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ABSTRACT

Financial tume series data are typically found to possess leptokurtic
frequency distributions, tume varying volatilities, outliers and correlation
structures inconsistent with linear generating processes, nonlinear depen-
dence, and dependencies betwcen series that are not stable over time. Regime
Switching Vector Autoregressions are of interest because they are capable of
explaining the observed features of the data, can capture a variety of
interactions between series, appear intuitively reasonable, are vector
processes, and are now tractable.

This paper considers a vector autoregression subject to periodic
structural changes The parameters of a vector autoregression are modelled
as the outcome of an unobserved discrete Markov process with unknown
transition probabilities. The unobserved regimes, one for each time point,
together with the regime transition probabilities, arc determined 1n addition
to the vector autoregression parameters within each regime

A Bayesian Markov Chain Monte Carlo estimation procedure is
developed which efficiently generates the posterior joint density of the
parameters and the regimes The complete likelithood surface 1s generated at
the same time, cnabling esumation of posterior model probabilities for use 1n
non-nested model selection. The procedure can readily be extended to
produce joint prediction densities for the variables, incorporating both
paramecter and model uncertainty.

Results using simulated and real data are provided A clear separation of
the variance between a stable and an unstable regime was obscrved. Ignoring
regime shifts 1s very likely to produce misleading volatihty estimates and 1s
unlikely to be robust to outhers. A comparison with commonly used models
suggests that Regime Switching Vector Autoregressions provide a particu-
larly good description of the observed data
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| INTRODUCTION

An mmportant feature of financial data 1s the presence of short periods of
instability characterised by large magnitude changes Such extreme values
are not consistent with common linear time series processes in either their
magnttude or frequency of occurrence, so that they are often referred to as
data “outliers”, and often effectively ignored.

The chances that the observed “outliers™ were generated from linear models
1s overwhelmingly small, e.g. consider the quarterly and monthly Austrahian
share price return series over the period 1960-96. The largest magnitude outlier
in each case corresponds to the October 1987 sharemarket crash The chances
of observing a return as extreme as observed in the samples from an 11.d.
Normal generating process 1s less than I1-in-a-million for quarterly data, and
indistingwishable from zero (5 x 10 2°) for monthly data Similarly, the
quarterly rate of change 1 bond yields over the same period produced twice as
many “outliers” (restduals in excess of 2 standard dewviations) as would be
expected from the fitted AR(1) data generating process.

Stock & Watson (1996) examined the stability and predictive abihity of 8
univariate models for each of 76 monthly U S times series, and 8 bivanate
models for each of 5,700 bivariate relationships. They found evidence of
substantial instability in a significant proportion of the univariate and
bivariate autoregressive models considered

Conditional heteroscedasticity, or changes in the level of volatility, has
been found in financial series by numerous researchers, both actuarial and
from the wider financial and econometric fields. Examples of the former
inciude Praetz (1969), Becker (1991), Harnis (1995b, 1996) and Frees ¢t al
(1996). Examples of the latter include McNees (1979). Engle (1982), Akgiray
(1989), Hamilton & Susmel (1994), Hamilton & Lin (1996) and Gray (1996).

This paper presents an attempt to deal with the observed difficuities in
financial time series, a Regime Switching Vector Autoregression (RSVAR),
the parameters of which are subject to periodic discrete changes. The process
may have quite different characteristics 1n different regimes. A tractable
mathematical model of structural changes and discrete market regimes 1s the
univariate Markov regime switching autoregressive process introduced by
Hamilton (1989), and subsequently considered by Albert & Chib (1993) and
Harris (1996).

Given that financial series appear interdependent, both i terms of their
levels and their volatilities, e g Harns (1994, 1995a, 1995b. 1995¢) and
Hamilton & Lin (1996), a vector joint rcgime switching process would seem
to be an attractive descriptton of the data

Hamilton (1990, p40) observed that the usual numerical maximisation of
regime switching likelihood functions s subject to computational difficulties
assoctated with the often dl-behaved likelhhood surface (multiple local
maxima, essential singularities, and local increases as boundary conditions
are approached). He suggested a numerically robust Expectation-Maximisa-
tion (EM) maximum hkelihood algorithm to overcome the numerical
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problems The author has performed convergence comparisons of EM and
Markov Chain Monte Carlo (MCMC) estimation procedures for regime
switching processes, which demonstrate much faster convergence of the
MCMC estimation, particularly for larger data sets.

The present paper extends regime switching to vector processes and
develops a Bayesian Markov Chain Monte Carlo estimation procedure that
1s more informative, efficient, and flexible than a maximum likclihood based
approach The estimation procedure estimates regimes at each time point,
regime transition probabilitics, and vector process paramcters within each
regime. In addition 1t 1s numerically efficient, ensures stabtlity of the data
generating process within each regime, 1s able to assess the joint significance
of the large number of potential parameters, 1s numerically stable. produces
robust parameter estimates, and enables the estimation of posterior model
probabihties for use in non-nested model selection

The RSVAR process is described 1n section 2 Markov Chain Monte
Carlo methods 1n the form of the Gibbs sampler and Metropolis-Hastings
algorithm are introduced in section 3. Model fitting results are presented in
section 4, while concluding remarks are made n section 5 The derivation of
the Bayesian MCMC estimation procedure 1s contained in the Appendix.

2. THE MODEL

Vector regime switching processes are characterised by multiple discrete
regimes, where each regime has different dynamics and 1s characterised by a
different set of parameters They are subject to probabilistic joint discrete
shifts in the parameters of the vector process, so that a regime shift may alter
the dynamucs of all the variables at the same time Within each regime the
vector process 1s assumed stable a priory, and is hence linear stationary The
effect of the discrete regime shifting 1s to make the total process nonlinear
stationary The task, based on the observed data, 15 to make probabilistic
inferences about when transitions between the various regimes occurred, the
parameters of the vector process characterising the different regimes, and the
regime transition probabulities.

Dcfine p, to be an unobserved discrete-valued indicator variable, such
that at any time ¢ the process will be 1 regime p, € {I, ,K} Definc the
transition  probabilities, p, = p(p; = jlp;-1 = i) with 3 p, =1 Vi, and
P" = {p,}(K x K) J

Consider the following VAR(¢) ttime senies process with K discrete
regimes, where each regime is characterised by a different set of parameters,

q
o ) (o
Xo =)+ Y AN (Xieon = 1) + Epys
1
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Eipy ~ N(0,9,)), E&,) =0 and Ef,(,,,)flfm =, V1> ¢q. The vanables

x, s and € are mx1 column vectors, while the A"} and the Q are mxm
matrices. For convenience the above regime switching VAR(g) process will
be denoted an RSVAR(¢g,K) process.

The total parameter set to be estimated 1s A = {,u([), k) Ay Ak
Qy, -, Qxy, P}, which can be partitioned as A = {©, P}. To ensure that the
process is 1dentifiable, it will usually be necessary to define the regimes by
insisting upon prior restrictions on the parameters, such as ordering of the
variances of at least one of the variables (components of the x,). If this 1s not
done, 1t 1s possible that the regime associated with essentially the same set of
data points could be labelled differently in different iterations of the
estimation procedure

3. MARKOV CHAIN MONTE CARLO SAMPLING METHODS

Draws from the joint posterior distribution of the regimes and the
parameters, given the sample data, can be simulated using Markov Chain
Monte Carlo methods, such as the Gibbs Sampler and Metropolis-Hastings
algorithm. The resulting simulated sample from the parameter space can be
used to make inferences about the distribution of the process parameters and
regimes. Chib & Greenberg (1995) provide a useful and readable description
of MCMC methods

Posterior simulators are particularly attractive in the case of complicated
processes which are impossible or impractical to estimate using maximum
likelihood or other methods Advantage can often be taken of structure
within a process to decompose the inference problem into manageable
components. In the case of Regime Switching VAR, the process 1s non-
Normal and path dependent. however, conditional on the regime, the
process 1s a regular VAR process

Markov Chain theory would usually start with a transition kernel
density, x(x,»), which describes how the Markov Chain moves between
states In the current application, the state space 1s the joint parameter and
regime space of the RSVAR process, {p, A}, and the Markov Chain s the
sequence of joint parameter and regime estimates, {p(f),/\(‘)}

Since the process must end up somewhere at each transition,
J n(x.v)dy =1 The probability of the process being n state v after n
transitions, given that it was imtially in state x, 1s given by
kn(x,¥) = [Kao1 (X, 2)s(z, ¥)d= A limiting or invanant distribution, 7( ), 1s
said to exist whenever #,(x, ) — 7(y) as n — oc. It follows therefore that
m(y) = [w(x)s(x, y)dx

A major concern of Markov Chain theory 1s to determine conditions
under which there exists an invariant distribution, and conditions under
which 1terations of the transition kernel converge to the invariant
distribution MCMC samphing methods look at the theory from a different
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perspective. The invariant distnibution is the target distribution from which
we wish to sample, generally a Bayesian posterior distribution. The
transition kernel 1s unknown.

3.1 The Gibbs Sampler

Starting from an arbitrary point, the Gibbs Sampler generates samples from
a joint density «( ) via a sequence of random draws or samples from full
conditional densities, as follows

vi — m(nilx2, - xm)
Yy = W(yll)’:<pv\':>/)

Y & 7r(}’m|)’l ) ~-a)’m—l)-

The above completes a transition from x to y in the state space. The
sequence forms a realisation of a Markov Chain which converges in
distribution to a random sample from the target joint distribution =(-)

The Gibbs sampler will often be useful where a complicated process can
be built up from components with standard conditional distnibutions. The
target joint regime and parameter distribution of the RSVAR process is too
complicated to sample directly. The structure of the RSVAR process is
however such that draws from the full conditional densities can be made
tractable, since essentially standard densities arise for the VAR parameters
once one conditions on the sequence of regimes

3.2 The Metropolis-Hastings Algorithm

Suppose the target density 7( ) 1s unknown, but that a density g(,-) exists,
[ a(x,y)dy = 1, from which candidate values of y can be generated for given
x, to be accepted or rejected. The candidate generating density, g(x,v), 1s a
first approximation to the unknown target density The candidate generating
density needs to be modified to ensure convergence to the desired target
density This is done by introducing a move probability, a(x,v) < 1. If a
move 1s not made, with probability 1 — «(x, y), then the process remains at x
and again returns a vatue of x as a value from the target distribution The
move probability 1s given by

< m(y) q(ra) X .
olx.y) = {mm{m i 1} r) glen) >0

otherwise

An important feature of the algorithm 1s that the calculation of «(x, y) only
requires knowledge of the target density w( ) up to proportionality (which 1n
the case of a Bayesian posterior 1s given by the product of the likelihood and
the prior), since 7(-) only appears as a ratio.
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A particularly useful application of the Metropolis-Hastings algorithm
1s where an intractable density arises within a Gibbs Sampler as the
product of a standard density and another density, e.g. m(x) o< ¥(x} @(x),
where ¢(x) 1s a standard density that can be sampled Then ¢(x, y) = ¢(y)
can be used to generdte candidate y, which 1s accepted with probability
a(x,y) = min{y(y)/¥(x), 1}. The Metropohs-Hastings algorithm will be
superior to direct acceptance/rejectlon methods since the move probability
will be higher than ¢(-), the acceptance probability under the acceptance/
rejection method, particularly where (:) 1s small.

3.3 Outline of the Estimation Procedure

Samples from the joint posterior distribution of the regimes and the
parameters given the data, p(p, A\|Y), can be simulated via the Gibbs Sampler
and the Metropolis-Hastings algorithm. The algorithm will involve the
repeated generation of variates from therr full conditional densities as
follows:

p(t+1) — H(t)’A(t‘)’Q(C)’p(t)

plHD  pler) Al o) plo)
A(r+l) — p(t+l)’lL (c+1) Q P
Q(c+l p(('+l) (z'+l)’ (F—H).P(C)

)

P(c+|) — /)((-H),,LL c—+—l),A(€+l),Q(c+l)

In each case, V will be a function of the A and the @ on the right
hand side  Under mild regularity conditions, the sequence

{prD A} = ¢ pler)yleth) AlD QD plet Lyl form a Markov
Chain whose lmntmg distribution will be p(p, A|Y).

4. RESULTS
4.1 Validation Against Simulated Data

The estimation procedure was tested against a number of simulated data
sets The mean parameter estimates were found to converge extremely
rapidly, even when the initial parameter estimates were very poor and the
order of the fitted process was incorrect The MCMC procedure can
therefore be expected to supply a good estimate of the mean parameter
values within seconds, regardless of the mitial parameter estimates, even for
vector processes. This 1s 1n contrast to maximum lkelihood based
approaches, which are subject to computational difficulties and/or are
relatively slow to converge.

When data was generated from a VAR process (without regimes), the
MCMC algorithm very rapidly collapsed to a single regime with pj) — 1 &
P12 — 0. The results of one of the simulation tests are briefly reported below.
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2000 observations were generated from a bivariate RSVAR(2,2)
process. The data generating process was a random noise process within
each regime, apart from vamable 2 in regime 1, which was generated
from an AR(2) process with autoregressive parameters of 0.75 and —0.25,
ie. xp=001+4+075(x_12—0.01)—=0.25(x,.22 —0.01) - 0.005z,, where
z; ~ nd N(0,1).

TABLE |

SIMULA 1ION TEST RESULIS

True Izt 50 iterates[samples 2000 iterates|samples
Value 5% e Mean 95%'ile 5% ’ile Mean 95% 'ile

Number in regime 2 462 404 4513 502 424 463.9 508
Transition Prob pi 0161 0131 0159 018 0138  0.161 0185
Transition Prob py, 0.500 0497 0 548 0605 0466 0527 0589
Regime 1:
s 1.00% 091%  097%  104%  093%  098%  103%
&Y 0.000 —0027 0005 0031 —003%9  0.002 0042
oy 0.000 —0049  —0009 0024 —0048  —0.010 0029
Nz 1.00% 095%  098%  102%  095%  098%  102%
2 1.00% 093%  098%  103%  093%  098%  103%
Y 0.750 0747 0770 0798 0740  0.767 0795
& —0.250 0281 -0261 —0238 -0287 -0261 —0236
o 0.50% 048%  051%  053%  048%  0.50%  052%
Regime 2:
" 0.00% -008%  007%  020% -019%  0.03%  024%
a\y 0.000 —0073 0015 0104 —0074 0.025 0120
a? 0.000  —0075 0034 0131 —0072 0.035 0145
N 1.50%  147%  158%  165% 148%  157%  167%
12 250%  227%  243%  254%  226%  246%  269%
s 0.000  —0068 0 066 0171 —0034 0.077 0187
a3 0000 0112 0033 0143 —007I 0.045 0157
N 1.50%  149%  157%  161%  145%  154%  163%

The MCMC estimation procedure described 1in the Appendix was used to
generate 2000 samples from the joint parameter density of the model. The
mean parameter estimates are summansed 1n table 1. The procedure
successfully identified the data generating process with very tight densities
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centred over the true parameter values The sigmficance or otherwise of the
various parameter estimates 1s beyond doubt. Tests demonstrated the
robustness of the estimation procedure to various starting values

Graph | compares the mean regime (line) with the true regime (shaded
bands) for the first 150 time points. The procedure can be seen to have
successfully differentiated between the low and high volatility regimes.
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GRrAPH | Probability of Being in Regime 2

4.2 Empirical Estimation Results

To further 1illustrate the estimation procedure, an RSVAR(1.2) process was
fitted to a real financial dataset (m = 4,9 = 1, K = 2, N = 147) The data
set considered, derived from the Reserve Bank of Australia database,
consisted of 147 quarterly observations, for the quarters ending December
1959 through to June 1996, of the continuously compounded rates of

real economic growth;

e change in the rate of price inflation;

e share price return; and

e change in the 10 ycar bond yield.
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More precisely, the data series examined were
e VInGDP, where GDP, 1s the real Gross Domestic Product for the quarter

ending time 1;

e V2InCPI, where CPI, 1s the Consumer Price Index at time 7,

o VInSPI, where SPI, 1s the All Ordinaries Share Price Index at time ¢, and
o VInB, where B, 1s the yieid to maturity on 10 year Treasury bonds,
where V 1s the backward difference operator.

The data set was chosen on the basis of its general interest and
convemence, to illustrate the MCMC estimation procedurc developed n the
paper. It 1s not suggested that the resulting model 1s appropriate for any
other specific purpose, €.g. 1t would clearly be inappropriate for long term
projections, given the degree of differencing.

5.000 1terations/samples were generated using the MCMC estimation
procedure described in the Appendix. Rapid convergence was observed 1n
the quantiies measured The first 50 samples were discarded and the
remaining 4.950 samples used to describe the joint parameter density

The estimation procedure identified two clearly distinct regimes One
regime (regime 1) was characterised by strong economic growth, stable
inflation and interest rates, and relatively stable share price growth The
other regime (regime 2) was characterised by weak economic growth, volatile
inflatton and interest rates, and volatile and generally falling share prices.
The low volatility regime was rclatively stable 1n the sense that 1t was the
more persistent of the two regimes

The duration of a regime  episode is a discrete random variable, with

oc
expected value given by Sk x pF ! x (1 —p,)=1/(1=p,). Given the

k=1
estimated mean transition probability of 0.15, the expected duration of a
regime 1 episode 1s about 64 quarters. The high volatility regime was
unstable 1n the sense that 1t was not expected to persist for long. Given 1ts
estimated mean transition probability of 0.51, the expected duration of a
regime 2 episode 1s 2 quarters. The identified regimes seem highly mtuitive.
The theorctical density of the duration of an episode of each regime,
given the mcan transition probabilities, Prob(duration of regime 1 = k) =
pX=1(1 = pu), 1s shown n graph 2. The duration of an episode of either
regime can be seen to vary over a considerable range, even if the transition
probabilities were known with certainty The uncertainty in the estimated

transition probabilities themselves 1s 1llustrated by graph 3
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Graph 4 shows the mean regime at each time point. The economic
cnvironment was identified as almost certainly being in the unstable regime
duning the turbulence of the mid-1970s and carly 1980s, the last quarter of
1987 stock market crash, and briefly during the early 1990s There 1s a
shghtly better than average chance that mid-1994 aiso witnessed a regime
shift. Again, the identified regimes scem highly mtwitive.
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The unstable high volatility regime captured extreme events that might
otherwise be termed outliers. Outliers have the potential to seriously distort
the estimation of process dynamics Regime shifting can therefore be viewed
as providing a robust data driven treatment of outhers in this case, which
should enable more robust parameter estimates

TABLE 2

PARAMLIER ESTIMATLS

Regime 1 Regime 2
5% ile Mean 95% "ile 5% ile Mean 95% 'ile
Transition Prob p,, 0089 0.151 0231 035l 0.509 0 668
Mean Parameters
1 0 98% 1.14% 1 31% -0 82% 0.13% 1 05%
153 -007% 0.00% 007% -0 39% 0.11% 065%
w3 1 99% 3.28% 4 55% -10 82% -4.63% 0 86%
ita -1 18% 0.22% 081% -1 69% 2.67% 751%
Std Dev Parameters
N 1 03% 1.17% 1 32% 1 18% 1.50% 191%
N 048% 0.55% 062% 1 19% 1.55% 201%
N 6 24% 7.06% 7 96% 13 45% 17.05% 2163%
() 371% 4.53% 537% 782% 10.02% 1291%

vartable | = VInGDP,. varable 2 = V2IuCPl,, varable 3 = VInSPJ,. vaniable 4 = Vinl3,

The clear distinction between the parameters in each regime 1s iltustrated by
the clear separation of a number of the parameter densities, particularly
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those relating to the volatility of share price returns and changes in inflation
and interest rates, and to the level of share price returns (refer to table 2 and
graphs 5a, 5b & 5c). Given the clear separation of the variance of the
vaniables in the two regimes, any procedure that ignores the regime shifts 1s
very likely to produce misleading volatility estimates, and 1s unhkely to be
robust to outliers.
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In the case of the quarterly change 1n inflation, the mean standard deviation
parameter estimate 1n regime 2 1s 3 times as large as in regime 1 (1.55%
versus 0.55%). In the case of the quarterly share price return, the mean
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standard deviation parameter estimate 1n regime 2 1s 2% times as large as in
regime | (17% versus 7%). The mean share price return level parameter
esttimate in regime 1 15 3 3% compared with —4.6% 1n regime 2.

Regime 1

Regime 2

T -

-150 <120 90 60 =30 00 30 60
%

GRraprH 5¢ Density of Mean Share Price Return Parameter

Examination of the marginai parameter densities revealed that relatively few
regressive cross-correlation parameters were significantly nonzero once joint
regime switching was allowed for. The notable regression parameters were
serial correlation in the inflation rate in both regimes, and serial correlation
in real GDP and the change in interest rates in the stable regime.

mean Agy, mean Ag,)
—0.178 0078 0.021 -0 009 0137 -0 021 - 0009 0.084
0 049 -0.332 0 000 0 006 —0 108 —0.449 0019 0.080
—0 156 0078 0072 -0 049 0033 -0 030 -0 111 -0125
-0 052 0086 0048 0.222 0054 0 008 0098 0160

vartable 1 = VInGDP,, varable 2 = V2nCPI,, vaniable 3 = VInSPI,, vanable 4 = VInB,
Numbers in bold are significantly nonzero at the 5% onc-sided tevel under the posterior density, 1 e
zero falls outside the region bounded by the 5% ile and the 95%"1le of the posterior parameter density

Ignoring regime shifts would exposc estimates of regression parameters to
the cffects of “‘outhers” generated during cpisodes of the high volatility
regime, the effects of which would then be assumed to operate at all times. It
1s therefore interesting to compare the mean regresston paramecters of the
RSVAR(1,2) process with the corresponding VAR(1) parameters, which
reflect the usual sample correlations/regression relationships (the stability of
which was previously questioned).
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A from YAR(1)

-010 006 002 003
001 —-0.51 000 003
015 -0.74 —003 -0.28
006 0.56 008 0.27

variable 1 = VInGDP,, vanable 2 - V3InCPI,, variable 3 = VInSPI,. variable 4 = VInB,
Numbers 1n bold are simply large in magnitude

Notable differences are the large feedback of lagged changes in inflation
into share price returns (—0.74) and changes in interest rates (0.56), and
the feedback of lagged changes in interest rates into share price returns
(—028) If the feedback were as strong as indicated by the VAR model,
the VAR model should have a significantly higher hikelihood than an
independent AR(1) model (where the off-diagonal elements of A are all
zero) and one ought to be able to make better predictions than models
without the feedback. Neither of these features was observed empirically
(refer section 4.3).

A number of contemporaneous error correlations were found to be
significantly nonzero. In the stable regime changes in bond yields were found
to be contemporancously negatively correlated with share price returns
(=0 195), so that unanticipated shocks that caused bond yields to rise were
more likely to be associated with a downward (than an upward) shock to
share prices. Similarly, increases in inflation were found to be contempor-
ancously correlated with real economic growth (0.15). Both contempora-
neous relationships appear consistent with intuition.

No significant relationship was revealed between inflation and share price
returns, at least in the short term In the unstable regime the only significant
contemporancous error correlation detected was between share price returns
and real economic growth (—0.34), the sign of which 1s somewhat counter-
mtuitive.

Mean conternporaneous ervor correlations Mean contemporancous error correlations
implied by Q, implied by 3
1 1
0.148 1 —0 098 |
-0 044 —0053 1 —0.337 0004 1
0087 —0084 -0.195 1 0132 0120 —0 181 1

variable 1 = VIuGDP,, vanable 2 = V-InCPI,, vanable 3 = VInSPI,, vanable 4 = VInB,
Numbers 1n bold are significantly nonzero at approximately the 5% one-sided level under the posterior

density, 1e zero falls outside the region bounded by approximately the 5%’ile and the 95% e of the
posterior parameter density
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4.3 Empirical Comparison With Common Models

In this section the statistical goodness-of-fit of the Regime Switching VAR
model is compared with commonly used models The models considered
were independent random/noise, independent autoregressive (1 €. diagonal
VAR), independent non-Gaussian autoregressive, independent GARCH,
Vector Autoregression and RSVAR The results are summarised in table 3.

Non-Gaussian error distributions are sometimes used 1n an attempt to
directly capture the leptokurtosts observed in the frequency distribution of
many series The Student 7 density, standardised to have zero mean and unit
variance, was consitdered as an alternative to the standard Normal error
distribution

The Generalised ARCH model was introduced by Bollerslev (1986). The
conditional variance is modelled as a linear combination of lagged squared
residuals and variances. For example, the commonly used GARCH(!,1)
conditional varance 1s such that o? = ag + vier_, + Bio’_,.

The models were compared in terms of their maximum log-likelthood,
posterior model probabilities, prediction errors, ability to predict volatility,
and their ability to explain the observed excess kurtosis (a measure of non-
Normahty). For the purposes of the comparison, the MCMC 1teration/
sample which produced the largest log-likelthood value was used to caiculate
the measures for the regime switching model. The regime switching measures
were therefore based on a single realisation from the joint parameter and
regime density

The maximum log-likelihoods, both unconditional and conditioned on
the first data point, are reported in table 3 The standard likehhood ratio test
was used to assess the sigmificance of the respective maxtmum log-
likelthoods. Where one model 1s completely nested within another, twice
the 1ncrease 1n the maximum log-likelihood 1s asymptotically distributed as
x7 where k 1s the number of additional parameters fitted in the more general
of the two models (equal to the number of parameter restrictions imposed by
the null hypothesis). Simulation experiments confirmed the appropriateness
of the asymptotic x} distribution for samples of the size considered. Thus the
data suggests the AR(1) model 1s significantly more likely than the Random
model and both the Student r AR(1) and the GARCH-AR(1) models are
sigmificantly more likely than the AR(1) model The introduction of the non-
Normal error density (Student ¢) produced a substantial increase in the
maximum likelihood with the addition of only 4 paramcters. The VAR
models are not significantly more hkely than the independent AR(1) model,
suggesting spurious regressive corrclations between the series based on
sample cross-correlations

The usual asymptotic statistical distribution theory fails to apply in the
regime switching case, since the transition probabilities are not defined under
the null hypothesis that the regime switching model 1s mappropniate If
standard distribution theory did apply, the RSVAR(1,2) model would be
overwhelmingly more likely than the independent AR(1) or VAR models.



62 GLEN R HARRIS

Though not a statistical test, 1t 1s at least reassuring that there is a large
increase in the maximum log-likelthood after allowing for the larger number
of potential parameters The addition of the second lag in the RSVAR(2,2)
model produced only a modest increase 1n the maximum log-likelihood. The
addition of a further regime (K = 3) proved problematic, due to the degree
of instability of the third regime in iterations where p33 = 0. A third regime
would appear to be superfluous given its virtual umdent:fiabality

The standard LR test assesses the significance of the evidence agamst a
nested null hypothesis, based on the maximum hkelihood of model 4, Le.
maximum over A, of p(Y|A,M,). An alternate, and arguably more
sensible model selection approach, which does not require the models to
be nested. 15 to consider the evidence in the observed data in favour of the
alternative models. The probability of model ; given the observed data 1s
given by p(M)|Y) « p(Y|M,) x p(M,) A priori convictions regarding null
hypotheses are reflected 1 the prior probabilines assigned to the
alternative models, p(M,), which are then modified by the likelihood of
the observed data given the models, p(Y|M,) MCMC estimation enables
p(YIM,) = [p(Y|\, M))p(N\IM,)d), to be readily estimated as the harmo-
nic average of the hkelihood over the MCMC samples/iterations, e.g. refer
to Kass & Raftery (1995, 4 3). The harmonic average estimate was found
to have stabilised after 1,000 samples or so in the present case

The likehhood of the data given model ; can be seen to be related to a
likelihood where the parameters are eliminated by mtegration rather than
maxwusation. The logarithm of p(Y|M,) 1s shown 1n table 3 for each of
the models which could be estimated based on the MCMC estimation
scheme described 1n the paper. The model probabilities are also shown,
assuming the alternative models considered were assumed equilikely a
priort The data overwhelmingly supports the RSVAR model over the AR
and VAR models. Of the 4 models considered, the probability that the
data was generated by the AR(1) or VAR alternatives 1s virtually zero,
while the probability that the data was generated by the RSVAR
alternative 1s virtually 1.

The average prediction or forecast errors for each model were assessed
using the root-mean-square error, which for series 1 was defined as

rmse, = | /K,'_-IIZE,Z, where ¢, is the residual or one-period-ahead prediction

error at time ¢ The rms errors for each series were combined into a single
weighted rms error for each model for ease of comparison. The weights used
were proportional to the reciprocals of the corresponding AR(1)

residual variances, 1.e wrms error = /w, ><rmse,2 Despite theirr high

likelthood, both the Student ¢+ AR(1) and GARCH(I,1)-AR(1) models
produced forecasts no better than the simpler AR(l1) model on average.

To assess the explanatory information contained 1n the regime, the
regime switching model residuals in each period were calculated conditional
on the reahised regime 1n that period, i.e the §,,) ~ N(O, Q(m) were tested.
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Allowing for the regime, the RSVAR model produced the smallest errors on
average (1t 1s noted that the RSVAR model does have the largest number of
parameters).

Two measures were used to assess the ability to predict volatility. The first
measure used was the root-mean-square squared error, defined for scrics / as

3 .
rmsse, = /5= > (€2 — 02)". where o, 15 the one-period-ahead predicted

error standard deviation according to the model The rmsse measure directly
compares the sample volatility with the volatility predicted by the model,
since E(z—:,z) = af While intuttive, the rmsse measure 1s highly skewed, since
e ~ a?x}, and hence is susceptible to outhers. The rms squared errors were

also combined into a single weighted rms squared error using the same
weights as used for the wrms error.
The second measure used was the root-mean-square normalised absolute

S . 1 /3

error, defined for series i as rmsnae, = \/N_(IZ <|£,| 9 > While less
ituitive than the previous measure, the rmsnae should be more robust, since
the deviations should be less skew and more Normal. The measure was
motivated by the approximately Normal lmnsformdllon of the chi-square

density, (x%/v) e N(l =&, 4), so that |} hmo a/3N(9,9)

Allowing for the regime, the RSVAR model produced better predictions
of volatility than the other models on average Discrete regime switching
would appear to be a better explanation of conditional heteroscedasticity
than the commonly used GARCH and ARCH processes, which, despite
their high log-likelihood, generally impute too much persistency in the
volatility (see, for example, Hamilton & Susmel (1994)).

The excess kurtosis of the residuals of each series was calculated, and the
average reported 1n table 3. Autoregressive, VAR and GARCH models
failed to explain the observed excess kurtosis The RSVAR model was able
to successfully account for the excess kurtosis in terms of discrete regime
switching 1n the variance, 1e. conditional heteroscedasticity The non-
Normal process exphcitly models excess kurtosis by assuming the residuals
are drawn from a leptokurtic non-Normal distribution. The excess kurtosis
of a standardised Student ¢ density, when finite, 1s 6/(v — 4), where v 1s the
degrees of freedom parameter. Since the fitted v values of 3 out of the 4 series
were less than 4, the kurtoses of the fitted non-Normal processes are in
general not fintte, which appears inconsistent with the observed residuals,
which had an average excess kurtosis of 4.4,
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TABLE 3

MoDrL COMPARISON

GARCH

Student t RSYAR
Random  AR(1) (1,1) VAR(I) VAR(2)
AR(1) (1,2)

“AR(1)
uncond max InL 12314 1258 9 1271 1 1284 6 1326.5
cond max InL 12215 1249 0 1296 4 12873 1261 2 1315.5
Aln L over AR(I) 00 474 383 122 66.5
significance of std x? <10°¢ <1° 044 <10 @
In p(Y|M) 12210 1253 6 1261 1 1296.7
pMY) <10 ¥ <100 < 10 Y 1.000
wrins error | 48% | 40% 1 41% 1 41% 1 39% 1 36% 1.30%
wrmse as % Random 100% 950% 95 6% 95 6% 94 0% 92 0% 88.1%

wrmsse as % Random 100% 995% 1010% 1034% 92 7% 93 5% 70.8%
wrmsnae as % Random 100% 89 6% 93 2% 84 7% 87 9% 84 1% 78.1%
ave excess kurtos:s 46 40 44 21 35 32 0.8

5. CONCLUSIONS

A Bayesian Markov Chain Monte Carlo (MCMC) procedure was developed
for estimating the joint parameter and regime density of Regime Switching
Vector Autoregressions (RSVAR). The mean parameter estimates were
found to converge extremely rapidly, even when the mtial parameter
estimates were very poor and the order of the fitted process was incorrect.
The MCMC procedure can therefore be expected to supply a good estimate
of the mean parameter values within seconds, regardless of the initial
parameter estimates, even for vector processes (in contrast to maximum
likelihood based approaches).

The estimation procedure identified two clearly distinct regimes in
quarterly Australian financial data. One regime was characterised by strong
economic growth, stable inflation and interest rates, and relatively stable
share price growth., The other regime was characterised by weak economic
growth, volatile inflation and interest rates, and volatile and generally falling
share prices. The high volatility regime was found to be unstable, with an
expected duration of only 6 months

The unstable high volatility regime captured extreme events that mught
otherwise be termed outliers. Outliers have the potential to seriously distort
the estimation of process dynamics Regime shifting can therefore be viewed
as providing a robust data driven treatment of outliers in this case, which
should enable more robust parameter estimates.

Regression relationships are often not robust to outliers nor stable over
time. Relatively few regressive cross-correlations appeared important in the
dynamics once joint regime switching was allowed for, in contrast to the
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large lagged cross-correlation terms observed when a standard Vector
Autoregression was fitted to the data. If the feedback were as strong as
indicated by the VAR model, the VAR model should have a significantly
higher likelihood than an independent autoregressive model (where there are
no cross-correlation terms) and one ought to be able to make better
predictions than models without the feedback. Neither of these features was
observed empirically

MCMC estimation enabled the calculation of posterior model prob-
abilities, i.e. the probabilities of the various models given the observed data.
The data overwhelmingly supported the RSVAR model. The RSVAR model
also produced the lowest average prediction errors and better predictions of
volatility on average Discrete regime switching would appear to be a better
explanation of conditional heteroscedasticity than the commonly used
GARCH and ARCH processes.

In conclusion, many financial time series processes appear subject to
periodic structural changes in their dynamics. Regression relationships are
often not robust to outliers nor stable over time, whilst the existence of
changes 1n variance over time 1s well known This paper presented an
attempt to deal with such difficulties in financial ume series, a Regime
Switching Vector Autoregression, the parameters of which are subject to
pertodic discrete shifts The Regime Switching Vector Autoregression
process was found to provide a particularly good description of an
Australian quarterly financial data set.
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APPENDIX

The derivation of the Bayesian MCMC estimation procedure 1s described 1n
this Appendix. At times it will be more convenient to consider the equivalent
VAR(I) form of the RSVAR(q,K) process, namely

X, = ﬁ(/‘l) + A(Pr) (X’_l - l’l ) + 51 (e}
X, I(p) ADAR, AL X/~ () Eilp)
Xi—1 Hp) L, 0,,, 0, Xi-2 Hp) 0
1.e. Xi-2 =| Ko + 0. lm 0,, Xi—3 [ — | Ho) + 0
Xi—q+1 Hip) 0,, 0, - 0, Xi—q Hp,) 0

E¢,) =0 and EE, p,§ =) Yt>q X, i and £ are mqx 1 column
vectors, while the A are mq X mq matrices

The contribution of the /-th data vector to the likelthood conditional on
the regime 1s

a—

](xflpl) Yl—l7/\) = (271-)—7 Q(:,:) 'eXp{_%ngp, /), E! () }
fl(n,) =X~ Hp) — ZA (m) Xe—h — M /),))
in the case of 1 > g, where Y, = (x;, ,X,).

The first ¢ data vectors can be taken together. /(X,|p,, A) can be
approximated by exploiting stationarity within each regime (effectively
ignoring regime shifts prior to time ¢), so that the contribution to the
likelthood from the first ¢ data vectors can be approximated by

Nl—

_my _
[(Xlop\)=2m) 2|V (0. A0) |

T -1 -
oxp{ 1%y 7)Y (QAw) ” (Xe=iiw) }-

The within regime unconditional or stationary mqg x mgq variance-covariance
matrix, V, could be determined from vecV = (L2 — A® A)™ vec, as

my?

described by Litkepohl (1991, p21-22). vec 1s the column stacking operator,

such that if A = (ay,.. .a,) 1s an m x #n matrix with m x 1 columns «,, then

vecA 1s the mn x 1 column vector (af,. al)', and @ is the (right)

7n

kronecker product, such that if A and B are two matrices, m x n and p x ¢
respectively, then A ® B is the mp x ng matrix (a,B)
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Assuming within regime stationarity,
X, = fi+ A(Xy1 — 1) +§,
= ,L‘Z + ‘Sq + qu—l + A2 (X(/—Z - /3‘)

[e.0]
=ji+y N,
J=0

The unconditional mean 1s therefore EX; = fi4), where p, = k Assuming
the process is stable within each regime,

VarX, = E(X, — i) (X, — )"

I
e
>
/E_)\z
L d

Stability requires that A/ converge rapidly to zero as j — co so that the

n
partial sum > A/ converges rapidly to (I — A)~"as n — co. A stable process
J=0
1s also a stationary process.

In practice, to avoid inversion of an m?q? x m*¢*> matrix, V could be

~ " ~
approximated as a finite sum of the form  + ZA’Q(A’)T, and then an

J=1
approximation to V™! obtained by inverting thie approximation to V (an

mgq X mqg matrix)
The full hkelihood conditional on the regimes is

N

L(Y[p, A) = /(qupq,/\) H I(X|prs Yimr, A),

1=4+1
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where Y =Yy and p= {pq, .,p,v}. The exact or unconditional likelithood
of A 1s obtained by integrating over all possible regimes, 1.¢.

L=LY[A) =1(X,[A) - [] 1xdY.ic1,A).

=g+

The exact or unconditional maximum hkelthood parameter estimate 1s given
by the value of A that maximises L.

Draws from the joint posterior distribution of the regimes and the
parameters given the data, p(p, A]Y), can be simulated via the Gibbs Sampler
and the Metropolis-Hastings algorithm. The algorithm will involve the
repeated generation of variates from their full conditional densities as
follows.

e ) AL Q) ple)
pletl) — Pt Al ol plo
A(r+l) - p((‘+l)7u((+l)’Q(c) P(()
Qletl) p(c+l)7u(v+l)7A(c+l)’ p)

P(t+l) - /)(H—l),/,l,(ﬁ_l),A(H—l),Q((-H).

In each case, V will be a function of the A and the € on the
right hand side Under muld regulanty conditions, the sequence

{pletD Nt} = {p(”'),u(‘“),A(‘“),Q(‘“),P(‘“)} will form a Markov
Chain whose limiting distribution will be p(p, A|Y).

Generating the Regimes

plerD) — ) AL Q) plo) - Carter & Kohn (1994) suggested that it 1s
generally much more efficient to generate the regime variables simuita-
neously from the joint distribution of the p, rather than one-at-a-time
from the full conditional densities Generating the regimes one-at-a-time
can lead to little movement at each iteration due to conditioning on the
neighbouring regimes from the previous iteration. Their empirical results
are supported theoretically by the results of Liu, Wong & Kong (1994).
Following Carter & Kohn (1994), the regimes can be generated jointly
from

N-I
p(PIY;2) = p(pnlY, A) - T] p(oilpeer, Yoo ).

I=q
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Estimation of the regimes at each time  1s based on the probabuility filters of
Hamilton (1989, 1990) and Kim (1994). The first step in calculating the
smoothed regime probability estimates is to calculate the joint regime filter
probabilities and conditional hkelihoods, which can be determined
recursively. The filter probabilities, p(pn|Y, A), can be calculated from

( 07/)‘1]’\)_ (xq|an ) (pq|/\)
K

tll/\ Z/ ([apql’\

1’(041X4”\) = (,,/)qlx\)//( q\/\)-

Fortr = g+1,..N,

/(x:,f)r, p1—1|Y:—|,/\) = (xr|f)nyt I7/\) 'P(Pr[ﬂt—l) 'l)(p!—l|YI—l7 >\)

X
/(XI|YI——|7 Z Z /(xl-,php/—llYl—l,/\)

pr=lp 1=l
P(pe; pi=i |Yh /\) = l(xla Pry Pr—1 |Yr—l, /\)/[(X/lyr—l , /\)
K
P(Pr|Y/a/\) = Z P(/)h/)r—l|yn/\)
o=l

V/){,/)1—~l E{la >K}

Note the filter probabilities p(p,|Y,,A) are each a K-tuple of probabilities,
representing p(p, = i{|Y,,A) for i = 1,.,K Once the filter probabilities,
p(pnlY, A), have been calculated, a sample can easily be generated from
plpn|Y, A), since 1t 1s a discrete density.

The above iterations require the evaluation of the contributions to the
conditional hkehhood, /(x,|p,, Y,_1, A), which will require evaluation of the
m x m determinants of the K Q' Using the Choleski decomposition,
107! = [L||L"| = TI22.

To imtialise the previous iterations, the K p(p,|A) will be required.
They can be derived as the hmiting distribution of the regime Markov
chamn. Define the K x 1 column vector 7 = {p(p, =1|A), 1 =1,. ,K}, then
m = Pr. The limiting distribution 7 can be estimated by |teratmg on
a1 = Pr0) until convergence to the desired level of accuracy The
p(pqlA) are given as the elements of = Observe that P 1s a stochastic
matrix since all column sums equal one and all elements are non-negative,
hence I is an eigenvalue of P, and all eigenvalues of P have magnitude no
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greater than one. A necessary and sufficient condition for the existence of
a lmuting distribution 1s that P has a distinct non-repeated umt
ergenvalue.

Thus, drawing on Carter & Kohn (1994), to generate a sample from the
joint distribution of p we first generate py from p(pn|Y,A). Then for
t =N —1 to q, calculate p(p/|pr+1, Y, A) using the most recently generated
value of p,,y and the previously calculated filter probabihties, as follows

(o1, oY s X) = plpeeilpn A) p(pdY, A) forpe=1, K
A
Pl Yo A) = 37 plpet pi| Y1 A)
m—1
PPt Y, A)
(pilpret, Yo A) = —/——o
Plerlpiet Yoo ) P(oe1|Ye, M)

Once the probabilities, p(p/|pi+1, Yi, A), have been calculated. p, can easily be
generated from p(p;|p/+1, Yi, A), since it 1s a discrete density For the regime
switching process to be defined, each of the K regimes needs to be visited

forp,=1, K

Generating the Parameters

The conditional densities of the parameters are given by

p(/\jlpﬂ\?‘jvy) x L(Y‘[), )‘) p(pl’\) 'p(/\j)u
re. p(6,]p. 0y, P, Y) < L(Y|p, A) (@j)

and p(P[p,0,Y) « p(p,|P) H p(pilpi—r, P) - p(P)

r=g+1

Generating the Level Parameters

et — pler) Al 00 PO In this section, ) represents one of the
possible dlscrete values of y,y. p; € {1,...,K}. Independent uniform priors
can be used for the i), conveying no prior information The prior would
therefore be umform where the identifiability restrictions (1f any) are met,
and zero everywhere else The level parameter vectors can be generated
jomtly from

plrqys s 1m) oy Ay Y) o< L(Y [, X) % plys - iyky)-

which 1s the product of K independent multivariate Normal densities (and
the 1dent1ﬁab1|1ty prior), since the contribution at each time 7 involves only
one of the yi(,y. The cxponent 1n the above expression 1s
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__ET _l fq ZZEFQP:

1=¢+1

=—%(Xq—ﬂ(/»q>)rvffi> (X))

T
N q
h) /i
_% Z ( ZAE; Xi—h— (Inz*ZAE;?)> ,u'(/r,))

r=¢+1 h=1 h—1

q
-1 | (hy
Q(m) (X’_;A(m)x"”_< m ZA(/))> f"))

=4y =%) Vi (X4

q
_% Z Hip) ( ni ZA(M ) (xr_;A:Z?)x/—h>
q

T

=q+1

— h
Won | #00= ('" ZA ,,,) (x,—ZAEQ)m’)

h=1

- <o\ o SN
where W\ = (l,,, - lg A(p’)> Q0 <l,,, - E:l A(ﬂ,)
Suppose p, =k and that n, of the p, =r, then the exponent can be

rewritten as

S
— 56 Vit
T
1 g
(M) h
o (- 28] X (- St
e — p=k h=1
1>q
|
() . )
] P e ) z( S A
o
I g - '
h h
r#k ! h=1 m
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Ignoring the first term in V™! which 1s a function of i), the above
expression 1s 1n the form of K independent vector Normal densities in the gy ,).

Sp(ray gy 10 Az Y)
|

-1[2 STv—17
‘V(k){ eXP{‘%Eq V(k)@/}

-1
1 1 1
x N b = Z At | 2 X = Do AR | Wew
Ny — 1 = e — 1

h=1 p=k
1>q
| q ’ i
1 CIFI U 7] I o (O oYy BAVE
r#k hr h=1 o=t h=1 r

XP(M()): :/"(K)) )

where N(.,.) 1s the multivariate or vector Normal density. The K-1 ),
r # k, can therefore be independently generated from the above multivariate
Normal densities. Asymptotically, the means of the above densities, for each
regime, are the average of the data vectors 1n each regime, as expected.

A vanate from the multivariate or vector Normal density, x ~ (g, 2), can
be generated as x = p + Lz, where z 1s a vector of i 1 d. N(0,1) variates, and
L 1s a lower trian Tgular matrix obtained from the Cholesk decomposmon of
2, such that LL." = Q.

The terms in iy are not quite vector Normal, since V'~ I'1s also a function
of 1y. A Metropolis-Hastings step can be used to generate py. First, a
candldate Hk) 18 generated,

1

) ) A 1

( 3 ~N m—1 ( - Z A ) Zk (X, - IZI A(k)x"l')wu—l W(’*)
m= 1=
1>q

and accepted, 1 €. MECTI) =L EZ% with probability

mirn

T (Vi =V )é oy,

otherwise the prewous value 1s retained, 1 ¢ “EZ)H) = ;LEZ) Here, V(_kl(*) is a
function of A and Q("k') ) while V7, )( 9 is a function of AE,;)_') and Q(_k')(”‘”

Generatlon of the K would continue until the prior conditions
represented by p(pqy,.., wk)) are satisfied (e. by direct acceptance/

rejection).
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Generating the Regressive Correlation Parameters

ALY plexD) et 0@ PO In this section, A(,) represents one of the
possible discrete values of A(,y. p; € {1, ,K}. The regressive correlation
parameter matrices can be generated jointly from

P(A(n),--,A(K)Ip, /\¢A,Y) o< L(Y|p,A) - p(Aqy, »Aky)-

Recall that

() (2) (9)
Ay Aw) A
lﬂl OHI OI”
A([):) = Om [m Om ,
Om Om U Om

operator ¥ = (I,,,0,,,0,,, ..,0,), so that JA = A('),A(z), .. ,A(") . Itis the
K 9A(, that need to be generated.

A suitable prior for each of the ¥A) 1s a matrix Normal density in
the region of stability of the VAR process within each regime, and
zero everywhere else Thus 1t is assumed a priorn that the process 1s

so that only the first m rows need to be generalezl. Define the m x 51(1 matrix

stable 1n each regime. The prior for YA, will be represented by
p(9A;)) < N(By,, 1/1/(,)[,”21() x g(Apy), where the first term 1s a matrix

Normal density, B,y = B(I)), BEE;,..,BE?;) is the m x mqg prior estimate of
JA(), L2, 1s an m2 g x m?q1dentity matrix, and the last term 1s uniform in the

stable region of A,) and zero everywhere else. In the absence of strong prior
evidence, each of the BE:')) 1s likely to be zero everywhere except perhaps
instances on the diagonal where serial correlation 1s clearly present, e.g.
inflation rate series. The prior variance of each element of 9A, is /vy,
where v,y can be interpreted as the equivalent number of prior observations in

regime r.
Stability requires that A’/ converge rapidly to zero as ; — oo, so
that the sequence {A/,; = 0,1,2,..} 1s absolutely summable, converging
to (I — A)'], since X, =+ AXo1 — )+ &6 =10 —A)p+ AX,.) + &
J
=1+A+A2+  + AT -A)p+ATX,_ + 3 A, Ths is equiva-
=0
lent to insisting that all eigenvalues of A have modulus less than one The
latter condition holds if and only if the determunant of (I — zA) is nonzero
for |z| <1, e ff detil —zAM = — AW} 3£ 0 on the interval lz] < 1.
For practical implementation 1t is wise to insist that det(l — zA) exceeds a
fixed positive constant (depending on the dimension of the problem) for
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z ==I (lnotmg that 1t equals 1 for z = 0), to control the occurrence of
(1 —A)" becoming large, which can lead to the level esimates visiting
unlikely values (since the level parameters are not defined when (I — A) 1s
not mvertible).

Supposing p, = k, consider regimes p, = r (# k), and define the m x n,
matrix ofreglme: residual vectors, ¢,y = (& p, = r), and matrices of deviation
veclors, X(,) = ((Xizt —fgy) o= r) and X, 8()(, - fiy)) :p=r) Not-
ing that =&, = Ao (Xt = i) — (X0 = ) from the VAR(1) form of the
process, consider the following (droppmg the references to regime r, for
brevity).

—¢ = JAx — Ux
—cx" = 9Axx" - Ik
s = [9A = 9 (xxT) (}x") | (%%
A —9(xx" (X)?T)—l]f(

=
—vees = (¥’ @ 1) [vecq?A - vec{z?(xxr) (XX/T)_' H
= (X" ® L) [vecIA — vecC],

where C = ﬂ(xiT)(iir)_l is an m x mgq sample regression matrix. Note
that vec(AB) = (B” ® I)vec(A). Liitkepohl (1991, Appendix A 11-A 12)
provides a useful summary of the properties of the kronecker product and
the vec and trace operators.

The contribution at each time ¢ involves only one of the A(y. The
exponent of the ikelihood term can be expressed as

N

75 ( )‘gl/—' Z f l’:

r—g+1

- _%quv(*kl)fq - ivecm) (l,,‘_l ® Q(—kl)vecq 33 vecg, ,)( 0 @ )vecg(,),

r;él\

where ¢ = (& p=k, 1>q) is the mx (m — 1) matrix of regime k
residual vectors, excluding the first ( = ¢). The exponent, including the
prior, can therefore be expressed as

_%ETV}I)g(I —%Z [VCC’L?A(,) — VCCC(,)] T ( ()2(,)}2’{,}) ®Q(_')1> [vecﬁA(,) —VCCC(,)]

-1 [VCC?9A(, vecB(,)]Tu(,)l [vecOA () —vecB,]

my

_ T g-
=_%E(/TV(k)fq_iZ [vectA ) ~a] gy [vecIAy)—ay,],
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where () and Cy,) are defined to exclude the first vector (1 = ¢), and

1 _{((s .or I ,
\I/(,) = ((X(I)/\(r)> ® Q(,)) + U(r)lnrq
o,y = \IJ(,,) [((/\N'(,),{’(];)) ® QGJ)VCCC(,) + U(,)VCCB(,.)]

Note that the term involving V=! 1s also a function of A k- Excluding the

term in V™', the previous expression 1s in the form of independent matrix
Normal densities in the A,

[T

.'./J(A(l), ,A(K)|P7/\¢Aay) x IV(_A])
X HN(G(,), ‘I’(r)) X g(A(,)).

exp{ —%EZV(_,")&}

The means of the above densities for the A, are weighted averages of
the sample regression matrices of the data vectors within each regime and
the prior estimates of the A(,), as expected. The prior variance provides a
floor under the nverse of the varmance matrix, and hence lmits
the variance of the A,

Direct acceptance/rejection can be used to independently generate the
regression matrices, Ay, r # p, Candidate A,y are generated from the
matrix Normal densities until they fall within the stable region. The
acceptance rate can however fall to very low levels as the dominant
eigenvalue of A approaches | and as the dimension of A increases, causing
the procedure to get “‘stuck’ in the A dimension This 1s an area of current
research. A possible approach would be to use a Metropohis-Hastings step
with a suitably well constructed candidate density to enforce the stability
constraint.

Generation from a matrix Normal density 1s the same as from a vector
Normal density, since A ~ N(©,X) = vecA ~ N(vec®,X). If A 1s m x m,
then © 1s also m x m while 3 1s m? x m?, and vecA and vec® are m? x 1.

The terms 1n A,y are not quitc matrix Normal, since V-l is also a
function of Ay A Mctropohs-Hastings step can be used to generate A
using AE;))NN(CY(/(),\I}(/\)) as the candidatc generating density. If the

candidate 1s stable, 1t 1s accepted, 1e. ALTD = AW

) (1) With probabihity

(Ve = Vg 18

otherwise the previous value 1s retained, 1.€. AEZ')H) = AE;()) Here, V(k;(*) 1s a

function of AEZ; and Q(_,\')(r), while V(_k')(") 1s a function of AE;‘)) and Q(—kl)(c_l)
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Generating the Variance and Covariance Parameters

Qletl) — pleth) yylex) Aler) plo) [ this section, ) represents one of the
possible discrete values of Q,,, p, € {I, ..,K}. It 1s more convenient to
generate the inverse of the variance-covariance matrices (i.e. to generate the
precision matrices), rather than the €, directly.

Suitable priors for the m x m precision matrices would be Wishart
densities with parameters ) and F~', where F is dlagonal with i-th dlagonal
element equal to 7 )s where s2 s the prior error variance for the /-th series
The 7, can be mterpreted as the equivalent number of prior observations in
each reglme. The generation of the precision matrices presents no stability
problems, so that the prior need only be diffuse, hence 7y 1s likely to be
smaller than v, The complete prior would therefore be of the form

[)(Q(_]l), . Q(_Kl)> = rl;[] W,,, (’I](,), F(_r)) X h(Q(]), . Q(K)), where h(Q(l), . Q(K))

captures the identifiability prior restrictions (if any). An example of an
identifiability restriction might be that the variance of the second series
increases with the regime, 1.€ wy) < .. < w2 (k) where wy,) 1s the -th
dlagondl element of €,y As before, define ¢,y = (& . pr=r), r# p, and
= (& pi=k, t > q), k = p; (noting that the & are functions of the most
recently generated A
The precision matrrces can be generated jointly from

p(Qa') |P;/\#QaY>O<L(Y|Pa/\) ~p(9(‘|‘,,- .Q(‘K‘))
m o1
exp{ LAl 5} X ‘Q'lrz_ex {—lveccr (l ® )vecc }
2 4 (k) Py —2VeCS iy \ -1 ()

#e 1 ( -1 -1
Xp vecc ,,,®Q VECS() ¢ X P Q(,),..,Q(K)

ny +"A m 2

oc|V(“k‘)’%e)<p{ —EIV; §q} | k)\ exp{—%tr((g(k)g({_)+F(k))Q(—k’))}

nr by - mi=t
X IJ(:‘Q(_,)I’ exp{—%tr((q,)cg)-I—F(,))Q(_r)l)} X II(Q(I),..,Q(K))
(95,2 lo. A0, Y)

2

x |V("k')

- - 1
exp{—%E;-V(‘k')&,} X W, <nk+7](k)—l ( (/\)C +F(A)> )

-1
X me (l’l, T 7 (C(r)C(T,:) +F(r)> > X h(ﬂ(l),..,Q(K)).

r#h
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Therefore the precision matrices, other than QA, can be generated
independently from Wishart densities. Q' can be generated via a
Metropolis-Hastings step with the Wishart candldate generating density

Q(‘A_l)(*)“'w,,, <nk—|—77 n—1, ((U\)(&) -+-F(k)) > The candidate would be

accepted, 1e I(HI) =Q l)( ) with probability
. = -1(* )\ 7
min exp{—% I(V(k)( ) _ V(A,)( ))5(,}, 13,
otherwise the previous leue would be retamed 1e. Q‘l () — -1 Here,

(k) (k)

V("kl)(*] lS a function of Q ) and A(‘ , while V( ){") 1s a function of Q l(‘)

and A

A va)nate from the Wishart density, W ~ W,,(n, ), can be generated as
W =QQ7, where Q = LU, L 1s lower triangular given by the Choleski
decomposmon ¥ =LL7, and U is upper triangular given by the Bartlett
decom?osmon, u, =0 for s > 12~ xa (1 =7)and u, ~ N(0, 1) for: < (so
that U'U ~ W,,(n,1,,))

Generating the Transition Probabilities

Pletl)  plet) ylext AlD) Qle+1) The transition probability matrix can be
generated from

p(P|p,0,Y) o« p(p,|P) - H P(pidpi=1,P) - p(P).

1=¢+1

Suppose that p represents n,, transitions from regime / to regime ;. Define the
prior for the p, to be Beta (m,j +1,m, + l), where m,, has the interpretation
as the cquivalent number of prior transitions, then

K Hy-tniy
p(Plp,©,Y) o< p(pglP) x [ ] 7™ x [ (1 -~ Z[)U>

1#) =1 1#)

ny+niy
x p P(,!P < H { (H nu+nm> (l _ E-DU> }
=1 U\ =

In the above expression, p(py|P) 1s a function of each of the p,. Draws from
the above joint density can be generated using a Metropohs-Hastings step,
using independent Beta densities as the candidate generating densities.
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Generate candidate P, P, from p,(;) ~ Beta (n,, +my, + 1n, +m, + l) for

1), /7:(:*) =1- pr;), until p%) > 0, which 1s then accepted, 1e. P+ set

1) () gto)
equal to P, with probability mm{%, 1}, where
Ny iy
P
m/q =P(/’4|P) I (1 ip )
y
1)

otherwise the previous value 1s retained, 1e set Pt = P9 Recall that
p(py|P) 1s given by iterating on P

The acceptance rate is hugh for stable regimes where the p, are small. The
acceptance rate can become very low when a p, becomes small, since then
pu=1-Xp, <II(l —p,), and hence therr rauio can become very small
when raised to the power n, + m,. However 1f a p, 1s small, perhaps the
appropnateness of modelling the corresponding regime at all should be
questioned
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