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A B S T R A C T  

Financial tmae series data are typically found to possess leptokumc 
frequency distributions, time varying volatditles, outhers and correlation 
structures inconsistent with linear generating processes, nonlinear depen- 
dence, and dependencies between series that are not stable over time. Regm~e 
Switching Vector Autoregress~ons are of interest because they are capable of 
explaimng the observed features of the data, can capture a variety of 
interactions between series, appear mtmt~vely reasonable, are vector 
processes, and are now tractable. 

This paper considers a vector autoregresslon subject to penodtc 
structural changes The parameters of a vector autoregress~on are modelled 
as the outcome of an unobserved d~screte Markov process with unknown 
transmon probabflmes. The unobserved regmaes, one for each time point, 
together with the regmae transmon probabilities, are determined m addmon 
to the vector autoregress~on parameters within each regime 

A Bayesmn Markov Chain Monte Carlo estlmatmn procedure is 
developed which efficiently generates the posterior joint density of the 
parameters and the regimes The complete hkehhood surface ~s generated at 
the same tnne, cnabhng estnnatlon of posterior model probabdlttes for use in 
non-nested model selection. The procedure can readdy be extended to 
produce joint pred~ctmn densmes for the variables, incorporating both 
parameter and model uncertainty. 

Results using smmlated and real data are provided A clear separatmn of 
the variance between a stable and an unstable regime was observed. Ignoring 
regm~e shifts ~s very hkely to produce misleading volatlhty estHnates and ~s 
unhkely to be robust to outhers. A comparison w~th commonly used models 
suggests that Regmae Switching Vector Autoregressmns provide a pamcu- 
larly good description of the observed data 
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l | N T R O D U C T I O N  

An important feature of financial data is the presence of short periods of 
instability charactensed by large magnitude changes Such extreme values 
are not consistent with common linear t~me series processes in either their 
magnitude or frequency of occurrence, so that they are often referred to as 
data "outllers", and often effectively ignored. 

The chances that the observed "outhers" were generated from hnear models 
~s overwhelmingly small, e.g. consider the quarterly and monthly Australian 
share price return series over the period 1960-96. The largest magnitude outher 
m each case corresponds to the October 1987 sharemarket crash The chances 
of observing a return as extreme as observed in the samples from an ll.d. 
Normal generating process ~s less than l-ln-a-m~lhon for quarterly data, and 
indistinguishable from zero (5 x 10 2o) for monthly data Similarly, the 
quarterly rate of change in bond ymlds over the same period produced twice as 
many "outliers" (residuals in excess of 2 standard deviations) as would be 
expected from the fitted AR(I) data generating process. 

Stock & Watson (1996) examined the stability and predmtxve ability of 8 
unlvarlate models for each of 76 monthly U S times series, and 8 blvarmte 
models for each of 5,700 blvarlate relationships. They found evidence of 
substantial instability in a significant proportion of the umvarmte and 
bivarmte autoregresslve models considered 

Conditmnal heteroscedasticlty, or changes m the level of volatility, has 
been found m financial series by numerous researchers, both actuarial and 
from the wider financml and econometric fields. Examples of the former 
include Praetz (1969), Becker (1991), Harris (1995b, 1996) and Frees et al 
(1996). Examples of the latter include McNees (1979), Engle (1982), Akglray 
(1989), Hamilton & Susmel (1994), Hamilton & Lm (1996) and Gray (1996). 

This paper presents an attempt to deal with the observed dlfficulues m 
financial time series, a Regime Switching Vector Autoregresslon (RSVAR), 
the parameters of which are subject to periodic discrete changes. The process 
may have quite different characteristics in different regimes. A tractable 
mathematical model of structural changes and discrete market regimes is the 
umvarlate Markov regime switching autoregressive process introduced by 
Hamdton (1989), and subsequently considered by Albert & Chib (1993) and 
Harris (1996). 

Given that financial series appear interdependent, both m terms of their 
levels and thmr volatilmes, e g Hams  (1994, 1995a, 1995b, 1995c) and 
Hamilton & Lin (1996), a vector joint regmle switching process would seem 
to be an attractive descrlptmn of the data 

Hamilton (1990, p40) observed that the usual numerical max)m~satmn of 
regime swltch~ng likelihood functions IS subject to computational difficulties 
associated with the often ill-behaved hkehhood surface (mulhple local 
maxima, essentm] smgularmes, and local increases as boundary con&tlons 
are approached). He suggested a numerically robust Expectatmn-Maxlmlsa- 
tlon (EM) maximum likelihood algorithm to overcome the numerical 
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problems The author has performed convergence comparisons of EM and 
Markov Chain Monte Carlo (MCMC) estimation procedures for regime 
switching processes, which demonstrate much faster convergence of the 
MCMC estimation, partmularly for larger data sets. 

The present paper extends regnne switching to vector processes and 
develops a Bayesian Markov Chain Monte Carlo estimatmn procedure that 
is more reformative, efficient, and flexible than a maxnnum hkelihood based 
approach The estimation procedure estmaates regimes at each time point, 
regime transition probablhtles, and vector process parameters within each 
regime. In addition Jt is numerically efficient, ensures stability of the data 
generating process within each regime, is able to assess the joint sigmficance 
of the large number of potential parameters, is numerically stable, produces 
robust parameter estimates, and enables the esnmatmn of posterior model 
probabilmes for use in non-nested model selection 

The RSVAR process is described in section 2 Markov Chain Monte 
Carlo methods m the form of the Gibbs sampler and Metropolis-Hastings 
algorithm are introduced in section 3. Model fitting results are presented in 
section 4, while concluding remarks are made m section 5 The derivation of 
the Bayesian MCMC estimatmn procedure is contained in the Appendix. 

2. THE MODEL 

Vector reg.nc switching processes are characterised by multiple discrete 
regimes, where each regime has different dynamms and is characterised by a 
different set of parameters They are subject to probablhstm joint d~screte 
shifts m the parameters of the vector process, so that a regmae shift may alter 
the dynamics of all the variables at the same tmae Within each regime the 
vector process Is assumed stable a priori, and is hence hnear stationary The 
effect of the discrete regime shifting ~s to make the total process nonlinear 
stationary The task, based on the observed data, is to make probablhstm 
inferences about when transmons between the various regimes occurred, the 
parameters of the vector process charactensmg the d~fferent regimes, and the 
regime transition probabflmes. 

Define Pt to be an unobserved dtscrete-valued mdmator variable, such 
that at any tmle t the process will be m regime p, E {I, ,K)  Define the 
transmon probabflmes, p,j =p(pr=j]p~_l = i )  with }-'~p,j = 1 Vi, and 
p r ~  {pu}(Xx K) a 

Consider the following VAR(q) tmle series process with K discrete 
regmaes, where each regmae is charactensed by a different set of parameters, 

q 

x, #(p,) + ~ _(I,) ~ . = A(p,) I x , _ h  - I t (p,))  + ~&,,),  
h -  I 
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{,(t,,) ~ N(0,  f~(~,,)), E~,(t,, ) = 0 and E~,(p,f,(rp,) = f~(p,) Vt > q. The variables 

x, /L and ~ are m x l  column vectors, while the A (h) and the Q are mxm 
matrices. For  convenience the above regime switching VAR(q) process will 
be denoted an RSVAR(q,K)  process. 

The total parameter  set to be estimated is A _= {/-ql), ..,/-L(K),A(I), ,A(K), 
f~(I),--, ~.(K/, P}, which can be part i t ioned as A _= {O, P}. To  ensure that the 
process is identifiable, it will usually be necessary to define the regmles by 
insisting upon prior restrictions on the parameters ,  such as ordering o f  the 
variances of  at least one o f  the variables (components  of  the xt). If this IS not 
done,  ~t is possible that the regime assocmted with essentially the same set of  
data  points could be labelled differently m different iterations of  the 
estimation procedure  

3. MARKOV CHAIN MONTE CARLO SAMPL|NG METHODS 

Draws from the joint  poster ior  distribution of  the regimes and the 
parameters ,  given the sample data,  can be simulated using Markov  Chain 
Monte  Carlo methods,  such as the Gibbs Sampler and Metropolis-Hast ings 
algorithm. The resulting sHnulated sample from the parameter  space can be 
used to make inferences about  the dxstrlbutlon of  the process parameters  and 
regimes. Chlb & Greenberg  (1995) provide a useful and readable descNptlon 
of  M C M C  methods 

Posterior simulators are particularly attractive m the case of  complicated 
processes which are impossible or impractical to estimate using maxlmuln 
likelihood or o ther  methods  Advantage  can often be taken of  s tructure 
within a process to decompose  the reference problem Into manageable  
components .  In the case o f  Regmle Switching VAR, the process ~s non- 
Normal  and path dependent ,  however, condxtlonal on the regime, the 
process is a regular VAR process 

Ma rkov  Chain theory would usually start with a t ransmon kernel 
density, h:(x,y), which describes how the Markov  Chain moves between 
states In the current  apphcat lon,  the state space is the joint  parameter  and 
regime space of  the RSVAR process, {p,A}, and the Markov  Chain IS the 
sequence of  joint  parameter  and regmle esmnates,  {p(C), A(,I} 

Since the process must end up somewhere at each transition, 
J ~(x,.v)dy = 1 The probabil i ty  o f  the process being m state v after n 
transitions, given that it was initially in state x, is given by 
t,:,,(x,y) = f~,,_l(x,z)~(z,y)(Iz A hmmng  or mvarmnt  dls tnbut ion,  ~-(), is 
stud to exist whenever t,:,,(x,y) ~ 7r(y) as n ~ oc. It follows therefore that 

A major  concern of  Markov  Chain theory ~s to determine condit ions 
under  which there exists an mvariant  d~strlbutlon, and condmons  under  
which iterations of  the transition kernel converge to the lnvariant 
d l smbut lon  M C M C  samphng methods look at the theory from a different 
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perspective. The mvariant  distribution is the target dlstr lbuhon from which 
we w~sh to sample, generally a Bayesian posterior d~stnbutxon. The 
transition kernel is unknown.  

3.1 The Gibbs Sampler 

Starting from an arbitrary point, the Gibbs Sampler generates samples from 
a joint density 7r( ) wa a sequence of  random draws or samples from full 
conditional densities, as follows 

yl rr(yl Ix2 , . ,  x,,,) 

YJ +-- re(y, ly,<j,x,>,) 

y,,, 

The above completes a transition from x to y in the state space. The 
sequence forms a reahsauon of  a Markov Chain which converges in 
distribution to a random sample from the target joint  dlstr ibutmn rr(-) 

The Gibbs salnpler will often be useful where a comphcated process can 
be built up from components  with s tandard conditional dlstrlbutmns. The 
target joint regime and parameter d~strlbutmn of  the RSVAR process is too 
complicated to sample directly. The structure of  the RSVAR process is 
however such that draws from the full condmonal  densmes can be made 
tractable, since essentially standard densmes arise for the VAR parameters 
once one condmons  on the sequence of  regmaes 

3.2 The Metropolis-Hastings Algorithm 

Suppose the target density re( ) IS unknown,  but that a density q(, . )  exists, 
f q (x , y )dy  = 1, from which candidate values o f y  can be generated for given 
x, to be accepted or rejected. The candidate generating density, q(x,y), is a 
first approxmlatmn to the unknown target density The candidate generating 
density needs to be too&fled to ensure convergence to the desired target 
density This is done by introducing a inove probability, ~(x,y) < 1. If a 
move is not made, with probability 1 - c~(x,y), then the process remains at x 
and again returns a value of  x as a value from the target d l smbut ion  The 
move probability is given by 

{min J'~(y) qO',-,) 1} rr(x) q(x,y) > 0 
=  7;7' 

I otherwise 

An important  feature of  the algori thm is that the calculation of  ~(x,y) only 
requires knowledge of  the target density 7r( ) tip to proport ionali ty (which in 
the case of  a Bayesian posterior is given by the product  of  the likelihood and 
the prior), since rr(.) only appears as a raUo. 
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A particularly useful apphcatlon of  the Metropolis-Hastings algorithm 
is where an retractable density arises within a Gibbs Sampler as the 
product of a standard density and another density, e.g. 7r(x) c~ ~(x) ¢5(x), 
where ~b(x) is a standard density that can be sampled Then q(x,y) = ~(y) 
can be used to generate candidate y, which is accepted with probablhty 
c~(x,y) = l~n{~b(y)/~b(x), I}. The Metropolis-Hastings algorithm will be 
superior to direct acceptance/reject|on methods since the move probability 
will be higher than ~b(.), the acceptance probability under the acceptance/ 
rejection method, particularly where ~b(.) is small. 

3.3 Outline of the Estimation Procedure 

Samples from the joint posterior distribution of the regimes and the 
parameters given the data, p(p, A[Y), can be simulated vxa the Gibbs Sampler 
and the Metropolis-Hastings algorithm. The algorithm will revolve the 
repeated generation of varlates from their full conditional densities as 
follows: 

p(,+l) ~ /_L(,) A(c) f~(c), p(,) 

iL(c+l) 6-- p(C+l), A(C), ~(c), p(c) 

A(C+l) ~-- p(~+t)/L(c+l), Q(c), p(,) 

~-~(c+l) ~ o(c+l),/_t(c+l), A(C+l), p(c) 

p(c+,) ~ p(,+l), ~/t(c+l), A(C+t), ~2(c+1) 

In each case, V will be a function of  the A and the ~ on the right 
hand side Under mild regularity conditions, the sequence 
{p(c+l),A(c+l)} ~ {p(t+l),lz(c+l),A(~+l),~(t+l),p(c+l) } will form a Markov 

Chain whose hmltlng distribution will be p(p, AIY ). 

4. RESULTS 

4.1 Validation Against Simulated Data 

The estimation procedure was tested against a number of simulated data 
sets The mean parameter estimates were found to converge extremely 
rapidly, even when the initial parameter estimates were very poor and the 
order of  the fitted process was incorrect The M C M C  procedure can 
therefore be expected to supply a good estimate of  the mean parameter 
values within seconds, regardless of the Imtlal parameter estimates, even for 
vector processes. This is in contrast to maximum hkehhood based 
approaches, which are subject to computational difficulties and/or are 
relatively slow to converge. 

When data was generated from a VAR process (without regimes), the 
MCMC algorithm very rapidly collapsed to a single regime with PJl ~ 1 & 
Pl2 ~ 0. The results of one of the simulation tests are briefly reported below. 
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2000 observations were generated from a bwariate RSVAR(2,2) 
process. The data generating process was a random noise process within 
each regime, apart from vanable 2 m regime I, whtch was generated 
from an AR(2) process with autoregresslve parameters of 0.75 and -0.25, 
ie. xt2 =0.01 + 0 7 5 ( x t _ ] z - 0 . 0 1 ) - 0 . 2 5 ( x t _ z , z - 0 . 0 1 ) + 0 . 0 0 5 z , ,  where 
zt ~ ,_,d N(0,1). 

TABLE I 

S I M U L A  I ION I ESF RE~AJI. I~ 

True Ist  50 iterates/sample,s 2000 iterates/samples 

Value 5% 'tie Mean 95% 'ile 5 %  'lie Mean 95% "ile 

Number in regime 2 462 404 451 3 502 424 463.9 508 

Transmon Prob Pl2 0 161 0 131 0 159 0 189 0 138 0.161 0 185 

Transmon Prob P2i 0.500 0 497 0 548 0 605 0 466 0.527 0 589 

R eg i me  I: 

tq 1.00% 091% 097% I 04% 093% 0.98% I 03% 

all I 0.000 - 0  027 0 005 0 031 - 0  039 0.002 0 042 

a(~2~ 1 0.000 - 0  049 - 0  009 0 024 - 0  048 -0.010 0 029 

1.00% 0 95% 0 98% I 02"/0 0 95% 0.98% 1 02% 

t12 1.00% 0 93% 0 98% 1 03% 0 93% 0.98% 1 03% 

a~2 ) 0.750 0 747 0 770 0 798 0 740 0.767 0 795 

a~22 ) -0.250 - 0  281 - 0  261 - 0  238 --0 287 -0.261 --0 236 

x / ~  0.50% 048% 051% 053% 048% 0.50% 052% 

Regime 2: 

!tq 0.00% - 0  08% 0 07% 0 20% - 0  19% 0.03% 0 24% 

all ) 0.000 - 0  073 0 015 0 104 - 0  074 0.025 0 120 

a(~] ) 0.000 - 0  075 0 034 0 131 - 0  072 0.035 0 145 

x / ~  1.50°/, I 47% I 58% I 65% I 48% 1.57% I 67% 

kt2 2.50% 2 27% 2 43% 2 54% 2 26% 2.46% 2 69% 

a~12 ) 0.000 --0068 0066 0 171 - 0 0 3 4  0.077 0 187 

a~ ) 0.000 - 0  112 0033 0 143 --0071 0.045 0 157 

1.50% I 49% 1 57% I 67% I 45% 1.54% I 63% 

The MCMC estimation procedure described m the Appendix was used to 
generate 2000 samples from the joint parameter density of the model. The 
mean parameter estimates are summar]sed m table 1. The procedure 
successfully identified the data generating process with very tight densities 
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centred over the true parameter  values The slgmficance or otherwise of  the 
various parameter  estimates ~s beyond doubt .  Tests demonst ra ted  the 
robustness o f  the est imation procedure  to various starting values 
Graph  I compares  the mean regime (line) with the true regime (shaded 
bands) for the first 150 time points. The procedure  can be seen to have 
successfully differentiated between the low and high volatility regimes. 
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GRAPH I Probabdlty of Being m Regime 2 

4.2 Empirical Estimation Results 

To further  dlustrate the estmaatJon procedure,  an RSVAR(1,2) process was 
fitted to a real financial data  set (m = 4, q = 1, K = 2, N = 147) The data  
set considered, derived from the Reserve Bank of  Australia database,  
consIsted of  147 quarter ly  observations,  for the quarters  ending December 
1959 through to June 1996, of  the cont inuously  compounded  rates of  
• real economic  growth; 
• change m the rate o f  price ro ta t ion;  
• share price return; and 
• change m the 10 year bond yield. 
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More  precisely, the data series examined were 
• V lnGDPt  where GDPr is the real Gross  Domestm Product  for the quar ter  

endmg time t; 
• V21nCPII where CPIt is the Consumer  Price Index at hme t, 
• VlnSPIt  where SPIt is the All Ordinaries  Share Price Index at time t, and 
• VlnBt where Bt is the ymld to matur i ty  on 10 year Treasury  bonds,  
where V is the backward difference opera tor .  

The data set was chosen on the basis of  ~ts general interest and 
convemence,  to dlustrate the M C M C  estimation procedure  developed m the 
paper. It is not suggested that the resulting model ~s appropr ia te  for any 
other  specific purpose,  e.g. it would clearly be inappropr ia te  for long term 
projectmns,  given the degree of  differencing. 

5,000 i terations/samples were generated using the M C M C  estimation 
procedure  described m the Appendix.  Rapid convergence was observed in 
the quan tmes  measured The first 50 samnples were discarded and the 
remaining 4,950 samples used to describe the joint  parameter  density 

The estimation procedure  identified two clearly distinct regimes One 
regmle (regime 1) was charac tensed by strong economic  growth,  stable 
mftatmn and interest rates, and relatwely stable share price growth The  
other  regime (regmae 2) was charac tensed by weak economic  growth,  volatde 
lnflatmn and interest rates, and volatile and generally falhng share prices. 
The low volatd~ty regmae was relatwely stable m the sense that ~t was the 
more persistent of  the two regm3es 

The durat ion of  a regmle t episode is a discrete random variable, with 

expected value gwen by ~kxp,~ilx ( I - p , , )  = I / ( 1 - p , , ) .  Given the 
k=l 

esmnated mean transition probabdl ty  of  0.15, the expected dura tmn of  a 
regmae 1 episode is about  6½ quarters.  The high volatd~ty regime was 
unstable m the sense that ~t was not expected to persist for long. Given its 
estm~ated mean t ransmon probabdt ty  of  0.51, the expected dura t ion o f  a 
regime 2 episode is 2 quarters.  The identified regimes seem highly mtmtive. 

The theorencal  density of  the durat ion of  an episode of  each regime, 
given the mean t ransmon probabdmes ,  Prob(dura t lon  o f  regime t = k) = 
p ~ i - l ( 1 - p , ) ,  is shown in graph 2. The durat ion of  an episode of  either 
regime can be seen to vary over a considerable range, even if the transJhon 
probaNht~es were known with certainty The uncertainty m the estmmted 
trans~tmn probabl lmes  themselves ~s dlustrated by graph 3 
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Graph 4 shows the mean regime at each time point. The economic 
environment was idenhfied as almost certainly being in the unstable regime 
during the turbulence of the lmd-1970s and early 1980s, the last quarter of  
1987 stock market crash, and briefly during the early 1990s There is a 
shghtly better than average chance that mid-1994 also witnessed a regime 
shift. Again, the identified regimes seem highly intuitive. 
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GRAPH 4 Probabthty of Being m Regmle 2 

The unstable high volatlhty regime captured extreme events that might 
otherwise be termed outhers. Outhers have the potentml to seriously distort 
the estimation of process dynamics Regime shifting can therefore be viewed 
as providing a robust data driven treatment of outhers m th~s case, which 
should enable more robust parameter estimates 

TABLE 2 

PARAML I ER ES FIMA VES 

Regime I Regime 2 

5% "tie Mean  95% 71e 5% Vie Mean 95% "lie 

Trans l t ton  Prob p,j 0 089 0.151 0 231 0 351 0.509 0 668 

Mean  Parameters  

/tl 0 98% 1.14% 1 31% -0 82% 0 .13% I 05% 

~tt~ -0 07% 0 .00% 0 07% -0 39% 0.1 I %  0 65% 

#3 I 99% 3.28% 4 55% -I0 82% -4.63% 0 86% 

~tta -1 18% 0.22% 0 81% -I 69% 2.67% 7 51% 

Std Dev Parameters  

[ 03% 1.17% 1 32% I 18% 1.50% I 91% 

0 48% 0 .55% 0 62% I 19% 1.55% 2 01% 

6 24% 7.06% 7 96% 13 45% 17.05% 21 63% 

3 71% 4 .53% 5 37% 7 82% 10.02% 12 91% 

wir lable  I = ~71nGDPI, varmble  2 = V21nCPI~, varmble  3 = ETInSPIi, var iable  4 = ~71nB~ 

The clear distinction between the parameters in each regmae is illustrated by 
the clear separation of a number of the parameter densities, particularly 
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those relating to the volatth O, of share price returns and changes m inflation 
and interest rates, and to the level of share price returns (refer to table 2 and 
graphs 5a, 5b & 5c). Given the clear separauon of the variance of  the 
variables in the two reg,mes, any procedure that ignores the regime shifts is 
very hkely to produce misleading volatility estimates, and is unhkely to be 
robust to outhers. 
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GRAPIt 5b Density of Std Devlatxon of Share Price Return Parameter 
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In the case of the quarterly change m inflation, the mean standard devmtlon 
parameter estimate in regime 2 is 3 tmles as large as m regmle I (1.55% 
versus 0.55%). In the case of the quarterly share price return, the mean 
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standard devmtion parameter estimate in regmae 2 is 2½ times as large as in 
regime 1 (17% versus 7%). The mean share price return level parameter 
esumate in regime 1 is 3 3% compared with -4 .6% m regime 2. 

m 
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GRAVU 5C Density of  Mean Share Price Return Parameter  

Examlnanon of the marginal parameter densities revealed that relatwely few 
regresswe cross-correlation parameters were significantly nonzero once jo in t  
regmae switching was allowed for. The notable regressIon parameters were 
serial correlanon m the inflation rate m both regimes, and serial correlanon 
in real GDP and the change in interest rates in the stable regnne. 

mean A: t )  mean A(2 ) 

- 0 . 1 7 8  0 0 7 8  0.021 - 0 0 0 9  0 137 0 0 2 1  0 0 0 9  I}.084 

0 049 - 0 . 3 3 2  0 000 0 006 - 0  108 - 0 . 4 4 9  0 019 0 .080 

- 0  156 0 0 7 8  0 0 7 2  - 0 0 4 9  0 0 3 3  - 0 0 3 0  - 0  I I I  - 0  125 

- 0  052 0 086 0 048 0 .222 0 054 0 008 0 098 0 160 

v ,u tab le  I = ~ZhiGDP, ,  va r tab le  2 = VzlnCF' I , ,  v ,umble  3 = V I n S P b ,  va rmble  4 = V'InB~ 

N u m b e r s  m bold  are  s lgnt f icant ly  nonze ro  at the 5°/,, onc-s tded  level u n d e r  the pos te r io r  dens i ty ,  i e 

zero falls out,,~dc the region b o u n d e d  by the 5 % h i e  a n d  lhc 95%' f l e  o f  the pos te r io r  p a r a m e t e r  dcnsf ly  

Ignoring regime shifts would expose estmaates of regression parameters to 
the effects of "outhers" generated during episodes of the high volatlhty 
regune, the effects of which would then be assumed to operate at all times. It 
is therefore interesting to compare the mean regression parameters of the 
RSVAR(I,2) process with the corresponding VAR(I) parameters, which 
reflect the usual sample correlations/regression relationships (the stablhty of 
which was previously questloned). 
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A from VAR(I )  

- 0  10 0 0 6  0 0 2  0 0 3  

0 01 -0 .51  0 00 0 03 

0 15 - 0 . 7 4  - 0  03 - 0 . 2 8  

0 06 0.56 0 08 0.27 

var iable  1 = VlnGDP~, va l l ab le  2 - ~ l n C P I t .  varmble  3 : XYlnSPI,. var iable  4 = ~lnB~ 

Numbers  in bold are s imply large in magn i tude  

Notable differences are the large feedback of lagged changes in inflation 
into share price returns (-0.74) and changes in interest rates (0.56), and 
the feedback of lagged changes in interest rates into share price returns 
( -0  28) If the feedback were as strong as indicated by the VAR model, 
the VAR model should have a slgmficantly higher likelihood than an 
independent AR(I) model (where the off-diagonal elements of A are all 
zero) and one ought to be able to make better predictions than models 
without the feedback. Neither of these features was observed empirically 
(refer section 4.3). 

A nurnber of contemporaneous error correlauons were found to be 
significantly nonzero. In the stable regime changes In bond yields were found 
to be contemporaneously negatwely correlated with share price returns 
( - 0  195), so that unanticipated shocks that caused bond yields to rise were 
more hkely to be assocmted with a downward (than an upward) shock to 
share prices. Similarly, increases m inflation were found to be contempor- 
aneously correlated with real economic growth (0.15). Both contempora- 
neous relationships appear consistent with intuition. 

No s~gnificant relationship was revealed between inflation and share price 
returns, at least in the short term In the unstable regime the only s~gnlficant 
contemporaneous error correlation detected was between share price returns 
and real economic growth (-0.34), the sign of which is somewhat counter- 
intuitive. 

Mean eonremporaneou~ error correlations Mean contemporaneous error eorrelation~ 

implied bj' ~{ll tmplied by f~{21 

I I 

0.148 1 - 0  098 I 

- 0  044 - 0  053 1 - 0 . 3 3 7  0 004 I 

0 0 8 7  - 0  084 - 0 . 1 9 5  1 0 132 - 0  120 - 0  181 I 

var iable  I = VInGDPi ,  var iable  2 = ~21nCPl l ,  var iable  3 = ~ l n S P I t ,  var iable  4 = ~71nB, 

Numbers  m bold arc s lgmficantly nonzero at  approx ima te ly  the 5% one-s,ded level under  the pos ter ior  

densi ty,  i e zero falls outs ide  the region bounded  by approx ,ma te ly  the 5% 'de  and the 95%',1e of  the 

pos ter ior  pa ramete r  densi ty  
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4.3 Empirical Comparison With Common Models 

In this sectmn the stat~stmal goodness-of-fit of the Regime Switching VAR 
model is compared with commonly used models Tile models considered 
were independent random/nmse, independent autoregresswe (i e. diagonal 
VAR), independent non-Gaussian autoregresslve, independent GARCH, 
Vector Autoregression and RSVAR The results are summansed in table 3. 

Non-Oaussmn error d~stnbutmns are sometimes used in an attempt to 
directly capture the leptokurtos~s observed m the frequency dlstnbutmn of 
many series The Student t density, standard~sed to have zero mean and unit 
vanance, was considered as an alternative to the standard Normal error 
dlstributmn 

The Generalised ARCH model was introduced by Bollerslev (1986). The 
condmonal variance is modelled as a hnear combination of lagged squared 
residuals and variances. For exarnple, the commonly used GARCH(I , I )  
conditional variance ,s such that ~ = a'0 + c,,e~_, + ~ ,~_ , .  

The models were compared in terms of their maxmlum log-likehhood, 
posterior model probablhtms, prediction errors, abdlty to predict volatdlty, 
and thmr ablhty to explain the observed excess kurtosls (a measure of non- 
Normahty). For the purposes of the comparison, the MCMC iterahon/ 
sample which produced the largest log-likehhood value was used to calculate 
the measures for the regime switching model. The regime switching measures 
were therefore based on a single reahsahon fl'om the joint parameter and 
regime densIty 

The maximum Iog-hkehhoods, both unconditmnal and condltmned on 
the first data point, are reported ii1 table 3 The standard hkehhood ratm test 
was used to assess the s~gmficance of the respectwe maxtmum Iog- 
hkehhoods. Where one model is completely nested w~thm another, twine 
the increase m the maximum log-hkelihood is asymptotically distributed as 
x~, where k is the number of addltmnal parameters fitted m the more general 
of the two models (equal to the number of parameter restrictions maposed by 
the null hypothesis). Simulation experiments confirmed the approprmteness 
of the asymptotm X~ dlsmbutmn for samples of the size considered. Thus the 
data suggests the AR(I) model Is sigmficantly more hkely than the Random 
model and both the Student t AR(1) and the GARCH-AR(I)  models are 
slgmficantly more hkely than the AR(I) model The introduction of the non- 
Normal error density (Student t) produced a substantml increase m the 
maximum likehhood with the addmon of only 4 parameters. The VAR 
models are not slgmficantly more hkely than the independent AR(1) model, 
suggesting spurious regresswe correlations between the series based on 
sample cross-correlatmns 

The usual asymptotic statistmal distribution theory fails to apply in the 
regime switching case, since the transmon probabdmes are not defined under 
the null hypothesis that the regime switching model is mapproprmte If 
standard dlstnbutmn theory did apply, the RSVAR(I,2) model would be 
overwhelmingly more hkely than tile independent AR(I) or VAR models. 
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Though not a statistical test, it is at least reassuring that there ,s a large 
Increase in the maximum Iog-likehhood after allowing for the larger number 
of  potential parameters The addition of  the second lag in the RSVAR(2,2) 
model produced only a modest increase in the max,mum log-likehhood. The 
addition of  a further regime (K = 3) proved problematic, due to the degree 
of mstabd,ty of the th,rd regime in iterations where P33 ~ 0. A third reg, me 
would appear to be superfluous gwen ~ts virtual unldent~fiabdlty 

The standard LR test assesses the slgmficance of the evidence against a 
nested null hypothesis, based on the maximum likelihood of model j ,  i.e. 
maximum over Aj of p(Y]Aj, Mj). An alternate, and arguably more 
sensible model select,on approach, which does not require the models to 
be nested, is to consider the ewdence m the observed data m favour of the 
alternatwe models. The probabihty of model j gwen the observed data is 
given by p(mjlY) oc p(Ylmj)  x p ( m j )  A prior, conv,ctlons regarding null 
hypotheses are reflected in the pNor probabihtles assigned to the 
alternative models, p(Mj), wh,ch are then mod.fied by the hkehhood of 
the observed data given the models, p(Y[Mj) MCMC estimation enables 
p(YIMj) = fp(VlAj, Mj)p(Aj[Mj)dAj to be readily estimated as the harmo- 
nic average of the hkehhood over the MCMC samples/iterations, e.g. refer 
to Kass & Raftery (1995, 4 3). The harmomc average estmaate was found 
to have stabilised after 1,000 samples or so in the present case 

The hkehhood of the data given mode l j  can be seen to be related to a 
hkehhood where the parameters are eliminated by mtegratton rather than 
maxtmtsatton. The logarithm of p(YIMj) ,s shown m table 3 for each of 
the models which could be estimated based on the MCMC est,matlon 
scheme described in the paper. The model probab,ht,es are also shown, 
assuming the alternative models considered were assumed equlhkely a 
pnon  The data overwhelmingly supports the RSVAR model over the AR 
and VAR models. Of the 4 models cons.dered, the probabd.ty that the 
data was generated by the AR(1) or VAR alternat,ves ~s virtually zero, 
while the probablhty that the data was generated by the RSVAR 
alternative is v,rtually 1. 

The average pred.ct,on or forecast errors for each model were assessed 
using the root-mean-square error, which for series t was defined as 

= V/~_q ~ e~, where e, is the residual rinse, o r  one-period-ahead prediction 

error at time t The rm~ errors for each series were combined into a single 
weighted rms error for each model for ease of  comparison. The weights used 
were proport.onal to the rec,procals of the corresponding AR(I) 

variances, i.e wrms error = v/W, × rinser Despite their high residual 

hkehhood, both the Student t AR(I)  and GARCH(1,1)-AR(I)  models 
produced forecasts no better than the smapler AR(I) model on average. 

To assess the explanatory informahon contained in the regime, the 
reg.me switching model residuals m each period were calculated con&tlonal 
on the reahsed regime m that period, i.e the (t(t,,) "~ N(0, f~(r,,)) were tested. 
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Allowing for the regime, the RSVAR model produced the smallest errors oil 
average 0t is noted that the RSVAR model does have the largest number of  
parameters). 
Two measures were used to assess the ability to predict volatility. The first 
measure used was the root-mean-square squared error, defined for series i as 

rmsse, = ~ / ~ _ q ~  (El 2 - era2) 2 where or, is the one-period-ahead predicted 

error s tandard deviation according to the model The rmsse measure directly 
compares the sample volatility with the volatility predicted by the model, 

since E(e~) = 4 While intu,t,ve, the ,msse measure is highly skewed, since 

2 ~Xi  2, and hence is susceptible to outhers. Tile rms squared errors were E t 

also combined into a single weighted rms squared error using the same 
weights as used for the wrms error. 

The second measure used was the root-mean-square normalised absolute 

error, d e f i n e d f o r s e r l e s i a s r m , s n a e ~ = ~ _ q ~ ( l e t l 2 / 3  7~2/3 ~ 2 -~ut j • Whde less 

lntumve than the prewous measure, the rmsnae should be more robust, since 
the devlatmns should be less skew and more Normal .  The measure was 
mouvated by thle approximately Normal transformation9 2 of  the chl-square 

density, (X~/u) 6 ~  N ( I -  ~ , ~ ) ,  so that ]Etl ~/3,-,o _73Ar{7 2~ t, t ~* ~,~, ~)' 
Allowing for the regime, the RSVAR model produced better predlct~ons 

of  vokmhty  than the other models on average Discrete regime switching 
would appear to be a better explanation of  condmonal  heteroscedastlcity 
than the commonly  used G A R C H  and A R C H  processes, which, despite 
their high log-hkehhood, generally impute too much persistency in the 
volauhty (see, for example, Hamdton  & Susmel (1994)). 

The excess kurtosls of  the residuals of  each series was calculated, and the 
average reported m table 3. Autoregresswe, VAR and G A R C H  models 
failed to explain the observed excess kurtosls The RSVAR model was able 
to successfully account  for the excess kurtosls m terms of  discrete regime 
switching m the variance, l e. conditional heteroscedast~clty The non- 
Normal  process exphcltly models excess kurtosis by assuming the residuals 
are drawn from a lep tokumc non-Normal  d~stnbutmn. The excess kurtosls 
of  a standardlsed Student t density, when fimte, is 6 / ( v -  4), where v is the 
degrees of  freedom parameter.  Since the fitted v values of  3 out of  the 4 series 
were less than 4, the kurtoses of  the fitted non-Normal  processes are in 
general not finite, which appears inconsistent with the observed residuals, 
which had an average excess kurtosls of  4.4. 
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TABLE 3 

MOOFI_ ( OMPA RISON 

GA R C H  
Student  t RSVAR 

Random A R ( I )  ( I , I )  V A R ( I )  V A R ( 2 )  
A R ( I )  (I ,2)  

- A R ( I )  

uncond max InL 1231 4 1258 9 [271 l [284 6 1326.5 

cond max lnL 1221 5 1249 0 1296 4 1287 3 1261 2 1315.5 

A l n  L over  A R ( I )  0 0  4 7 4  383  122 66.5 

s l g m f i c a n c e o f s t d  X 2 < 10 6 < 10 ~ 0 4 4  < 10 6 

In p(YIM) 1221 0 1253 6 1261 1 1296.7 

p(MIY) < 10 ~ < 10-I', < [0 t', 1.000 

u r m s  error I 48% I 40% I 41% I 41% I 39% I 36% 1.30% 

wrmse as % R a n d o m  100% 95 0 %  95 6% 95 6% 94 0% 92 0% 88.1% 

wrm~,~e as % R a n d o m  100% 99 5% 101 0 %  103 4 %  92 7% 93 5% 70.8% 

wrmwme a~ % R a n d o m  100% 89 6% 93 2% 84 7% 87 9% 84 I% 78.1% 

ave excess kurtosts  4 6 4 0 4 4 2 I 3 5 3 2 0.8 

5.  C O N C L U S I O N S  

A Bayesian Markov Chain Monte Carlo (MCMC) procedure was developed 
for estimating the joint parameter and regime density of Regime Switching 
Vector Autoregresslons (RSVAR). The mean parameter estimates were 
found to converge extremely rapidly, even when the initial parameter 
estimates were very poor and the order of the fitted process was incorrect. 
The MCMC procedure can therefore be expected to supply a good estimate 
of the mean parameter values within seconds, regardless of  the initial 
parameter estimates, even for vector processes (m contrast to maximum 
likelihood based approaches). 

The estimation procedure identified two clearly distinct regimes in 
quarterly Australian financial data. One regime was characterised by strong 
economic growth, stable inflation and interest rates, and relatively stable 
share price growth. The other regime was characterlsed by weak economic 
growth, volatile inflation and interest rates, and volatile and generally falhng 
share prices. The high volatility regime was found to be unstable, with an 
expected duration of only 6 months 

The unstable high volatility regime captured extreme events that might 
otherwise be termed outliers. Outhers have the potential to seriously distort 
the estimation of  process dynamics Regmae shifting can therefore be viewed 
as providing a robust data driven treatment of outliers in this case, which 
should enable more robust parameter estimates. 

Regression relationships are often not robust to outliers nor stable over 
tmae. Relatively few regressive cross-correlations appeared important m the 
dynamics once joint regime switching was allowed for, in contrast to the 
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large lagged cross-correlation terms observed when a standard Vector 
Autoregress~on was fitted to the data. If the feedback were as strong as 
indicated by the VAR model, the VAR model should have a significantly 
higher likehhood than an independent autoregresslve model (where there are 
no cross-correlatmn terms) and one ought to be able to make better 
predictions than models without the feedback. Neither of these features was 
observed empirically 

MCMC est~matmn enabled the calculation of posterior model prob- 
abdltles, i.e. the probabditles of the various models gwen the observed data. 
The data overwhelmingly supported the RSVA R model. The RSVAR model 
also produced the lowest average prediction errors and better pred~ctmns of 
volatihty on average Discrete regime switching would appear to be a better 
explanation of condtttonal heteroscedasttctty than the commonly used 
GARCH and ARCH processes. 

In conclusion, many financml time series processes appear subject to 
periodm structural changes in their dynamms. Regression relatmnships are 
often not robust to outliers nor stable over time, whdst the existence of 
changes in variance over time ~s well known Th~s paper presented an 
attempt to deal with such difficulties in financial time series, a Regime 
Switching Vector Autoregression, the parameters of which are subject to 
perlodm d~screte shifts The Regime Switching Vector Autoregression 
process was found to provide a particularly good description of an 
Austrahan quarterly financial data set. 
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APPENDIX 

The derivation of  the Bayesmn M C M C  estimation procedure  ~s described m 
this Appendix.  At tmles it will be more convenient  to consider the equivalent 
VAR(I )  form of  the RSVAR(q,K)  process, namely 

X, = ~(p,) + A(p,)(X,_, -/2(,,,)) + ~,(p,) I') [l-~(p,)] I"(p,)"(p,) ""(p,)l |L.  o,,, "'0m] /",-2/ 
o,,,) , , 3_ ,  r + 

= E ~ -T - Eft(p,) 0 and ~,(p,f,(p,) = ~(p,) Vt > q X, /2 and ~ are mq x 1 column 
vectors, while the A are mq × mq matrices 

The contr ibut ion of  the t-th data vector to the hkehhood condit ional  on 
the regime is 

I 

_m -I ~ e x ,  Y 1or ~ - J ~  I(xllPt, Y t - l ,A)  = (2rr) 2. f2(p,) - . .  e.l--~,~t(p,) (p,)gt(p,) f 
q 

--(h) / . 
'~t(/,,) = -v, - lqp,) - 2_., '"(p,)~,-'g-h - It.(/,,)) 

h=l 

m the case of  t > q, w h e r e Y t = ( x l ,  ,x,) .  
The  first q data  vectors can be taken together,  l(Xqlpq, A) c a n  be 

approximated  by exp lomng s ta t lonanty  within each regime (effectively 
ignoring regmae shifts prior  to time q), so that the c o n t n b u t m n  to the 
likelihood from the first q data  vectors can be approximated  by 

I 

I(Xqlpq,A)=(Zrc)-'"-~2" V(Q(k),A(~))-' : 

I _ T - ]  

The  within regime uncondi t ional  or s ta t ionary mq × mq variance-covarmnce 
matrix, V, could be determined from vecV = (I,,,_~q_~-A®A)-IvecO, as 
described by Ltitkepohl (1991, p21-22), vec is the column stacking operator ,  
such that if A = (al , . .  ,a,,) is an m x n matrix with m x 1 columns a,, then 
vecA Is the m n x l  column vector (aT,.  T T ,a, ,)  , and ® is the (right) 
kronecker  product ,  such that if A and B are two matrices, m × n and p x q 
respectively, then A ® B is the mp x nq matrix (a,/B) 
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Assuming within regime s ta t lonanty ,  

X q = f i + A ( X q _ l  - f i ) + ~ q  

=~+~,qg + A~q-I + AZ(Xq-9_ - ~) 
0.3 

: ~ +  ~ A~;,_~ 
j=O 

The unconditional mean is therefore EXq = ~(k), where p,j = k 
the process ~s stable within each regmae, 

w,,x~, = E(x~,- ~ ) (x , , -  ~)T 

: ~ A J ~ ( A J )  / 
j=0  

= v(a/k/, Air/) 
: V(/,-) 

Assuming 

Stabdlty requires that A J converge rapidly to zero as j ~ o¢ so that the 

partial surn ~ A J converges rapidly to (! - A) -I as n ~ cxz. A stable process 
j=0  

is also a s tat ionary process. 

In practice, to avoid mvers~on of  an mZq2× m2q 2 matrix, V could be 

approximated as a fin,te sum of  the form ~ + ~ AJ~(A J)T, and then an 
j= l  

approximation to V -~ obtained by reverting the approximation to V (an 

mq × mq matrix) 
The full likelihood conditional on the regmles is 

N 

L(vlp, •) =/(X~lp~, ~) lq  /(x,lp,, v,_,, ~), 
t=q+l  
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where Y = Y N  and p =- { p q , . ,  PN}. The exact or uncondmonal likehhood 
of A Is obtained by integrating over all possible regimes, i.e. 

L = L(YIA ) =/(Xq[A) • 
N 

r I  /(x, lY,_,, A). 
t=q+ I 

The exact or unconditional maximum hkehhood parameter esnmate Js g~ven 
by the value of A that maximlses L. 

Draws from the joint posterior distribution of  the regimes and the 
parameters given the data, p(p, AIY), can be simulated via the Gibbs Sampler 
and the Metropohs-Hastmgs algorithm. The algorithm wdl revolve the 
repeated generation of  vanates from their full condmonal densities as 
follows. 

p(C+l) ~-- #(0, A(~), f~(~), p(c) 
tt(,+U ~ p(~+l), A(0, 12(c) p(0 

A(C+l) *--- p(C+l),/.t(c+l), f~(c) p(~) 
Q(c+I) ~ p(c+l),/./(c+l) A(C+l) p(0 

p(~+l) *-- p(C+l),/.t(c+l), A(~+l), ~(tA-l). 

In each case, V wdl be a function of the A and the f~ on the 
right hand side Under mdd regularity conditions, the sequence 

{p(e+l),A(c+')} =--{p(C+'),#(~+'),A('+'),f~(~+'),P(~+')} will form a Markov 

Chain whose hmiting distribution will be p(p, A]Y). 

Generating the Regimes 

pC,+J)~__pJ0 A(d,Q(c) p(c)" Carter & Kohn (1994) suggested that it is 
generally much more efficient to generate the regime variables simulta- 
neously from the joint d~stributlon of the Pt rather than one-at-a-time 
from the full conditional densities Generating the regimes one-at-a-time 
can lead to httle movement at each ~terahon due to condmonmg on the 
nelghbouring regimes from the previous iteration. Their empirical results 
are supported theoreucally by the results of  Lm, Wong & Kong (1994). 
Following Carter & Kohn (1994), the regimes can be generated jointly 
from 

N - I  

p(plY, ix) = P(PNIY, P(P, IP,+,, Y,, A). 
t = q  
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Eshmatlon of  the regimes at each time t ~s based on the probabil i ty filters of  
Hamil ton (1989, 1990) and Knn (1994). The first step in calculating the 
smoothed regime probabil i ty  eshmates is to calculate the joint  regime filter 
probabilit ies and conditional hkehhoods,  which can be determined 
recursxvely. The filter probabi lmes,  P(PNIY, A), can be calculated from 

I (Xq, pqlA) = I (Xqlpq, A ) . p (pql A) 
K 

pq= I 

p(pqlXq, A) = / ( X q ,  pqlA)/z(x~l~X). 

For  t = q +  1,..,N, 

/(x,, p,, IY,-,, = l(x,ip,, Yt-, ,  A)-p(p,[p,_,) .  P(Pt-I IY,-t, A) 
K K 

/(x, IY,-, ,A) = ~ ~ I(×,,p,,p,_tlY,_,,A ) 
p~=l p~ i=1 

P(Pl, P,-, IYt, A) = l(xr, Pt, Pt-, IY,-,, A)//(xIIY,- , ,  A) 
K 

p(PtlY,,A) = ~ p(p,,pt_,lY,,A) 
Pt I = l  

V p t : P t - I  E {1, ,K} 

Note  the filter probabilit ies P(Pt]Yt, A) are each a K-tuple of  probabilities, 
representing P(Pt = i[Yt, A) for i = 1,..,K Once the filter probabihhes ,  
p(pN[Y,A), have been calculated, a sample can easily be generated from 
p(pN]Y, A), since it is a discrete density. 

The above ~terauons requtre the evaluation of  the contr ibut ions to the 
condit ional  hkehhood,  /(xl[pl, Yt-i ,  A), which will reqmre evaluation of  the 
m × m determinants  of  the K f2 -I Using the Choleskl decomposi t ion,  
I -II = ILIILYl = 

To imtiahse the previous i terauons, the K p(pq[A) will be reqmred. 
They can be derived as the hmlting distribution of  the regime Markov  
chain. Define the K x 1 column vector rr ~_ {p(p, = I]A), t = 1,. ,K},  then 
rr = PTr. The limiting distribution ~" can be eshmated by iterating on 
rc ('+l) = Pr~(") until convergence to the desired level o f  accuracy The 
p(pq[A) a r e  given as the elements of  rr. Observe that P is a stochastic 
matrix since all column sums equal one and all elements are non-negative, 
hence 1 is an eigenvalue of  P, and all elgenvalues of  P have magni tude no 
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greater than one. A necessary and sufficient condition for the existence of 
a limiting d|stnbution ~s that P has a distinct non-repeated unit 
elgenvalue. 

Thus, drawing on Carter & Kohn (1994), to generate a sample from the 
joint distribution of p we first generate PN from p(PNIY,,~). Then for 
t = N - 1 to q, calculate p(PtlP,+l, Yt, A) using the most recently generated 
value of Pt+l and the previously calculated filter probabd|tles, as follows 

p(p,+l,p, lY,,A) =p(p,+l[p,,A) p(p,[Yt, A) f o r p r =  I, ,K 
h 

P(P,+I ]Y,, A) = Z P(Pt+I, p, lY,, A) 
p,--I 

P(Pt+I'P'IY"A) for p ,= 1, ,K 
P(P,[P,+I, Y,, A) = P(P,+I IY,, A) 

Once the probabdlties, p(p~lpt+l, Yt, A), have been calculated, pt can easily be 
generated from P(P~IP~+I, Yt, A), since ~t is a discrete density For the regime 
switching process to be defined, each of the K regimes needs to be visited 

Generating the Parameters 

The conditional densities of  the parameters are given by 

p(Ajlp, A~v,Y ) cx L(Ytp, A ) p(pl A) .p(Aj), 

,.e. p(Oj[p.@#j,P,Y) ~ L(YIp, A) p(®j) 
N 

and P(PIP, O, Y) ~ p(pqlP) I-I P(P, lP,-,, P)'  P(P) 
t : q + l  

Generating the Level Parameters 

it(c+l) ~ p(C+l),A(C),f~(c),P('). In this section, ~(,) represents one of the 
possible discrete values of/zip,), pl E {1, ..., K}. Independent uniform priors 
can be used for the ll,(r), conveying no prior reformation The prior would 
therefore be uniform where the identlfiablhty restrictions 0f  any) are met, 
and zero everywhere else The level parameter vectors can be generated 
jointly from 

P(/~(I), , P.(K)IP, AT',,, Y) ~ L(YIP, A) × P(l~(,),., IL(K)), 

which Is the product of K independent multivariate Normal densities (and 
the identlfiabdlty prior), since the contribution at each time t involves only 
one of  the/L(r). The exponent m the above expression is 
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N 

- > ,  - (,~,),,,-3 ~ ~ - '  

/ = q+ l  

T - 1  ~ 

] Z  " (/'1 
- -~  Xt-- A(p,)Xt-h--  I . , - -  A ) #(r,,) 

t=q+ l  

f U  ] (/') (p,) x t -  A ) x , - h -  Ira-  A(p,) P'(r,,) 
\ h= I 

T - I  

- -~  Pb",)-  I , , , -  A ) 
t = q +  1 = 

wh~e w-',~,, : (,,,, _ ,,: ~ < , ) ,  

- I  

x t -  A )Xt_ h 

T ) 

r ] ( q A Ihl 

h =  I ( p' ) ; 

q (hi -z ,i ~ 1 
_ _ ; )  

- ½  lL(k) nk 1 h=t =" h=l 
t>q  

1 1,,, - A(k ) x,  -- A(klX,_/, ( , , k -  l ) w ~ l  ~(k/ ,,~ - l  , , = ,  = .  , , = ,  

t>q  

1 ' " ' - ~ A ( , )  Z x,  - ~ A ( , , X t _ h ;  
~ #(') - 7 h=l r,,-, h=l 

( /  " )) _ _  _ v "  _(h) . 1 I,,, -- A xt ~ A(,) X,-h nrW~l t"(~) n, = = J,=l 

) 

I,~7"V-I ,~ 
-- ~Sq --(k)~q 

S u p p o s e  pq = k and  that  n, o f  the  Pt = r, then  the  e x p o n e n t  c an  be 
rewri t ten  as 
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Ignoring the first term in V - i ,  which is a function of  It(k), the above 
expression is m the form of  K independent vector Normal  densities in the P(r)- 

• , inK) In, A¢,,, Y) 
1 

-I  ~ I~T -1 ~ o~ V(k ) e x p { - ~ , ,  V(k)~q} 

× N ~ I , , , -~- '~A 
h =  I 

x H N 1 _ ~ A((~ I 
rCk Z |tit h= I / 

Xp(]/,(l),  , I t (K)) ,  

( q  , ) 
t>q 
-1 q ) 

where N(.,.) is the multwariate  or vector Normal  density. The K-I It(r), 
r -¢ k, can therefore be independently generated from the above multivariate 
Normal  densities. Asymptotically,  the means of  the above densities, for each 
regime, are the average o f  the data vectors in each regime, as expected. 

A vanate  from the multwaria te  or vector Normal  density, x ,--, (#, ~) ,  can 
be generated as x = # + Lz, where z is a vector o f  i i d. N(0,1) variates, and 
L Is a lower trianflular matrix obtained from the Choleski decomposi t ion of  
f2, such that L L - - =  ~. 

The terms in P,(k) are not quite vector Normal ,  since V -~ Is also a function 
of  lL(k). A Metropol is-Hast ings  step can be used to generate ~(k)- First, a 
candidate /-L(k) IS generated, 

t-L(*) ~(k)  N ~ 1 , , -  h= ~1 AI~))" = x t -  I,= ~1 ~(k)X/-' j , ~ z - r  W(k) , 
t>q 

• (c+i) ~(*) with probabil i ty and accepted, i e. ~(,) = t (k)' 

[ (k) I f i ; r fV-~(*)  

(c+l) ~(c) Here, V~)) (*) otherwise the prewous  value is retained, i e P(k) = t(k) . iS a 

function of  A (~) and o-I(c) while v -I(~) is a function ~ ' ' ( " - I )  and f~l)(~-l/ "'(k) °~(k) ' --(k) u~  ~(k)  

Generat ion of  the K /-0) would continue until the prior condit ions 

represented by p(/.L(U, .., #(K) ) are satisfied O.e. by direct acceptance/  

rejection). 
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G e n e r a t i n g  t h e  R e g r e s s i v e  C o r r e l a t i o n  P a r a m e t e r s  

A(C+l) ~ -- p(c+l),t.t(c+l),~(c),P(*). In this sectmn, A(,) represents one of  the 
possible &screte values of  A(/,,). p~ E {1, , K}. The regressive correlation 
parameter  matrices can be generated jointly from 

P(A0) ,  

Recall that 

• ., A(K)IP, A#A, Y) oc L(YIp, A). p(A(i), , A(K)). 

A I) A (2) A(q) (/,,) (p,) (p,) 
lm 0,,, 0,,, 

A(p,) = 0m I,. " • • 0m , 

0,,, 0,,, • • • 0,,, 

so that only the first m rows need to be generate0. Define the m × q~q matrix 
operator  '0 _= (I,H, 0,,,, 0,,,, . . ,  0,,,), so that .0A = (A(I), A (2), . . ,  A(q)}. It Is the 
K ~A(r ) that need to be generated. k / 

A suitable prior for each of  the ~gA(,) is a matrix Normal  density in 

the regmn of  stability of  the VAR process within each regime, and 

zero everywhere else Thus ~t is assumed a priori that the process ~s 

stable m each regm~e. The prior for '0A(r) will be represented by 

p09A(r)) cx N(B(,), l/;J(r)lm2,, ) X g(A(r)), where the first term IS a matr, x 

Normal  denstty, B(,) = BII ), B (2), , B (q) is the m x mq prior esumate of  

zgA(r),l,,,2qlsanm2q× m2! ,(ct)entl[y mat~i)x) and the last term ,s uniform m the 
stable region of  A(,) and zero everywhere else. In the absence of  strong prior 

evidence, each of  the B{:? ,s likely to be zero everywhere except perhaps 

instances on the dmgonal  where serial correlation is clearly present, e.g. 

inflation rate series. The prior variance of  each element of  ~A(r) is 1/U(r), 

where u(,) can be interpreted as the equivalent number  of  prior observatmns m 

regime r. 
Stability reqmres that A a converge rapidly to zero as ./ + oo, so 

that the sequence {AJ,./ = 0, 1,2, ..} is absolutely summable,  converging 

to (! - A) -~, since X, = /_t + A(X,_, - tl.) + ~, = (1 - A)t~ + AX,_l + ,~, 
./ 

= (1 + A + A 2 + + A0(!  - A)# + AJ+IX,_j_~ + ~ A'{,_, This is equiva- 
t=0 

lent to ms,sting that all mgenvalues of  A have modulus  less than one The 
latter condit ion holds ~.f and only if the deter~mnant of  (I - zA) is nonzero 
for Iz I < 1, ,.e. lff de t ( !  - zA ( ' ) -  .. - zqA (~)) # 0 on the interval Izl < 1. 
For  pra-ctlcal lmplemefltatmn it is wise to mslst that det( l  - zA) exceed-s a 
fixed positive constant  (depending on the &mensmn of  the problem) for 
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z = ±l_~notmg that it equals 1 for z = 0), to control the occurrence of  
( I -  A) becoming large, which can lead to the level estimates visiting 
unhkely values (since the level parameters are not defined when ( I -  A) is 
not lnvertible). 

Supposing pq = k ,  consider regimes Pr = r (#  k), and define the m x n r 

matrix of regime r residual vectors, ¢(~) _-- ({~ Pr = r), and matrices o fdewatmn 
vectors, 27(,) ~ ((X,-i - fi(,)) " p, = r) and X(,) =- ((X, - /2(,)) : Pt = r) Not- 
mg that -~,  = A(,)(X,_, - £(r)) -- (X, -/2(,)) from the VAR(1) form of the 
process, consider the following (dropping the references to regime r, for 
brevity). 

_¢27T = ~9A;~7 _ ~ g x ~ r  

_ ~ r  = [ ' 0 A -  '0(x2T) (2.~7")-'] (.~.,~ r )  

--vecff= (;~T®Im)[vec~A--vec{' tg(xxT)(~27T)-I}] 

_- (27r  ® t.,)[recta - v e c C ] ,  

where C = ' 0 (X2r ) (22 r )  -I is an m x m q  sample regression mamx .  Note 

that v e c ( A B ) =  ( B r ® l ) v e c ( A ) .  Li.itkepohl (1991, Appendix A l l-A 12) 

prowdes a useful summary  of  the p ropemes  of  the kronecker  product  and 

the vec and trace operators.  
The contr ibution at each time t revolves only one of  the A(,). The 

exponent  of  the hkehhood term can be expressed as 

N 
- -  - ~, f2(:,,)~, 2 ,1- (:,,,).,I -,-q+l 

---- --2%qlCTV--(k)qql~ __ ~vec~(&)l T (l,,~_ I ® f/~l))vecqk)-½ ~ vec%r)(I,,r ® ~ , { )  veccq(,) 
rCk 

where ¢(k)-=(,~, p , = k ,  t > q )  is the m x ( n k - - I )  m a m x  of  regime k 
residual vectors, excluding the first (t = q). The exponent,  including the 
prior, can therefore be expressed as 

,~rV- ,  ~ ,V. [vec0A(r )_vecC( , ) ] r (  - ~r 
t 

- ~ _  [vec,gA(,) -vecB(r)] ru(,)l,,,_q [vecOA(,)-vecB(r)] ,  
r 

_ _ 5 , ,  I -  l i r v - I  (k)~,, _ 1Z.... , i  IV" [vec0A(,)-  o'(~)] 7" ~(,)-I [vec0A(, ) --cq,)] , 
I 
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where X(k) and C(~) are defined to exclude the first vector (t = q), and 

- 5T tIlol = ((X(,),~..(r)) @~-~(tl) -4"l';(r)|m2 q 

(Y0) ~- ~(r) [ ( (*( ' )*~r))@ ~;{)vecC0)-t-  ~(,)vecB(r,] 

Note that the term mvolwng V -~ ~s also a function of  A(k). Excluding the 
term m V -~, the previous expression ~s m the form of  independent  m a m x  
Normal  densmes m the A(,) 

. ' .p(A(,), ,A(K)Ip, A#A,Y) OC 

X H N(c.,(,), ~(r)) x g(A(r)). 
r 

1 
V-I 2 I-T - I -  

(k)  exl){--5~q V(/,)~q} 

The means of  the above densiues for the A(r ) are weighted averages of  
the sample regression mamces  of  the data  vectors within each regmae and 
the prior estimates of  the A(,), as expected. The pNor variance prowdes  a 
floor under the reverse of  the variance matrix, and hence hnms 
the variance of  the A(,) 

Direct acceptance/rejecUon can be used to independently generate the 
regression mamces .  A(,), r #  pq Can&da te  A(, ) are generated from the 
m a m x  Normal  densmes until they fall w~thm the stable region. The 
acceptance rate can however fall to very low levels as the dominan t  
e~genvalue of  A approaches  I and as the dmaens~on of  A increases, causing 
the procedure  to get " s tuck"  m the A dimension Th~s ~s an area of  current  
research. A possible approach  would be to use a Met ropohs-Has tmgs  step 
with a smtably well constructed candidate  density to enforce the stability 
constraint.  

GeneraUon from a matrix Normal  density is the same as from a vector 
Normal  density, since A ,.o N(O,  2)  =-- vecA ~ N(vecO,  ~2). If A is m x m, 
then O ~s also m x m while ~2 Is m 2 x m 2, and vecA and vecO are m 2 x 1. 

The terms m A(k) are not  qmte matrix Normal ,  since V -I Is also a 

function of A(k ) A Metropolis-Hastings step can be used to generate A(a) 

using a(*) "(k) ~ N ( o ( k ) , ~ ( a ) )  as the candidate  generat ing density. If the 

A (c+]) = A(*) with probab]hty  can&date  is stable, ~t is accepted, ~ e. (a.) "(k), 

A(C+l) (~) -1(.) otherwise the previous value ~s retained, ~.e. = A(k ~. Here, V,., ~s a 

funcnon of  A(*) and o -I(~) while v -I(c) (k) . ~-j *'(~) "'(k) , --(k) Is a function oi" A!*k! and ~ , . ( c - , )  
L ") t ") 
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Generating the Variance and Covariance Parameters 

f2(c+J) ~ p(,+l)/z(:+l), ACc+l) p(c) In this section, ~(,) represents one of the 
possible discrete values of f~(p,), tot E { ] ,  .., K } .  It is more convenient to 
generate the inverse of the varlance-covanance matrices (i.e. to generate the 
precision matrices), rather than the f2Cr) directly. 

Suitable priors for the m × m precision matrices would be Wishart 
densities w~th parameters 71(r) and F- ' ,  where F is &agonal with i-th &agonal 
element equal to 'q(r)S, 2, where s, 2 is the prior error variance for the i-th series 
The rt(r ) can be interpreted as the equivalent number of prior observations m 
each regime. The generatton of the precnsion matrices presents no stability 
problems, so that the prior need only be d~ffuse, hence ~(r) ~S hkely to be 
smaller than ucr). The complete prior would therefore be of the form 

K 
P(f2(]l), --, f2(-xl)) = 1-[ W,,,(r/(r), F ~ I ) ×  h(f2(,), ",tiCK)), where h(fi(i),.., f2(K)) 

r= I 
captures the ~dennfiabfl~ty prior restrictions (if any). An example of an 
.dent~fiabflity restricnon might be that the variance of the second series 
increases w~th the regime, Le cv22(i) < .. < W22(K), where w,,(r) ~s the t-th 

~/', AS before, define ~(r) ~ ( ~ , ' P t - ~  r ) , r  ~ pq and 
dmgonal element of )k = pq (noting that the ~t are funct,ons of the most if(k) ~ (~t : Dt = k, t > 
recently generated A(r)). 

The precision matrices can be generated jointly from 

I . I 

× exp{_~vecqk) (1,,,_1 ® I T 

× I I  ft~{ 'exp{-½vecq-(:)(l,,,®f~(-~J)vec~(,)} × p(fi~l,..,f2~-Kt)) 
r-Ok 

I 'q ,+q( l , )  m 2 

O( - I  2 I - T  - I -  2 V(k) exp{--2~qV(kl~q} x ~ I  exp{--½tr((g(k)~k)+F(k) f ~ l ) }  
Ptr + I I ( r  ) - n f -  I 

x ~ f~{] 2 exp{-½tr((¢(r)¢(~)--[-f(r))~-~rl))x h(~-~(l,,..,~-~(K ) 

I 
(2( V ~ I  ~ - e x p { - ~ q  V(k)~q} x W m I1 k--~.- ' / , (k)-I  , ( ~ (k )~ (k ) l - f ( k ) )  - I  

( ( )-') x H W m  n, +~l(r), q(r)q(r) +F(r) × h(~(~),",fl(K))" 
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Therefore the precision mamces,  other than f ~ ,  can be generated 
independently from Wishart densities. ~ l  / can'"be generated via a 
Metropohs-Hastlngs step with the Wishar tcand lda te  generating density 

f~l(*)"W,,, nk + 77(k) - 1 , ~(~)~,~ + F(k) - ]  (-) ( , ( c + , )  !(,) () ) 0 '  The cand'date w°uld be 

accepted, i.e ~ )  = f2~. / , with probability 

n-dn IV(k) lex-f '7T('-l(*)--v~.D(c))~q)l 
. , , 

o -l(~+j) = f2;I) (~) Here, otherwise the previous value would be retained, i e..~(~) 
V-I(,) (k) is a function of f2~l) (*) and ,~(/~)A(~:+I), while V(kl) (e) IS a f u n c t i o n ]  of ~.-~l)(c) 

and A (e) (k)' 
A vanate from the Wlshart density, W ~ W,,,Oh E), can be generated as 

W = Q Q T  where Q = LU, L is lower trmngular Dven by the Choleski 
decomposition E = LL T, and U is upper trmngular Dven by the Bartlett 
decomposition, u,/ = 0 fort  > j ,  u~ ~ X~ (t =J) and u,: ,~, N(O, l) fort  < j  (so 
that U ' U  ~ Wm('q, l,,,)) 

Generating the Transition Probabilities 

p(c+l) ~-- p(~+l)iL(c+l) A(e+l)f2(,+l). The transition probability matrix can be 
generated from 

N 

P(PIP, O, Y) ~ p(p,,IP)" I I  PO, IP,-,, P)' P(P). 
/=q+l  

Suppose that p represents ny transitions from regime i to reDmej.  Define the 
prior for thep,: to be Beta(m U + l,m,, + 1), where m U has the interpretation 
as the cqulvalent number of prior transmons, then 

P(PIP, O, Y) oc p(pqlP) × llP,J × H 1 - ~ p , j  
t#J t=l tCJ 

t ~  1 \ I#J ] t#J 

In the above expression, p(pql P) ~s a function of each of the p,j. Draws from 
the above joint density can be generated using a Metropohs-Hastlngs step, 
using independent Beta densities as the candidate generating densities. 
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-(*) Beta (n , /+  m,j + 1, n.  + m,, + 1) for Generate candidate P, P(*), from p,: 
~-. (.) _(.) 

t C j .  pl~ ) = 1 - 2--.Pv . unttl p .  > 0. whtch is then accepted, t e. p(,+l) set 

'#: probabthty ~'c /,( } to P(*). with trim [.~,i',/ ~',', 1 , where equal 

7 r / q - - - P (  pqlP ) (i 2 

otherwtse the previous value ts retained, t e set P(~+~)= P(:) Recall that 
p(pq lP)  ts given by iteratmg on P 

The acceptance rate ts high for stable regmaes where the Pu are small. The 
acceptance rate can become very low when a p.  becomes small, smce then 
p.  = I - F.,py < I I(l  - P u ) ,  and hence thetr ratto can become very small 
when raised to the power n.  + m . .  However tf a p .  ts small, perhaps the 
appropriateness of  modelhng the correspondmg regtme at all should be 
questtoned 
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