.0065
MSE 1.96 ≈ 10–4 (409) 2.12 ≈ 10–4 (378) 6.20 ≈ 10–2 (1.29) 8.02 ≈ 10–2

zi21
Bias 0.0013 – 0.0019 0.0084 – 0.0093
MSE 5.53 ≈ 10–5 (>1000) 1.10 ≈ 10–4 (>10000) 0.852 (1.71) 1.46

zi22
Bias 0.0009 – 0.0011 0.0007 – 0.0003
MSE 2.50 ≈ 10–5 (80.9) 3.84 ≈ 10–5 (52.6) 1.04 ≈ 10–3 (1.94) 2.02 ≈ 10–3

zi23
Bias – 0.0001 – 0.0001 – 0.0008 0.0016
MSE 5.27 ≈ 10–6 (>500) 6.80 ≈ 10–6 (493) 1.84 ≈ 10–3 (1.82) 3.35 ≈ 10–3

zi31
Bias 0.0008 0.0000 0.0049 0.0052
MSE 8.78 ≈ 10–5 (>5000) 9.81 ≈ 10–5 (>5000) 3.41 ≈ 10–1 (1.81) 6.16 ≈ 10–1

zi32
Bias 0.0004 0.0003 0.0012 – 0.0013
MSE 1.31 ≈ 10–5 (70.1) 1.32 ≈ 10–5 (69.1) 6.64 ≈ 10–4 (1.38) 9.14 ≈ 10–4

zi33
Bias – 0.0005 – 0.0002 – 0.0024 0.0009
MSE 1.80 ≈ 10–5 (460) 1.81 ≈ 10–5 (456) 6.47 ≈ 10–3 (1.28) 8.25 ≈ 10–3

ƒ11
Bias 0.3182 0.3566 – 0.3483 0.3626
MSE 10.1 (8.86) 10.2 (8.74) 4.2 ≈ 101 (2.12) 8.92 ≈ 101

ƒ22
Bias – 0.7843 – 0.7651 0.0251 0.0083
MSE 6.96 (1.66) 7.06 (1.64) 7.24 (1.60) 1.16 ≈ 101

ƒ33
Bias 0.3527 0.3489 – 0.2544 0.1849
MSE 6.19 (2.97) 6.25 (2.95) 9.81 (1.88) 1.84 ≈ 101

s2 Bias – 0.1422 0.5181 – 0.1435 – 0.1435
MSE 9.69 (1.01) 2.71 ≈ 101 (0.36) 9.78 (1.00) 9.78
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TABLE 6

ESTIMATION RESULTS OF STUDY 3 ASSOCIATED WITH A CORRELATED ERROR STRUCTURE

(MA (1) WITH r = 0.4)

Parameter
Method

GEE-I GEE-II Hachemeister-M Hachemeister

bi1
Bias – 0.0083 0.0054 0.1657 0.1992
MSE 1.40 (>500) 1.32 (>500) 8.95 ≈ 102 (1.04) 9.27 ≈ 102

bi2
Bias 0.0041 – 0.0016 0.0755 0.0623
MSE 6.50 ≈ 10–2 (364) 6.27 ≈ 10–2 (377) 2.06 ≈ 101 (1.15) 2.37 ≈ 101

bi3
Bias 0.0000 0.0005 0.0414 – 0.0457
MSE 3.82 ≈ 10–2 (>500) 3.30 ≈ 10–2 (>500) 1.51 ≈ 101 (1.29) 1.95 ≈ 101

zi11
Bias – 0.0019 – 0.0040 – 0.0783 0.0092
MSE 5.05 ≈ 10–3 (>5000) 3.61 ≈ 10–3 (>10000) 2.16 ≈ 101 (1.93) 4.16 ≈ 101

zi12
Bias – 0.0052 – 0.0024 – 0.0140 0.0084
MSE 2.51 ≈ 10–4 (>500) 2.10 ≈ 10–4 (>500) 1.06 ≈ 10–1 (1.74) 1.85 ≈ 10–1

zi13
Bias 0.0024 – 0.0002 0.0083 – 0.0136
MSE 1.61 ≈ 10–4 (>1000) 8.39 ≈ 10–5 (>5000) 3.15 ≈ 10–1 (1.66) 5.25 ≈ 10–1

zi21
Bias 0.0036 0.0009 0.0119 – 0.0128
MSE 9.89 ≈ 10–5 (>5000) 7.96 ≈ 10–5 (>5000) 3.34 ≈ 10–1 (1.54) 5.13 ≈ 10–1

zi22
Bias – 0.0009 – 0.0008 – 0.0016 0.0038
MSE 1.75 ≈ 10–5 (141) 2.51 ≈ 10–5 (98.0) 2.00 ≈ 10–3 (1.23) 2.46 ≈ 10–3

zi23
Bias 0.0001 0.0001 – 0.0029 – 0.0099
MSE 5.61 ≈ 10–6 (>1000) 2.71 ≈ 10–6 (>1000) 3.75 ≈ 10–3 (2.09) 7.84 ≈ 10–3

zi31
Bias – 0.0064 – 0.0000 0.0087 0.0155
MSE 1.31 ≈ 10–4 (>1000) 5.68 ≈ 10–5 (>5000) 2.87 ≈ 10–1 (1.37) 3.92 ≈ 10–1

zi32
Bias – 0.0003 – 0.0001 0.0009 – 0.0019
MSE 1.09 ≈ 10–5 (215) 6.15 ≈ 10–6 (381) 1.13 ≈ 10–3 (2.07) 2.35 ≈ 10–3

zi33
Bias 0.0012 0.0001 0.0001 0.0003
MSE 1.47 ≈ 10–5 (467) 8.30 ≈ 10–6 (>500) 5.06 ≈ 10–3 (1.36) 6.87 ≈ 10–3

ƒ11
Bias – 0.0709 – 0.3129 0.1235 0.2477
MSE 9.33 (10.4) 9.00 (10.8) 4.36 ≈ 101 (2.24) 9.74 ≈ 101

ƒ22
Bias – 0.5284 – 0.5495 – 0.000 0.0000
MSE 6.93 (2.00) 7.13 (1.94) 8.11 (1.71) 1.39 ≈ 101

ƒ33
Bias – 0.3143 – 0.3082 0.2045 0.1782
MSE 6.15 (3.13) 6.25 (3.08) 9.44 (2.04) 1.92 ≈ 101

s2 Bias 5.2142 – 0.8094 – 5.532 – 5.532
MSE 3.40 ≈ 101 (1.00) 1.92 ≈ 101 (1.77) 3.40 ≈ 101 (1.00) 3.40 ≈ 101
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ƒ12 and ƒ22 using either GEE-I or GEE-II fall in an admissible range to con-
struct a valid estimate of the covariance matrix F.

In another study holding equivalent settings as described above with the
only exception that the ‘mean-level’ values used for simulating values of the
second covariate are uniformly selected from (0,10) instead, an immense rise
of MSE by more than 35 times in estimating bi results using Hachemeister’s
estimation formulae. Such apparent inconstancy in performance of estimation
when there is translation to a covariate is not observed using either GEE-I or
GEE-II — the performance of estimators for all parameters of interest basically
remains at the same level as the original.

5.3. Study 3: a model with 3 covariates (m = 3)

The previous two studies have assessed the performance of the proposed GEE
approach in two quite different scenarios, yet they remain to be cases of only
two covariates present in the model. Hence, a third study is included to eval-
uate its application in the case of a multiple regression model.

The model used in this study consists of a linear time trend component
and another covariate of which the corresponding quantities are simulated
with a normal distribution around some entity-specific ‘mean-level’ values uni-
formly selected from the interval (0,10). There are 25 entities and 5 observations
recorded in consecutive periods for each entity. The exposures wij’s are gener-
ated from exactly the same mechanism as in Study 2. Other parameter settings
take place as follows:

b = (20, 10, 10)�, s2 = 42, ƒ11 = 32, ƒ22 = 32, ƒ33 = 32.

While in the first two studies it is in line with the normal conjecture that bet-
ter performance is held by the GEE method with a correct correlated error
structure assumed, the manifestation is more clear-cut here when a higher
dimension is attributed to the vector of regression coefficients bi. Hachemeis-
ter’s estimation lags behind the two GEE methods considerably. About 17%
of all replicates have generated negative estimates of variance parameters in F.
The modified Hachemeister method can avoid from these shortcomings, but
its performance is still far behind the GEE estimators. Nevertheless, consistent
with those of the previous examples, the simulation results reaffirm that
Hachemeister has proposed a good estimator of s2.

5.4. Injury claim data

To illustrate the the Hachemeister and GEE methods, we use the Hachemeister
data in which yij represents the average amount of wij claims for private passenger
body injuries observed for the twelve periods during 1970-1973 in the USA.
Five states of observations were provided; see Hachemeister (1975) for the full
data. A linear time trend model was suggested.
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These data can be modelled using (1), taking n = 5, ni = 12, m = 2 and xij =
(1, j )�. The two common mean parameters in b = (b (1), b (2))� correspond to the
expected levels of the intercept and slope respectively. These data have also
been studied by Dannenburg et al. (1996) using the Hachemeister method.

Table 7 lists the parameter estimates obtained by the Hachemeister and GEE
methods. The two GEE methods give similar estimates which are, however,
rather different from those obtained by the Hachemeister method. Similar to
the finding observed in Dannenburg et al. (1996), the estimated correlation for
bi

(1) and bi
(2), i.e., f 512 / (f 511 · f 522)1/2, is 1.49 which is greater than 1 when Hache-

meister’s estimation is employed. However, this abnormal phenomenon is not
observed in the GEE estimation.

6. CONCLUDING REMARKS

In this paper, we have introduced the use of GEE to estimate structural para-
meters of a regression credibility model. Such estimators are found to perform
well for the Hachemeister model, including an extended case that a moving aver-
age error structure is present. Improvement in the estimation of the structural
parameters leads to an ameliorated accuracy in estimating the credibility matri-
ces, and, finally, yields the credibility estimators for the regression coefficients
with less variability.

Our proposed GEE method may adapt to encapsulating simple conditions
stated a priori governing the covariance structure of bi. Flexibility may increase
at the expense of a linear dependence of the form of the covariance matrix F
on unknown parameters. Moreover, though not accentuated in the previous
sections, no additional complications are involved in exercising the proposed
GEE method to accommodate panel data in the general case that ni ! nj for
different i and j. This is in line with the model assumption of the Hachemeister
framework.
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TABLE 7

PARAMETER ESTIMATES FOR THE REGRESSION MODEL OF INJURY CLAIM DATA

OBTAINED BY HACHEMEISTER, GEE-I AND GEE-II METHODS

Hachemeister GEE-I GEE-II

b (1) 1579 1483 1481
b (2) 44.2 34.8 35.3
s2 70622 65632 60432

ƒ211 1092 1032 1002

ƒ212 4191 1135 1149
ƒ222 25.82 22.32 22.02

0345-07_Astin37/2_07  28-11-2007  15:14  Pagina 341



ACKNOWLEDGEMENTS

The authors thank two referees for valuable comments which largely improved
the presentation of the paper. This work was partially supported by a grant
from the Hong Kong Research Grants Council HKU 7408/06H. The authors
thank Danwei Huang for computing assistance.

REFERENCES

BÜHLMANN, H. (1967) Experience rating and credibility. ASTIN Bulletin 4, 199-207.
BÜHLMANN, H. and STRAUB, E. (1970) Glaubwürdigkeit für Schadensätze (Credibility for loss

ratios). Bulletin of the Swiss Association of Actuaries 70(1), 111-133.
BÜHLMANN, H. and GISLER, A. (1997) Credibility in the regression case revisited. ASTIN Bul-

letin 27, 83-98.
BÜHLMANN, H. and GISLER, A. (2005) A Course in Credibility Theory and its Applications.

Springer: Heidelberg.
BÜHLMANN, P. and BÜHLMANN, H. (1999) Selection of credibility regression models. ASTIN Bul-

letin 29, 245-270.
COSSETTE, H. and LUONG, A. (2003) Generalized least squares estimators for covariance para-

meters for credibility regression models with moving average errors. Insurance: Mathematics
and Economics 32, 281-293.

DANNENBURG, D.R., KAAS, R. and GOOVAERTS, M.J. (1996) Practical Actuarial Credibility Models.
Institute of Actuarial Science and Econometrics, University of Amsterdam, Amsterdam, the
Netherlands.

FREES, E.W., YOUNG, V.R. and LUO, Y. (1999) A longitudinal data analysis interpretation of
credibility models. Insurance: Mathematics and Economics 24, 229-247.

FULLER, W. (1987) Measurement Error Models. Wiley, New York.
GRAHAM, A. (1981) Kronecker Products and Matrix Calculus: with Applications. Horwood,

Chichester.
HACHEMEISTER, C.A. (1975) Credibility for regression models with application to trend. In: Kahn, P.M.

(Ed.), Credibility: Theory and Applications. Academic Press, New York, pp. 129-163.
HARDIN, J.W. and HILBE, J.M. (2001) Generalized Linear Models and Extensions. Stata Press, Texas.
HARDIN, J.W. and HILBE, J.M. (2003) Generalized Estimating Equations. Chapman and Hall, Boca

Raton.
HE, X., FUNG, W.K. and ZHU, Z.Y. (2005) Robust estimation in generalized partial linear mod-

els for clustered data. Journal of the American Statistical Association 100, 1176-1184.
LIANG, K.Y. and ZEGER, S.L. (1986) Longitudinal data analysis using generalized linear models.

Biometrika 73, 13-22.
LIANG, K.Y., ZEGER, S.L. and QAQISH, B. (1992) Multivariate regression analyses for categorical

data. Journal of the Royal Statistical Society Series B, 54, 3-40.
LO, C.H., FUNG, W.K. and ZHU, Z.Y. (2006) Generalized estimating equations for variance and

covariance parameters in credibility models. Insurance: Mathematics and Economics, 39, 99-
113.

MCCULLAGH, P. and NELDER, J. (1989) Generalized Linear Models. Chapman and Hall, London.
NELDER, J.A. and VERRALL, R.J. (1997) Credibility theory and generalized linear models. ASTIN

Bulletin 27, 71-82.
NORBERG, R. (1980) Empirical Bayes credibility. Scandinavian Actuarial Journal, 177-194.
NORBERG, R. (1982) On optimal parameter estimation in credibility. Insurance: Mathematics and

Economics 1, 73-89.
NORBERG, R. (1986) Hierarchical credibility: analysis of a random effect linear model with nested

classification. Scandinavian Actuarial Journal, 204-222.
PRENTICE, R.L. and ZHAO, L.P. (1991) Estimating equations for parameters in means and covari-

ances of multivariate discrete and continuous responses. Biometrics 47, 825-839.

342 C.H. LO, W.K. FUNG AND Z.Y. ZHU

0345-07_Astin37/2_07  28-11-2007  15:14  Pagina 342



STRUCTURAL PARAMETER ESTIMATION 343

RAO, C.R. (1975) Simultaneous estimation of parameters in different linear models and applica-
tions to biometric problems. Biometrics 31, 545-554.

SUNDT, B. (1987) Two credibility regression approaches for the classification of passenger cars
in a multiplicative tariff. ASTIN Bulletin 17, 41-70.

ZEGER, S.L. and LIANG, K.Y. (1986) Longitudinal data analysis for discrete and continuous out-
comes. Biometrics 42, 121-130.

WING KAM FUNG

Department of Statistics and Actuarial Science,
The University of Hong Kong
Pokfulam Road, Hong Kong, China
Tel.: +852 2859 1988
Fax: +852 2858 9041
E-mail: wingfung@hku.hk

0345-07_Astin37/2_07  28-11-2007  15:14  Pagina 343




