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A B S T R A C T  

In this paper, it is shown how to approximate theoretical premium 
calculation principles in order to make them useful in practice. The method 
relies on stochastic extrema in moment spaces and is illustrated with the aid 
of the exponential principle. 
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I I N T R O D U C T I O N  

In actuarial practice, most insurance companies base their tariff on the 
expected value principle, with a loading coefficient 0 > 0, say (for more 
details about premium calculation principles, the interested reader is referred 
e.g. to Goovaerts, De Vylder and Haezendonck (1984)); this is to say that 
they require for the risk X an amount of premium (1 + O)EX. The reason is, 
of course, mathematical convenience but this is also often due to a shortage 
of available statistical data. Against this principle, one can convincingly 
argue that two risks with the same mean may appear very different whereas 
the price list will give the same amount of premium for both of them. As an 
example, think of the family of the normal distributions with fixed mean tt0 
and parameterized by the variance o ~. The premium will be constant (and 
equal to (1 + 0)#0) but everybody agrees that the underlying danger will 
strongly vary. One could therefore opt for the variance principle (with a 
safety loading proportional to the variance of the risk X) or for the standard 
deviation principle (with a safety loading proportional to the standard 
deviation of  X). But even risks with identical first two moments may appear 
very different from the insurer's point of  view. The skewness is also an 
important parameter for the insurance company. This speaks in favour of a 
premium calculation principle taking into account the whole probability 
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distribution of the risk X to be covered, instead of only a few numerical 
characteristics of it. Such principles exist in the actuarial literature (for 
instance, the Orlicz principle, the Esscher principle or the risk adjusted 
premium calculation principles introduced by Wang (1996) and recently 
considered by Wang and Young (1998) and by Silva and Centeno (1998)). In 
practical business, however, statistical data concerning the risks to be 
covered are often so scarce that it is hopeless to determine a plausible 
distribution for X. It is therefore important to construct premium 
calculation principles which need as less information as possible. The 
premium principles proposed here are based on the first moments, range and 
mode. It tries to provide a compromise solution between those two 
apparently conflicting goals. 

The purpose of this paper is to show that theoretical premium calculation 
principles can also be used in practice, at least if you agree to compute the 
premium amount, not on the actual risk, but rather on a stochastic upper 
bound for this risk in its moment space. The premium amount you get then 
depends upon the mean, the variance, the skewness, the kurtosis, the range 
and, possibly, the mode of the risk. We illustrate the technique on the zero 
utility premium calculation principle with an exponential utility function 
(i.e., on the so-called exponential premium principle). We derive simple 
analytical lower and upper bounds for exponential premiums. Of course, the 
ideas developed in the present paper (which theoretically reduce to the 
derivation of bounds on the moment generating function of a random 
variable X in a given moment space) can be applied to many other problems 
in actuarial sciences, as well as in applied probability and economics. 

We mention that the approach adopted here is very similar to the ideas 
contained in Hi.irlimann (1996). This author obtained simple analytical 
lower and upper bounds for stop-loss premiums and ruin probabilities of  
compound Poisson risks in case the mean, the variance, and the range of the 
claim size distributions are known. The two approaches are complementary 
since with Hfirlimann's method, you get bounds on quantities of the 
form Eqb(X) when ~b is non-decreasing and/or convex while the methods 
proposed here deals with quantities of  the form Eqb(X) with smoother 
functions ~ (namely, convex functions of degree s). 

2 EXPONENTIAL PREMIUM PRINCIPLE 

Consider an insurance company with initial wealth w and with a utility 
function u(.). The company covers a risk X. The amount of premium 7r(X) is 
determined following the adoption of an economic decision principle. We 
assume here that the insurance company sets its price for coverage 7r(X) as 
the solution of the equation 

Eu(,, ,  + - x )  = (2.1) 
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Condition (2.1) expresses that the premium n(X) is fair in terms of  utility: 
the right-hand side of  (2.1) represents the utility of  not issuing the contract; 
the left-hand side of  (2.1) represents the expected utility of  the insurer 
assuming the random financial loss X. Therefore (2.1) means that the 
expected utility of wealth with the contract is equal to the utility without the 
contract. Putting w = 0 and normalizing the utility function u, we get the 
so-called zero utility principle: the premium ~r(X) calculated according to 
this principle is the root of the equation 

Eu(Tr(X) - X) = 0 (2.2) 

which can be interpreted as an equality between the expected utility of  the 
income 7r(X) - X and the utility of not accepting the risk. Despite of  its 
intuitive justification, such a principle is difficult to apply in practical 
business, since the equation (2.2) determining rr(X) has no explicit solution 
in general. However, if we assume that the moment generating function of  X 
exists and that the utility function of the insurance company is of the form 

u ( x ) = l - e  -c', x>_O, (2.3) 

for some positive constant c, then (2.2) admits an explicit solution and the 
premium 7r(X) can be expressed as 

7r( X) = l ln Ee cx. (2.4) 
c 

d d 
- ln~x x u and measures the risk The constant c involved in (2.3) is equal to 

aversion of  the insurance company; the exponential utility function (2.3) 
yields a constant risk aversion. But even formula (2.4) will not convince the 
practitioner of  adopting the exponential premium calculation principle and 
of  forsaking his good old expected value principle. Indeed, in order to 
compute 7r(X), the underlying distribution of  X has to be completely known, 
or at least to be assumed. Therefore, there is a need of approximations for 
(2.4) if you desire to use such a formula in practice. 

3 S - C O N V E X  APPROXIMATIONS 

The idea used here is as follows: Denuit, De Vylder and Lef~?vre (1999) 
(see also Denuit and Lef~vre (1997) and Denuit, Lef6vre and Shaked 
(1998)) showed that in a given moment space, i.e. among all the risks with 
common range and first moments, it is possible to determine a minimum 
and a maximum with respect to some stochastic order relation (for more 
details about  stochastic order relations, the interested reader is referred 
e.g. to Goovaerts, Kaas, Van Heerwaarden and Bauwelincks (1990), Kaas, 
Van Heerwaarden and Goovaerts (1994) and Shaked and Shanthikumar 
(1994)). More precisely, let s be a positive integer and consider the class 
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Bs -= Bs([0, b]; #1, #2, ..., #s-l) of all the risks X with upper bound b and 
such that E X  k = #~ for k = 1, 2, ..., s - 1. Let us define the partial order 
relation _%-cx among elements in Bs as 

X '<s-¢x Y ¢:~ Eu(X)  <_ E u ( Y )  for all u E/7/s_¢x (3.1) 

for which the expectations exist, where/7/s-~x is the closure (in the topology 
of the pointwise convergence) of the class 

{u : [0, b ] ~ I u  ( s )>0  [0, b]}, b/s-cx 

where u (s) denotes the s-th derivative of the function u. It is worth 
mentioning that the functions in E/s-~.,- are usually referred to as convex 
functions of degree s (see, e.g., Roberts and Varberg (1973)). The classes 
n~.=lb/k_¢x have been extensively used in economics (see, e.g., Levy (1992)), 
as well as in actuarial sciences by Kaas and Hesselager (1995) in order to 
define the so-called stop-loss order of degree s - 1. 

It is then possible to determine in Bs two discrete risks X,~i ) and v,.(.~, 
say, with a probability distribution relying only on the upper bound b, and 
the sequence of moments (#1, #2, ..., #s-I) defining Bs, such that 

X~i~ ~s-~x X ~_s-cx X~!,S~x V X E B~. (3.2) 

Explicit expressions of these extrema for s = 1 to 5 are obtained from the 
theory given in Denuit, De Vylder and Lef~vre (1999); they are listed in 
Tables 1 and 3. 

Let 13~ -z B~([O,b];m-  unim; /21, #2, ..., #s-I) be the class of all the 
risks X with a unique mode m, with upper bound b and such that 

E X  k =/Zk for k = 1, 2, ..., s -  1. It is possible to find in B; two risks X~i~ 7 

and X~(;~)~, say, with a probability distribution relying only on the upper 
bound b, the mode m, and the sequence of moments (#l, #2, ..., #s-l) 
defining B~, such that 

X,l~i~ . . . . .  ~.-c,. X ~s-¢,. X (s)*.~ax V X C B~. (3.3) 

Let us point out that, since B~ C Bs, the extrema in (3.3) are more accurate 
than those in (3.2) in the sense that 

- . X ~ x - 6 ~ - ¢ - , -  , , ~ x -  

Explicit expressions of these improved extrema can be obtained from the 
theory given in Denuit, De Vylder and LefSvre (1999) and are now discrete 
mixtures of uniform distributions; they are listed in Tables 2 and 4 for s = 1 
to 5, where Unif [a,/3], c~,/3ER, stands for the uniform distribution over 
the interval [mirt(c~,/3), ma~x(c~,13)], k . ~--~=lPiUnlf [o~,/3i], 0 _<p~ _< I, ~,/3~ E R, 
i = 1 ,  2, ...,k, represents a mixture of the distributions Unif  [c~,/3i], with 
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respective weights pi,  i.e., a r a n d o m  variable with d is tr ibut ion  funct ion 
E~=I p i F i ( x )  where 

l 
0 if x < min(c~i, fli), 

Fi (x )  = - x - min(c~i, fli) if x E [min(c~i, fli), max(c~i, fli)], 
max(o!i, fli) - min(c~i, fli) 

I if  x > max(c~i, fli), 

and where the following symbols  are used: 

P :  ( ( # 1  - -  b )  ( # 4  - b # 3 )  - (U2 - bp,1 ) (U3 - -  b # 2 ) ) 2  

- - 4 ( ( , 1 - b ) ( , 3 - b , 2 ) - ( , 2 - b [ . l . i )  2) ((,2-b,l)(#4-bl.J.3)-(l_l.3-b]l.2)2), 
and 

~y = ( j  + l ) l . q - j m l ~ _ ~ ,  J ff ~'qo, 

with the c o n v e n t i o n  that  #o -= 1. 

TABLE 1 

(') B , ( [ 0 ,  b]; .... p.~_,) PROBABILITY DISTRIBUTION OF Xmazl E l t l ,  IL2, 

s Support points Probability masses 

r +  

0 

# l  

0 

[12 

#l 

u3 - I . , I .2 + i f ( u 3  - . . m )  2 - 4 ( . 2  - d ) ( . . ~ ' ~  - t.]1 

2(I~2 - p.~) 

P.3 - P,I P,2 - ~/(P,3 - .ul .u2) z - 4 ( t ' 2  - / u ~ ) ( / u , t , 3  - I ' ] )  
r _  

2( I ' 2  - U~) 

0 

l , ,u4 - u:t.3 + ~ / (u ,u .  - u 2 . ~ )  2 - 4 ( . , u ~  - d ) ( u 2 u .  - d )  

2 ( U , I ' 3  - P-~) 

I 

I 

#2 - IL~ 
/a2 

IL2 

#l - r -  
r +  - -  r _  

I l q  - r _  
r+ - r _  

I - p +  - p -  

11,2 - -  l - I ~ 1  

P+ t+( t+- t_)  

i z  2 - -  t + ~  I 

P- t_(l_-t+) 
~ , I , ~  - , ~ , ~  - ~ ( . , . ~  - ~,~1.3) ~ - 4 ( . i . ~  - 1 ~ ) O , ~ f , ,  - ~,]) 

2(I~, I'3 - t'~) 
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TABLE 2 

OF "('~)' e/3:([O,b]; m -  ,mini; Pl,  1'2, PROBABILITY DISTRIBUTION Xmi n . . . . ~  /zn- I) WHERE ~±, Z.:.t: AND ~± ARE 
THOSE FROM TABLE I, WITH THE fij 'S SUBSTITUTED FOR THE /Zj'S 

s Dis t r ibu t ions  

Unif [0, m] 

Unif Ira, fin] 

P2 Unif [0, m] + ('~ U n i f  Ira, /22/fit] 
g2 #2 

~' - ' -  Unif [m,~+] + (1 P' - ~:-) Unif [m, ~_] ~+ - ~ _  - ? +  - ~_ 

(I - fi+ -/~_ )Unif [0, m] +/~+ Unif Ira, t+] +/5_ Unif Ira, L] 

TABLE 3 

.(,) PROBAB]UTV mSTRmUTiON OF .~ .... 6 B~([0, hi; m, /~2, -.., m-~) 

s S u p p o r t  po in t s  Probab i l i t y  m a s s e s  

Z+ = 

Z_ 

b 

0 

b 

b l q  - It, 2 

b - l q  

b 

0 

I~3 -- b#2 

#2 - b/q 

b 

(m - b)(m - bin) - (m - b#E)(m - bin) + 

2( (~.," - b ) ( . 3  - b .~ )  - 0,2 - b~,,) ~)" 

(#,  - b ) ( m  - b i n )  - ( m  - b u ,  ) ( m  - b i n )  - 

2L(,.," - b ) ( . :  - b.~ )  - ( .~  - b,..,) ~)" 
b 

P l  = 

1 

b - tz l  

b 

ILl 

b 

(b - m )2 

(b - t q  )2 + #2  - I t~ 

iL 2 - -  iz i 
(b - p,l )2 + #z  - 1~ 

1 - p [  - p2 

(p.2 - bpn )3 

(IZ3 -- btL2)(#3 - 2bp,2 + b2tq ) 

#11L3 -- tL~ 

P~ --  b(tL3 -- 2 b l q  + bZtq ) 

~'2 - (b  + z - ) m  + bz_  

P+ = ( z+  - z _ ) ( z +  - b )  

IL2 - (b + z+) /q  + bz+ 

P -  = ( z _  - ~=+)(z_ - h )  

[ -p+ -p_ 
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TABLE 4 
y(s). 

PROBABILITY DISTRIBUTION OF" . . . .  E ~ ( [ 0 ,  b]; 77~ - i lni ln;  ~ I )  t£2, " '7 IZs-I)  WHERE P l ,  fi2. Z± AND p~  
ARE THOSE FROM TABLE 3, WITH THE fi! 'S SUBSTITUTED FOR THE /Zj'S 

s Dis tr ibut ion 

Unif Ira, b] 
b 

~ 

[0, m I + ~ Unif [m, b] Unif 
b 

b~a~ - ¢2] /~ -/z~ (--b" -- ~' )----~ - i  Unif m, + Unif [m, b] 
(b  - i l l ) 2  +/.~2 - it1 b-j21 J ( b -  i l l ) 2  + f i 2  - g~  

(I - ~, - /?2)Unif [0, m] + fi, Unif [m i13 - b/~21 + jO2Unif [m, b] 
L ' ~ 2  - b/~,J 

P+ Unif [m, 5+] + P-Uni f  [m, ~_1 + (I - P +  - h _ ) U n i f  [m, b] 

4 PRACTICAL EXPONENTIAL PREMIUM PRINCIPLE 

Let (/.tl, #2, ..., #s-l)  be the s -  1 first moments  of  a risk X to be covered, 
X assumed to be valued in [0, b], b E ~ + .  Since the function x ~ exp(cx) 
belongs to lgs-cx for all s when c > 0, we get from (3. l) together with (3.2) that 

(s) ~( X (s) "1 (4.1) x,,.o) < x) < , 

Moreover ,  if X possesses a unique mode  m, we get from (3.1) together with 
(3.3) that 

7r(X,l~,~ ) _< 7c(X) < 7r(Xm,~) .(.0. (4.2) 

Explicit expressions of  the bounds (4.1) and (4.2) on 7r(X) are listed in 
Tables 5, 6, 7 and 8. Let us point out that 

(2) 
7r(Xmin) = #1,  

so that the expected value principle (with 0 = 0) can be seen as an 
approximation of  the exponential principle. [ (.~) (s) ] 

For  each value of  s, we thus get a margin ~r(X~in ), rr(Xm~x) for the 
k .J 

premium 7r(X) in terms of  the range and the first s - 1 moments  of  X. We 

even find a more accurate margin [Tr(X('.)*/ 7r(X,~)l  for 7r(X) when X is L \ nl ln / ) • 

known to have a unimodal  density. In practice, the modus operandi should be 
(s) (s) 

as follows: the actuary computes  the bounds ~r(X.~,i.) and 7r(Xm~) on the 
basis of  the knowledge of  X he has at his disposal. If  he charges an amoun t  
of  premium of  7r(X',!~)x), the latter includes a positive safety, loading. 

" (s)  (s)  
Moreover ,  the maximal error is given either by 7 r (Xm~)-  7r(X, ni. ) or by 
7r/v(s).~ _/v(s)*~ The main advantage of  this method lies in the fact that it ~,A max) - -  71~,a rain )" 
only requires the knowledge of  the mean, the variance, the skewness, the 
kurtosis, and possibly, of  the mode  (for s = 5). The amoun t  of  premium 
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charged takes all these characteristics into account. It seems therefore to be 
an interesting compromise solution between theory and practice. It can also 
be used as a measure of  the underlying danger. The actuary can calculate the 
aforementioned margins and verify whether the amount of  premium he 
determined (with the help of  the expected value principle, for instance) seems 
reasonable. 

TABLE 5 

LOWER BOUNDS ON rr(X) 

• .(x<.i',,,) 

J-{ 1 

+<x,,¢c<} 
C t #2 1/.2 \ #1 .] 

, +  _ , _  

1 
- l n { ( l  - p+ - p _ )  + p +  exp(ct+)  + p _  exp(ct_)} 
c 

TABLE 6 

IMPROVED LOWER BOUNDS ON ~(X) 

2 ! l n { ~ ( e x p ( c m ) - e x p ( c f i l ) ) }  

3 c n t ~  texPtcm) - I) + c/22 (mill - D2) \ /21J ,] 

! { D , - ' -  ,+ -,a, ~xp(c,,,))} 4 In (~+ _ L)c(~+ - m)(exp(c.;+) - exp(cm)) + (~+ - ' } ' [  )7("7_ - m)(exp(cL)  - 

- _ ) 
5 In I - p + - P - ( e x p { e m ) - I ) + - r r - - - - - - - z ( e x p ( c L ) - e x p ( o , O ) + - 7 - ~ - - - z ( e x p ( c L ) - e x p ( ¢ m ) )  

cm c(t+ - m )  c{t_ - m) 

TABLE 7 

UPPER BOUNDS ON 7r(X) 

s)  s 7r(,~,;,~) 

2 

ff #3 -- blt.2"~ + p2exp(cb)  } 4. ! l n ( ( l - P l - p 2 )  -i-pi e x p t c ~ ;  

I 
5 7 In,I/7+ exp(cz+) + p_ exp(cz_ ) + ( 1 -- p+ - p_)  exp(cb) } 
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TABLE 8 

iMPROVED UPPER BOUNDS ON "if(X) 

c ( ocm 

! , .  + + 

D2 -/~2 } 
4 (b - ~-i )"-2 + ~-'2 - ~ c(b ~ m) (exp(cb) - exp(cm)) 

! { - " _ ,fi2 - b/.~l (exp(cm) f 1£3 -- b~2~'~ 4 In I l~lcm-PX(exp(cm)_ 1) + P '  c(m/~2 - ~  ~'-~3+b~2) - e x p k c ~ - ~ - ' ~ ) )  

+P2 c(b I ~ m )  (exp(cb) - exp(cm)) } 

5 _l In ( , / 5+  , (exp(cm) - exp(cS+)) + ~ (exp(cm) - exp(c2_)) 
c term - z+) ctm - z_) 

i -~+ -~_ } 
-~ 7~--~,5 (exp(cb) - exp(cm)) 

5. NUMERICAL ILLUSTRATION 

Let Ds([0, b]) be the class of all the possible moment sequences, i.e. the class 
of all the vectors (#l, #2, ..-, #s-l) E lR s-I such that there exists a random 
variable X valued in [0, b] satisfying 

EX k=~k for k = l ,  2, ..., s - 1 .  

For more details about the sets Ds([a, b]) for a, b E IR, the interested reader is 
referred e.g. to De Vylder (1996). Moreover, let D]([0, b]) be the topological 
interior of Ds([0, b]). Denuit, De Vylder and Lef6vre (1999) provided the 
following expressions for D~([0, b]): 

v~([0,b])= {~, ~F,10 <~l <b), 
D3 ([0,b]) = { (#i ,#2)E R2[#, 6 V2 ([0,b])and #~ < ~2 < bpd }, 

D4 ([0,hi)= { (/.~ l ,#2,#3)E IR31 (~l ,#2) ¢'D~ ([0,b]), and 

a4 --2/z~ +3#1#2) 7(~ 2 -u~)-  2u~ + 3~1 m <m < (b-u , )~  - b - # l  

where 0 .2 = #2 - #l 2. 
In order to illustrate the method proposed in this paper, we compute the 

bounds on the exponential premiums for risks with moments (#l,/z2) in 
Da([O,b]). More precisely, we first fix the mean #1, 0 < #l < b (so that the 
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premium computed  using the expected value principle remains unchanged) 
and then, we let #2 vary in such a way that (#1,#2) E D~([0, b]), i.e. 

# 2 = # ~ + J # l ( b - # l ) ,  j = l ,  2, ..., n - l .  
rt 

We then assume that the risk X possesses a unique mode m in [0,b]. This 
leads to new conditions on #2. Indeed, from the theory developed in Denuit,  
De Vylder and Lef6vre (1999), we must have that (/21,/22)ED3([-m,b-m]), 
i.e. that 

/2~ </22 _</2~ + (b - m  - /21)(/21 + m ) ,  

or, equivalently, in terms of  the initial moment/~2,  that 

1 2 1 
5(/2 ' + 2 m # , )  _< #2 -<5 (/2~ + 2m#, + ( b -  m- /2 , ) ( / 2 ,  + m ) ) .  

The results are plotted in Figure l, w i t h b  = 12, n = 50, c = 5,#1 = 5, 
m = 5. The cont inuous lines stand for ~r(X(3. )) and 7r(X,!3)~), while the 

, l [ l l n  
• 3 3 *  . .  ()  ( )  

dotted, hnes represent 7r(X;,a, ) and 7r(Xm~). These four _quanhtles are 
funchons of  #2 with #2 satisfying both (#l, # 2 ) E  D3([0, b]) and 
(/21,/22) E 'D~([-m, b - m]). In our example, P.2 varies from 25 to 60 in 
order  to satisfy the first condition, and from 25 to 31.6 in order to fulfill the 
second one. Therefore,  Figure 1 is drawn for #2 ranging from 25 to 31.6. The 
margins are moderate ly  accurate and it is clearly seen that a premium of  the 
form (1 + 0)/.Zl (with 0 = 20%, say) as provided by the expected value 
principle may be inappropriate for large values of/.t2. 

We then fix (#1,#2) in 'D3([0, b]) so that (/21,/22) E D~([-m,  b - m ] )  and 
we let #3 vary in such a way that (#1, #2, #3) E D,~(b), i.e. 

#3 =-~-(a 2 -/~)- 2#~ + 3#,/~2 
#l 

f o r j  = 1, 2, ..., n - 1. We then assume that X possesses a unimodal  density 
with mode m E [0, b], so that/.z3 has to satisfy 

~. 3m#2+=(--/2~)-2/2~+3/2,/22 <#3 
/-LI 

< ~  3 m # 2 + ( b - m - / 2 1 ) ~  b - m - / 2 1  2/2~+3/21/22 . 

The results are plotted in Figure 2 for b = 12, n = 50, c = 5, 1~a = 5, m = 5, 
#2 = 28. The cont inuous lines stand for (4) (4) 7r(X, nin ) and 7r(X,,~,,), while the 

_ _ / v ( 4 ) * \  f ,  (4)* ,  dotted lines represent ,,karat,) and ~rka,,,~ ). These four quantities are 

functions of  U3 with #3 satisfying both (#1,#2,#3) ED4([0 , b]) and 
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(/21,/22, fi3) E D4([ -m,  b-m]). In our example, /z3 varies from 156.8 to 
189.714 in order to satisfy the first condition, and from 162.8 to 164.375 in 
order to fulfill the second one. Therefore, Figure 2 is drawn for/~2 ranging 
from 162.8 to 164.375. Again, we see that the loading coefficient 0 has to be 
high enough: a value of  0 < 10% seems clearly unrealistic and the picture 
argues in favour of  a value of  at least 30% . 

1 0  

. . . . . . . . . . . . . .  " m - -  

, , _ . . .  . . . . . . . . .  _ _  

FIGURE I: Bounds (a) 7r(~m,,x)'(3) on well as 7r(X~,~) and (a). rr(Xnun) and rr(X) (continuous lines) as 
(dotted lines) as functions of/~2 ranging from 25 to 31.6. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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FIGURE 2: Bounds t4) 7r(X~2~) on 7r(X,.in ) and ~r(.\') (continuous lines) as well as ~(X~d)  and 7r(Xm~)'(4)' 
(dotted lines) as functions of,u3 ranging from 162.8 to 164.375. 
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