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A B S T R A C T  

In this paper, we find explicit expressions for the moments of the fund level 
and the value of the total contribution when arithmetic or geometric rates of 
return are modeled by a moving average process of order q and when a 
proportional control is applied to the contributions. Our approach is based 
on the bilinear Markovian representation. 
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1. I N T R O D U C T I O N  

Defined benefit pension plans are considered in this paper. For these types of  
plans, actuarial valuations determine the annual anaounts of contributions 
and reserves. The safe aspect of  these plans, for employees, makes them very 
popular in many countries such as Canada, the Netherlands, the U K  and the 
USA. Our valuation method is an individual one, where normal costs and 
actuarial liabilities are calculated separately for each member and are then 
summed to give total amounts for the whole population of the plan. Periodic 
valuation methods (here annual) rely on some demographic and financial 
hypothesis. Essentially, our hypothesis will be that, we have a pension plan 
with random rates of return, no inflation, a stationary population and a fixed 
valuation rate. In reality, actuarial hypotheses do not exactly come through. 
This has for effect of  causing deficits (or surplus). In order to attenuate those 
deficits, a control is usually applied to contributions. Here, we use the 
proportional control which is common in Great Britain. The main purpose 
of  this paper is to obtain, for our plan, expressions for the first two moments 
of the fund level and of the total contribution when arithmetic or geometric 
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rates of  return form a moving average process. This is achieved through fund 
levels which correspond to bilinear processes and geometric bilinear 
processes. 

We begin this paper by introducing, in Section 2, the concepts of bilinear 
processes, geometric bilinear processes and bilinear Markovian representa- 
tions. In Appendix, we explain how to formulate a bilinear Markovian 
representation for bilinear processes and geometric bilinear processes. In 
Subsection 2.3, we discuss the stationarity and the moments of  processes 
having a bilinear Markovian representation. 

In Section 3, we apply the theory of the previous section to our plan in 
order to study the stationarity and the moments of  the fund level and of  the 
contributions. In Subsection 3.1, we see how the fund level at time t, F,, can 
correspond to a bilinear process or to a geometric bilinear process. Then, in 
the next subsection, we give the Markovian representation of {Fi} when 
arithmetic or geometric rates of return are modeled by a moving average 
process of order 0, 1 or 2. In Subsection 3.3, using the bilinear Markovian 
representation of  {Ft}, we study the stationarity and the moments of  the 
fund level and of the contributions. Finally, in Subsection 3.4, we observe 
the variability of  those processes for different scenarios. 

In practice, it is well known that random rates of return happen to be a 
major cause of  deficit or surplus. This is why pension funding with random 
rates of  return has been a popular research subject in actuarial sciences for 
the two past decades. In discrete time, essentially, three models have been 
considered for rates of return: 
- i.i.d, rates of return: Dufresne (1986, 1988, 1989, 1990, 1994), Haberman 

(1993b), Zimbidis and Haberman (1993), Cairns and Parker (1997). 
- Autoregressive rates of  return: Dufresne (1993), Haberman (1993a, 

1994), Gerrard and Haberman (1996), Cairns and Parker (1997), 
- Moving average rates of  return: B6dard (1997), B~dard and Dufresne 

(1999), Dufresne (1990), Haberman and Wong (1997). 

Haberman and Wong (1997) obtained explicit expressions for the first 
two moments of  the fund level and of the contributions under the 
proportional control when geometric rates of  return formed a moving 
average process of order 1 or 2. Their approach was based on the fact that 
the white noise included in their moving average process is supposed to be 
normal. In this paper, using the bilinear processes theory, we solve similar 
problems for arithmetic and geometric moving average rates of  return of  
order q > 0 having a white noise not necessarily normal. Cairns and Parker 
(1997) established expressions for the first two moments of the fund level and 
of  the contributions under the proportional control when arithmetic rates of  
return formed a stationary i.i.d. (independent, identically distributed) 
process with a mean rate of  return different from the valuation rate. Here, 
the bilinear theory allows us to find expressions for those moments without 
the stationarity condition. However, unlike Cairns and Parker (1997), our 
approach does not allow us to solve explicitly optimization problems. 
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2. B I L I N E A R  PROCESSES, G E O M E T R I C  BILINEAR PROCESSES 

A N D  THE BILINEAR M A R K O V I A N  REPRESENTATION 

We first define bilinear processes and geometric bilinear processes. Then, we 
investigate the probabilistic structure of those processes through their 
bilinear Markovian representation. Bilinear processes were introduced in 
1978 by Granger and Andersen and the theory on geometric bilinear 
processes has been developed in B~dard (1997). As you will notice in 
Section 3, the Markovian representation of  those two non-linear time series 
happen to be very helpful in pension funding with arithmetic and geometric 
moving average rates of return. 

2.1. Bilinear Processes and Geometric Bilinear Processes 
In Ill 

Let t E ~ .  The sum ~ and the product [ I  are defined as zero for m < n. 
[=?! [ : t l  

Definition 2.1: The process {X~} is a bilinear process of order p, q, P, Q, 
denoted: {Xt} ~ BLg(p, q, P, Q), if it satisfies 

P q Q P 

X , : Z a k X , _ k + Z b h e , _ , , + Z Z / 3 j , k X , _ k e , _ j + O ~  (2.1) 
k=l  h=0 j=0  k=l  

where {et} is a sequence of  i.i.d, random variables, usually but not always 
with zero mean, and {ak}, (bh}, {/3j,k} and c~ are real constants. 

Definition 2.2: The process ~ Xt } is a geometric bilinear process of order p, q. 
denoted: {Xt} BLg(p, q, P), if it satisfies: 

Xt = Z akXt-k + r(e,) + gj(et-j) bkX,-k + c + ol (2.2) 
k=l  

where r • R ~ ~ and gh : 1R ~ IR, h = 0, 1, ..., q, are measurable functions 
in et, {et} is a sequence of i.i.d, random variables, usually but not always 
with zero mean, and {ak}, {bk}, c and a are real constants. 

Because Expressions (2.1) and (2.2) are not very tractable when we want to 
examine the probabilistic structure of bilinear processes and geometric 
bilinear processes, we usually work with their bilinear Markovian 
representation that is defined below. 
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2.2. BUinear Markovian Representation 

Definition 2.3: Let {Xt} be a bilinear process or a geometric bilinear process. 
The bilinear Markovian representation of {Xt}, if it exists, is in the form of: 

Zt = A(e,)Zt_l + H(et) (2.3) 
Xt B(et)Zt_j + C(e,) 

where Xt represents the output of the system at time t and where: 
(a) {et} is a sequence of i.i.d, random variables (not necessarily with zero 

mean); 
(b) Zt is a state vector of dimension n x 1. This vector is not always 

uniquely defined; 
(c) The matrices A(e,), H(e,) and B(et) are respectively matrices of 

measurable functions in et of  dimensions n x n, n x 1 and 1 x n; and 
C(e~) is a measurable function in er; 

(d) {et} is independent of {Z,_k}, k = 1, 2, ... 

The Representation (2.3) is said to be "bilinear" since it contains matrices 
which have for components measurable functions in e,. Moreover, the 
present state of the System (2.3) (i.e. Zt), together with the future inputs 
{et+k, k = 1, 2, ...} is sufficient to obtain {Xr+k, k = 0, 1, ...}. Since the 
inputs are independent random variables, the Representation (2.3) is based 
on the Markov property, which implies that given the present state, the 
future of the system is independent of its past. Hence, the name bilinear 
"Markovian" representation for the two equations in (2.3). The Markovian 
representation is considered as a very general approach in the modeling of 
time series. Its Markovian property allows to have a better knowledge of the 
probabilistic structure of some processes such as bilinear processes and 
geometric bilinear processes. This representation plays an important role in 
time series, especially in Kalman filtering. 

Theorem 2.4: Pham (1986): If {Xt} is a bilinear process (Equation 2.1) then 
{XI} has a bilinear Markovian Representation (2.3). 

Theorem 2.5: B+dard (1997): If {Xt} is a geometric bilinear process 
(Equation 2.2) then {Xt} has a bilinear Markovian Representation (2.3). 

The proof of Theorems 2.4 and 2.5 are given in Appendix. They indicate the 
procedure for obtaining a bilinear Markovian Representation from a 
bilinear process and from a geometric bilinear process. We will refer to those 
proofs in Subsection 3.2. 
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2.3. Moments of Processes Satisfying a Bilinear Markovian Representation 

Gu~gan (1987) studied processes {Xt} having the bilinear Markovian 
Representation (2.3) where E[C(e,)] = 0 and obtained results about the 
stationarity and the moments of  those processes. In B6dard (1997), it was 
found that her theorems remain valid when E[C(et)] # O. We will state three 
of her theorems. The first gives recursive expressions for the first two 
moments of  processes {X~} given by the Representation (2.3). The two other 
theorems give explicit expressions for the first two moments of processes 
having a Representation (2.3) and which are first-order or second-order 
stationary. 

We begin by presenting concepts that are necessary to the understanding 
of those theorems. 

Definition 2.6: Nicholls and Quinn (1982): Let S and T be two matrices of  
order m × n and p × q respectively. The Kronecker product of S with T, 
S ® T, is the mp × nq matrix whose (i, j)th block is the p × q matrix S~T, 
if S/j is the (i, j)th element of S. 

Let M 
vec M 

p(m) 

M ® N  
MN 
M 

and N be two matrices. 
is the vector obtained from M by stacking its columns one on top of  
the other, in order, from left to right 
supposed that M is a squared matrice, 
p(M) represents the maximum modulus of the eigenvalues of  the 
matrix M 
= E[M(et) ® N(e,)] 
= E[M(et)N(e,)] 
= E[M(et)], Vt. 

M ® N, MN and M are in fact functions of  #e = E[e~] and ~ = varlet] 
2 in order to simplify the notations. where we omit ~e and o e 

Definition 2.7: A process {Xt, t E 2~} isfirst-order stationary if 
(a) E[Xt] is constant, 

and {Xt, t E ~}  is second-order stationary if condition (a) holds and if: 
(b) E[XtXs] depends only on the value of  (t - s ) .  

Theorem 2.8: Gu6gan (1987): Suppose {Xt} satisfies (2.3). Then 

E[X,] = BE[Z,_,] + C. (2.4) 
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where 

and 

- -  m 

E[Zt] = AE[Z,_,] + H 

= (t  + ~ + ... + ~ ' - ' ) n  + ~ '<z01  

= ( ~ -  ; ) - ' 0 -  ;)'~ + ~'z[z0], (2.5) 

E[Xt2] = B @ B v e c A t _ , + 2 B ® C E [ Z t _ , ] + C ® C  (2.6) 

where 

vecA, = vecE[Z,Z;] = A ® A vecA,_, + ( H ~  A + A ® H)E[Z,_,] + H ® H. 

(2.7) 

m 

Theorem 2.9: Gu6gan (1987): If p(A)< i, then the process {Z,}, and 
consequently {X,} of Representation (2.3), are first-order stationary and 

x = lim E[X,] = Bz + C with 
l - " ~  (X3 

.Z = lJl/3 g [ / t ]  -~ ( I  - A ) - I H .  
I ~ O O  

Theorem 2.10: If p(A) < I and p(A--~A) < I, then the process {Z,}, and 
consequently {X,} in (2.3), are both second-order stationary and 

(a) Gu6gan (1987): i fs  = 0: 

lim cov(X,, X,+s) = lira var[X,] 
l - - -~ O.9 t ~ O O  

= B ® B lira vecA, + 2B® Cz + C® C -  x 2 
I - - + O O  

where 

lira vecA, = lira vecE[ZZi] 
l - - - a  (X3 l ~  (X..I 

= ( ; - A ® ~ ) - ' [ ( A ® H + H ® A ) z + H ® H ] .  

(b) B&dard and Dufresne (1999): i fs  ¢- 0' 

I 1.31-2 ] 
nm coy(x,, x,+.0 = 8 ~u-J~ + ~ ~kx~ 
14oo k=0 .] 

-']- x C  - -  X 2 
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where 

~ = B ® A lim vecA, + (C ® A + B Q H)z  + H Q C. 
I "--~ O 0  

Remark: Based on Gu6gan's  (1987) results, it is also possible to find 
expressions for the moments  of  even degree k = 2n, (n E I',/) for the k-order 
stat ionary processes {)(i} satisfying (2.3). 

3. PENSION FUNDING: PROPORTIONAL CONTROL 

AND MOVING AVERAGE RATES OF RETURN 

3.1. Applications of Bilinear Processes and Geometric Bilinear Processes 
to Pension Funding 

In the following, we apply the results o f  Section 2 to study the moments  of  
the fund level and of  the contr ibut ions for the pension plan described in the 
introduction. We consider this a defined benefit pension plan with an 
individual valuation method under Assumptions  A I to A4 given below. 
From now on we let t E g,,,l. 

Let C, D and F be processes representing respectively the total 
contr ibution,  the unfunded liability and the fund level. The symbols  AL, B 
and NC refer to the actuarial liability, the benefits and the normal cost, 
respectively. 

The unfunded liability at time t, Dr, is the excess of  actuarial liabilities 
over assets (which may be positive or negative): Dt = ALr - F,. 

The total contr ibut ion made at time t is given by 

C, : NC, + A D J, (3.1) 

where NC, and ADJ, represent respectively the normal cost and the 
adjustment  made to the contr ibut ions at time t. 

Let R, be the rates of  return for the period ( t -  l , t ) ,  6t = ln(I + Rt), 
r = E[R,], 6 = E[6,] and i be the valuation rate of  interest. We assume that 
contr ibut ions and benefits are paid in full at the beginning of  each year, and 
therefore 

F, = (1 + R,)(F,_i + C,-1 - Bt-i)  (3.2) 

We make the following assumptions: 
q 

AI. { R , - r }  ,-~ MA(q)  i.e. R , - r =  )-]~ diet_j, 
j=0 

where do = 1, {dj, j = 1, 2, ..., q} are real constants,  and 
{et, t > 0} is a zero mean white noise process, or 
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q 

AI' .  {~, - ~} ,~ MA(q) i.e. ~5, - ~ = y'~djet_j. 
j=0  

A2. There is no inflation on benefits and on salaries. 
A3. The populat ion is static. 
A4. The valuation rate, i, is fixed. 

Assumptions A2 to A4, which also have been made by Dufresne (1986, 1988, 
1989, 1990, 1994), Haberman (1993a, b, 1994), Haberman and Wong (1997), 
Zimbidis and Haberman  (1993) and Cairns and Parker (1997), are stronger 
than the ones usually met in practice. However, they allow us to detect more 
easily the effect of  a random rate of  return on the value of  the fund and on 
the contributions. Moreover,  Assumptions A2 to A4 imply that ALt, NCt 
and Bt do not depend on time. 

Equivalently, as mentioned in Cairns and Parker (1997), one may 
suppose that  salaries are inflated by imagining that the valuation rate and 
the random rate of  return are linked to the rate of  increase of  salaries. For  
example, if s is the rate of  increase of  salaries, we could replace respectively 
Rt and i in all formulas by Ht = ~+R,u+.,. - 1 and b y j  = ~l+s- 1. Approximately,  
Ht can be seen as the rate of  return over the increase of  salaries (i.e. 
Hr = Rt - s), and j as the valuation rate over the increase of  salaries (i.e. 
j - - - i -  s). In our  numerical example of  Subsection 3.4, the rates Rt and i 
can both be thought  of  as "ne t "  rates. 

When a proport ional  control is applied to the contributions,  the 
adjustment  made to the contributions at time t corresponds to a proport ion 
of  the deficit at time t: 

ADJt = kDt (3.3) 

where k E (0, 1]. 

Replacing the above equation in Expressions (3.1) and (3.2), we find under 
Assumptions A2 to A6 that the processes {C~} and {It}  are such that: 

Ct = N C  + kDi, and (3.4) 

Ft = (1 + Rt)(Ft-i + NC + k ( A L -  Ft_t) - B) 

= (1 + R,)((1 - k)Ft_, + h), (3.5) 

where h = N C  + k A L  - B. 

Equation (3.5) allows us to establish the two following theorems: 

Theorem 3.1: Dufresne (1990): If  { R t -  r} ~ MA(q),  then {Ft} ,--, BL(1 ,q, l,q). 



STOCHASTIC PENSION FUNDING 279 

Proof: We first replace {R~ - r} by a moving average process of  order q 
in (3.5): 

F~ = (1 + R,)((1 - k)Ft-i  + h) 

( ± )  = l + r + 4 e , - j  ((1 - k)F,_l + h) 
j = 0  

q q 

= ( 1  + r ) ( 1 - k ) F , _ l + ( 1 - k ) Z 4 e , _ y F t _  1 + h ~ djet_j + (1 + r)h 
j=0 j=0 

where do = 1. 
Setting al = (1 + r)(l  - k), bj = hdj, ~j,l = (1 - k)dj and ~ = (1 + r)h in the 
preceding equation,  we obtain 

q q 

f t = a l f t _  1 -q- ~ b j e t _ j +  ~ f 3 j , , F t _ i e t _ j + a  ( 3 . 6 )  

j =0  j=0  

Thus {Ft} "~ BL(1,q,  l ,q) .  [] 

Theorem 3.2: If { 6 , -  6} ~ MA(q) ,  then {F,} ,.o BLg(0, q, 1) (Equat ion 2.2) 
where gj(et-j) = e4e,-J with do = 1. 

Proof: We replace {St - ~} by a moving average process of  order  q in (3.5): 

F, = (1 + R,)((1 - k)F,_t + h) 
q 

F, = e j=o ((1 - k)F,_l + h), (6, = ln(1 + R,) and do = 1). 

Setting bl = e6(1 - k) and c = e6h in the above equat ion implies that: 

q 

" Ft = ~ I  e'~e'-J(btFt-I + c). (3.7) 
j=0 

Thus {Ft} . - ,BLg(O,q , I )  where gj(et_j)=e4~,-J and r ( e t ) = a = O  (see 
Equat ion 2.2). []  

3.2. Markovian Representation of Fund Levels 

In this section, we apply the procedures given in the proofs  of  Theorems 2.4 
and 2.5 in order to show how to obtain a bilinear Markovian  Representat ion 
(2.3) for the process {Ft} with {R, - r} ,-~ MA(q)  (q = 0 or 1) (Equat ion 3.6) 
and for the process {Ft} with {6t - 6} ,.~ MA(2)  (Equat ion 3.7). 
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3.2.1. Case." {R, - r) ~ MA(0) and {R, - r) ~ MA(1) 

For the case {R, - r} ~ MA(I) ,  Equation (3.6) results in: 

Ft = al Ft- i  -+- hoe, + ble,-i + 13o, i F,_le, + tSl,i F t - le t - i  -+- oe. 

And, the bilinear Markovian representation for {F,} is given by: 

Z, = a(e,)g,_~ + H(e,)  

F~ = B(e,)Z,_l + C(e,), 

Zt  = ( al Ft + b, e, +/3' I,oFle, 

, "]Z,-i + 
(al + ffl,oet)/3o, le, al + [31,oet j blet + (al + flll,oe,)(boet + o 0 

F, = (/3o, le,, l )Z,- i  +(boe, + a )  

where/3'1. 0 = ,31,1. 

Remark." Naturally, when { R , -  r} ~ MA(0), the Markovian Representa- 
tion is obtained by setting bl = 0 and f/o,I = 0 in the representation above. 

3.2.2. Case." { 6 , -  6} ..~ MA(2) 

When {6, - 6} ..~ MA(2), Equation (3.7) becomes 

F, = eAe'ed'e'-'e <e'-: (blFt-i + c). 

With the later equation, we obtain the following bilinear Markovian 
representation for {g}:  

Z, = A(e,)Z,_i  + H(e!) 

F, = B(e,)Z,_i + C(e,), 

.,2 ;, 

Z! 

z?/) 
a~ o) e& e, 

ed2et 

A(O)(e,) 

A(°)(et)ed2 e, 

0Ix2 

c o,e  
C(°)(e,)d 6e' D(°)(e,)e d2e' Z , - i  + B(°)(et)e dm 

OI x2 0 e d2e' 

F, = (0, d oe,, 0, 0, 0)Z,_,  + 0 
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where 01×2 = (0, O) and 

= A(°)(et)Zl°_)l + B(°)(et)+ (C(°)(et)Zl°)l + D(°)(et))d 6e'-' 

( 0 e , )  + ( 0 0 ) ( ( 0  b,e (a°+'')e'O)Zl0_),+ ( = 0 e Z}~ + 
0 0 

o ))..e 
ced~ er 

3.3. Moments of {Ft} and {Ct} 

Proposition 3.3: Under Assumptions A I to A4, if a proportional control is 
applied to the contributions and that {Ft} is a second-order stationary 
process, it follows from Theorems 2.9 and 2.10, the following explicit 
expressions for the first two moments of {F,} and {C,}" 

f = lim E[F,]= B(I - A) - IH  + C, (3.8) 
I---~OO 

lim coy [Ft, Ft+s] 
t-'-, (X'~ 

= {BiB ' l i~vecA '+2B®C(I-A) -]H+C®C-f2 i f s=O'~  ~-I,,I-'~ + I.~l-2k=0 ~ ~-af~ - + f ~  _ f 2  if s > 0, (3.9) 

where ?Z~ vecX, = (; - A ® ~ ) - '  I(A ® H + H ® A)( i  - ~ ) - i ~  + H ® HI 

and s c = B ® A lim vecA, + (C ® A + B ®-H)(I - A ) - ' H  + H ® C. 
I--'+ O® 

And, from Equation (3.4): 

lira E[C,] = NC+k(AL-f)  and (3.10) 
t-----~ OG 

lim cov[Ct, C+s] = k 2 lira cov[Ft, Ft+s], s k 0. (3. l l) 
I---~ CX3 l ~ O O  

Proof." In Subsection 3.2 we have shown, tinder Assumptions AI to A4, that 
when the adjustment made to the contributions is a proportional control, 
{Ft} has a bilinear Markovian Representation (2.3). Using this representa- 
tion, we apply Theorems 2.9 and 2. l0 to obtain the above formulas for the 
first two moments of {Ft}. Then, with Expression (3.4), we find the moments 
of {c,}. [] 
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Remark." Obviously, since {Ft} hasa  bilinear Markovian representation, it is 
always possible to calculate the moments of {Ft}.and {Ct.) recursively. F.or 
example, for the first two moments, we use formulas (2.12), (2.14) and (3.4). 

Remark. The first-order moments ofFt and Ct exist only if theprocess (et} is 
such that  tile expectations: A, B, C a n d . H  exist. And,. the second-order 
moments of Ft and Ct exist only if . the process (er) is such t h a t t h e  
expectations: A, B, C, H, ,4 ®,4, B ® B, C® C, H ® H, B® C, A ® H, 
H ® A, B ® A, C ® ,4, B Q H and H ® C exist. 

3 . 4 .  N u m e r i c a l  R e s u l t s  

In this section, we use the theory of the previous subsection to study the 
variabi!ity of the fund .level and of the contributions. This .is done in the 
context of arithmetic moving average rates of return of ordel7 0, 1 or 2. 

Our proportional control is the "spread control" .wh'ich is commonly 
used in the UK and which.has been investigated by Cairns and Parker 
(1997), Dufresne (1986, 1988, 1990, 1994),:Gerrard and Haberman (1996), 
Haberman (1993a, 1994) and H~berman and Wong (1997). With this 
method, the deficit is spread over a certain number of years M (in practice: 
around 20-25 years), i.e. 

, , • i__.:. , 
1 + i  ":AO~t kOt ~1 Ot"~ 

aM7 1 -- (1 + i)-M Dt, 

where M E I'q and i is the valuation rate..Hence, the formulas for Ft and Ct 
are obtained by sefting 

• • . '  t 

a ~ l :  . , .  , . . ,  , 

in Expressions (3.5) and (3.4), respectively. 
According to Equations (3.9) and (3.11), var[Ft] and var[Ct] are both 

functions of the fraction k and implicitly, of the spread period M. In studies 
such as Cairns and Parker (1997), Dufresne (1986, 1988, 1994), Haberman 
(1994) and Haberman and Wong (1997), it was shown that for i.i.d, rates of 
return, autoregressive rates of return and moving average rates of return, 
there is usually a value M* at which var[C,] reaches its minimum. And, 
usually for all M between 1 and that M*, var[F,] increases and var[Ct] 
decreases as the period M increases and, when M > M*, var[F~] and var[Ct] 
both increases as M increases. This is why the period [1, M*] is the optimal 
spread period for an actuary. 
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In the following, we. study the variability of the fund level and o f  the 
contribution's with ~-espect to the spread period M and the moving ayerage 
lbarameters dl and d2;' 

In Examples 1 to 4, we consider arithmetic rates of return when 
,v/~aar~t] = 0.05 or 0.1. As  youwi l l  seel for  all those.examples, results 
indicate that we have op'tihaal sp/'ead periods [1, M*]. ' 

Siflce v/var[Ft] and ~var[Ct] a?e proportional to AL and that we only 

want to minimize ~ and ~/var[Ct], we therefore proceed as in 
Dufresne (1986, 1988, 1994), i.e. we calculate 

~ v / ~ t ]  and v/va~Ct] ' "  

. . . .  . A L  N C  

in Figures' 3-1 .tO 3-4, those ,,/alues are given i n percent of AL.and NC, 
respectively, wher~ AL'= 451% and NC = 14.5% Of the payroll:' 

For the MA~(q) proce'sses coiasidered in our calculations, we set the Values 
of  the parameters df] d2, ..., dq and var[R,]. We suppose that,(e,} ,,~ Beta 
(2,2) over (-2,2) ,  this is,'a density equal t0 

' ' , 3  . • • 

4b 3 ( b2 --'x2)I(_'b,b)(x); 

where the value of b is determined by the following relation: 
k 

b 2 var[R,] 
varlet] =-~- = (1 + d l  2 + d ]  + ... +dq2) ' 

As it is often the case in actuarial papers dealing with random rates of 
return, we suppose in our calculations, except for Example 2, that the mean 
rate of return is equal to the valuation rate, i.e. r = i. 
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Example 1 
We study the process {F,} given by (3.5) when rates of return are i.i.d, and 
have a mean rate, r, equal to the valuation rate of return i. Our calculations 
support Dufresne's (1994) conclusions. We have optimal spread periods 
[1, M*]; this is, for all M between I and M*, var[Ft] increases and var[C,] 
decreases as the period M increases. 

(D  
o 

o 

(N  

o 

o 
o 

' ¢ ~  when ~ = 0.05 
.4.I., 

. . . . . . . . . . .  ~ wh= ~=rt~]=0.05 

. . . . . . . . .  ~ when v~T~=0.1  
.,4/., 

- ~  whe0a V/~[R,.t] =0.1 
. t '  

s .  J 

Q 

P 

0 . ~ * '  M "  ' ' ' 50 .100 150 200 

M 
FIGURE 3-1: Case:  {R, - r} ~ M A ( 0 ) ,  r = i = 0.01 
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E x a m p l e  2 
Here, we also consider i.i.d, rates of return. But, unlike Example 1, the mean 
rate of  return, r, .is greater than the valuation rate, i. Increasing r to 0.02 
increases var[F] and var[C ] and reduces significantly M*. 
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o. 
0 

i 
l 
I 
I 
l 
t 
I 
I 

~',--'I.PI when ~ = 0.05 
AL 

when V / ~  = 0.05 o w p - - o o  . . . .  ~ C  , j  

I 

I ," J 
i ~ when ~ = 0 . 1  • . ,  z \ . '" / /  

~ , . ~ , . . .  . . . . -" |  
. . . . . .  i : " : : =  . . . . .  : = = . :  . . . . . . . . . . .  , i  . . . . . . .  
_ _  I ! 

J J 
$ $ I 

10 20 30 
I I 

4O 5O 

M 
FIGURE 3-2: Case: {R, - r }  ~ MA(0), r = 0.02, i = 0.01 
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Example 3 
We set R ,  = r + et + et-1 in order to have Corr[R/,Rt_l] = ½ > 0. As 
expected, according to •Figure 3-1, this positive, correlation between 
successive rates of return increases the variances of the fund levels and of 
the contributions. 
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FIGURE 3-3: Case :  {R,  - r }  ~ M A ( I ) ,  r = i = 0.01,  dl  = 1 
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Example 4 
We set Rt = r+e t  +et- l  +0.Jet_2 and naturally, increasing d2 to 0.3 
increases the variances.of both the~fund level and of  the contributions. 

o 

cO 
O 

. O  

O 

I 
I 
I t 

\ 
\ 

\ 

. . . . . . . . .  = o .1  A.f., 

w h =  = 0.05 " A./,,, s" 
.I 

.I 

.i 
./ 

.i 
j .  

i" 
.1" 

J 

.s 

t . ~  '~ '~  / 

I M *  I M *  I . I .I 
0 50 100 :'1'50 200 

" .  ,~ M 
FIGURE 3-4: Case: {R~ - r} ~ M A ( 2 ) ,  r = i = 0 .01,  d l  = 1. d2 = 0.3 

3.4.1. Analysis of results 

Let A(et) be the matrix of  Representation (2.3). We observe that for Idl < 11, 
Id2< l l ,  M < 2 0 0 ,  0 < i ,  r, 6 < 0 . 5  and {et},~N(O, var[et]<c~), we 
usually have that p(-A) < 1 and p(A---~A) < 1, i.e. the processes {F t} and 
{Ct} are second-order stationary. This implies that for this range of 
parameters, we usually have explicit expressions for the first two moments of 
{Ft} and {Ct} which are given by (3.8), (3.9), (3.10) and (3.11). 

For all scenarios of  Figures 3-1 to 3-4, it results that p(-A) < 1 and 
p(A-~--A) < 1. This means that for those scenarios {Ft} and {C,} are 
second-order stationary processes and that we can use the explicit formulas 
(3.8) to (3.11)to calculate, E[Ft], E[Ct], var[Ft] and var[G]. 

From Figures 3-1 to 3-4, we make the following conclusions: 
(a) As mentioned earlier, we have an optimal spread period for all 

examples, i.e. we have a range of  M where var[Ft] increases and var[Ct] 
decreases as the spread period M increases and the other parameters 
stay constant. This means that for each example, there is an increase of  
the spread period which implies an increase of  the variability of  the fund 
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level and a decrease of the variability of the contributions. What is 
interesting is that this period is always longer than 15 years. From 
Figures 3-1 to 3-4, we observe that increasing ~ from 0.05 to 
0.1 increases significantly variFy], var[Ct] and also the optimal period 
[l,M']. 

(b) As we could naturally expect, the variability of the fund level and of the 
contributions seems to increase with the moving average parameters dt 
and d2. 

(c) We made analogue calculations for geometric rates of return and we 
observed similar results than those obtained for arithmetic rates of 
return. 

4. CONCLUSION 

Haberman and Wong (1997) obtained, under the proportional control, 
explicit expressions for the first two moments of the fund level and of the 
contributions when geometric rates of return formed a moving average 
process of order 1 or 2. Their method was based on the fact that the white 
noise included in their moving average processes is supposed to be normal. 
Here, we use the bilinear Markovian representation to find similar results. 
We found, under the proportional control, explicit and recursive expressions 
for the moments of the fund level and of the contributions when arithmetic 
or geometric rates of return were modeled by a moving average process of 
order q > 0 with a white noise not necessarily normal. It was Dufresne 
(1990) who suggested the Markovian approach. Here, the Markovian 
approach happened to be remarkable since it allowed us to easily resolve 
problems which were considered difficult. Unfortunately, this approach has 
some limitations. It cannot really be used for autoregressive rates of return 
since it would involve infinite order matrices and it does not allow to solve 
explicitly optimization problems. 
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APPENDIX 

Proof of Theorem 2.4: 
The aim is to find a procedure which allows to obtain a.bilinear Markovian  
Representatiofl (2.3) for the bilifiea~ 15rocess (Equat ion 2.1): " 
t .  , , , ' 

. , , :  "p . : .: ., q . . . '  "Q.  p . . , 

. ' . ' .  X, .~ E .  ak X, '_k. -~ E b het-h + E E / 3 j ' k X ' ~ k e i - j ' +  a . . 
k=l h=0 j=0 k=l 

Q P .. . , . ; 
Let ( , ) =  ~ ~ t~j,kXt_ket_j.  It is easier to obtain a Representat ion (2.3) 

y=0k=i • ,' , . , Q' ,p  . ' . . . .  

when we first split the,dou.b!e, sum (*) ~. ~ . ' ~  ~j,kXt-k~i-j into three parts.,, 
j=Ok=l , , 

. . . .  I ' , , , ,  : , , ,  ',,.. ~ .-. , .:  • ' ." 
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P 

T h e  first pa r t  is the te rm et ~/3o,kXt-k. T h e  second pa r t  consists  in the te rms 
k = l  

in (*) where  the subscr ip t  o f  X is less t han  or  equal  to the subscripts '  o f  e 
(cases where  1 _<j _< k). T h e  r ema in ing  te rms fo rm the third pa r t  o f  (*). 
Def ine  P ' ,  Q',/3'kj and  /3~,/" as fol lows ( for  k > 1): 

P'=Q-1  
Q' = min[P, max{kl~3j+k,k ¢ 0 for at least one value of j ,  j =  1, 2, ..., P'}] 

/3, = { /3kJ+k i f j > O  

kj 0 o therwise  

/3,1 = { /3j+k,k i f j  > 1 
kj 0 otherwise .  

T h e n  E q u a t i o n  (2.1) becomes  

p q P 

Xt=EakXt-k +boet+ Ebhe,-h +etE/3o,kXt-k 
k = l  h = l  k = l  

P Q P '  ~Y 

+ E E ~ k j  X'-k-je'-k + E E ~ J  X'-ket-j2k + a. (A . I )  
j = O  k = l  j = l  k = l .  . .  

Let  n = max(p ,  P + q, P + Q, P + O') and  m = n - max(q ,  Q, Qt), and  define 
a vec to r  Ztt °)" as: , 

"" Z (°) = X~-m+i, 1 < i < m, " qil 

if n - m = 0 and  max(p ,  P)  = 1 : Z}~.~,+ii = ~ a k X ~ _ k + ,  ,. 
k = l  

i I ' .  t . 

E if  n - m > I : Z}~?,,+i] = ak)(t-k+, + bk + dXt+i-j-k et+i-k 
: ,. " , k = l  . . . .  : , 'k=i 1. j = O  '," " ;  ' ] " :  

• ' ' .  ' ' '  ' " , '  ' ' ' " '  . J • ' 1 

+ E if' X~+i-k, 1 < i < n ~-m." ' :( .  ". ° kdet+i_j_k ". : ~ 
• t t , 

k=i j = l  ~ ' ~ ~' I . . . .  r, . 

We ob ta in  '. 
t / :  

) ( t  = P O , m - j + l  z~(t_ I ) , [ j ]  

X,j=m - P +  I / 

z(o) ; et + (t_t),im+tl + boer + a (A.2) 
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and 

p, 

= + Z ', + 
. .  j = l  , 

where A(°)(e,), B(°)(e,), C ! ° ) i e t  ) a n d  D!°)(e,) are matri6es or  vectors in e,. 
Let F(~)(t) = (et, . ..... , et-~k-e,)', k J= 1, ..., P' ,  and define . 

( ), Z} k)= Z} k-l), Z} k-I) @f(k)(/), F(k)(t) , k = 1, ..., P'. (A•4) 

Then, we claim that 

z~k- ' )= M(k)(et)Z~k~_ + N(k)(et), k = 1, ...,' U ,  (A.5) 

where M(k)(et) and N(k)(et) are matrices of  finite degree polynomiais  in e,. 
Using the definition of  Zt(k), we can show by induction that Equat ion  (A.5) 
is valid. Indeed, according to Expression (A.3), the equat ion is verified for 
k = 1. And if Equat ion (A.5) is true for k then it will he valid for k + I since 
F~)(t) = et, and - 

F (k) t,~ = F[~-l)(t  _ 1), 1 _<j <- P~ - k. 
[ / + l l W  - 

Expression (A.5) is therefore verified for k = 1, ..., j6,. 
Final)y, setting . , , 

ZI ) if P ' = - I ,  ' 

Z t =  Z} Y),~-Z} °) . ' if P ' = 0 ,  

( - (~- ' )  ) '  P' , , Z f ' ) • = .  Z f ' - ' ) ,  ,ct et, e, . i f  . . . >  0, 

and taking Xt given by Equat ion (A.2), we obtain a bilinear Markovian  
Representat ion (2.3). . . [ ]  

Remarl~." In Pham (1986), the expression foi  Z} k), which is analogous  to 
(A.4), is slightly incorrect• The right expression is given by (A.4). 

• I Proof  of  Theorem .2.5: ', 
Consider  {Xt} ,,~ BLg(p,  q, P) ,  i.e.: ' -~ '" 

X, = Z akXt-k + (et-j bkX,-k + c + r(e,) + a. 
• k=l . \ k~ j  :z 

" ' J  ~ ' ' " , . a  A 
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Setting m = max{p ,P} ,  we define the vector Z~ °) with the following 
components: 

z(o) = Xt-m+i, I < i < m, t,[i] 

I 
k~=lbkXt-k+l -'k C if q = 0 

(0) 

(i__~ogj+l(et_j))(k~=lbkXt_k+,+c if q >  1. 

The components  of the vector Z~ °) allow us to write: 

( ~ .. 7(0) ) ~ ,  ,z(O) (A.6) Yt  = -m-j+t~(t_l),[j] + go(et) (t-l),[m+l] + r(et) + ol 
kj=m-p+ 1 

and 

q-' ) 
Z~ °) A(°)te ~7(°) (C(°)(et)Z (°) +D(°)(e,)) , . .gj+,(et_j) (A.7) = ~ t;~t-I +B(°)(et) + \ , , t- 

where A(°)(e,), B(°)(e,), C(°)(e,) and D(°)(et) are matrices of measurable 
functions in et of dimensions ( m +  I) x ( m +  1), ( m +  1) x 1, (m+  1) x ( m +  1) 
and (m + I) x 1, respectively. We define for q > 2: 

Z~ k ) =  Z} k-'), ZI k-') gj+,(et-j+k) , 

Then, we claim that: 

Z~k-l) = M(k)(e,)Zlk_ )1 + N(k)(e,), 

[q-I \ / '  
'=(,j~.k gj+l(et-j+lc)) , 

k = l ,  ..., q -  1. (A.8) 

where M (k) (et) and N (k) (et) are matrices of measurable functions in et. Using 
the definition of Z} k), we can show by induction that Equation (A.9) is valid. 
Indeed, according to Expression (A.7), the equation is verified for k = 1. 
And if Equation (A.9) is true for k then it will be valid for k + 1. Expression 
(A.9) is therefore verified for k = 1, ..., q - 1. 

k = l ,  . . . ,  q -  1 ( h . 9 )  
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Finally, taking Zt defined by: 

ZI ) q = O, 
z l q - ' ) =  ZI °) , q = 1, Zt 
ZI ¢-]) (ZI q-2), Zlq-2)gq(e,), gq(e,)) q > 1, 

and Xt given by Equation (A.6), we obtain a bilinear Markovian 
Representation (2.3). [] 
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