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ABSTRACT

Phase-type distributions, defined as the distributions of absorption times of cer-
tain Markov jump processes, constitute a class of distributions on the positive
real axis which seems to strike a balance between generality and tractability.
Indeed, any positive distribution may be approximated arbitrarily closely by
phase-type distributions whereas exact solutions to many complex problems
in stochastic modeling can be obtained either explicitly or numerically. In this
paper we introduce phase-type distributions and retrieve some of their basic
properties through appealing probabilistic arguments which, indeed, constitute
their main feature of being mathematically tractable. This is illustrated in an
example where we calculate the ruin probability for a rather general class of
surplus processes where the premium rate is allowed to depend on the current
reserve and where claims sizes are assumed to be of phase-type. Finally we
discuss issues concerning statistical inference for phase-type distributions and
related functionals such as e.g. a ruin probability.
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1. INTRODUCTION

The aim of this paper is to serve as an introduction to the use of phase-type
distributions in risk theory and at the same time to outline a recent line of
research which includes statistical inference for phase-type distributions and
related functionals such as ruin probabilities.

We start with a short bibliographic review. Though phase-type distributions
can be traced back to the pioneering work of Erlang (1909) and to Jensen
(1953), it was not until the late seventies that Marcel F. Neuts and co-workers
established much of the modern theory available today (see Neuts (1981), Neuts
(1989), Neuts (1995)). See also Asmussen (2003) for a more recent account.
Most of the original applications were in the area of queueing theory but many
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applications to risk theory can be found in Asmussen (2000). O’Cinneide (1990)
studies theoretical properties of phase-type distributions, such as their char-
acterization. Asmussen and Bladt (1996) generalizes risk models to situations
with Markov modulated arrivals and to situations where the premium depends
on the current reserve. Asmussen et al. (2002) provides an elegant algorithmic
solution to the finite time-horizon ruin probability. In Aalen (1995) a proposal
of application to survival analysis is outlined. For a more elementary text-
book, which mainly draws examples from queueing theory, we refer to Latouche
and Ramaswami (1999). Many results using phase-type methodology have been
generalized into the broader class of matrix-exponential distributions (distri-
butions with a rational Laplace transform), either by analytic methods (see
Asmussen and Bladt (1997)) or more recently using a flow interpretation (see
Bladt and Neuts (2003)).

Statistical inference for phase-type distributions is of more recent date,
where likelihood estimation was first proposed by Asmussen et al. (1996) using
the EM-algorithm whereas a Markov chain Monte Carlo (MCMC) based
approach was suggested in Bladt et al. (2003). For an overview of earlier
attempts to the estimation of phase-type distributions by methods other than
maximum likelihood or MCMC, see Asmussen et al. (1996).

The rest of the paper is organized as follows. In Section 2 we provide the
necessary background on the theory of Markov jump processes in order to
introduce the concept of phase-type distributions in Section 3. In Section 4 we
outline the method of probabilistic reasoning with phase-type distributions
by establishing some of their basic properties. Section 5 introduces phase-type
renewal theory and a first application in risk theory. In Section 6 we consider
a model for the surplus in insurance where the premium is allowed to depend
on the current reserve. Probabilistic arguments involving phase-type distribu-
tions allow us to establish a system of coupled differential equations, the solu-
tion of which is the ruin probability. The solution yields the exact solution to
the problem though in practice the differential equations are solved by numer-
ical methods. The last two Sections 7 and 8 are dedicated to the estimation and
statistical inference for phase-type distributions and related functionals (such
as e.g. the ruin probability in a surplus process).

The style of the paper is expository and technical details will occasionally
be omitted but can be traced through appropriate references.

2. MARKOV JUMP PROCESS

Before defining phase-type distributions we shall recall some basic properties
of Markov process with finite state spaces (also called continuous time Markov
chains or Markov jump processes). Let {X(t)}t ≥ 0 be a Markov process which
takes values in the state space E = {1,2, ...,n}. Then {X(t)}t ≥ 0 behaves in the
following way. Let T1,T2,... denote the times where {X(t)}t ≥ 0 jumps from one
state to another. Define for convenience T0 = 0. Then the discrete time process
{Yn}n ∈ �, where Yn = X(Tn), is a Markov chain that keeps track of which states
have been visited. Let Q = {qij}i, j ∈ E denote its transition matrix. Furthermore,
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if Yn = i, then Tn + 1 – Tn is exponentially distributed with a certain parameter
li. Also given Y0 = i0,Y1 = i1, ...,Yn = in, the holding times T1 – T0, T2 – T1, ...,
Tn + 1 – Tn are independent. The latter property is referred to as conditional
independence given {Yn}n ∈�.

Since the holding times Tn + 1 – Tn are exponentially distributed with para-
meter li given that Yn = i, the conditional probability that there will be a jump
in the process {X(t)}t ≥ 0 during the infinitesimal time interval [t, t + dt) is li dt.
Given a jump at time t out of state i, the probability that the jump leads to
state j is by definition qij. Hence for j ≠ i, li dtqij is the probability of a jump from
i to j during [t, t + dt). Thus for j ≠ i,

lij = liqij

is interpreted as the intensity of jumping from state i to j. Define lii = – !j i l! ij
and L = {lij}i, j ∈E. The matrix L is called the intensity matrix or infinitesimal
generator of the process. Let the transition probabilities of the Markov jump
process be pt

ij = �(X(t) = j |X(0) = i ) and the corresponding transition matrix
Pt = {pt

ij}i, j ∈E. Then we have the following important relation between Pt and L,

Pt = exp (Lt),

where exp(A) denotes the exponential of a matrix A defined in the usual way by
series expansion,

exp(A) = ! .n
A

n 0

3

=

n

!

Classification of states for Markov jump processes is as follows: a state i is
recurrent (resp. transient) if i is recurrent (resp. transient) for the chain {Yn}n ∈�.
A state i is absorbing if it is impossible to jump out of it again, that is if qij = 0
for all j ≠ i implying lij = 0 for all j.

3. PHASE-TYPE DISTRIBUTIONS

We now let {X(t)}t ≥ 0 be a Markov jump process on the finite state-space E =
{1,2, ...,p, p + 1} where states 1, ..., p are transient and state p + 1 is absorbing.
Then {X(t)}t ≥ 0 has an intensity matrix on the form

,
T t

L
00

= c m (3.1)

where T is p ≈ p dimensional matrix, t is a p dimensional column vector (or
p ≈ 1 dimensional matrix) and 0 is the p dimensional row vector of zeros.
We shall make the following convention: unless otherwise stated matrices are
denoted by boldface capital letters (Latin or Greek), boldface lowercase Latin
letters refer to column vectors and lowercase boldface Greek letters refer to row
vectors.
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Since the intensities of rows must sum to zero, we notice that t = –Te where,
e = (1,1, ...,1)�. The intensities ti are the intensities by which the process jumps
to the absorbing state and are referred to as exit rates (exit from the transient
subset of states). Let pi = �(X0 = i), i = 1,..., p, �(X0 = p + 1) = 0 denote the ini-
tial probabilities. Notice that we are not allowed to initiate in state p + 1 (this
would cause an atom at zero; extension to this case is, however, straightfor-
ward). Let p = (p1, ...,pp) denote the initial distribution of {X(t)}t ≥ 0 over the
transient states only.

Definition 3.1. The time until absorption

t = inf{t ≥ 0 | Xt = p + 1}

is said to have a phase-type distribution and we write

t ~ PH(p,T ).

The set of parameters (p,T ) is said to be a representation of the phase-type dis-
tribution. The dimension of p,p, is said to be the dimension of the phase-type dis-
tribution.

In the following we give three examples of phase-type distributions.

Example 3.2. Let X1, ...,Xn be independent with Xi ~ exp(li). Then S = X1 +
... + Xn has a phase-type distribution with representation p = (1,0,...,0) (dimen-
sion n), and
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Indeed the sum X1 + ... + Xn may be interpreted as the time until absorption by
a Markov jump process with n transient states which initiates in state 1 and
always jumps to the next state in the sequence, up to state n from which it
jumps to the absorbing state.

Since the sum Sn can be obtained by summing the Xi’s in any order we see
that representations are by no means unique. Indeed we might permute the
above states and obtain an alternative representation of the same distribution.

Example 3.3. The next distribution is known as hyper-exponential. Let X1,...,Xn
be independent and Xi ~ exp(li) and let fi denote the corresponding exponen-
tial density. Let

f = a fi i
i

n

1=

!
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FIGURE 3.1. A flow diagram leading to a Coxian distribution.

where ai > 0, i 1= a 1
n

1 =! . Then f is phase-type with representation p = (a1,...,an),

... ... ...

...

...

... ... ... .T

l
l

l

0

0

0

0

0
0

0 0

0
0

0

0
0

n

1

2=

-
-

-

J

L

K
K
K
K

N

P

O
O
O
O

Example 3.4. Coxian distributions arise from the convolution of exponential
distributions with a random (yet bounded) number of terms (called phases or
stages). This can be interpreted as the time until absorption of a Markov jump
process as represented by the flow diagram in Figure 3.1: starting from state 1,
there is a total jump rate out of state 1 of t1 + t12. The probability of a jump
to state 2 is t12 / (t1 + t12) and the probability of a jump to the absorbing state
is t1 / (t1+ t12). This is equivalent to the jump rate from state 1 to state 2 being
t12 while the jump rate to the absorbing state (the exit rate) is t1. All other
states j, j = 1,...,p – 1 behave similarly, while the probability of jumping from
state p to the absorbing state is 1.

If we let li = ti + ti, i + 1 for i = 1,..., p – 1 and lp = tp then the following choice
of parameters yields a representation for the Coxian distribution discribed by
the flow diagram in Figure 3.1.

p = (1,0,0,…,0)
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4. PROPERTIES OF PHASE-TYPE DISTRIBUTIONS

In this section we derive some basic properties of phase-type distributions by
probabilistic arguments which, due to their importance later on, will be spelled
out in details.

The following result is of main importance. With the notation (3.1), we have

exp(Ls) = .
exp exps sT e T e

0 1
-] ]

d
g g

n
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The proof uses the definition of the matrix exponential and the facts that t =
– Te. We recall that exp(Ls) is the transition matrix Ps of the Markov jump
process {X(t)}t ≥ 0 and the important thing to notice here is that the restriction
of Px to the transient states is given by exp(Tx). Hence we are able to compute
transition probabilities ps

ij = �(X(s) = j | X(0)=i) = exp(Ts)ij for i, j = 1,...,p.
We now take t ~ PH(p,T) and derive the density f of t. The quantity f(s)ds

may be interpreted as the probability �(t ∈ [s, s + ds)). If t ∈ [s, s + ds), then
the underlying Markov jump process {X(t)}t ≥ 0 must be in some transient state
j = 1,...,p at time s. If the process initiates in a state i = 1,..,p, the probability
that X(s) = j is then ps

ij = exp(Ts)ij. The probability that the process X(t) starts
in state i is pi by definition. If X(s) = j, the probability of a jump to the absorb-
ing state p + 1 during [s, s + ds) is tjds (cfr. Section 2).

Conditioning on the initial state of the process and its state by time s we then
get that
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We have thus proved the following theorem:

Theorem 4.1. If t ~ PH (p,T ) the density f of t is given by

f (s) = pexp(Ts)t,

where t = –Te.

We could now obtain an expression for the distribution function by integrat-
ing the density, but we shall retrieve this formula by an even simpler argument.
If F denotes the distribution function of t, then 1 – F(s) is the probability that
{X(t)}t ≥ 0 has not yet been absorbed by time s (i.e. t > s). But the event {t > s}
is identical to that of {X(s) ∈ {1,2, ..., p}}. Hence, by a similar conditioning
argument as above, we get that
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Thus we have proved:

Theorem 4.2. If t ~ PH (p,T ), the distribution function F of t is given by

F(s) = 1 – p exp(Ts)e,

where t = –Te.

As a corollary we may observe that the tail of a phase-type distribution decays
exponentially which makes phase-type distributions thin-tailed.

We have the integration rule

exp# (Ts)ds = T –1exp(Ts) = exp(Ts)T –1 (4.1)

as a direct consequence of

ds
d exp(Ts) = Texp(Ts) = exp(Ts)T (4.2)

and that T is invertible, being a sub-exponential matrix. Of course (4.2) is also
valid for L but (4.1) is not since L is singular. Using (4.1) the following ana-
lytic properties of phase-type distributions may easily be verified.

Theorem 4.3. 1. The n-th (n ≥ 1) moment of t is given by � (tn) = (–1)n n! pT –ne.

2. The moment generating function of t is given by � (est) = p(–sI –T)–1t, where
I denotes the identity matrix of dimension p.

Apart from being mathematically tractable, phase-type distributions have the
additional appealing feature of forming a dense class of distributions within
the class of distribution on the positive real axis, that is, for any distribution m
on the positive real axis there exists a sequence of phase-type distributions
which converges weakly to m (see (2003) for details). In other words, phase-type
distributions may approximate arbitrarily closely any distribution with support
on the positive reals. This means that for thin-tailed distributions one may
assume without (too much) loss of generality that distributions are of phase-type.
For heavy tailed distributions more care should be taken. Though in principle
phase-type distributions are able to approximate also heavy tailed distributions
arbitrarily well, the approximations will always be bad in the tails, and the tail
behavior is of crucial importance in many situations.

5. PHASE-TYPE RENEWAL THEORY

Consider a phase-type renewal process {N(t)}t ≥ 0, that is, a renewal process
where the interarrival times have a phase-type distribution ~ PH(p,T ). For the
subsequent applications we are in particular interested in the renewal density
u of {N(t)}t ≥ 0, which has the interpretation that u(s)ds is the probability of a
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FIGURE 5.1. The sample paths of the Markov jump process constructed by concatenating the Markov
processes underlying the phase-type distributions. The “crosses” on the time axis denote arrival times. As we
can see there are two type of jumps in the constructed Markov process: as a result of a jump in an underlying
phase-type process or as a result of an arrival, where the phase-type process exits from one state and a new
phase-type process initiates in a new state (possibly the same).

renewal (an arrival) during the infinitesimal time interval [s, s + ds). Formally,
if F and f are the distribution function and density of the interarrival times
respectively, then

,U s F s u s U s f s�n

n

n

n0 1

= = =
3 3

= =

* *! !] ] ] ] ]g g g g g

where * denotes convolution.
By concatenating the sample paths of the Markov jump processes under-

lying the phase-type distributions between arrivals we obtain a new Markov
jump process {J(s)}s ≥ 0 on the state space {1,2, ...,p} with intensity matrix
G = {gij}i, j = 1,..., p = T + tp (see Figure 5.1).

More precisely, we let {Xi(t)}0 ≤ t <Ti
denote the Markov jump process gen-

erating the ith inter-arrival time Ti observed only up to the time of absorption.
Then we let J(s) = X i (s – T0 – ... – Ti – 1) if s ∈ [Ti – 1,Ti ). Then {J (s)}s ≥ 0 is a
Markov jump process with state space {1,2, ...,p}. For this process, a transi-
tion from i to j can take place in either of two mutually exclusive ways: either
through a process {Xi(t)}0 ≤ t <Ti

jumping from i to j or by such a process exit-
ing from state i (to the absorbing state) and the next process, {X i +1(t)}0 ≤ t <Ti+1

,
initiating in state j. The probability of the former is tijds while the latter has
probability tidspj. Hence gijds = tijds + tidspj, proving that G = T + tp.

The transition matrix of {J(t)}t ≥ 0 is hence given by P s = exp((T + tp)s)
which is the key to finding an expression for the renewal density u. At time s,
the process {J(t)}t ≥ 0 will develop through some process {Xi(t)}t ≥ 0. There is a
renewal at time s if and only if the phase-type process {Xi(t)}t ≥ 0 makes a tran-
sition to the absorbing state during [s, s +ds). Conditioning on the initial state
of {X 1(t)}0 ≤ t <T1

and the state of the process {J(t)}t ≥ 0 at time s we get that
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which proves the following theorem:

Theorem 5.1. The renewal density u of a renewal process with interarrival times
which are PH(p,T ) is given by

u(s) = pexp((T + tp)s) t, s ≥ 0.

A delayed renewal process is one where the waiting time of the first arrival has
a different distribution than the distribution of the rest of the interarrival
times. If the waiting time of the first arrival is distributed PH(b,T ) while the
remaining interarrival times have a distribution PH(p,T ), then the renewal
density u0 of the delayed process is given by

u0(s) = bexp((T + tp)s) t,

which follows immediately by noting that the initial distribution of {J(s)}s ≥ 0
is now b.

The overshoot or the residual waiting time is another example of distri-
butions which are of prime interest in applications. The residual waiting time
z(s) at time s is defined as the time until the next arrival. The distribution of
z(s) is easily obtained by the following argument. Since T + tp is the intensity
matrix of {J(s)}s ≥ 0 then the distribution of J(s) is given by bs = pexp((T+ tp)s)
in the non-delayed case. Since {J(s)}s ≥ 0 moves according to T until the next
arrival, we then conclude that z(s) ~ PH(bs,T ).

A renewal process is called terminating if the interarrival distribution is
defective, that is, if

0
dF

3
# (s) = F(∞–) < 1. This is usually interpreted as the dis-

tribution having an atom at +∞. We notice that all arguments above hold also
for terminating renewal processes, and hence all the results previously established
also hold true.

We now consider an immediate application of the phase-type renewal the-
ory to the following model for the surplus. Let Rt be the surplus process given
by

Rt = u + pt – ,nU
n

N t

0=

!
] g

where u is the initial capital, p the premium rate, {N(t)}t ≥ 0 a Poisson processes
with intensity b > 0 and U1,U2, ... i.i.d. claims with distribution PH(p,T ). We
assume that Rt drifts toward +∞ which amounts to – bpT–1e < 1 (see Asmussen
(2000) p. 227 for details).

We are interested in calculating the probability of ruin for an infinite time
horizon,

c(u) = � ( inf
<s0 3#

Rs < 0 | R0 = u) . (5.1)

Figure 6.1 shows a sample path of such a process, though with a more gen-
eral premium income p(Rt) rather than pt. In this case we see that the process
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that is underlying the concatenated descending ladder heights is a terminating
phase-type renewal process with interarrival distribution PH(p–,T ) for some
defective distribution p–.

It is clear that (p–)i is the probability that a Markov jump process underly-
ing the phase-type claims downcrosses level u in state i when the surplus process
jumps to a level below u for the first time. Since there is a positive probability
of {Rt}t ≥ 0 never jumping to a level below u, the distribution p– is defective
(does not sum to 1). Since ruin happens if and only if the terminating renewal
process is in some state 1,2, ...,p by time u (see Figure 6.1) we conclude that

c(u) = p–e (T + tp–)u e.

Indeed, (p–exp((T + tp–)u))i is the probability that the defective renewal process
is in state i by time u. Summing over all the states then gives the result. It is a
bit more involved to prove that p– = – bpT–1/p ; see Asmussen (2000) for details.

6. SURPLUS PROCESSES OF MORE GENERAL KIND

In this section we shall consider a surplus process where arrivals occur accord-
ing to a Poisson process with rate b > 0 and the claim sizes are i.i.d. phase-type
PH(p,T). Between jumps the surplus process Rt moves according to the (deter-
ministic) differential equation

dt
d Rt = p(Rt)

for some “well behaved” premium function p. Hence we have a model where
the premium depends on the current reserve. If p(x) = p constant we are back
at the “classical” risk model.

We are again interested in calculating the infinite time horizon ruin prob-
ability (5.1). The idea is essentially the same as for the case of a constant pre-
mium function. We consider the process obtained by projecting the processes
underlying the descending ladder height on the vertical axis. The difference
from earlier is that this process is no longer a renewal process and we approach
the problem in a slightly different way. We shall again be looking at downcross-
ing probabilities. We consider the first time the surplus process jumps to a level
below its initial level u. Such a jump is evidently caused by a claim and we
let ni(u) denote the probability that the underlying Markov jump process of
such a claim downcrosses level u in state i (see Figure 6.1). We notice that ni(u)
corresponds to p– in the case of a constant premium function, but with a
non-constant premium function this probability will in general depend on the
initial capital u.

By a conditioning argument similar to the linear case we obtain that

ni(u) = bdtpi + (1 – bdt) jn
j

p

1=

! (u + p(u)dt) (dij + tjip(u)dt + tj p(u)dtni(u)).
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FIGURE 6.1. A surplus process with non-constant premium function and phase-type claims.
At jump times the Markov processes underlying the phase-type claims are indicated as dashed lines

with three states moving downwards.

Here we condition on the event of an arrival in a small time interval [0, dt] the
probability of which is bdt. In case of an arrival, the probability of down-
crossing level u in state i is simply pi. If there are no arrivals, Rdt = u + p(u)dt
and conditioning on this new level being downcrossed in state j, the probabil-
ity of which is nj (u+p(u)dt), either the process which downcrosses level u + p(u)dt
in state j continues and downcrosses level u in state i with probability p(u)dttji
(if j = i 1 + tii p(u)dt is the probability of no change of state), or the down-
crossing process exits between u + p(u)dt and u with probability tj p(u)dt, in
which case the probability of downcrossing level u amounts to ni(u).

Then we Taylor-expand nj (u + p(u)dt) = nj (u) + nj�(u)p(u)dt, and inserting
this expression and putting (dt)k = 0 for k > 1, we obtain the following system
of non-linear differential equations:

–p (u)ni�(u) = bpi + ni(u) j ju t p un b
j

p

1

-
=

! ] ]e g g o + jn
j

p

1=

! (u) tji p(u), i = 1,..., p. (6.1)

To find the ruin probability we now look at the terminating descending ladder
process {It}t ≥ 0 which initiates (time zero) at level u. Ruin occurs if and only if
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It reaches time u (i.e. level zero). Let gi(t) = �(It = i) and consider gi (t + dt). Con-
ditioning on the state of It at time t we easily get that

gi(t + dt) = jg
j

p

1=

! (t) (dij + tjidt + tjdtni(u – t)) 

where the term tjidt corresponds to the process going from state j to i generated
by one of the ladder processes (if i = j again 1 + tiidt is the probability that a
ladder process being in state i will not change state during [t, t + dt)). The term
tjdtni(u – t) corresponds to the probability that at time t (level u – t) a ladder
process will exit from state j and eventually later downcross level u – t in state i.

Again by Taylor expansion gi(t + dt) = gi(t) + gi�(t)dt we obtain the follow-
ing system of differential equations

gi�(t) = jg
j

p

1=

! (y)ni(u – t)tj + jg
j

p

1=

! (t)tji, i = 1,..., p. (6.2)

The initial condition for (6.2) is obviously gi (0) = ni(u), whereas for (6.1) the
initial condition is a non-trivial matter. However, if the premium function p
was such that it would be constant (equal to c, say) above a certain level v
then the corresponding surplus process Rv

t would be linear above this level
and at least we would know that ni

v(v) = – bpT –1/c, where ni
v(u) denotes the cor-

responding downcrossing probability for the modified surplus process. Letting
v → ∞ then ni

v(u) → ni(u). In practice one would linearize at e.g. v = 2u,3u,4u,...
and solve for ni

v(u) until convergence is obtained.
Thus (6.1) and (6.2) constitutes a non-linear system of coupled differential

equations, which may be effectively solved by a numerical procedure like for
instance a fourth order Runge-Kutta method (see e.g. Press et al. (1992)). Explicit
solutions can in general not be obtained. At last we are able to calculate the ruin
probability by noting that ruin occurs if and only if Iu ∈ {1,2, ..., p} yielding

c(u) = ugi
i

p

1=

! ] g.

An important extension of the above model can be obtained by generalizing
the arrival process to a Markov modulated Poisson process where the rates of
the Poisson process depend on an underlying Markovian environment, see
Asmussen and Bladt (1996) for details. Also an extension of the model to claim
sizes having a Matrix-exponential distribution (distributions with rational
Laplace transforms) has been proved in Bladt and Neuts (2003).

7. MAXIMUM LIKELIHOOD ESTIMATION

We consider data x1,x2, ...,xn which we might think of as claim sizes. We now
suppose that these data are generated by i.i.d. phase-type distributed random
variables of dimension p and representation PH(p,T ). All we observe are the
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times until absorption of the underlying Markov jump processes and not the
underlying trajectories. The data are hence incomplete and in the following we
shall describe a method for calculating the maximum likelihood estimator using
the EM-algorithm. We follow Asmussen et al. (1996) which may be consulted
for further details.

Suppose that we observed complete data such that j1, ..., jn are the sample
paths of the underlying Markov processes generating the absorption times
X1 = x1, ..., Xn = xn. Then the Likelihood function for j = ( j1, ..., jn) is given by
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where Bi is the number of times the processes of j initiates in state i, Ni0 is
the number of jumps the processes perform from state i to the absorbing state
p + 1, Nij is the total number of jumps from state i to state j and Zi is the total
time the Markov processes are in state i. The maximum likelihood estimators
for p and T are given by

p̂i = n
Bi , tij = i
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Z
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ij i
j i

- -! i, j = 1,..., p. (7.1)

The EM-algorithm is an iterative procedure that maximizes in each step the
conditional expected value of the log-likelihood function given incomplete
data. Hence there are essentially two steps involved in each iteration: the cal-
culation of the conditional expectation of the log-likelihood given absorption
times (the E-step) and the maximization (the M-step). Taking the logarithm of
the likelihood function gives
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Hence the log-likelihood is linear in the sufficient statistics Bi, Ni0, Nij, Zi for
i, j = 1,..., p, i ≠ j so the calculation of the conditional expectation of the log-
likelihood, given X = (X1, ...,Xn), reduces to the calculation of the conditional
expectation of each of the Bi, Ni0, Nij for i, j =1,..., p, i ≠ j. Let Bi

(k) be the indi-
cator for whether the kth Markov jump process jk initiated in state i, Zi

(k) the
total time jk spent in state i, Nij

(k) the number of jumps from state i to j in jk and
Ni0

(k) the indicator for whether the exit to the absorbing state in jk was caused
by a jump from state i. Then Bi = k 1= iBn ( )k! , i = 1,..., p, Zi = k 1= iZn ( )k! , i = 1,..., p,
Nij = ijk 1= Nn ( )k! , i = 1,..., p, j = 0,...,p, and it is sufficient to calculate the condi-
tional expectations of the statistics with superscript k. In Asmussen et al. (1996)
it is shown that
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We see that the E-step above essentially involves matrix-exponentials and an inte-
gral of matrix-exponentials which cannot be reduced further. Effective methods for
calculating matrix-exponentials are given in Moler and Van Loan (1978) includ-
ing the Runge-Kutta method, where the matrix-exponential is recognized as a solu-
tion to a linear system of differential equations. An alternative effective method,
given in Neuts (1995) p. 232, is the uniformization method which works well
even in high dimensions. In Asmussen et al. (1996) a system of differential equa-
tions of dimension p(p + 1) is solved using a fourth order Runge-Kutta method.

The EM-algorithm now works as follows. Given any initial parameter
(p0,T0) we calculate the conditional expected values above and plug them in as
the sufficient statistics for complete data. Then we calculate the maximum like-
lihood estimates (7.1) and repeat the procedure with (p0,T0) replaced by the
maximum likelihood estimator. This goes on until convergence of the maximum
likelihood estimates. While the EM algorithm always converges, it does not
necessarily converge to the maximum likelihood estimator as it can get trapped
in a local maximum. If that happens a more elaborated search may have to be
established by a suitable variation of the initial parameters p0 and T0.

In Oakes (1999) it is described how to obtain confidence intervals directly as a
by-product of the EM algorithm. It involves derivatives with respect to the para-
meters of the conditional expectation of the log-likelihood function. Such deriv-
atives are not readily available but can be obtained numerically by variation of the
parameters in a small neighborhood arround the maximum likelihood estimate
and a recalculation of the expected log-likelihood in the neighboring points.

To which extent it makes sense at all to talk about confidence intervals for
phase-type distribution is a controversial issue due to the problems of identifia-
bility and over-parameterization.

8. MARKOV CHAIN MONTE CARLO BASED INFERENCE

In this section we present an alternative method for fitting phase-type distribu-
tions based on Bladt et al. (2003). This method can only estimate functionals
of phase-type distributions which are invariant under different representations.
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This means that we shall not be able to estimate the parameters themselves, but
only quantities such as density function, quantiles or ruin probabilities. The
method we present may either be viewed as Bayesian or as penalized likelihood.

The key idea is to produce a stationary sequence of measures (distribu-
tions) which has a stationary distribution being that of a conditional phase-
type distribution given the data. Let J denote a Markov jump process with
intensity matrix L of the form (3.1) and let a = (p,0) denotes its initial distri-
bution. We then construct a stationary Markov chain of probability measures
(general state-space type of chain) which has as stationary distribution that of
(p,T,J ) given the data x = (x1, x2, ..., xn). To this end we use a so-called Gibbs
sampler which will produce the stationary distribution by alternately drawing
(p,T ) given (J,x) and J given (p,T,x). After a certain number of initial iter-
ations (burn-in) the Markov chain will settle into a stationary mode. Suppose
that g(p,T) is a function of the phase-type parameters which is invariant under
different representations of the same distribution, that is, if (p,T ) and (p�,T�)
are two different representations of the same phase-type distribution, then
g(p,T) = g(p�,T�). This is for example the case for the density, quantiles or the
ruin probabilities in the models above. If (pi,Ti), i =1,..., m, denote m parameter
sets obtained from the stationary distribution above, then g(p1,T1), ..., g(pm,Tm)
is again a stationary sequence of numbers. Ergodicity conditions are in general
not available but will be merely assumed and empirically verified by the behavior
of the sample means. Hence, assuming ergodicity, one may average the numbers
in order to produce an estimator for the “true value” and one may calculate
quantiles for the parameters from the empirical distribution of g(p1,T1), ...,
g(pm,Tm). If g is not invariant under different representations, it is not possi-
ble to average over the different g-values to obtain an estimator because the
type of representation may switch through the iterations. As a consequence the
present method cannot estimate the parameter values themselves. For parameter
estimation we refer to the EM algorithm in the previous section.

We now outline the details for the alternate drawings of (p,T ) given (J,x)
and of J given (p,T,x). We need to impose a probability structure on (p,T ),
the so-called prior distribution:

ƒ(p,T ) = j
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where bi, zi, ni0, nij for i, j =1,..., p are constants. Hence p has a Dirichlet distri-
bution whereas ti and tij are Gamma distributed. Furthermore they are all inde-
pendent. This makes it easy to sample parameters from this prior.

The posterior distribution, which is the product of the prior and the likeli-
hood, is hence given by
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Thus (p,T ) given (J,x) (here x is of course unimportant because J contains
information about x in particular) is simply drawn from the posterior distri-
bution, which amounts to drawing from the prior with parameters bi�, zi�, n�i0,
n�ij for i, j = 1,..., p where bi�= bi + Bi, n�i0 = ni0 + Ni0, n�ij = nij + Nij and zi� = zi + Zi.

Drawing J given (p,T,x) is much more involved. Given parameters p and
T and absorption times x1, ...,xn we must produce realizations of Markov jump
processes with the specified parameters which get absorbed exactly at times
x1, ..., xn. Since the probability of this event is zero it is a non-trivial task. It turns
out, however, that we may employ a Metropolis-Hastings (MH) algorithm to
simulate such Markov jump processes (see Bladt et al. (2003) for technical
details). The MH algorithm amounts to the following simple procedure for
simulating a Markov jump process j which gets absorbed exactly at time x:

0. Draw a Markov jump process j which is not absorbed by time x. This is done
by simple rejection sampling: if a Markov jump process is absorbed before
time x it is thrown away and a new Markov jump process is tried. We con-
tinue this way until we obtain the desired Markov jump process.

1. Draw a new Markov jump processes j � as in 0.
2. Draw a uniform random number U in [0,1].
3. If U ≤ min (1,tj�x–

/ tjx–
) then j := j �, otherwise keep j.

4. GO TO 1.

Here x– denotes the limit from the left so jx– is the state of the realization { js}s ≥ 0
just prior to exit. We iterate this procedure a number of times (burn-in) in
order to get it into stationary mode. After this point and onwards, any j pro-
duced by the procedure may be considered as a draw from the desired condi-
tional distribution and hence as a realization of a Markov jump process which
gets absorbed exactly at time x.

The full procedure (Gibbs sampler) is then as follows.

0. Draw (p,T ) from prior.
1. Draw j = ( j1, ..., jn) underlying Markov trajectories given (p,T ) using the

Metropolis-Hastings algorithm.
2. Draw (p,T ) from posterior
3. Calculate ruin probabilities (or other representation-invariant functionals of

interest) using the current parameters (p,T ).
4. GO TO 1

After a number of initial iterations (burn-in), the procedure will stabilize into
a stationary mode and from this point onwards we may may produce a sample
of e.g. ruin probabilities to be analyzed.

In order to display the quality of actual fit to the data it may be desirable
also to produce a sequence of density values at each draw. Averaging these
values through the iterations then produces an estimate for the density which
may be compared to a histogram of the original data. For practical details on
implementation, extensions, choice of prior or hyper-prior and a concrete sta-
tistical analysis of ruin probabilities, we refer to Bladt et al. (2003).
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The EM and MCMC approaches should not be seen as competitors but
rather as complementary methods. While the objective of the EM algorithm
is to obtain a maximum likelihood estimator of the parameters, the MCMC
approach focuses on inference for related functionals which may be useful
when addressing issues concerning more complex models which partly depend
on a phase-type assumption.
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