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ABSTRACT

In this paper we propose a discrete-time model with fixed maximum time to
maturity of traded bonds. At each trading time, a bond matures and a new
bond is introduced in the market, such that the number of traded bonds is
constant. The entry price of the newly issued bond depends on the prices of
the bonds already traded and a stochastic term independent of the existing
bond prices. Hence, we obtain a bond market model for the reinvestment risk,
which is present in practice, when hedging long term contracts. In order to
determine optimal hedging strategies we consider the criteria of super-repli-
cation and risk-minimization.
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1. INTRODUCTION

In the literature, bond markets are usually assumed to include all bonds with
time of maturity less than or equal to time of maturity of the considered claim.
However, this is in contrast to practice, where only bonds with a limited
(sufficiently short) time to maturity are traded (in a liquid market). Hence, a
standard model is the correct framework for pricing and hedging so-called
short term contracts, where the payoff depends on bonds with time to matu-
rity less than or equal to the longest traded bond. However, when considering
long term contracts, i.e. contracts, whose payoffs depend on bonds with longer
time to maturity than the longest traded bond, the bond market does not in
general include bonds, which at all times allow for a perfect hedge of the
contract. Thus, in practice, an agent interested in pricing and hedging a long
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term contract, such as a life insurance contract, where the payments may be
due 50 years or more into the future, is in general not able to eliminate the rein-
vestment risk associated with the contract. Since the reinvestment risk is ignored
in standard bond market models, they do not seem to be the right framework
for pricing and hedging long term contracts. Here, we propose a model, which
behaves similarly to a standard model when hedging and pricing short term
contracts, and at the same time it includes reinvestment risk, when hedging
long term contracts. The introduction and study of this model is the main
focus of the paper. Hence, even though the problem is of practical importance
for life insurance companies and other companies trading very long term con-
tracts, qualitative rather than quantitative results are pursued.

A first idea in order to introduce reinvestment risk would be to consider a
standard binomial model for the bond prices and restrict the investment strate-
gies to bonds with a limited time to maturity only. However, this simple
approach does not introduce reinvestment risk, since a long term bond can be
perfectly replicated by a dynamic trading strategy, where we at all times invest
in two short term bonds. Hence, we have to extend the standard model to
include an additional unhedgeable stochastic term, whose uncertainty deter-
mines the reinvestment risk.

To describe the reinvestment risk, we propose a discrete-time bond market
model, where the traded bonds have a fixed maximum time 70 maturity, 7.
Hence, at time 0 all bonds with time of maturity v, v € {1, ..., T} are traded.
At any time 7, the bond with maturity 7 matures and a new bond with time to
maturity 7 is introduced in the market. Thus, after the issue of the new bond,
the model is similar to the one at time 0. At any time ¢, the entry price of the
new bond is allowed to depend on all past information, current prices of bonds
already traded and an additional stochastic term. In this model the class of
attainable claims is time-dependent. Hence, a claim which is unattainable at time
¢ may be attainable at time 7+ 1. Consider for example a claim of 1 at time
t+ T+ 1, which is unattainable at time 7, whereas it is clearly attainable at time
t+ 1, where a bond with time of maturity #+ 7+ 1 is issued. At time ¢ + 1 the
unique arbitrage free price is equal to the price of the bond with maturity 7+
T+ 1, and the replicating strategy consists of purchasing exactly one such
bond. The idea of fixing the maximum time to maturity of the traded assets
and introducing new assets as time passes can also be found in Neuberger
(1999), who considers a market for futures on oil prices. To model the initial
price of the new future, Neuberger assumes that it is a linear function of the
prices of traded futures and a normally distributed error term.

To the author’s knowledge, the only other papers to consider the problem
of modelling the prices of newly issued bonds are Sommer (1997) and Dahl
(2005), who both consider models in continuous time. In Sommer (1997), new
bonds are issued continuously, whereas in Dahl (2005) new bonds are issued
at fixed times only, since this is the case in practice. In order to control and
quantify the reinvestment risk, both authors consider the criterion of risk-
minimization.
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The main contribution of the paper is the introduction of a discrete-time
model dealing with the particular form of incompleteness stemming from the
lack of sufficiently long bonds. Other major contributions are the derivation
within the model of super-replicating and risk-minimizing strategies, which
both have a nice intuitive interpretations.

The paper is organized as follows: In Section 2, a bond market model
including reinvestment risk is introduced. This is done in two steps: First we
describe a complete and arbitrage free standard bond market model. Then we
extend the model to include reinvestment risk. Since the extended model is incom-
plete, there exist infinitely many equivalent martingale measures. We identify
the equivalent martingale measures for the extended model and define the
considered price processes, which for notational convenience are different from
the bond prices. Given the considered price processes we review the relevant
financial terminology. Optimal hedging strategies with respect to the criteria
of super-replication and risk-minimization are determined in Section 3. Here,
we also remark on the relationship between the criterion of super-replication
and the maximal guarantees for which the shortfall risk can be eliminated.
The paper is concluded by a numerical illustration of the mechanics of the
model in Section 4. The numerical illustration includes a comparison with the
pricing methodology applied to long term contracts in Danish life insurance.

2. A BOND MARKET MODEL

Let 7 €N be a fixed time horizon and (Q, #, P) a probability space with a
filtration | = (#,),e(0.1.....7; satisfying the usual condition of completeness, i.e.
¥, contains all P-null sets.

2.1. A standard bond market model

Prior to the introduction of the bond market model with reinvestment risk, we
now describe a standard discrete-time bond market model. For a thorough
description of discrete-time bond market models we refer to Jarrow (1996).~

Consider a bond market where trading takes place at times =0,1, ..., 7,
for a fixed time horizon 7 € N, T < 7. At time 7 we assume that all zero coupon
bonds with maturity v=t, . ., T are traded in the bond market. For 7 € {0,....T}

and ve {t,....,T} we denote by P(t,v) the price at time ¢ of a zero coupon
bond maturing at time v. To avoid arbitrage we assume P(z,v) is strictly pos-
itive and P(¢,¢) =1 for all z. For non-negative interest rates P(z,v) is a decreas-
ing function of v for fixed 7. An important quantity when modelling bond prices
is the forward rate, f; ,, contracted at time ¢ for the period [v,v + 1] defined by

P(t,v)

f,", = mfl te{0,...,T-1} and ve{s,...,T—-1}, (2.1)
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or, stated differently,

1
1., 1+ 1)

The forward rate f, , can be interpreted as the riskfree interest rate contracted
at time ¢ for the interval [v,v + 1]. Now introduce the short rate process
r=(r);eq.1...7 1, given by r,= f, .. Since (2.1) and (2.2) establish a one-to-one
correspondence between forward rates and bond prices, modelling the devel-
opment of the bond prices and the forward rates is equivalent. As it is standard
in the literature, we model the forward rates. Let fi= (s fris1s s f171) denote
the (T t)-dimensional forward rate vector at time z. To model the development
of the forward rate vector we assume

f=g(forcsfrup), t€41,...,T—1}, (2.3)

P(t,v) = ,1€40,....,T-1} and ve{t+1,...,T}. (2.2)

for some function g, : R” x R7 ! x - x RT" "V x {u,d} -~ R" " and an i.i.d.
sequence p,...,p7_; of random variables with distribution P(p, =u)=1-
P(py=d)=p, p €(0,1). A natural restriction would be to consider strictly pos-
itive forward rates, only. In this case we would have g, : RT x R7 -1 x - x
RT“Yx {u,d} — RT-". We observe from (2.3) that contingent on the devel-
opment of the forward rates until time #— 1, the forward rate vector at time ¢
takes one of two possible values: g,(f,,....f ,u) or g(fo,.... f, 1,d). If f,=
g(fo,....f,_1,u) we say that the forward rates have moved up, and likewise, if
fi=g.(fo,....f, 1,d) we say they have moved down. We note from (2.2) that the
bond prices move in the opposite direction of the forward rates. The develop-
ment of the forward rates (and bond prices) can be represented by non-recom-
bining binomial tree, see Figure 2.1 for a visualization of the first three possible
values of the forward rates.

Remark 2.1. If g, only depends on (f,, ..., f,_,) through f, ,, then the forward
rate vector is a discrete time-inhomogeneous Markov chain.
]

The natural filtration G =(G,),co....7 generated by the forward rates is given by

.....

Go=1{0.Q} and G, = o{pi.....pin 1} t €L T}

Introducing the notation &, &, € E, = {all possible sequences of u’s and d’s of
length 7} allows us to denote the generic value of for instance the forward rate
vector at time ¢ by f,* and the forward rate vector at time ¢+ 1 given p,,, =d

FEd
beti’l-
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FIGURE 2.1. Development of the forward rate vector.

2.1.1. Risk-neutral probabilities

It is well known that the bond market model described above is arbitrage free
if there exists a so-called equivalent martingale measure Q. Recall that an
equivalent martingale measure is a probability measure equivalent to P, such
that all discounted bond prices are martingales. The discounted bond prices
are Q-martingales if for r €{0,...,T—-1} and ve {r+1,...,T} it holds that

P(t,y) = ﬁEQ[P(I +1,v)|G] (2.4)

If further the equivalent martingale measure Q is unique, the model is com-
plete; see also Section 2.3 for the definition of arbitrage and completeness.
Denote by ¢, the Q-probability of the event p, ., = u given the present infor-
mation ¢,. Since (2.4) is trivially fulfilled for v =17+ 1, we have T—(z + 1) equa-
tions for g7y , 1 €{0,..., T~ 2}. Thus, if a solution exists, it is unique, provided
there exists a v € {r+2, ..., T}, such that P<=/(z + 1,v) # P<*(t+1,v). Fort €
{0,...,T—2}, solving (2.4) gives the following expressions for ¢ :

t+1°
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P L) = (1) PY(L) N
cr o= - , ve{r+2,...,T}. (2.5)
i1 Pt +1,v) = P (1 + 1,v)

Here, we have used the notation r* and P<(¢,v) to denote explicitly the depen-
dence on the past. Since (2.5) must hold simultaneous for all the considered
values of v a necessary condition for the existence of an equivalent martingale
measure is that the right hand side of (2.5) is independent of v. From (2.5)
we observe that the Q-probability of p,,; =« depends on ¢, and hence in
general differs for different outcomes of (p,...,p,). Furthermore, (2.5) gives
that the Q-probability of an upward movement is small (large) if the difference
P<rd(t+1,v)— (1 + rf1) P4 (t,v) is small (large) compared to the difference
P<+d(t+1,v)— P+*(¢t + 1,v). The measure Q given by (2.5) for all 7 ensures that
all discounted bond price processes are Q-martingales. If further ¢&,, €(0,1)
for all # and &,, then P and Q are equivalent measures, such that Q indeed is
an equivalent martingale measure. From (2.5) we get that O and P are equiv-
alent if for all ¢ € {0,...,7-2} and ¢, it holds that

Peru(t+1,v) < (1 + ré) Poi(,v) < PSed(t+1,v), ve{t+2,....T}. (2.6)

Here, we have used that P<-#(¢+ 1,v) < P<+4(t+1,v), since an upward move-
ment of the forward rates corresponds to a downward move of the bond prices.
Using (2.2) one can alternatively express (2.5) and (2.6) in terms of the forward
rates. Condition (2.6) can be interpreted as follows: No bond with time to
maturity larger than one must dominate or be dominated by the 1-period bond.
If this was the case we could make arbitrage by trading in the particular bond
and the 1-period bond.

2.2. A bond market model with reinvestment risk

Now, we extend the standard model in Section 2.1 to include reinvestment
risk. The idea is as follows: Assume that at any time ¢ only bonds with time
to maturity less than or equal to 7 are traded, and the development of the bond
prices from time ¢ to ¢+ 1 can be described by a binomial model. Hence, at
time ¢ the one period development of the traded bonds is the same as in the
standard model introduced in Section 2.1. At time 7+ 1 the bond with matu-
rity ¢ + 1 matures and a new bond with time 7o maturity 7 is issued, such that
after the introduction of the new bond the model considered is similar to the
one at time ¢. To model the reinvestment risk we assume that conditional on
the past and the prices at time 7+ 1 of the bonds traded at time ¢, the entry
price at time ¢+ 1 of the new bond with time to maturity 7 can take two dif-
ferent values. .
Consider a bond market where trading takes place at times 7 =0,1,...,7. In
this bond market not all zero coupon bonds with maturity less than or equal
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to T are traded at all times =0,1,.. f" Instead we fix the maximum time to
maturity, 7, for bonds traded in the market Hence, the zero coupon bond pri-
ces P(1,y) are defined for 7 € {0, .. T} andvel{t,...,t+T)A T} In addition to
T and T we introduce the fixed time horizon T € N, which is the time of matu-
rity of the considered contract. Figure 2.2 shows the possible orderings of 7,
Tand T.

Today  Maturity Longest time  Last trading Today Longest time  Maturity Last trading

of claim to maturity time to maturity of claim time
of bonds of bonds
I | I |
I 1 r 1
0 T T T 0 7 T T
(@) (b)

FIGURE 2.2. Possible orderings of 7, 7 and 7. In case (a) all fixed claims with maturity 7 are attainable.
In (b) they are unattainable.

Without loss of generality we assume that T =T+ T, such that the bond mar-
ket at all times 7,7 € {0,..., T}, includes the 7" bonds with time of maturity v,
ye{t+1,...,t+T}. From (2 1) we observe that the forward rates are defined for
t€{0,.. T 1} and ve{s,...,t+T—1) A (T 1)}, so the forward rate vector
at time ¢ (wh1ch we still denote by £,) is given byf, (FpSriats oo Jre+ T Oya(F-1)-
Define the ((u—¢ + 1) A T')-dimensional vector fiuof forward rates defined at
time ¢ with time of maturity less than or equal to u. Now assume that

f;,(uﬂz)uﬁl) = Zt(.f()a---af_t—lapt)’ (2.7)

where z,: RT x RT"T-D x  x RTMT-D w4y d} — R, and py, ..., p7_y, sim-
ilarly to Section 2.1, is an i.i.d. sequence of random variables with distribution
P(py=u)y=1-P(p,=d)=p,p €(0,1). The filtration G =(G,),co,..7, 1S noW
given by

Go={0,Q} and G, = o {pps..c poncint tE€L{L,...T}.

At time ¢ the maturities of the forward rates given by (2.7) are those where a
forward rate with the same maturity is defined at time 7 — 1. Hence, the forward
rates at time ¢ given by (2.7) determine the bond prices at time ¢ for bonds with
time of maturity v, ve {t+1,...,(t + T—1) A T}, which are the bonds traded
at time ¢ — 1 (when disregarding the bond maturing at time ¢). Thus, the uncer-
tainty associated with the development of the forward rates (bond prices) from
time 7—1 to ¢ is described by p,. However, the uncertainty associated with the
price of the new bond with time to maturity 7 introduced in the market at time
t,t €{1,...,T}, cannot be described entirely by p,; it depends on an additional
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source of risk. In order to model this additional uncertainty we assume that
at time 7,7 € {1,..., T}, the (T— 1)-period forward rate, Jii+7 1, 18 given by

ﬁ,t+7~"—l = ct(ﬁ)a-“af-;—laﬁ,t+7~"—27£t) (2.8)

for some function ¢, : (RT) x R”"! x {, 2} — R and ani.d.d. sequence ¢, ..., &1
of random variables independent of (p,),c1.. 7 1;- The distribution of ¢, is given
by P(eg=h)=1-P(¢;=2) = p,p €(0,1). Hence, for t € {1,...,T} it holds
that given the past forward rates and the (7— 1)-dimensional forward rate vec-
torf, v 7.2 = (Fys fri4 155 fri+ 7o) at time ¢, the (7— 1)-period forward rate,
fii+7-1, can attain two different values: ¢,(fo, ..., f; 1, fi.i+ 7 2 1) and ¢,(fo, ...,
i Ji.o+7 2. 4). We refer to these values as the high and low value, respectively.
Analogously to & we now introduce 4,, 4, € A, = {all possible sequences of /’s
and £’s of length 7} for all £=0,..., T. Thus, 7, keeps track of whether the past
values of the (7T—1)-period forward rate has attained the high or the low value.
Hence, ¢, and /,, 7 determine the development of the entire forward rate vec-
tor until time ¢, 7 € {1,.. T 1}, such that we can denote the generic value of
the forward rate vector at time ¢ by f,¢#7. Now introduce the filtration H =

(j{t)te{o ,,,,, f} by
Hy=1{0,Q} and H,=aley,....,e 0}, tEL{L,.. T}

#, introduced earlier is given by

,,,,,,

Hence, F is the filtration for the extended bond market. We note that it is suffi-
cient to consider the state space for w given by Q= {u,d}” ' x {h,2}" and the
o-algebra = Fp=Fp .

Attime t,t € {T+1,...,T} the development of the bond market is essen-
tially identical to the binomial model in Section 2.1, whereas the model is non-
standard at time ¢, ¢ € {1,...,T}. Here, we have that contingent on &,_;, and
A, | there are four possible forward rate vectors at time ¢ and hence 4’ possi-
ble states at time ¢. Thus, for < T the development of the forward rate vector
can be represented using a non-recombining quadrinomial tree, see Figure 2.3
for a visualization of the forward rates with 7"=2.

From (2.7) we observe that the forward rate at time 7 with maturity 7, 7€
{,..,t+T-2) A (T 1)}, is allowed to depend on all past forward rates, such
that the (T—1)-period forward rate at time 7— 1 may influence the entire forward
rate vector at time ¢. Hence, the forward rate f, , 7 € {¢,...,(t + T-2) A (T D},
i8 (%,_1 V G,)-measurable, which in turn gives that P(z,7) also is (F,_1V G,)-mea-
surable fort € {t+1,...,(¢+T—-1) A T}. For an illustration of the dependence
of the forward rates on the p’s and &’s we again refer to Figure 2.3, where the
dependence is shown explicitly.
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Note that if we contingent on the outcome of the vector (¢,...,&7), the
development can be described by a binomial model, and hence the conditional
model is complete, such that in the conditional model zero coupon bonds with
all maturities have unique prices (even before they are traded). Hence, in the
conditional model we, at all times, have a forward rate vector for all maturi-
ties. However, in the unconditional model the future values of ¢,,,...,&; are
unknown at time ¢, such that it is uncertain which of the conditional forward
rate vectors in retrospect will turn out to have been “the correct one”, when
&+1»---,&7 have been observed at time 7. Thus, the reinvestment risk can be
interpreted as the uncertainty associated with which of the conditional for-
ward rate vectors in retrospect has turned out to have been “the correct one”.
This in turn gives that the magnitude of the reinvestment risk is related to how
much the conditional forward rate vectors differ.

Remark 2.2. For reasons of simplicity both the development of the known
forward rate curve and the reinvestment risk are described by a simple 1-fac-
tor model. This allows us to more clearly illustrate the idea and explain the
mechanics of the model. In practice a more complex model would probably
lead to a more realistic description of the two types of risk. Moreover we note
that the complexity of (2.8) with regards to the dependence of present and past
forward rates is irrelevant for the magnitude of the reinvestment risk faced by
a company. This risk is entirely described by the dependence in (2.8) on the &’s.

O

Example 2.3. Consider the case where 7=2 and T = 3. Hence, the time to
maturity of the longest bond in the market is 2 and the time of maturity of
the considered claim is 3. The development of the forward rate vector can be
visualized by Figure 2.3. Here, the superscripts denote the dependence of the
forward rates on the outcome of the variables p and ¢. As an example the nota-
tion ri* denotes the short rate in period 2 if p; =u, p,=uand ¢, = £ . We end the
example by noting that all examples in this paper are one continuing example.

O

2.2.1. Risk-neutral probabilities

We now aim at determining the equivalent martingale measures in the extended
model. Here, the uncertainty is generated by (p,), c (1.7 1, and (¢,),c 1. .11
such that the measure Q is uniquely determined by (g¢*¢- 027, 7 |, and
(gse* =, cq.. .1, Where gf-1#c-va7 denotes the probability of p, = u given &,
and A;_1yr 7 ‘and g+ denotes the probability of e, =/ given &, and 4,_,. Recall
that for ¢ € {0, .. T lyandve{r+1,...,t+T)A T} a necessary condition
for O to be an equivalent martingale measure is

P(t,v) = ITEQ[P(z +1,v)| %], (2.9)
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FIGURE 2.3: Development of the forward rates in the extended model with 7'=2.

such that the discounted bond prices are martingales. Now note that (2.9) is
trivially fulfilled if v=17+1. Since P(t +1,v) in (2.9) is #, V G, . |-measurable, i.e.
independent of ¢,,,, then (2.9) yields (T-2) A (T t-1) equatlons for qf;;f”
Hence, if there exists an equivalent martingale measure, then ¢; ﬁf’” is unique for
allz €{0,...,T-2}, provided there for each ¢ existsave {r+2,...,(t+ T) AT},
such that Pf*”i”d(l +1,v) # P (¢t +1,v). Fort € {0, ..., T— 1} no information
regarding qvffl”’ can be derived from (2.9), so any Q for which qfﬁfl'” fulfills
(2.9) forall t €40, ...,T—2} ensures that the discounted bond prices are mar-
tingales. If further both ¢+%*” and qg <+ Jie in the interval (0,1), then Q is an
equivalent martingale measure. If qvfjjl‘ 2 = p, we say the market is risk-neutral
with respect to reinvestment risk. This measure is known as the minimal mar-
tingale measure for the extended model, i.e. the equivalent martingale measure
which “disturbs the structure of the model as little as possible”, see Schweizer
(1995). Here, we restrict ourselves to Q’s given by ¢4 = qvtﬂl, such that
under Q it holds that the distribution of the &’s is independent of the realization
of the p’s. Henceforth we consider a fixed, but arbitrary, equivalent martingale
measure Q.

Remark 2.4. Note that for ¢t € {0,...,?— 1} and ve{r+1,..,t+T)A f}
repeated use of (2.9) gives the equation

1 0 1
1+rE 1+r,,

P(tv) = E°[P(t+2,v)|7 1] 7,]. (2.10)
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Hence, since P(t+2,v) is (%4, V G,+,)-measurable it seems as if (2.10) gives
an equation from which to determine ¢4 for ¢ € {0,..., T— 1}. However, this
is not the case, since the (¥, V G, )-measurability of P(t + 1,v) ensures that
EC[P(t+2,v)|F+]1s independent of ¢, .

O

2.2.2. Model considerations

Con51der the case where we for fixed 7 model the forward rate f, ,,u € {z,...,(t +
T-2) A (T-1)} by

ﬁ,u = Zl,u(f;),us---z».f;—l,us pt)a re {1a-~-a T 1}9 (211)

where z,, : R DT x oo RUTTFDAT 5 (3 d} — R. Hence, the development of
the forward rates given by (2.11) is a special case of (2.7), where we have
restricted the possible dependence on the past forward rates. Here, the forward
rate at time ¢ with maturity 7,7 € {¢,..., (¢ + T-2)A (T 1)}, is allowed to
depend on the past forward rates with maturlty less than or equal to 7 only.
This in turn gives that f; . is independent of &, for v> ((z—T+1)Vv0). With
this restriction we have that the price at time 7 of a bond with time of matu-
rityte {t,...,c+T-1)A T} is (#,_ 7V G,)-measurable. Here, and throughout
the paper, we adopt the convention that F .= %, for 7 € N. Within this model
we have that once a bond is introduced in the market, the development of the
price process is entirely described by the outcome of the p’s. Hence, at time ¢
we essentially are in the complete and arbitrage free model from Section 2.1
when considering the filtration G and the time horizon (¢ + T—1) A T.

2.3. Discrete-time trading

Since the bonds traded in the bond market depend on the time considered, it
is inconvenient to define tradlng strategies in terms of the bonds. Hence, we
deﬁne T new price processes (S¥),-, 7, which are defined for all t=0.1,..., T,

.....

by S§ =1 and
v P(t-1+k) =P+ 1,i+k)
S; = P(t—l,z—1+k)S’*1_E)—P(i,i+k) ,ted{l,..,T}. (212

We note that until time 7 these price processes include exactly the same infor-
mation as the original bond prices. The price process S* is generated by invest-
ing 1 unit at time 0 in bonds with time to maturity k and at times r=1,...,T
selling the bonds with time to maturity kK — 1 purchased at time -1 and rein-
vesting the money in bonds with time to maturity k. Hence, for k€ {1,...,T}
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the price process S* is the value process generated by a roll-over strategy in
bonds with time to maturity k. Such a value process is usually referred to as
a rolling-horizon bond, see Rutkowski (1999). Recall that in a discrete-time
model, the 1-period bond is equal to a savings account, so the price process
S! corresponds to investing in a savings account with a locally riskfree interest
rate. Note that given ¥, ;, the future value of the price process vector at time ¢,
(SH)e (1.....71» depends on p, only, such that it is sufficient for hedging purposes
to consider any two of the rolling-horizon bonds defined by (2.12). Here, we
consider the savings account, henceforth denoted B, and S7, henceforth simply
denoted S. We shall refer to the asset with price process S as the risky asset.
Note that the measurability conditions on the bond prices give that B, and S|,
respectively, are (%, ,V G, ;)- and (%,_, V G,)-measurable.

A trading strategy with respect to (B, S) is an adapted two-dimensional process
¢ =(3,17). Hence, 9, and 7, are F,-measurable for all . The pair ¢, = (3,,7,) is
interpreted as the portfolio established at time ¢ and held until time ¢ + 1.
Here, 9, denotes the number of risky assets held in the portfolio, and #, is the
discounted deposit in the savings account. The value process associated with
the trading strategy ¢ is denoted 1/(¢). Here, 7,(¢), which is the value at time
t of holding the portfolio (9,,7,), is given by

V() = 9, S +n.B,. (2.13)

With the definition of $ and # above the value process is seen to be the value
after any in- or outflow of capital at time 7. A trading strategy is called self-
financing if for all ¢

t—1 t—1
(Vi(go) = q/()((o) + Z 9L¢A5u+l + Z nuABu+l> (2'14)
u=0

u=0

where we have introduced the notation exemplified by AS, = S,—S,,_;. Thus, the
value at time ¢ of a self-financing strategy is the initial value added interest and
investment gains from trading in the bond market. Hence, withdrawals or deposits
are not allowed at intermediate times 1 =1,..., 7—1. A self-financing strategy
is a so-called arbitrage if 7,(p) =0 and V;(p) 20 P-a.s. with P(Vp(p) > 0) > 0.
A contingent claim (or a derivative) with maturity 7 is an Fp-measurable ran-
dom variable H. A contingent claim is called attainable if there exists a self-
financing strategy ¢ such that 7(p) = H P-a.s. An attainable claim can thus
be replicated perfectly by investing 7(p) at time 0 and adjusting the portfolio
at times 1= 1,...,T—1, according to the self-financing strategy ¢. Hence, at any
time ¢, there is no difference between holding the claim H and the portfolio ¢,.
In this sense, the claim H is redundant in the market and from the assumption
of no arbitrage it follows that the price of H at time ¢ must be 7,(¢). Thus,
the initial investment 7} (¢) is the unique arbitrage free price of H. Note that
if ¢ is a self-financing portfolio replicating the contingent claim H, then (2.14)
gives the following representation for H:
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T-1 T-1
H=Y1(p) = %(p) + 23 9,A8,1 + 2n,AB,. . (2.15)

u=0 u=0

If all contingent claims are attainable, the model is called complete and other-
wise it is called incomplete. Throughout the paper, we denote by S*, 7*(p) and
H™ the discounted price process of the risky asset, the discounted value process
and the discounted claim, respectively.

Remark 2.5. The definition of trading strategies in discrete time is not uniform
in the literature. Harrison and Kreps (1979), Jarrow (1996) and Musiela and
Rutkowski (1997) define trading strategies as adapted processes, whereas Har-
rison and Pliska (1981) and Bjork (2004) consider predictable processes. The
different measurability conditions lead to one significant difference, namely,
whether the value process defined by (2.13) denotes the value before or after
a possible withdrawal or deposit. A third possibility is the definition in Follmer
and Schweizer (1988). They consider a predictable process ¢ and an adapted
process 77. Hence, the portfolio at time ¢ is given by the number of risky assets
held in the portfolio from time #—1 to ¢ and the discounted deposit in the sav-
ings account after a possible withdrawal or deposit. Since they define the value
process after a possible withdrawal or deposit their value process coincides
with the value process in the present paper. Hence, we have the following con-
nection between our definition of trading strategies and the Follmer-Schweizer
definition:

9, = 95, (2.16)
no=nl+ (9797 St (2.17)

Here, (375 /) denotes the portfolio at time 7 using the Fllmer-Schweizer
definition.
O

Example 2.6. If 7=2 and 7'= 3 then the price processes for the savings account
and the risky asset are given by

-1

By=1,B,=[](1+r), t€{1,2.3} and
i=0
1 P(i+ 1,042

SO = 1, St = H W’ e {1,2,3},

i=0

respectively. Here, one easily observes that, as noted above, B, is (F,_,V G, )-
measurable and S, is (%,_; V G,)-measurable.
O
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3. HEDGING STRATEGIES

Consider a company interested in hedging the claim H with maturity 7. If H
only depends on bonds with time of maturity at time 7 or earlier, it has a
unique arbitrage free price and can be replicated perfectly leaving the com-
pany without any risk. However, if H depends on bonds maturing after time 7,
then H does in general not have a perfect replicating strategy, and hence in gen-
eral it does not have a unique arbitrage free price. For unattainable claims we
determine the optimal hedging strategies for the criteria of super-replication
and risk-minimization.

3.1. Super-replication

A strategy ¢ is called super-replicating for the claim H with maturity 7 if the
value process is of the form

t—1 t—1
‘Vt(w) = ‘VO(¢) + Z 19uASqul + Z nuABqul - Ur (31)

u=0 u=0

where U is a non-decreasing process, and the terminal value of the value process
satisfies V(¢) > H P-a.s. Here, the process U is the accumulated outflow of cap-
ital when using the strategy ¢. Thus, when following a super-replicating strategy
no inflow of capital is needed in addition to the initial investment in order to
guarantee that at time of maturity, the value of the portfolio is at least as large
as the considered claim. Hence, following a super-replicating strategy allows the
hedger to eliminate the risk of falling short of the claim. The smallest initial
value needed at time ¢ to construct a super-replicating strategy is referred to as
the super-replicating price at time t, henceforth denoted 7,(H). Hence, the super-
replicating price at time ¢ is the smallest initial investment at time ¢ allowing the
company to hedge the considered claim without any risk of falling short. For
more details on super-replication see El Karoui and Quenez (1995) and Follmer
and Schied (2002). Now define the super-replicating price process as the process
of the super-replicating prices, i.e. the value of the super-replicating price process
at time ¢ is exactly the super-replicating price at time 7. At any time ¢ the opti-
mal super-replicating strategy is defined as the super-replicating strategy corre-
sponding to the super-replicating price process. Prior to the general result for the
super-replicating price process and optimal super-replicating strategy for a claim
H with maturity T, we first consider super-replication in a 1-period model.

Lemma 3.1. A
At time t,t €1{0,...,T— 1}, the optimal super-replicating strategy, ¢,=(9,,1,), for
a claim H with time of maturity t + 1 is given by
g :H(d)_H(u) and 77 :H(u)std+1_H(d>Stu+1
t u t u ?
Szd+1 _S1+] Br+1(Std+1_St+1)
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where
H(p, 1) = max(H(p, . 1,h), H(p, 1. 2)), p,+: € {u.d}.

The super-replicating price is

~

A (H) = T (0 )+ (1= 0,) B (D).

Proof of Lemma 3.1: Consider an agent holding the portfolio (9,,7,) at time ¢.
Before any adjustments at time ¢ + 1 the value of the portfolio can take one of
two values: 8,5+ #,B,., or $,S% ,+#,B,,,. Hence, the value of the port-
folio is the same in the states («,/) and (u, £), as well as in (d, /) and (d, £). Thus,

for (9,,7,) to be super-replicating it must hold that
‘QISIM+ 1 + ”IBt+ 1 2 maX(H(u,h),H(u, ‘Q))a
9,8% +n,B,+, = max(H(d,h), H(d, 2)),

where the H(i,j) denotes the payoff from H if p,, =i and ¢, =/, where i €
{u,d} and je {h, £}. Define the contingent claim H with payoff

H(p,+1) = max(H(p, .1, h), H(p+1,2)), oy € lu,d)},

and note that the strategy

H(u)S!,, - H(d)S"
9 :ﬁ and N, = (“) t+1d ( u) r+1
St+1 _Sr+l Bt+1<S1+l _S1+]>

replicates H. A no arbitrage argument now gives that the replicating strategy
and the unique arbitrage free price for H is the optimal super-replicating strat-
egy and super-replicating price, respectively.

O

Lemma 3.1 has the following interpretation: The dependence of H on ¢, is
unhedgeable. Hence, for each outcome of p,,; we assume the outcome of ¢, ; which
leads to the highest value of H and replicate this claim. The replicating strategy
and the unique arbitrage free price of this “worst scenario” claim are then equal
to the optimal super-replicating strategy and super-replicating price, respectively.

Remark 3.2. The main result in Aliprantis, Polyrakis and Tourky (2002) states
that in a 1-period model the optimal super-replicating strategy shall be found
among the replicating strategies in the complete sub-models arising from elimi-
nating states of the world. Hence, Lemma 3.1 can be seen as a special case, where

the optimal super-replicating strategy is easily identifiable.
O
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Theorem 3.3
Consider a claim H with time of maturity T. For t €{0,...,T— 1} the portfolio,
0,= (8,17, held in the optimal super-replicating strategy is given by

ﬁfn‘l,zz (H) _ ﬁérv”’)fz (H)

gg,,/l,: t+1 t+1 and
4 S‘fr d, 2 _ SQI Uy g
t+1 t+1
A&, u, &rod 2y A& d 2y Crothy Ay
ﬁét,i.,: Ty ( )St+l RRIEY ( )Sz+1
4 SR Cz»d,/w_ Eu ’
Bl+1 SI+1 S[+1

where

ReebrA(H) = max(AC’p’“) "(H), 7ehiet Y(H)), piar € {ud}.

Starting with the terminal value

rerT(H) = H

the super-replicating price process at time t, t € {0, ..., T— 1}, is given by the fol-
lowing recursive formula

L _ 1 Eod sl Sohi) peo A
At (H) = ————— g, 7,5 (H) + (1= g )70y (H))
1+r71 t-1)vo
t

Proof of Theorem 3.3: First note that at time 7 the super-replicating price is
trivial and equal to H. At time ¢, ¢t € {0,...,T— 1} we may consider the super-
replicating price at time 7+ 1, 7, ,(H), as the payoff from at contingent claim
with maturity 7+ 1. Thus, Lemma 3.1 gives the super-replicating price and
optimal super-replicating strategy at time 7 in terms of the super-replicating price
at time 7+ 1.

O

Note that we in Theorem 3.3 explicitly denote the dependence on the past
through ¢&, and 4, in order to emphasize the dependence of the optimal super-
replicating strategy and super-replicating price process on the past.

For sufficiently nice claims, such as fixed claims, the following corollary
allows for an easy calculation of the super-replicating price process and the opti-
mal super-replicating strategy.

Corollary 3.4
If for each t,t€{0,...,T—1}, it holds, for fixed k,,, € {h, 2} that

Afz Pr+1> M(H) = Af—:—lljtﬂ s kz+1(H)
l

z+1
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forall &, p, .\ and 2,, then the super-replicating price and optimal super-repli-
cating strategy at time t are, respectively, the unique arbitrage free price and the
replicating strategy in the conditional model given (e, 41, ...,é7) = (k. 41,.... k7).

Denote by U the process U from (3.1) associated with the optimal super-repli-
cating strategy. Hence, U denotes the accumulated outflow of capital, when
using the optimal super-replicating strategy. Combining (3.1) and Theorem 3.3
gives the following explicit expression for the change in U at time ¢

AZ]\lft—la/)tJr—hEt - ﬁ-[ér—lvl’talt—l(l_]) _ ﬁ-fr—l-/’tv/tt—l-b't(H)' (3.2)

Investigating (3.2) we observe that the withdrawal is the difference between
the value at time ¢ of the optimal super-replicating portfolio purchased at time
t—1 and the super-replicating price at time ¢. Hence, when using the optimal
super-replicating strategy the withdrawal from the portfolio at time ¢ depends on
the outcome of the two random variables observed at time ¢, p, and ¢,. Given
(3 2), one easily derives the conditional expectation under P of AU RN
given #,_,;, namely,

£ |8 g,
- [gg =)
= play ) = (A )+ (= py e (1)
(1= p) (&7 = (g )+ (= p) A ().

Thus, the expected withdrawal from the optimal super-replicating portfolio
is the probability of an upward jump multiplied by the expected withdrawal
contingent on an upward jump added the probability of a downward jump
multiplied by the expected withdrawal in this case.

Example 3.5. Let 7=2, T=3 and H = 1. Since H is attainable at time 1 and
a0 =% we have from Corollary 3.4 that the super-replicating price and the
super-replicating strategy at time 0 corresponds to using the conditional forward
rate vector given &, = £ . Hence, we obtain the following super-replicating price
process, expressed in terms of bond prices:

AT = 1.

NSNS _ 1 2,42 G\ 1 _ pérh
7Z2 (1) 1 . Cz P <Q3 + (1 q3 )) - 1 + l"zéz’il =P <2> 3)’
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A1) = = +1r‘fl (g5 7 P11 (2,3) + (1= g5 M) PO 1(2,3)) = PA(1,3),
1

2o(l) = T (0P L3 + (1= ) P2 (1.3).

The optimal super-replicating strategy is given by

d, u, 0
(5.7 P(0»2)(P (1.3) - P (1:3)) PY(1,2) P (1,3) - P"(1,2) P**(1,3)
377 = ) )
o PY(1,2) - PY(1,2) (1+ 1) (P/(1,2)- P"(1,2))
seni e | P(0,2) PTr(1,3 N
(91:" " ">= (0.2) ( ),0 and (9; 75 2>= 0,—|. O
P(1,2) B

Remark 3.6. Note that the worst case scenario is strongly dependent on the
model and period length. In this case where the unhedgeable reinvestment risk
is modelled by a binomial model the difference between the expected and the
worst possible outcome increases by approximately a factor of root two as the
period length is halved.

O

3.1.1. Relation to guarantees

Apart from the nice property of allowing the hedger to eliminate the shortfall
risk the super-replicating price process relates to the maximal possible guar-
antees for which the risk of falling short can be eliminated. Here, we consider
two types of guarantees: Maturity guarantees and periodic interest rate guar-
antees. Given a deposit at time ¢ the maturity guarantee is the minimal possi-
ble payoff at time 7, whereas the periodic interest guarantee is the minimum
interest earned on the deposit in each period until time 7. We shall refer to
the maximal guarantees for which the short fall risk can be eliminated as the
maximal riskfree maturity guarantee and maximal riskfree periodic interest rate
guarantee.

Proposition 3.7
Given an initial deposit of 1 at time t, the maximal riskfree maturity guarantee,
G/!, at time T is given by

GT = ' (3.3)

At time t the maximal riskfree periodic interest rate guarantee with maturity T,
T
gl is
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ol = (%)T]’ 1 (3.4)

Proof of Proposition 3.7: At time ¢ the super-replicating price of 1 unit at time 7°
is given by 7,(1). Hence, by investing 1 at time # we may purchase 1/7,(1) units
of the super-replicating strategy. This guarantees a payoff at time 7 of at least
1/7,(1). Hence, since the super-replicating price per definition is the lowest
initial deposit for which a certain payoff is guaranteed, the maximal riskfree
maturity guarantee at time 7 is given by (3.3). Now, the maximal riskfree peri-
odic interest rate guarantee is the constant short rate which gives a payoff of
G! at time T, when depositing 1 unit at time ¢. Hence, g7 is the unique solution
greater than —1 to

(+gh" =Gl

Inserting (3.3) and isolating g7 now gives (3.4).
O

Proposition 3.7 is of importance to for instance life insurance companies, since
it gives the maximal guarantees, which the companies should promise the
insured at initiation of the contract.

3.2. Risk-minimizing strategies

As an alternative to the hedging criterion of super-replication we now con-
sider risk-minimization. Here, we give a brief review of risk-minimization
and determine risk-minimizing strategies in the presence of reinvestment risk.
We note that since we define trading strategies differently than Féllmer and
Schweizer (1988) and Maeller (2001) our results cannot be compared directly
to their results.

3.2.1. A brief review of risk-minimization

In this section we review the criterion of risk-minimization introduced in discrete
time by Follmer and Schweizer (1988). The presentation is based on Meller
(2001).

The idea of risk-minimization is closely related to the introduction of the
cost process defined by

-1 "
Cip) = V' (9) = 29,A8 41 (3.5
u=0

Thus, the cost process is the discounted value of the portfolio reduced by dis-
counted trading gains. The cost process measures the accumulated discounted
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cost of an agent following the strategy ¢. Comparing (2.15) and (3.5) we note
that the cost process is constant P-a.s. if and only if the strategy ¢ is self-
financing. To measure the risk associated with the strategy ¢ we introduce the
risk process defined by

R(p) = E°[(Cr(p) - C(p))*| 7). (3.6)

Hence, the risk process is the conditional expected value of the squared future
costs associated with the strategy ¢. A trading strategy ¢ is called risk-mini-
mizing for the contingent claim A if for all r &€ {0,..., T} it minimizes R,(¢) over
all trading strategies with 7*(p) = H*.

The construction of risk-minimizing strategies is based on the Q-martingale

V' = EC[H| 7],

known as the intrinsic value process. Using the so-called Kunita-Watanabe
decomposition for martingales, V'* can be uniquely decomposed as

11
VE= 1+ D90 AS, + LY, (3.7)

u=1

where 97 is predictable, and L is a zero-mean Q-martingale orthogonal to S*,
i.e. S*L" is a Q-martingale as well. For more details on the Kunita-Watanabe
decomposition we refer to Follmer and Schied (2002). Shifting the index in (3.7)
and defining the adapted process 37 by 3/ = 91, we have the following decom-
position

* * I_INH * H
VE= s SV3EAS + L (3.8)
u=0

Comparing (2.15) and (3.8) we observe that H is attainable if and only if Z7=0
Q-a.s. Using (2.16) and (2.17) we obtain the following theorem, due to Follmer
and Schweizer (1988), which relates the Kunita-Watanabe decomposition to the
risk-minimizing strategy.

Theorem 3.8
There exists a unique risk-minimizing strategy, ¢*, with Vy (¢) = H* given by

%, 1) = (9741, V7" = 9741 ST). (3.9)
Inserting (3.9) in (3.5) and using the Kunita-Watanabe decomposition from
(3.7) we obtain the following expression for the cost process associated with

the risk-minimizing strategy:

t—1
Cp") = V= N9 AS,, = Vi + LI (3.10)

u=0
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Combining (3.10) and (3.6) now gives the following expression for the so-called
intrinsic risk process, which is the risk process associated with the risk-mini-
mizing strategy:

R,(¢*) = EQ[(LY - L) | 7). (3.11)

Note that when determining the risk-minimizing strategy we consider a/l admis-
sible strategies. This is in contrast to many other quadratic hedging criteria, such
as mean-variance hedging, where only self-financing strategies are allowed.
From (3.10) we observe that risk-minimizing strategies are not self-financing
for non-attainable claims. However, they are mean-self-financing, i.e. the cor-
responding cost processes are Q-martingales.

Since (3.6) involves an expectation with respect to Q, the risk-minimizing
strategy depends on the chosen equivalent martingale measure. Furthermore we
observe from (3.6) that the criterion of risk-minimization, like other quadratic
hedging criteria, penalizes gains and losses equally. This is of course disadvan-
tageous, however, when using a criterion penalizing only losses, explicit results
are hard to obtain; see the discussion in Meller (2001) and references therein.

In general, the risk-minimizing strategy is given by the (predictable) Q-
expectation of the replicating strategy given the unhedgeable uncertainty,
see Schweizer (1994) for a proof in a continuous-time setup. A particular sim-
ple risk-minimizing strategy is obtained in Meller (2001), since he considers an
unhedgeable risk, which is stochastically independent of the financial market.
As we shall see below in Theorem 3.10, the expression for the risk-minimizing
strategy is slightly more complicated in the present model than in Meller (2001),
since the unhedgeable risk is in the financial market.

3.2.2. Risk-minimizing strategies in the presence of reinvestment risk

We now turn to the derivation of risk-minimizing strategies in the present model
including reinvestment risk. In order to determine the Kunita-Watanabe decom-
position of V* we introduce the Q-martingales

M/T= EQ[I((61,4.4,8T):;LT)|—(};] = EQ[l((al,..,,aT):;.T)U'[r] (3.12)

for all A, € A;. Here, we have used that under Q the distribution of the &s is
independent of the filtration G. Using the quantities defined in (3.12), we get
the following expression for V,*:

V' = EC[H*| 7] = EC[EC[H| 7,V # ]| 5] = 3 M7 n/m(H),  (3.13)

Ar€AT

where 7/7*(H) is the unique discounted arbitrage free price for H given
(&}, ..., &) = Ap. Using (3.13) we obtain the following expression for the develop-
ment of V* from time -1 to 1,
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AV, =V, =V,
_ ;EAZTW 7 (H) - ;.TGZAZTWI 71 (H)
= 3 (M) - M ()
] ;IEI((MT M) M () = 5 ()
- :;AT(nfT’*(H) AMT + M AT (H)
- )j;/\i(nfr’*(H) AM™ + M7 97, AS:),

where 97 is the number of risky assets in the replicating strategy in the com-
plete model given (¢, ..., &7) = A, Hence, we have the following decomposition
of V*:

:%*-{-2

u=1

MY, ]AS +Z S (H)AMT. (3.14)

Ar €Ny u=1irelAy

In order to show that (3.14) actually is the Kunita-Watanabe decomposition of
V*, we first note that Z M ] Sf I, is #,_,-measurable, such that the process
8H defined by

ZMT }T

AreAr

is predictable. Now define the process L” by

= z’] S\ (H)AM,. (3.15)

u=1ireAr
Using the law of iterated expectations we see that

g

E¢

E¢[AL

irEAT

o]
> EQ[nfT’*(H)A

ireANr ]

= 3 B () EO[AM

Ar€AT

G vj[t*l”ﬂ*l]

0,
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since M’7 is a martingale stochastically independent of the filtration G. Hence,

Lis a Q-martingale. To show that that L” S* is a Q-martingale we first observe
that

ALAS*, =118y — " \SF =LY |AS! + S AL+ ALFAS}.
Thus, since L” and S* are Q-martingales, it is sufficient to show that

E° [ALtAS[*

_]=EQ{ SVl (H)AMTAS]

‘T E€AT

]

—]

- 3 EQ[an’*(H) AM'TAS;

Ar€Ar

= N EC|=(H)AS EC|
Ar€Ap

= 0.

oo,

Hence, we have proved the following.

Lemma 3.9
For a claim H with time of maturity T the Kunita-Watanabe decomposition is
given by

=7+ 2 [ ZM-Tlgjzl]As; + 2 SV (H)AM,™.

u=1\AreAr u=1irelAr

Combining Lemma 3.9, Theorem 3.8 and the expression for the intrinsic risk
process in (3.11) we obtain the following theorem regarding the risk-minimizing
strategy and the intrinsic risk process.

Theorem 3.10
The risk-minimizing strategy, ¢*, for H is given by

8t [zws,zMW | goea)s ]

AreAT AreAr Ar€AT

The intrinsic risk process is given by

R/(¢") = E° [ 5 zni;T’*(HMMfT]

u=t+1ir€Ar

Thus, the number of risky assets held in the risk-minimizing strategy at time ¢
is the average under Q of the replicating strategies for H in the conditional
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models given the outcome of (¢,...,&7). The deposit in the savings account is
adjusted each period according to the realization of the unhedgeable variables,
such that the discounted value process is equal to the intrinsic value process.

Inserting (3.15) in (3.10) gives the following expression for the cost process
associated with ¢*:

C((p)—V*+Z SV (H)AM,". (3.16)

u=1ireAr

From (3.16) we see that the change in the cost process at time ¢ for an agent
following the risk-minimizing strategy depends on the change in the Q-mar-
tingales M’7 associated with the outcome of ,. If the claim is attainable at some
time ¢ prior to 7, then the cost process is constant P-a.s. from time ¢, and
hence, the intrinsic risk process is zero from time ¢.

Example 3.11. Let 7=2, T=3 and H = 1. For the fixed Q-measure given by

g1 = ¢ e(0,1) we now obtain the risk-minimizing strategy from Theorem 3.10.
At time 0 the risk-minimizing strategy is given by

P (1,3) = P“"(1,3)
PY(1,2) -
)~

P (1,3) - P*"'(1,3
+(1-4) (1,3) (1,3)

9y = P(0,2)|4
0= P(0:2))4 P (1,2) PI(1,2) - P"(1,2)

0= d PY(1,2) P""(1,3) - P"(1,2) P*"(1,3)
‘ (1L+ 1) (P1(1,2) - P"(1,2))
_ A P2 PU(L3) - PY(1,2) P(L3)
Ha () (P2 - P (12))

whereas it at time 1 and 2 is given by
e s [ P(0,2) P13 iy :
(919 R ;7]C1.A1, ) — ( ) < )’0] and <‘9§2 2" nfz,lb ) =0

P(1,2) ?
We note that since the claim is attainable from time 1, the risk-minimizing
strategy and super-replicating strategies coincide at times 1 and 2. Moreover,
since the strategies coincide so do the super-replicating price and the value of
the portfolio held in the risk-minimizing strategy.

1

|-
&2, 7
B3

O

4. A NUMERICAL ILLUSTRATION

As already noted in the introduction the purpose of this illustration is to pro-
vide a simple example illustrating the mechanism of the model and hedging
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techniques. A full-scale (continuous-time) example illustrating the effect of
reinvestment risk on prices and risk measures will be treated in a separate
paper. Now we aim at providing some numbers for the continuing example
considered in Sections 2 and 3. Hence, T=2, T=3 and H =1. Now assume
that given the initial forward rate vector (ry, f;) the forward rates at time
t,t€{1,2,3}, are given by

. -1
perhel = ro]] (all(,,,:u) + azl(p,:d)) [1 (“31(m=h) + a41(£1‘:g))’
i=1 =1

Cf,,j., éz»il—l

tevl = 1 (bll(s,:h)+b21(s,:ﬁ))’

where ajy, ..., ay, by, b, are positive constants, and [];_, is interpreted as 1 if
u = 0. The constants @, and a, describe the movement of the forward rate vec-
tor due to the outcome of the p’s, whereas a; and a, describe the dependence
of the forward rate vector on past values of the ¢’s, and finally 5, and b, describe
the unhedgeable uncertainty associated with the newly issued bonds. In this sim-
ple model the dependence on &, is given by the number of #’s and not by the
ordering of the u’s. Hence, the number of states at time 2 is reduced from 16 to
12. However, this is still a large number of states compared to the 4 in a bino-
mial model (3 if the binomial model is recombining). In contrast to an additive
structure, the multiplicative structure above ensures that the forward rates are
strictly positive. Now let the initial forward rate curve and the constants be given
by r,=10.03, f, =0.031, a; = 1.25, 4, = 0.8, a3 = 1.01, a, = 0.99, b, = 1.0325 and
b, =1.015.

Recall from Examples 3.5 and 3.11 that the optimal super replicating and risk-
minimizing strategies for H=1 depend on &, and 4,, only. Thus, Figure 4.1 shows
the forward rates relevant for determining the hedging strategies. Furthermore,
Example 3.5 gives that the super-replicating price at time 0 corresponds to the
zero coupon bond price in the conditional model given ¢, = £, which in turn
corresponds to a 2-period forward rate of 0.03142. Here, and in the remaining
of the section, all numbers are given with 4 significant digits.

From Example 3.11 we furthermore note that the risk-minimizing strategy
depends on ¢. Thus, to obtain some numbers we have to specify Q. Henceforth,
we let p= 0.5 and consider risk-minimization under the minimal martingale
measure, i.e. ¢ = p. The optimal super-replicating and risk-minimizing strate-
gies and the corresponding prices are illustrated in Figure 4.2. Here, the first
column gives the super-replicating price, 3 and 7, and the second column shows
the risk-minimizing price, 3* and #*. Here, and henceforth we refer to the value
of the risk-minimizing strategy as a price, since it is the arbitrage free price
under the chosen equivalent martingale measure. Since the super-replicating
price is an upper bound for the interval of arbitrage free prices, the price using
the criterion of risk-minimization is obviously lower than or equal to the super-
replicating price. In particular it is strictly lower if there is a reinvestment risk,
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(0.03750) < (0.04734)
0.03872 (0.03030)
<0.03750>< (0.04641)
0.03806 (0.02970)
<0.02400> < (0.03030)
0.02478 (0.01939)
<0.02400> < (0.02970)
0.02436 (0.01901)

FIGURE 4.1: Relevant forward rates at time 0, 1 and 2. At time 0 and 1 the vector shows the short rate
and 1-period forward rate, whereas at time 2 only the short rate is relevant.

(0.03000)
0.03100

i.e. if b, # b,. In addition to the hedging strategies we may apply Proposition 3.7
to obtain the maximal riskfree maturity guarantee G; = 1.095 and the maximal
riskfree periodic interest rate guarantee gj = 0.03081.

Now we are interested in how the prices using the criteria of super-replica-
tion and risk-minimization are affected by changing b, and b,, which determine
the shape of the forward rate curve at time ¢, ¢ € {1,2,3}. Investigating Table 4.1
we observe that the price at time 0 using risk-minimization is decreasing in

TABLE 4.1

A COMPARISON OF PRICES AT TIME () USING RISK-MINIMIZATION AND SUPER-REPLICATION.
Tor: DEPENDENCE ON b;. BOTTOM: DEPENDENCE ON b,.

b, b, Risk-minimization Super-replication
1.05 1.015 0.9125 0.9130
1.0325 1.015 0.9128 0.9130
1.015 1.015 0.9130 0.9130
1.0325 1.015 0.9128 0.9130
1.0325 1 0.9130 0.9134
1.0325 0.99 0.9131 0.9137
1.0325 0.98 0.9132 0.9140
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0.9548 0.9548
[0.9279 0.9279] 0.8%35 0.8%35
0.9068 0.9068
0 0 0.9706 0.9706
0 0
0.9083 0.9083
0.9557 0.9557
0 0
[0-9285 0'9285] 0.8943 0.8943
0.9353 0.9353
0 0 09712 0.9712
0 0
09130 09128 0.9088 0.9088
1.8397 1.8470
-0.9267 —0.9342 0.9706 0.9706
[0.9529 0.9529] 0‘9%02 0.9%()2
0.9474 09474
0 0 0.9810 0.9810
0 0
0.9301 0.9301
0.9712 09712
0 0
0.9533 0.9533 0.9208 0.9208
0.9478 0.9478
[ 0 0 ] 0.9813 0.9813
0 0
0.9304 0.9304
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FIGURE 4.2: Hedging strategies and associated prices. First column: Super-replicating price, 9 and 7.
Second column: Price using risk-minimization, 3* and 7*.

both b, and b,. This is intuitively clear since a steeper positive slope leads to
lower bond prices and hence a smaller initial investment. The super-replicating
price is also decreasing in b,, however, in contrast to the risk-minimizing price,
it is independent of b,. The independence can be explained by the fact that the
criterion of super-replication considers the “worst scenario” only. Furthermore,
we observe that, as anticipated above, the risk-minimizing and super-replicat-
ing prices coincide when b, = b,, i.e. when there is no reinvestment risk.

A comparison with practice in Danish life insurance

The Danish life insurance companies are forced by legislation to disregard the
reinvestment risk and value their long term liabilities using a yield curve, which
is level beyond 30 years. Here we consider the similar principle of a level long
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term yield curve beyond the time of maturity of the longest traded bond. We
shall refer to this approach as the principle of a level long term yield curve
(even though we in discrete time have a yield vector rather than a yield curve).
In this setting with discrete compounding the yield at time 0 of a zero coupon
bond with maturity ¢ is defined by

= (7o) !

Here, the yield vector at time 0 is given by (g 1,0.,) = (0.03000,0.03050). Thus,
the principle of a level long term yield curve corresponds to assuming y, 3 =
Y02 =0.03050, which leads to a price of 0.9138. In addition to the level long
term yield curve principle we introduce the analogous principle of a level long
term forward rate curve, where we price using a forward rate curve, which is level
beyond the time of maturity of the longest traded bond. Here, this leads to the
price 0.9134. We note that both principles only depend on the present forward
rate curve, and thus they are independent of the possible future developments.
Furthermore none of the principles are based on the no arbitrage principle.

We now turn to the relationship between the yield vector and the forward
rate vector. When the yield vector is increasing (decreasing) the forward rate
vector lies above (below) the yield vector. Thus, if we have a level long term
yield vector, the long term forward rate vector is level and equal to the yield
vector. On the other hand an increasing (decreasing) forward rate vector which
is level for long times to maturity corresponds to a yield vector which increases
(decreases) and tends towards the forward rate vector as the time to maturity
increases. The increase (decrease) in the yield vector on the interval, where the
forward rate vector is level, is given by

1
1+f0,z1)’ -1

You=You1 = L4y, 1) (1 FT

In this example the forward rate vector at time 0 is increasing, such that the
principle of a level long term forward rate curve leads to a lower price than
the level long term yield curve principle.

Now we are interested in whether the principles lead to prices in the inter-
val of arbitrage free prices. In this simple example, where we consider a fixed
claim and the time horizons 7= 2 and 7= 3 a principle leads to a price in the
interval of arbitrage free prices if and only if the value of f; , implied by the
principle lies above the 2-period forward rate implied by the super-replicating
price and below the 2-period forward rate implied by the “best scenario”
price (which is a lower bound for the interval of arbitrage free prices). From
Table 4.2 we observe that if we allow for increasing forward rate vectors
only, both principles lead to a 2-period forward rate below the one implied
by the super-replicating price, and hence they lead to a price higher than the
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TABLE 4.2

VALUES OF f 5 IMPLIED BY, RESPECTIVELY, THE “BEST SCENARIO” PRICE, THE SUPER-REPLICATING PRICE
AND THE PRINCIPLES OF A LEVEL LONG TERM FORWARD RATE/YIELD CURVE.
Topr: DEPENDENCE ON b;. BOTTOM: DEPENDENCE ON b,.

b, b, “Best scenario” Super-replication Level forward Level yield
1.05 1.015 0.03250 0.03142 0.03100 0.03050
1.0325 1.015 0.03196 0.03142 0.03100 0.03050
1.015 1.015 0.03142 0.03142 0.03100 0.03050
1.0325 1.015 0.03196 0.03142 0.03100 0.03050
1.0325 1 0.03196 0.03096 0.03100 0.03050
1.0325 0.99 0.03196 0.03065 0.03100 0.03050
1.0325 0.98 0.03196 0.03034 0.03100 0.03050

super-replicating price. Thus, in this case both principles clearly overestimate
the price. If we allow for a level or decreasing forward rate vector, the 2-period
forward rate implied by the super-replicating price is lower than the one implied
by a the principle of a level long term forward rate curve, and if the possible
decrease is sufficiently large also lower than the one implied by using a level
long term yield curve, such that the principles lead to prices, which lie in the
interval of arbitrage free prices. However, especially the price obtained using
a level long term yield curve is in the high end of the interval of arbitrage free
prices. Note that the same information also could have been observed from
Table 4.1. Based on the discussion above we conclude that the principles should
not be used in situations where a decreasing forward rate curve is very unlikely.
If one uses one of the principles anyhow, we recommend using the level long
term forward rate principle and at the same time to keep in mind that the price
(most likely) is overestimated. In situations where a decreasing forward rate
vector is more likely, the principles are more likely to be accurate. The accu-
racy depends heavily on the situation and in particular on the correspondence
between the present forward rate vector and the conditional forward rate vec-
tors. The conclusion regarding the principles is that even though they are easy
to use, their results should be used as guidelines only.
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