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ABSTRACT

This paper extends the continuous credibility weighting introduced to haz-
ard estimation in Hardy and Panjer (1998) and Nielsen and Sandqvist (2000)
to the more general case, where the common basis is a proportional hazard
model.
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1. INTRODUCTION

Inspired by the credibility approach to hazard estimation of Hardy and Pan-
jer (1998), Nielsen and Sandqvist (2000) considered hazards of different groups
assuming the hazard of each group to fluctuate across a common baseline
hazard. They modelled this fluctuation by a heterogeneity parameter captur-
ing the particular properties of each group allowing for a surprisingly simple
credibility estimation procedure. The new estimation procedure can extend non-
parametric smoothing techniques to a number of data sets from the insurance
industry or other places including, for example, credit risk, where transitions
from one credit risk group to another are modelled. Nielsen and Sandqvist
(2000) considered hazards of the i ’th group given by

qi (t)a(t),

where a(t) is a smooth baseline intensity and qi (t) is a stochastic risk process
with E{qi (t)} = 1. This model was estimated by a combination of nonpara-
metric estimation (in the t-dimension) and credibility (between groups: e.g. the
i-dimension) where information from one group is guiding estimation of hazards
of other groups.

In this paper we consider the situation, where the proportional hazard
model takes over in case of data sparsity instead of a common baseline hazard
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as in Nielsen and Sandqvist (2000). In groups with a lot data, the proportionality
assumption of the hazards might be too restrictive compared to the individual
information we actually do have in such a group. In groups where there is
enough data to model the hazard by nonparametric smoothing techniques,
one should not force some proportional hazard assumption upon the data.
For groups with too little data to model the entire hazard, there can still be
areas with high levels of information where the individual group hazard can
indeed be modelled by standard smoothing techniques. The method of the cur-
rent paper captures all these situations. The credibility weighting automatically
adjust the fragile nonparametric estimator in areas of too little information and
leave it alone in areas were there is sufficient information. Our method is auto-
matic with the traditional advantage of the credibility approach: We always
have an estimator to use.

Mathematically our model introduces a group-specific proportionality fac-
tor Di resulting in the following model for the hazard in group i :

gi (t) = Diqi(t)a(t),

where a(t) is a smooth baseline intensity and E{qi (t)} = 1.
We show that the proportionality factors, Di�s, can be estimated through

a simple integral of some nonparametric estimator resulting in square-root-n
consistent estimators. This is not surprising and follow standard semiparamet-
ric analysis, see Bickel et al. (1993). If our unobserved heterogeneity parame-
ter qi (t) did not depend on time, then our model would be a traditional frailty
model. Frailty models of survival data were extensively treated in Hougaard(2000).
In chapter 11.6, Hougaard points out that “it would be desirable to have a
model where the frailty varies smoothly with time” and he goes on and cite
Woodbury and Manton(1977) and Aalen(1994) for having considered a com-
plicated parametric diffusion process as the underlying structure of the time
dependent frailty. Our credibility approach to a closely related problem gives a
direct, intuitive and nonparametric estimator of such a “smoothly varying frailty
parameter” as Hougaard was looking for.

In this paper we use nonparametric smoothing to estimate different hazards,
e.g. the a. Although nonparametric smoothing techniques have developed a
lot since the important paper of Ramlau-Hansen (1983), we do not try to
use the most recent or most sophisticated smoothing techniques. We choose
to consider the simple local constant hazard estimator introduced in Hjort
(1992) and reconsidered in Nielsen and Tanggaard (2001). However, modern
smoothing techniques such as the bias correction methods of Nielsen (1998)
and Nielsen and Tanggaard (2001) readily lend themselves to our credibility
approach.

In §2 we outline the counting process formulation for the hazard model. The
example which will be considered throughout the paper in introduced in §3.
§4 estimate the proportionality factors and the baseline intensity. We define the
proportionality adjusted continuous credibility estimator in § 5 and in § 6 we
estimate the variance. In §7 we get the empirical credibility estimator and we
conclude in §8.

240 J.P. NIELSEN AND B.L. SANDQVIST



2. A COUNTING PROCESS FORMULATION OF THE MODEL

We observe m individuals from k different groups and use the indexes i = 1,..,k
and j = 1, .., ni for respectively the k groups and the ni individuals in the i ’th
group. Later, in the asymptotic considerations we need n = min(n1,…,nk). Let the
counting process Nij count observed failures for the j ’th individual in the i ’th
group in the time interval [0,T ]. We assume that Nij takes values in {0,1} and
that Nij is a one-dimensional counting process with respect to an increasing,
right continuous, complete filtration Ft, t ∈ [0,T ], i.e. one that obeys les condi-
tions habituelles, see Andersen et al. (1992, p. 60).

We model the random intensity as

lij(t) = gi(t)Yij(t) = Diqi(t)a(t)Yij(t)

where

gi(t) = Di bi(t) and bi(t) = qi(t)a(t).

Here, Yij is a predictable process taking values in {0,1}, indicating (by the value
1) when the j ’th individual in the i ’th group is under risk. The positive sto-
chastic process qi is the continuous risk parameter for the i’th group and a(·)
is a differentiable and deterministic unknown baseline hazard with no restric-
tion on the functional form apart from the smoothness assumption. D1,…,Dk
are parameters playing the same type of role as parameters in traditional
problems.

We assume that the stochastic processes q1,…,qk are independent identically
distributed. Given these unobservable stochastic processes, the counting
processes (N11,Y11), ..., (Nknk

,Yknk
) are independent for the m individuals and

(Ni1,Yi1), ..., (Nini
,Yini

) are identically distributed for each i.
We assume that

Eqi(t) = 1 (1)

and that qi (t) and {Yij(t)}j ∈{1,…, ni} are independent for i in {1,…,k}.
We also assume that the baseline hazard a and the stochastic processes q1,

…, qk are normalized such that

qi

T

0
# (t)a(t)w(t)dt = 1 (for all sample paths and all i ) (2)

for some positive weighting function w, where w
0

T
# (t)dt is a finite integral. Fur-

thermore we assume that Varqi (t) = st
2 and E{Yij (t)} = di (t) for t ∈ [0,T ] for

positive and continuous di�s. The kernel K is a probability density function
symmetric about zero and Kb(·) = b –1K (·/b) for any positive bandwidth.

The normalization assumptions (1) and (2) identify the model and they imply
the integral equation 

0
a

T
# (t)w(t)dt = 1.

Define also
ji(t) = Diqi(t).
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Finally, the group exposure,

Yi.(t, b) = ij , ,t bY
j

n

1=

i

! ] g

is defined as the aggregate of the individual smoothed exposure processes:

Yij(t, b) = K b

T

0
# (t – s)Yij (s)ds.

3. AN EXAMPLE. AN APPLICATION TO DISABILITY INSURANCE

We introduce a real data example to illustrate the results. The analysis of the
data example will be updated along with our development of the necessary the-
ory. The data example considered is taken from Nielsen and Sandqvist (2000)
and reconsidered in the light of the theoretical developments of this paper.
In that paper, we considered four groups divided after sex and standard/
substandard tables and estimated the disability intensities in the four groups
with and without the credibility approach of that paper. The standard non-
parametric kernel hazard estimator of each group separately, see Hjort (1992),
is shown in Figure 1.

For high ages – above 50 years – these four intensities are too volatile to be
useful predictors. Nielsen and Sandqvist (2000) alleviated this problem through
a credibility weighting towards a common baseline hazard, see Figure 2.

For high ages the credibility weighted estimators of Figure 2 are less volatile
than the individual nonparametric estimators of Figure 1. They can therefore
be expected to be better predictors of the underlying disability intensities. How-
ever, we are left with a feeling that we can still do better. While the individual
estimators of Figure 1 clearly are too volatile at high ages, some information
of the credibility weighted estimators of Figure 2 seems to have been lost by
downweighting the individual hazards towards the same baseline hazard. While
the individual hazards of Figure 1 clearly are too volatile, they do seem to
contain enough information to allow the levels of the disability intensities to
be estimated. This observation was in fact the motivation of this paper, where
we reformulate the basic model and the credibility approach, such that the
stabilizing effect of credibility is maintained, while the available knowledge of
intensity levels are used to our advantage. We now continue developing the
approach based on credibility and the proportional hazard model. We return
to the data example in Section 4.2, Section 5, Section 6 and Section 7.

4. ESTIMATING THE PROPORTIONALITY CONSTANTS

AND THE UNDERLYING HAZARD

In this section we construct estimators of the proportionality constants D1,…,
Dk, and the underlying hazard a of the model defined in Section 2. We establish
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FIGURE 1. The four estimated individual hazards using standard non-parametric estimation methods.
(standard male lives: thick dotted line, standard female lives: thick solid line,

substandard male lives: thin dotted line, substandard female lives: thin solid line)

PROPORTIONAL HAZARD ESTIMATION 243

FIGURE 2. The four estimated credibility hazards from Nielsen and Sandqvist (2000). With correction note.
(standard male lives: thick dotted line, standard female lives: thick solid line,

substandard male lives: thin dotted line, substandard female lives: thin solid line)



a simple estimator of the proportionality constants based on integrating out
a relevant nonparametric kernel estimator. If this kernel estimator is under-
smoothed, then the resulting estimator of the proportionality constants are
square-root-n consistent just like parameters tend to be in ordinary parametric
estimation problems. We estimate the underlying hazard a by a standard kernel
smoother adjusting appropriately for the observed differences in level. Since
kernel smoothers have an inferior rate of convergence compared to the paramet-
ric rate, the uncertainty of estimating the proportionality constants are irrele-
vant for the asymptotic performance when the estimated underlying hazard
or the resulting credibility weighted kernel hazard are considered.

4.1. Estimation of Di and aa

It follows from the normalization assumption (2) that the proportionality con-
stant can be written as 

Di = gi

T

0
# (t)w(t)dt

and estimated simply by integrating out an estimator of gi. This is 

Di = g
T

0
i# r (t,h)w(t)dt,

where ĝi is the local constant kernel hazard estimator

ĝi(t,h) =
ij

,
,

t h

K t s dN s

Y .i

h

T

j

n
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-

=

i #!

]

] ]

g

g g

with bandwidth h, see Hjort (1992) or Nielsen and Tanggaard (2001).
Under standard conditions, D1,…,Dk are square-root-n consistent estima-

tors of the parameters D1,…,Dk, where n = min(n1,…,nk) and ni /n → fi, where
fi is positive and the bandwidth h is undersmoothed, see Appendix A.

To estimate a we use bandwidth b – bigger than h – and a modification of
the local constant kernel hazard estimator adjusted for D1,…, Dk:

â(t) =

-1

ij

,
.

t b

K t s dN sD

Yii

k
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n
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The square-root-n consistency of the estimated parameters implies that the
asymptotic properties of â(t) equal the asymptotic properties of

â(t) =

-1

ij

,t b
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that has the exact same asymptotic behavior as the estimator of the underly-
ing hazard had in Nielsen and Sandqvist (2000). In Appendix B we justify that
â is an estimator of a.

We know that a
T

0
# (t)w(t)dt = 1, we therefore adjust â(t) to 

â(t) = .
a

a

s w s ds

t
T

0
# u

u

] ]

]

g g

g

We now estimate ji(t) = Diqi(t) by locally correcting the counting processes Nij,
with stochastic intensities 

lij(t) = Diqi(t)a(t)Yij(t)

for â(t)Yij(t) resulting in the estimator

ĵi (t) =
i

i

j

j

,
aK t s s Y s ds

K t s dN s

b

T

j

n

b

T

j

n
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01
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t] ] ]
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see Appendix C.

We know such multiplicative corrections from the literature of bias correc-
tions, see Jones, Linton and Nielsen (1995) and Nielsen (1998) for respectively
the density and the hazard case. Nielsen and Tanggaard (2001) showed that this
multiplicative correction principle can be understood as a minimization criteria
using the least squares criterion introduced in Nielsen (1998). For a motivation
of the estimator ĵi(t) we note that the nominator approximates Diqi(t)a(t)Yi.(t)
while the denominator approximates a(t)Yi.(t).

Due to (2) we know that 

Di = Di

T

0
# qi(s)a(s)w(s)ds = j

T

0
i# (s)a(s)w(s)ds.

We therefore adjust the estimator of ji to 

ĵi(t) = Di ĵi(t) / j
T

0
i# r (s) â(s)w(s)ds.

From the point of view of theoretical analyzes, we can think of â as an accu-
rate estimator of a, since it is based on information from all groups. This is a
well known trick from credibility theory, where the global mean often is con-
sidered known, since it is based on all groups and therefore is estimated quite
precisely. In Appendix D, we therefore replace â by a, while considering asymp-
totic properties of our estimators.
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4.2. The example continued

We now return to our example of disability hazards. We use the bandwidth
h = 3 years (undersmoothing) while estimating the Di�s and elsewhere we use
the bandwidth b = 5 years. The kernel function used is 

K(t) = cos tp
2

b l I{t ∈ (–1,1)}.

We choose our weight function to be

w(t) = iY .
i 1

4

=

! (t) I (t ∈ [20,67] ) / iY s ds
67 20

1
.

i 1

4

20

67

-
=

# ! ]d g n

which for the age interval [20,67] is the total exposure per age normalized to
an average level of 1. There are other possibilities for the choice of weight
function. One could for example let w be a constant on some interval of prefe-
rence and zero outside this interval. However, in the current application, we
have chosen to put more weight in areas of high exposure.

In Figure 3 we illustrate the smoothed exposure Yi.(t,b) for the different groups.
Our estimation procedure leads to the following estimators of the propor-

tionality constants
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D1 D2 D3 D4

0,101 0,172 0,095 0,160

Based on these estimators we have the following preliminary conclusions: Nor-
mally insured women (group 1) have a risk of disability which is about 6% higher
than normally insured men (group 3). Substandard insured men (group 4) have
a risk of disability which is about 68% higher than normally insured men while
substandard insured women (group 2) have a risk of disability which is about
70% higher than normally insured women. However, the above percentages
are based on the proportionality assumption. We will see that fluctuations
around this proportionality assumption seem to be present in the data.

Based on D1, ...,D4, we construct non-parametric estimators, â of a, and
ĵi(t) of ji(t) = Diqi(t). The above estimators lead to the individual estimators 

ĝi(t) = ĵi(t) â(t)

which are the starting point of our credibility estimator presented below. The
credibility estimator is a locally weighted average of the individual estimators
ĝi(t) and the proportional hazard estimators Di â(t) presented in Figure 4.

Note that, compared to Figure 1, the picture in Figure 4 is radically changed
under the proportional assumption. The proportional hazards for all groups
– except for the normally insured men – are higher for older ages than the group
specific hazards in Figure 1.



FIGURE 4. The proportional hazards Di â(t) (standard male lives: thick dotted line, standard female lives:
thick solid line, substandard male lives: thin dotted line, substandard female lives: thin solid line).

FIGURE 3. The smoothed exposure in the four groups (standard male lives: thick dotted line,
standard female lives: thick solid line, substandard male lives: thin dotted line, substandard female lives:

thin solid line).
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5. THE PROPORTIONALITY ADJUSTED CREDIBILITY ESTIMATOR

OF q1,…,qk.

To indicate how much the individual estimator ĝi(t) differs from the propor-
tional estimator Di â(t) we look at the behavior of {Di}–1 ĵi (t) which is a raw
non-credibility estimator of qi(t). This is shown in Figure 5.

We see that the graphs fluctuate considerable, in particular in areas of low
exposure. Clearly a stabilizing estimation procedure based on credibility weights
seems appropriate after a first glance at Figure 5.

We start by adjusting our problem such that it becomes comparable to clas-
sical credibility theory and the methodology of Nielsen and Sandqvist (2000).
Consider the Hilbert space projection of the stochastic variable 

bi(t) = qi(t)a(t)

down at the linear space spanned by a constant and our estimated candidate 

b̂i(t) = {Di}–1 ĵi (t) â(t).

This parallels the original approach of Bühlmann and Straub (1970) that also
has a Hilbert space interpretation, see Norberg(2004).

Consider now the Hilbert space projection of bi(t) onto the linear space 

{at + bt b̂i(t) | at,bt ∈R}

for a fixed t. Based on this Hilbert space projection we obtain the following
expression for the optimal linear credibility estimator minimizing 

E{bi(t) – at – bt b̂i(t)}2,

namely 

(1 – z*
i,t)E{b̂i(t)} + z*

i,t b̂i(t),

where 

z*
i,t =

i

i,
.

b

b

VAR t

COV t tbi

]

] ]

g

g g

#

#

-

-

From Appendix D we get the following three results

,abE t o t1 1i = +] ] ]g g g# "- ,

i, abCOV t t o tb s1 1i t
2 2= +] ] ] ]g g g g# "- ,

and

ii , ,a abVAR t o D C t b t b tsY1 1 .i t
1

2

1 2 2= + +- -
] ] ] ] ]g g g g g8 B# " #- , -
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FIGURE 5. The raw non-credibility estimator of qi(t): {Di}–1 ĵi(t) (standard male lives: thick dotted line,
standard female lives: thick solid line, substandard male lives: thin dotted line, substandard female lives:

thin solid line).

where C2 = ∫K 2(u)du and where o(1) is the little-o function related to the limit
b → 0 and bni → ∞ (for all i).

Therefore, the optimal linear credibility estimator of bi(t) is approximately
equal to

(1 – zi,t)a(t) + zi,t b̂i(t)

where

zi,t =
i

i

,
,

.
a

a

C D t b t b
D t b t b

s
s

Y

Y

.

.

i t

i t

2
2

2

+ ] ]

] ]

g g

g g
(3)

We get a preliminary estimator of the underlying credibility parameter qi(t) by
dividing the above credibility estimator by a(t):

q̂i(t) = (1 – zi,t) + zi,t b̂i(t){a(t)}–1.

If Di = 1 for all i, then the credibility weighting zi,t is equal to credibility weight-
ing Nielsen and Sandqvist (2000) arrived at, see also the correction note to
that paper. Note that zi,t is increasing as a function of Di a(t)bYi.(t,b). This latter
quantity is asymptotically proportional to the expected number of disability
cases in the time interval [t – b, t + b]. It is reasonable that the weight zi,t for the
individual estimator will increase when this quantity increases. It is also reasonable
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that zi,t is increasing in st
2. All required parameters have been estimated at this

point except the variance st
2 that we estimate in the next section.

6. ESTIMATING THE VARIANCE

While estimating the credibility weights, we need an estimator of the variance.
A natural choice is 

ŝt
2 = (k – 1)–1 1- 2

j t D 1i i
i

k

1

-
=

! ] g9 C# -

where we have employed that Eqi(t) = 1 and that ĵi (t) is an estimator of ji (t) =
Diqi(t) and therefore ĵi (t){Di}–1 (illustrated in Figure 5) is a raw estimator of
qi(t).

We expect the estimated variance in the model presented here to be con-
siderable smaller than the estimated variance in Nielsen and Sandqvist (2000)
will be for the same data set. This is due to the fact that a lot of the variation
of the method considered in Nielsen and Sandqvist (2000) will be caught by the
parameters D1,…,Dk.

We set st
2 = s2, since st

2 can not be estimated with sufficient accuracy when
we only have four different groups in our study. Without this simplifying assump-
tion the credibility estimators would depend on the wiggly estimator of st

2.
A natural choice of estimator in the simplifying case is the weighted average:

ŝ2 = t, ,st b dt t b dtY Y.. ..

T T

0

1

0

-
2# #]b ]g l g

with Y.. (t,b) = ii 1= ,t bY .
k! ] g.

Let us consider the variance estimator in our example. In Figure 6 we see
both the time varying variance parameter ŝt

2 and the constant variance estima-
tor ŝ2 = 0,144.

We can also see from Figure 6 that the estimator of the time varying variance
fluctuates a lot, in particular in areas with low exposure levels. In the following
we continue to use the notation ŝt

2 for the variance estimator.

7. THE FINAL ESTIMATOR

Now we have all the components to obtain the final estimators of the credi-
bility weights zi,t:

zi,t =
i

i

t

t

,
,

.
a

a

s
s

C t b t b
t b t b

D
D

Y

Y

.

.

i

i

2 + 2

2

t

t

] ]

] ]

g g

g g

Then we get 

qi(t) = (1 – zi,t) + zi,t b̂i (t){â(t)}–1
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FIGURE 7. The credibility estimator q̂i(t) (standard male lives: thick dotted line, standard female lives:
thick solid line, substandard male lives: thin dotted line, substandard female lives: thin solid line).

FIGURE 6. The time dependent variance estimator ŝt
2 and the constant variance estimator ŝ2 = 0,144.
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and normalize this due to (2) to the final estimator of qi(t):

q̂i(t) = q̂i(t) / q i

T

0
# (s) â(s)w(s)ds.

The final estimator of qi(t) is shown in Figure 7.
It is seen that this final credibility estimator fluctuates less than the raw

preliminary estimator of qi(t) given in Figure 5. Our conclusion is that the
credibility based estimator of Figure 7 is much more plausible than the raw pre-
liminary estimator given in Figure 5. The estimator q̂i(t) indicates how far the
credibility estimator is from the proportional hazard model. In nearly the entire
age interval we see that the proportional assumption holds within ±30%. While
this fluctuation is within reasonable limits, it does, however, indicate important
deviations from the proportional hazard model.

The above leads to the final credibility estimator of the hazard gi (t) =
Diqi(t)a(t):

ĝi(t) = Di q̂i(t) â(t).

In areas of data sparsity ĝi(t) is close to the estimator one would have obtained
from the proportional hazard model Dia(t) and in areas with a lot of data, ĝi(t)
is close to the individual estimator ĝi(t,b) of the i ’th group.

The final credibility hazards in our example are shown in Figure 8.
We can see that the proportional assumption still has influence on the esti-

mators, but there are also important deviations from this such as indicated in
Figure 7. For example, the intensity for normally insured women (thick solid
line) is above the intensity for normally insured men (thick dotted line) for
ages below 50 years while the opposite is true for ages above 50 years. This
can be compared to the earlier conclusion from the proportional hazard model,
Figure 4, that the overall disability risk for normally insured women is about 6%
above normally insured men. Therefore, the credibility approach of this paper,
Figure 8, captures effects in data which can not be seen under the proportional
assumption in Figure 4. Note also that the credibility based estimators of
Nielsen and Sandqvist (2000) given in Figure 2 give a rather different impres-
sion than the estimator resulting from the proportional hazard approach of this
paper presented in Figure 8, especially for substandard lives above 50 years.

One can conclude that the model assumptions play an important role. In
areas with low exposure we essentially arrive at the estimator Di â(t) in this
paper and â(t) in Nielsen and Sandqvist (2000). While Figure 8 and Figure 2
therefore are quite different, they are clearly both much better at ages above
50 years than the original nonparametric estimators of Figure 1. In areas with
relative high exposure – e.g. below age 50 – Figure 1, Figure 2 and Figure 8 are
quite close to each other.

8. CONCLUSION

In this paper we have developed a continuous credibility adjustment to the
proportional hazard model. This method is applicable when the proportional
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FIGURE 8. The final credibility hazard ĝi(t) in the proportional model Diqi(t)a(t), where D1 = 0,101, D2 =
0,172, D3 = 0,095 and D4 = 0,160. (standard male lives: thick dotted line, standard female lives: thick solid

line, substandard male lives: thin dotted line, substandard female lives: thin solid line)

hazard model seems more appropriate as a starting point than the simple model
in Nielsen and Sandqvist (2000) assuming that all groups are identical. How-
ever, sometimes the proportional hazard model is not better as starting point
than the simple model assuming identical groups. A test could clarify which
of the two starting points that are closest to the data. However, such tests have
a tendency to put most weight in areas with most data. In the end, it is really
up to the individual actuary to determine which starting point to use. Both
methods adjust automatically to the true underlying structure when the amount
of data increases.
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APPENDIX A

In this appendix, we shortly comment on the fact that the estimated propor-
tionality factors are square-root-n consistent. It is a well known fact from
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semiparametric analyses that undersmoothing of the nonparametric compo-
nent is often necessary to obtain square-root-n consistency and efficiency of
the parametric component. For a review of semiparametric analyses, see Bickel,
Klaassen, Ritov and Wellner (1993) and for a semiparametric hazard model
within the counting process framework of this paper, see Nielsen, Linton and
Bickel (1998).

Remember that the proportionality constant

Di = gi

T

0
# (t)w(t)dt

is estimated by integrating out the smooth estimator

ĝi(t,h) =
ij
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such that

Di = gi

T

0
# r (t,h)w(t)dt.

It follows from standard kernel smoothing technique, see Nielsen and Tang-
gaard (2001), that the estimation error ĝi(t,h) – gi(t) can be written as a sum of
a variable part Vi (t) and a stable part Bi(t) resulting in the following expression
of the estimation error of the proportionality constant:

Di – Di = Vi + Bi,

where

Vi = iV
T

0
# (t)w(t)dt

and

Bi = Bi

T

0
# (t)w(t)dt.

The point is that while the variable part Vi(t) has rate of convergence of the
order of magnitude OP {(nh)– 1} then Vi integrates out the smoothing effect
resulting in a square-root-n consistent quantity. The stable part Bi(t) is of the
order of magnitude OP (h2). Integrating does not change the order of magnitude
and Bi = OP (h2) as well. Therefore, if an undersmoothed bandwidth h = oP(n–1/4)
is chosen, then Bi = oP (n –1/2) and 

Di – Di = Vi + Bi,

is square-root-n consistent, since Vi is square-root-n consistent. The exact same
arguments are present in Nielsen, Linton and Bickel (1998) and is omnipresent
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in the semiparametric literature when considering the parametric part of the
semiparametric problem. We omit further details for the sake of clarity.

APPENDIX B

We pointed out in Section 4.1 that â and â are equivalent from an asymptotic
point of view. Here we verify that â estimates a. Note that the difference of

â(t) =

1-

ij

i ,t b

D K t s dN s

Y .i

k

i b

T

j

n
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] ]b
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and 

â*(t) =
ij

i ,

a

t b

K t s s s Y s dsq
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b i
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] ] ] ]
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is equal to 

â(t) – â*(t) =

1-

ij

i ,t b
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] ]b

g

g gl! +

that can be analyzed by standard martingale techniques, see Ramlau-Hansen
(1983) or Nielsen and Tanggaard (2001), as Mij(s) = Nij(s) – Diqi(s)a(s)Yij(s) is
a martingale. This will lead to that 

(nb)–1/2{â(t) – â*(t)}

converges to a normal distribution.

Note furthermore that â*(t) is close to 

i

i

,

,
a t

t b

t b tq

Y

Y

.

.
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for small b. The term 
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Y

Y
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i
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1

1

=

=

!
!
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converges to the value one for k going to infinity, since E{qi(t)} = 1. Therefore
â*(t) estimates a(t).
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APPENDIX C

The exact procedure for estimation of ĵi(t) in Section 4.1 can be written as

1

2 1

-

-

ij

ij ,

arg min lim

arg min

a a

a a

dN u s K t s s Y s ds

N s s K t s s Y s ds
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t t

t t

] ]c ] ] ]

] ]^ ] ] ]

g gm g g g

g gh g g g

"

"

,

,

where we have adopted the notation that ÒDNi(s)W(s)ds ≡ ÒW(s)dNi(s) for some
function W as in Nielsen (1998) and Nielsen and Tanggaard (2001). Note that
the least square criterium uses the inverse variance Kb (t – s){â (s)}–1Yij (s) as
weights. Thus the above criterium is a kind of a local likelihood principle.

The criterion function itself is not tractable, but the differentiated (after j)
criterion function is. This is seen from the following first order condition 

ijij .aK t s dN s K t s s Y s dsjb

T

j

n

b

T

j

n

01 01

- = -
= =

i i

# #! ! t] ] ] ] ]g g g g g

where we have used Yij(s)dNij(s) = dNij(s). The solution is 

.
aK t s s Y s ds

K t s dN s
j

b ij

T

j

n

b ij

T

j

n

01

01

=
-

-

=

=

i

i

#

#

!

!

t] ] ]

] ]

g g g

g g

Thus ĵi (t) is given by the above formula.

APPENDIX D

The asymptotic properties of

b̂i(t) = {Di}–1 ĵi(t) â(t) 

is crucial while deriving the formulae for the credibility weights given in Sec-
tion 5. As pointed out (in a slightly different context) in Section 4, we can
replace b̂i(t) by 

b̂i(t) = {Di}–1 ĵi(t)a(t) 

from the point of view of asymptotic theory.
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As a consequence of standard kernel hazard estimation techniques, see
Nielsen and Tanggard (2001) or the appendix of Nielsen and Sandqvist (2000)
we get 

E (ĵi(t) | qi(t)) = {1 + o (1)}Diqi(t)

and 

Var (ĵi(t) | qi(t)) = {1 + o (1)}C2Diqi(t)a–1(t){bYi.(t,b)}–1,

where C2 = ÒK 2(u)du. Thus 

E (ĵi(t)) = {1 + o (1)}Di,

Cov (ji(t), ĵi(t)) = {1 + o (1)}Di
2st

2

and 

Var (ĵi(t)) = {1 + o(1)}[C2Di a
–1(t){bYi.(t,b)}–1 + Di

2st
2].

Due to the first lines in this section we can replace b̂i(t) with b̂i (t) = {Di}–1

ĵi(t)a(t) and we conclude that 

E{b̂i(t)} = {1 + o(1)}a(t),

COV{bi(t), b̂i(t)} = {1 + o(1)}st
2a2(t)

and 

VAR{b̂i(t)} = {1 + o(1)}[Di
–1C2a(t){bYi.(t,b)}–1 + st

2a2(t)].
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