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ABSTRACT

For the construction of bonus-malus systems, we propose to show how to
apply, thanks to simple mathematics, a parametric method encompassing
those encountered 1n the literature. We also compare this parametric method
with a non-parametric one that has not yet been used in the actuanal
iterature and that however permits a simple formulation of the stationary
and transition probabilities in a portfolio whenever we have the intention to
construct a bonus-malus system with finite number of classes
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1 INTRODUCTION

The distribution of the number of car accidents in an automobile portfolio 1s
known to be well fitted by mixed Poisson processes Let us assume that the
number of car accidents 1s Poisson distributed for each risk in the portfolio.
Of course the portfolio 15 inhomogeneous and the frequency of the risks
differs from each other. We assume 1t follows a random varable.
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If we define N (1) as the number of claims 1n (0, ¢] with T (11, 1) = P[N (1) = n]
=the probability that a risk causes » accidents n ¢ years, we have

II(n, 7|A) = e-"'(A—‘,)" (1)

h

[’ n
O(n, 1) = / e_’\’(/\—tl)dU(/\) (2)
0 n
where A 1s a random vaniable with cumulative density function U(A).
Lemaitre (1985) used a Gamma distribution for A. This implies that N (r)
follows a Negative Binomial distribution In this case, the construction of a
bonus-malus system 1s very easy.

Tremblay (1992) used the Inverse Gaussian distribution for A. This
implies that N(r) follows a Poisson Inverse Gaussian distribution. The
construction of a bonus-malus system, 1in Tremblay’s setting, seems to be
very complicated needing for example the use of modified Bessel functions
which 1s in fact unnecessary.

In this article, we use a more general parametric distribution and a non-
parametric distribution to fit an automobile portfolio The construction of
the bonus-malus system 1s easily done using the Bayes theorem and the form
of the mixed Poisson distribution.

The following properties will be used 1n the sequel

Uy (s) =TI(0, 1 — re) (3)

Wa(s) = I1(0, —s) (4)

where Uy (s) = E[e*¥] denotes the moment generating function of X.
For comparison purpose, we work with a portfoho published by

Bihlmann (1970) and used by Lemaire (1985) and Tremblay (1992).

TABLE 1

REFERENCE PORTFOLIO

Observed NB fit PIG fit
0 103704 103781.,72 103710.04
1 14075 13892,03 14054,65
2 1766 1882,63 178491
3 255 256,17 254,49
4 45 3493 40,42
5 6 4,77 6.94
6 2 0.65 1.26
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As the claim number N(7) is a pure birth process, the estimation of the
intensity of the process

E[N(r+1) = N(0)IN (1]

needs data reported on a long period of time, a situation which 1s not
frequently met n practice.

Due to the fact that we have at disposal data reported on one period of
time, the model allows the estimation of the intensity and the construction of
a tarification based only on the total number of claims reported to the
company. This system is comparable to a bonus-malus system but with an
infinite number of classes Duc to the stationarity of the process we have

EE[N(t+1) = N(1)|N(r)] = EN(1)

and the system 1s at the equilibrium which 1s not the case with the bonus-
malus systems met 1n practice.

2. PARAMETRIC ESTIMATION

For the parametric case, we use a three parameters distribution encompass-
ing the Negative Binomial and the Poisson Inverse Gaussian distributions
This distribution 15 due to Hofmann (1955) and has been discussed by
Kestemont and Paris (1985)

The Hofmann’s distribution 1s defined as follows

I1(0, 1) = ¢~

(n, 1) = (—1)",’7':11(")(0,/) n=1,2 ..
91(’)=(l+l—)c1)" p>0,¢>0,a>0
9(0) =0

By integration, we have
0(1) = pt fa=0
o(r) = [—)ln(l +ct) if a=1
C

o(1) = c(lp——a) (14 ct)'™ - ]] else

This distribution encompasses the Poisson (¢ = 0), the Negative Binomal
(@ = 1) and the Poisson Inverse Gaussian (a = §) distributions.
Using infinite divisibility arguments (Maceda (1948), Feller (1971) see also

Kestemont and Paris (1985) for a discussion), it can be shown that N(r) may be
interpreted as a Compound Poisson distribution Therefore we can use
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Panjer’s algorithm (Panjer (1981)) to write a recursion for the probabilities
of N(1):

T1(0, 1) = e~
_opt “Lla+0)/ c Y\
(n+ DO+ 1,1) = t +C’)(,; oI (1 +cr> On—1u1 (5

The mean and varnance of N(r) are given by
EN(t) = pt
VarN(1) = pt + pecar®

The parameters are estimated by maximizing the logihkelihood.
l(p,c,a) =>_ N, In{II(i, 1)}
1—0

where N, 1s the number of policies with 7 claims.
Hirlimann (1990) shows that, for the Hofmann distribution among
others, one has

ENW=p=N

where N 1s the experimental mean.
The other two parameters are found by a numerical maximization.

We find

p=0.15514
¢ = 0.34853
& = 0.44768
[/ = —54609.59

The fit 1s excellent as shows the following table

TABLE 2

Hol MANN FIT

Observed Fitted

0 103704 103704,40
1 14075 14072,96
2 1766 1769,01
3 255 255,21
4 45 41,99
5 6 7.59
6

2 1,46
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The Chi-Square statistic 1s 0.4344 with 6 classes.

The Hofmann’s distribution is based on a model that 1s verified on the data
we are studying (Poisson distribution rejected, infinite divisibility, Shaked
theorem) So, by its own nature, it 1s not surprising that 1t leads to a good fit.

3. NON-PARAMETRIC ESTIMATION

In the parametric case, we suppose that a U function has been chosen and
that 1t only remains to estimate the parameters Here we suppose a mixed
Poisson distribution for which we don’t specify a parametric distribution
U(X) for A

In that case, Simar (1976) shows that the maximum likelihood estimate of
U will be attained for a discrete distribution function U(A) with a maximum
number m of growing points.

The probabihties Il(n, 1) are then given by

(n, 1) Z/_\!/\[) (6)

n!

m

with } p, =1, p, >0 Vj and m, the number of support points, i.e. the
J=1

number of homogeneous classes of risks.

We will suppose 1n the sequel that 0 < A} < Ay .

Simar (1976) gives an algorithm to find the non-parametric maximum
likellhood estimators for an automobile portfolio. Unfortunately the
loglikelihood 1s not concave everywhere and the algorithm does not
converge certainly to the global maximum. In particular, Simar (1976) did
not verify the fact that

EN =N ()

in his numerical example (this property 1s valid for all non-parametric
mixtures of the exponential family (Lindsay (1995))).

The maximum likelthood can also be found using a classical Newlon-
Raphson technique. The property (7) can be used to simplify the procedure
by reducing the number of parameters to be estimated.

About the number of mass points m, Simar (1976) shows that the
maximum likelithood estimator will be unique under the following conditions

N+2
m < min (q, [———;——J) f A =0
m < min (q, {?J) if Ay >0

where ¢ 1s the number of classes for which the observation is different from 0
N is the maximum number of claims per risk
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For our portfolio, we find the following maximum hkelithood estimation:

A =0.05461 m =056189

A2 = 024599 p2 = 041463

A3 =0.95618 px = 0.02348
[ = —54 609 456

Of course, the loglikelthood 1s higher than in any parametric case

Note that the maximum likelthood method described 1n this section gives
more information than the simple good guy bad guy model of Lemaire
(1985). Indeed the procedure gives the number of mass points needed to have
the highest ltkelihood while the good guy bad guy model imposes two mass
points.

The fit 1s excellent as the following table shows:

TABLE 3

NON PARAMFTRIC FI1

Observed Fitted
0 103704 103703,83
1 14075 14075,57
2 1766 1765,36
3 255 255,77
4 45 43,63
S 6 7.50
6 2 1,16

The Chi Square statistic 1s 0.1245 with 6 classes The fit 1s excellent because
we have 5 free parameters for 7 classes Note that the distribution 1s not
infinitely divisible in this case.

The non-parametric case gives a physical mterpretation of the hetero-
geneity of the portfolio: 56% of the risks follow a Poisson distribution with
parameter A = 005461, 41% of the risks follow a Poisson distribution with
parameter A = 0.24599 and 2% of the risks follow a Poisson distribution
with parameter A = 0.95618



USING MIXED POISSON PROCESSES IN CONNECTION WITH BONUS-MALUS SYSTEMS 87

4 OPTIMAL BONUS-MALUS SYSTEM

The bonus-malus system depends only on the number of accidents caused by the
insurcd in the past In our model, 1t 1s easy to see that it 1s sufficient to consider
the total number of accidents without reference to the history of the accidents:

dUAING@) = Nt =1) =k, ..., N(O) = N(0) = k)
CPIN() =N —=1) =k, ., NI) = N(0) = ki [AJdU(N)
~ PIN(O)=NG@-=1)=k, .., N(1) = N(0) = k]

(,—\:/\L
——dU(\)
_ H/ lkj,
00 M)A
——dU (A
0 H;»Ikll ( )

where k = Y/ k,

j._
The premium for the first year 1s an a prior1 premium because there 1s no
nformation concernming the risk:

EN(1) = EA

For the r* year, as the history of the accidents 1s umimportant, we take into
account the information which consists in the number of accidents during
the first f years and the premium is.
EIN(t+ 1) = N(O)|N(1) = k] = E(A|N(1) = k)
_k+ ITHAk+1,1)
Tt T(k,)

This expression 1s general. It reduces to

p+kc_) 1 k ct
T+eor PTva  T1+a

in the binomial negative case and 1s by far more simple to use than the
formulae derived by Tremblay (1992) for the particular case of the Poisson
Inverse Gaussian distribution

Assuming that the first premium paid 1s 100, we can construct a bonus-
malus table depending on &k and ¢ with the formula:

100k + 1 TI(k + 1,1)
EA ¢ Ik, 1)

The following good properties justify the ‘optimal bonus-malus’ denomination.
1 The system 1s financially balanced each year

(8)

il‘[(k, NEAING) =k)=EA Wi
k=0
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2 The more you cause accidents, the more the premium-
E[AIN(1) =k + 1] > E[A|N (1) = k] Vit k

3. The premium always decreases when no more accidents are caused:
d
EE[A|N(1) =k <0 Ve, k

The properties 2 and 3 are easily shown by using the Cauchy-Schwartz
inequality

5. BONUS-MALUS SYSTEM FOR LOADED PREMIUMS

Following Lemaire (1985) and Tremblay (1992), we can construct a bonus-
matus system for charged premiums using an exponential utility function

w) =t ey 40
Y

with the principle of zero utility
Using the formulae (3) and (4) the a prior1 premium becomes (Gerber
(1979))

P= lln E[eA’N(')}
8
]
=-—In E[e""\] where w=¢" — 1
~

The a posteriort premium 1s given 1n the same way than in the previous
section:

P=$meﬂmo=ﬂ

1 1 < 0
_;ln{n(kj f)/o ere™ TdU(/\)}

{5 ")

By normahzing such that the first premium is 100, the bonus-malus table 1s
constructed with the formula

k k—w
o )"
I {T1(0, —w)}

Once again, this formula 1s more general and more simple than in Tremblay
(1992).

w=e¢e" — 1 (%)
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6. NUMERICAL EXAMPLES IN THE PARAMETRIC CASE

With the expected value principle formulae, we find

TABLE 4

OPIIMAL BONUS-MALUS TABLLE WITH THE HOI MANN 11T

\A 0 1 2 3 4 5
1 87.417 162,05 278.98 424,26 582,15 744.85
2 78,92 138,18 228,80 341,68 465,47 593,78
3 72,59 121,75 195.41 287,24 388.63 494,30
4 67.65 109,66 171,52 248,62 334,22 423,85
5 63.66 100,33 153,53 219,78 293,66 371,35
6 60,34 92,87 139,47 197,41 262.27 330,71
7 57,52 86,76 128,15 179,54 237,24 298,34
8 55,09 81.64 118,84 164,94 216,82 271.93
9 52,96 71,27 111,02 152,77 199,85 249,99
10 51,07 73.50 104,36 142,46 185,51 231,47
20 39,48 52,10 68,49 88,35 110,94 135,42
50 27,13 32,59 39,18 46,87 55,55 65,05
100 20,14 22,95 26,17 29,83 33,88 3831

The table 4 1s comparable with Lemaire’s (1985) and Tremblay’s (1992).
Due to the choice of the form of ¢'(¢), we always have

hm E(A|N(1)=0)=0
{—00

and also

lim EQAIN() = k) =0k
—0a

This fact corresponds to the well-known observation that most of the drivers
are 1n the cheapest class when the frequency 1s low.

It may be unacceptable that a driver pays a premium equal to zero but in
practice there is no problem because the convergence to 0 is attained by far
after the mean driving time. Moreover the problem may be solved by adding
a constant premium in our model:

_ P
0’(!)_5+———(1+C[)a (10)

In this case, the premium has the following asymptotic behaviour:

lin EAN() =k) =8 vk

So the driver always pays a minimum premium ¢
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Note that the following property seems to be verified

L EANG =k >0 VK
dr? =

Our experience shows it 1s true for typical automobile portfolios.
The bonus-malus tables for loaded premiums, obtained with the zero-utihty
principle, are also comparable with Lemaire’s (1985) and Tremblay’s (1992)

TABLE 5
BONUS-MALUS TABLE FOR LOADLD PREMIUMS WITH AN HOE MANN 11,y =025

&k 0 1 2 3 4 5

| 86.94 162 63 281.80 429,78 590.36 755.66

2 78.16 137,83 22938 343.39 468.26 597 60

3 71.72 120,97 194,96 287.18 388.93 494,89

4 66.73 108,66 170,54 247.67 333,25 42279

5 62.72 99,22 152,28 218.36 292,01 369,41

6 59,39 91,71 138.07 195,73 260,25 328,30

7 56.58 85,57 126,68 177,73 235,02 295 66

8 54,15 80,44 117,33 163,06 214,51 269,13

9 52,03 76,08 109,51 150,86 197,49 247,14
10 50.16 72,32 102,85 140,56 183,15 228,60
20 38,69 51,10 67,23 86,77 109,00 133,10
50 26,55 31.90 38,35 45,89 54,40 6372

100 19,69 22,44 25,60 29,17 33,14 37,47

As the following table shows, even for unreasonable values of v, the
difference with table 4 1s small

TABLE 6
BONUS-MALUS TARLE 1OR LOADED PRLMIUMS WITIH AN HOFMANN HIT =1

Nk 0 ! 2 3 4 5

1 82.46 164,77 297.94 462.39 639.07 819.90

2 72.23 133,25 228,79 347.49 476,56 609.59

3 65.26 113,82 187,97 280.33 381.66 486.74

4 60.09 100,45 160,83 236.09 319.23 40591

5 56.06 90,60 141,39 204,68 27498 348,62

6 52.79 §2.98 126,73 181.19 24195 305.86

7 50,07 76.88 115,25 162,94 21634 272.72

8 41,75 71.88 106,00 148,34 19590 246.27

9 4575 67.68 98,37 136,39 179,20 224.68
10 44,00 64.10 91,96 126,42 165.29 206.70
20 33,54 44,49 58,77 76 09 95.80 17.14
50 22.82 27.45 33.05 39,59 46,97 55.06

100 16,88 19,24 21.96 25.04 2845 32.18
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7. NUMERICAL EXAMPLES IN THE NON-PARAMETRIC CASE

In this case, the formulac (8) and (9) may be rewritten as

100 Z"' | pje——,\,:‘/\j\'+l
EA Zj"':] pje—’\/’)\j"

(8) = (1)

o) - 10 Tline MmN
In{IT(0. —w)} ST, pe~MiAK

(12)

The asymptotic behaviour of the bonus-malus tables is described as following:
If A > 0.

100
’lﬂg(l )= min )\jﬁ

lun (12) = nm A v
{—00

I TI(0, —w)

If A =0
100
IhJED(]])—I;II;]dAEK if k>0
=0 ifk=0
W
2) = _
A e
=0 ifk=0

The bonus-malus table with the non-parametric fit greatly differs from the
parametric case tables.

In fact the form of the bonus-malus table reflects the discontinuity of A
The non-parametric fit shows that there are three classes of risks those with

= 0,05461, A = 0,24599 and A = 0,95618. We find those three classes in
the bonus-malus table, locally, the table has the same comportment than a
table constructed with a simple Poisson process. the premiums are almost
indistinguishable because of the lack of heterogeneity. We have

100
100
—E—A—)\z= 158,56
100
—— A =35,20

EA
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TABLE 7

OPTIMAL BONUS MALUS TARLT WITH NON-PARAMETRIC 111

Ak 0 ! 2 3 4 5
| 87,49 161.69 280,16 439,86 553,82 598,51
2 78,96 138,44 221,85 358,64 504,79 581,46
3 72,49 124.00 184,71 281,52 43488 550,55
4 67.19 114.03 162,88 227.86 354,19 499,79
5 62,64 106.19 150,05 192,90 280,92 428,59
6 58,68 99.34 141,84 172,93 227,49 348,05
7 55,22 92,99 135,77 161,88 194,39 276.36
8 52,20 86.97 130,54 155.54 175,84 224,97
9 49,58 81,23 125,50 151,50 165.91 193,52
10 4732 75,82 120,36 148,46 160,62 176.09
1 45,38 70,77 114,99 145,74 157,66 166.92
12 4373 66.12 109.39 142,99 155.80 162,18
13 42,33 61,90 103,61 140,01 154,43 159,71
14 41,15 58,11 97,72 136,70 153.19 158.36
15 40,15 54,75 91.82 133,01 151,93 157,53
16 39,32 51,81 86,02 128,89 150.52 156,93
17 38,62 49,24 80,41 124,36 148.91 156,40
(8 38,04 47.03 75,08 119,43 147,04 155.87
19 37,56 45,14 70.10 (14,14 144.87 155,27
20 37,15 43,52 65,52 108,57 142,36 154,57
50 35.21 3523 35.33 35,78 37,77 45,96
100 35,20 35,20 35,20 35,20 35.20 35,20

The somewhat curious comportment of our table and the three classes are
very visible for very bad risks. The following graph shows the evolution of
the premium for k = 15

Of course, because of that, the concavity of the premiums changes.

Such a curious comportment of the bonus-malus table seems very difficult
to apply and so the non-parametric fit should not be used for the
construction of bonus-malus tables.

The same comments apply for the charged premium bonus-malus table.
The surprising results of the non-parametric method are due to the fact
that the estimation of the distribution function U of the random variable
A 15 based only on the observation of N(1). Even if the period of
observation is longer, the trouble will remain because as the frequency is
low. the number of points on increase of U is always low and the number
of classes of risks is low
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200
100
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FiGURE | Opumal bonus-malus premium with non-parametric fit, & = 15
TABLE §
BONUS-MALUS TABLE | OR LOADED PRLMIUMS WITH NON-PARAMETRIC FLI v = 0 25
Nk 0 1 2 3 4 5
1 86 96 162 36 283 71 440 49 546 34 586 53
2 78 21 13791 223 65 361 87 501 38 57128
3 7167 122 87 184 66 286 59 435 68 543 36
4 66 35 112 67 161 59 229 18 35735 496 74
5 6182 104 79 148 09 192 38 28375 429 65
6 5787 98 00 139 60 171 16 228 52 35123
7 54 42 9174 13347 159 40 193 61 27903
8 S5t 41 8581 128 29 15272 173 83 22578
9 48 79 8017 123 36 148 55 163 20 192 56
10 46 54 74 83 118 35 14549 157 54 17394
11 44 60 69 85 113 14 142 81 154 41 164 09
12 4295 6524 107 70 140 14 152 49 159 00
13 41 55 6106 102 07 137 27 151 10 156 36
14 40 37 5729 96 33 13408 149 89 154 92
15 3937 5395 90 56 130 53 148 66 154 06
16 3854 5102 84 87 126 56 147 31 153 45
17 37 84 48 46 79 36 122 19 145 77 152 93
18 3725 46 25 74 10 11743 143 99 152 4]
19 3677 44 36 69 18 11231 141 91 151 83
20 36 36 4275 64 64 106 90 139 50 15117
50 34 41 3443 34 53 3498 3698 4519
100 3440 3440 34 40 34 40 34 40 34 40
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8 THESTATIONARY AND TRANSIENT DISTRIBUTIONS OF THE POLICYHOLDERS IN
A BONUS-MALUS SYSTEM WITH FINITE NUMBER OF CLASSES

We have seen in the previous sections the advantage of using a parametric
Mixed Poisson model to construct optimal bonus-malus systems. The non-
parametric model was judged too discontinuous to give a nice form for the
premums. However this kind of adjustment for Mixed Poisson distributions
presents high interest when one has to evaluate the mean of difficult
functions over the risk’s portfolio

Let us assume f(A), a complicated function of A. If we are interested in

Ef(A) = /0 FNU) (13)

even a numerical integration may be untractable.

However, 1t 1s clear that using the non-parametric structure function of A
will be more efficient Wc know 1t gives a better fit and there won’t be
numerical integration needed. Only a convex combination of some f(A) will
be performed Equation (13) becomes

n

Ef(A) =Y _/(Mpy (14)
=1

which most of the time will be a sum with 3 of 4 terms.

Let us apply this techmique to find the stationary and transient
distributions of a typical Markov chain used 1n automobile insurance.

The bonus-malus systems with finite numbers of classes are used for a
long time n most Europecan countries These bonus-malus systems are
characterized by s+ 1 classes with growing premium percentages
C, i =0, .., s. The movements of the drivers between the classes 1s given
by transition rules depending on the number of accidents caused during one
year Most of the time, these transition rules give the model the Markov
property Even when 1t is not the case, a redefinition of the classes can give
the Markov property to the model (see Lemaire (1985) for an application to
the Belgian bonus-malus system)

For illustration, we will use the following bonus-malus system

TABLE 9

P1 RCONTAGE PRLMIUMS

C. 75 80 90 95 100 150 170 185 250
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Transition rules: —1 if no accident during the year
+3 per accident during the ycar
+0 1f any accident in class 8
—0 if no accident n class 0
Let X, be the class at ume 7 The transition rules Y, 1s defined as

IN()—=N(t—1)) N -Ne-1)=1, 2,
Y, — —1 N —N(iE-1)=0
T 0 NO=Ni—-1)>0 Xy =
0 N —=Nt-1)=0 X,_, =

We have X, = X,_ + Y,.

Under the hypothesis that the Y, are independent random variables,
Dufresne (1988) has given a recursive technique to find the stationary
distribution of the nisks in the bonus-malus system.

Note that the Dufresne’s techmque would not be applicable to bonus-
malus systems with nonuniform penalties per claim while the technique
described hereunder remains applicable for every bonus-malus system.

The 1ndependence condition means that the general Mixed Poisson
process can not be used for N(r). However a Poisson process 1s adequate.
Dufresne (1995) has used the Poisson distribution to find recursively, as a
funcuon of A, the stationary distribution of risks with mean A He finds
extremely complicated functions of A and a software handling symbolic
computations 1s welcome.

Then with this expression of the stationary distribution, F(x,s) where x
1s the class, Dufresne (1995) proposed to find the unconditional stationary
distribution by

F(x,s) = /000 FMx,8)dU(N)

As we mentioned above, this integration will be very easy if one has a
non-parametric fit for N(t). Moreover, as we know that only a few values
of A are needed, the algorithm of Dufresne (1988) may be forgotten at the
benefit of the traditional technique of norming the left eigenvector of the
transition probability matrix. This 1s the method we finally use to calculate
the stationary distribution of the policyholders in our bonus-malus system
Note that all this remains true for the transtent distribution functions.
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For our bonus-malus system, the transition probability matrix is given by:

TABLE 10

TRANSITION PROBABILITY MATRIN

0 1 2 3 4 5 6 7 8
0 p(0) 0 0 p(1) 0 0 P2) 0 p(23)
t PO 0 0 0 (1) 0 0 PR p(z3)
2 0 p(0) 0 0 0 p() 0 0 pz2)
3 0 0 p(0) 0 0 0 (1) 0 pz2)
4 0 0 0 p(0) 0 0 0 ) p(z2)
5 0 0 0 0 2(0) 0 0 0 (> 1)
6 0 0 0 0 0 p(0) 0 0 p(= 1)
7 0 0 0 0 0 0 P(0) 0 (> 1)
8 0 0 0 0 0 0 0 PO p(z 1)

where p(k) = P[N(t+ 1) — N(t) = k] with N(¢) ~ Po(At).

From section 3, we know that
— 56,187% of the policyholders have a frequency A = 0,0546]
— 41,464% of the policyholders have a frequency A = 0,24600
— 2.348% of the policyholders have a frequency A = 0,95619

Therefore we can calculate the stationary probability vector for those values
of A as well as their weighted mean which is the stationary probabulity vector
of the portfolio We find:

TABLE 11
STATIONARY PROBABIIITY VECTOR

A = 005461 A = 0,24600 A = 095619 Portfolio
0 0.8278 0,2598 0,0005 0,5728
1 0,0464 0,0724 0,0008 0.0561
2 0.0490 0.0926 0,0022 0.0660
3 0,0518 0.1185 0,0057 0.0783
4 0,0095 0,0876 0,0145 0.0420
5 0,0075 0.0942 0,0369 0.0441
6 0,0052 0.0977 0,0939 0.0457
7 0,0014 0.0880 0,2386 0.0429
8 0.0009 0,0888 0,6066 0.0516
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This technique solves a problem encountered by Coene and Doray (1996)
who used simulation to find the stationary distribution of a portfolio with
N(1) ncgative binomial distributed By simply taking powers of the
transition probability matrix, we also find transient probabihties

If we suppose that all the policyholders are in the beginning class

~o=(0.0,0.0, 1,0, 0,0, 0)
then their distribution after 10 years 1s given by:

TABLE 12

TRANSILNT (10 YLARS) PROBABILITY VECTOR

A = 0,05461 A = 0,24600 A= 095619 Portfolio
0 0,8042 0,2448 0,0008 0,5533
| 00379 0,0441 0,0008 0,0396
2 00797 0.1739 0.0035 0,1170
3 00493 0.0930 0.0057 0.0664
4 0,0081 0.0587 0,0140 0.0292
5 0.0078 0.0829 0.0368 0.0397
6 0 0099 0,1429 0.0959 0.0671
7 00014 0,0725 02369 00364
8 00012 0,0868 0 6053 0.0509

|

9. CONCLUSION

In this paper we have clarified how to construct a bonus-malus table using
the net premium principe or the principle of zero utility when working with
muxed Poisson distributions The formulae are easily dertved using the Bayes
theorem and the form of the mixed Poisson distribution.

The parametnc nuxed Poisson distribution we usc 1s more general than
the traditional Negative Bmmonual or the Poisson lInverse Gaussian
distributions. It has the disadvantage that three parameters have to be
cstimated (however the experimental mean directly gives one parameter for
the maximum hikelihood estimation). The fit 1s slightly better than the NB or
the P1G fits.

In terms of goodness of fit, the non-parametric case 1s better than our
three parameters parametric distnibution The estimation of the parameters
1s not too difficult due to the simple form of the non-parametric mixed
Poisson distribution

About the construction of a bonus-malus table, the parametric approach
should be preferred because of its ‘continuity’ Indeed the continuous form
of the distribution of A gives a nice form Lo the bonus-malus table whilc the
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discontinuity of the non-parametric distribution gives the bonus-malus table
a curtous comportment with local almost constant premiums.

The tables constructed with the parametric distribution may be used as a
starting point for methods like the one proposed by Coene and Doray (1996)
to ‘fit’ bonus-malus tables with classes

The non-parametric fit shows its interest when one needs to evaluate the
mean of difficult functions of A over the portfohio. Tt replaces a complicated
numerical integration by a short summation The calculation of the
stationary and transient distributions of a portfolio for a bonus-malus
system with finite number of classes 1s a typical example of the advantage of
the non-parametric fit Other quantities ike the mean asymptotic efficiency
of Loimaranta (1972) can also be easily evaluated with the help of the non-
parametric fit.
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