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ABSTRACT

A unmit-hnked hfe insurance contract 15 a contract where the insurance
benefits depend on the price of some specific traded stocks We consider a
mode! describing the uncertainty of the financial market and a portfoho of
insured ndividuals simultaneously. Due to incompleteness the insurance
claims cannot be hedged completely by trading stocks and bonds only,
leaving some risk to the msurer. The theory of risk-mimimization 1s briefly
reviewed and applied after a change of measure. Risk-minimizing trading
strategies and the associated intrinsic nsk processes are determined for
different types of unit-linked contracts By extending the model to the
situation where certain remnsurance contracts on the insured lives are traded,
the direct insurer can eliminate the risk completely The corresponding self-
financing strategies are determined.
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I INTRODUCTION

Traditional actuaral analysis of hfe insurance contracts focuses on
calculation of expected values of various discounted random cashflows;
the fundamental principle of equivalence states that discounted premiums
and benefits should balance on average for any contract. The corresponding
premium is called the equivalence premium. Similarly, at any time during the
insurance period, the prospective reserve 1s defined as the conditional
expected value of all discounted future benefits less premiums, given the
available information. The development of the reserve 1s described by
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Thiele’s differential equation, which oniginally dealt with constant determi-
nistic interest and deterministic benefits, but has been widely generalized, see
e.g. Norberg (1995) and Norberg and Meller (1996).

With a unit-linked life insurance contract, benefits depend explicitly on a
spectfied stock mdex. Typically, the policyholder will receive the maximum
of the stock price and some asset value guarantee stipulated 1n the contract,
but other dependencies may be specified These contracts have been analyzed
by Brennan and Schwartz (1979), and more recently by ¢ g. Delbaen (1990),
Bacinello and Ortu (1993), Aase and Persson (1994) and Nielsen and
Sandmann (1995). The last of these authors allow the risk-free interest rate
to be stochastic. Various exolic types of contract functions are considered n
Ekern and Persson (1996). Aase and Persson (1994) derive a partial
differential equation for the value of the reserve of a umt-hnked hfe
insurance, which 1s compared with Thiele’s differential equation They also
present duplicating strategies that minimize the nisk of the insurance
company 1n a sense.

All the papers mentioned consider mortality risk as diversifiable or
assume that the insurer 1s “risk neutral with respect to mortality™ and
replace the uncertain courses of the msured hives by the expected. In this
way, the actual nsurance claims, depending on uncertainty within the
portfolio of msured hives and the financial markets, are replaced by similar
claims which only include the financial uncertainty. These claims are then
priced using standard no-arbitrage pricing theory. In the present paper we
provide and exanune a modecl where the uncertainty of a portfolio of lives to
be msured and a certain financial market are described simultaneously, and
consider the problem of hedging the actual claims which depend on both
sources of uncertainty.

The nsurance company issues life insurance contracts with insurance
benefits linked to the price of a specified stock. This stock and one risk-free
asset arc traded freely on the financial market without transaction costs. We
then consider the problem of defining optimal investment strategies. This
situation differs from the case of standard life insurance, where the insurance
company should try to maximize trading gains in order Lo compete with
other companies on redistributions of bonus With unit-linked contracts,
benefits are already hinked explicitly to the development of the market, and
hence are not influenced by the factual gains generated by the imnvestment
strategies of the insurance company. However, by 1ssuing these contracts,
the insurer 1s exposed to a financial risk, and our objective here will be to
minimize this risk. In this paper we will measure the risk associated with the
contracts using the expected value (under an adjusted measure) of the square
of the difference between the insurance benefits to be paid and the gains
obtained from investments.

The insurance contracts are characterized as contingent claims n an
mcomplete model, such that the insurance claims cannot be perfectly
duphcated by means of self-financing strategics The theory of rnsk-
mimmuzation for mcomplete markets introduced by Follmer and Sonder-
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mann (1986) and developed further by Follmer and Schweizer (1988) and
Schweizer (1991, 1994 and 1995) 1s reviewed and then apphed after a change
of measure. With 1ts present formulation, this theory deals with the problem
of hedging contingent claims that are payable at a fixed ime only. The
analysis of more general claims with intermediate payment times would
require an extension of the original theory of Follmer and Sondermann
(1986), a problem which will be addressed 1n a forthcoming paper by Moller
(1998) Thus, nsurance contracts with payments occurring only at fixed
times are analyzed within the original setup of Follmer and Sondermann
(1986), whereas some modifications are needed in order to deal with
contracts where the sum insured falls due immediately upon the death of the
insured. In the present paper, we assume that premiums are paid as single
premiums and that all benefits are deferred to the term of the contract. In
this way optimal investment strategies minimizing the risk (under the
minimal martingale measure) associated with the assigned contracts are
determined. Since the model is incomplete, risk cannot be eliminated
completely by applying these strategies, leaving some minimum obtamnable
risk (called the intrinsic risk) to the insurer. This minimum risk process 1s
determined for different types of standard contracts and is taken as a
measure of the non-hedgeable risk inherent in the contracts.

In Section 2 we present the combined model and briefly mention some
basic results from the theory of mathematical finance. We also introduce the
basic types of insurance claims to be analyzed in the paper Section 3 1s
devoted to a review of the most important concepts of risk-minimization.
Unit-linked hfe insurance contracts by single premium are analyzed in
Section 4. Section 5 deals with the situation where reinsurance contracts are
traded freely on the market. Finally, some numerical results are presented 1n
Section 6

2 THE MODEL

In this scction the two basic elements of the model, the financial market and
a portfolio of individuals to be insured, are mtroduced. We set oul by
presenting the financial market and reviewing some well-known results from
the theory of mathematical finance for complete markets. When extending
the model by also including a portfolio of individuals to be insured, the
market 1s no longer complete.

Throughout, we let T denote a fixed, finite time horizon and consider a
given probability space (2, F, P).

2.1. The financial market

We consider a market consisting of only two traded assets: a stock with
prices process S and 4 bond with price process B. At any time ¢ these assets
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are traded freely at prices S, and B,, respectively. The price processes are
defined on a probabulity space (2, F, P) and are given by the P-dynamics

(IS, = (1(1, S,)S,([l-i—U(I,S,)S,dW,, (2 1)
dB, = r(t, S,)B,dt, (22)

So > 0, By = 1, where W = (W})gc,<7 15 a standard Brownian motion on the
time interval [0, T]. The filtration G = (G,)y,r generated by this economy
1s given by

gl = U{(Sm le)a u < t} = O'{S,,, u < ’}-

A solution to the equation (2 1) exists provided that the functions o and o
satisfy certain regularity conditions, see e.g. Duffie (1996, Appendix E).
These conditions are assumed to be fulfilled henceforth. Furthermore, we
assume that j;)l r.dt exists and 1s finite almost surely.

The process « 1s interpreted as the mean rate of return of S, and o as the
standard deviation of the rate of return. Similarly r 1s called the short rate of
interest and denotes the rate of return of the risk-free asset The process v
defined by v, = (a, — r,)/o, 1s known as the market price of risk process
associated with S. In addition to the assumptions above, we assume that v
satisfies the integrability conditions from Duffie (1996, Chapter 6). With
constant coefficients ¢, o and r, all conditions are satisfied, and we have the
celebrated Black-Scholes model where S and B are given by

Si = Syexp((cv = 3o?) 1+ oW,) ,
B, = exp(r o).

The model above has been thoroughly investigated in the literature of
mathematical finance, see e.g. Duffie (1996), Bjork (1996) and Lamberton
and Lapeyre (1996). Thus some concepts and results from the theory of
finance, needed repeatedly in the sequel, will be quoted without explicit
reference. Also Aase and Persson (1994) give a brief survey of this theory.

Recall that two measures P and P* are said to be equivalent if, for each
set A € F, we have that P(A4) = 01f and only if P*(4) = 0. By definition, the
probability measure P* defined by

* T u— Tu l r u—F 2
o[ () () ) 2o

1s equivalent to P. It can be vertfied that the discounted price process S*,
defined by

'3 !
S} =58,/B, = Soexp (/ (cy — ry) du+ / a,,dW,,), (2.4)
0 0
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18 a P*-martingale. Thus P* 1s called an equivalent martingale measure In the
above model, the martingale measure 1s unique.

A trading strategy or porifolio strategy is an adapted process ¢ = (£,7)
satisfying some integrability conditions (a precise definition will be given 1n
Section 3). At any time f € [0, 7], & and 7, represent, respectively. the
number of shares and the number of bonds held in the portfolio. The value
process V¥ associated with ¢ 1s defined by

V;p =&S + 0B, (2.5)
and the strategy 1s said to be self~financing if

1 !
e =g+ [ eas,+ [ nas,. 26)
JO J0

forall0 <+ < T According to (2 6), any change in the value of the portfolio
1s generated by changes in the underlying price processes S and B. A
contingent c¢laim with maturity T is a random variable X that is Gp-
measurable and P*-square integrable In particular, X 1s called a simple claim
whenever X = g(Sr), for some function ¢ R, — R. We say that a
contingent claim X can be perfectly duplicated if there exists a self-financing
portfolio ¢ such that V¥ = X P-a.s In this case the claim 1s called arramable.
If all contingent claims are attamable, then the market 1s said to be complete;
otherwise the market 1s referred to as mcomplete. A self-financing strategy ¢
s an arbitrage if V§ < 0and ¥§ > 0orif ¥ <0. 7% >0 P-as.and 2> 0
with positive probabnlnty It 1s well- known that the market deﬁned by
(2.1)-(2.2) and filtration G 1s complete and free or arbitrage under the above
mentioned assumptions

Note that if p = (£, ) 1s self-financing and duplicates the claim X, then
we have the following representation from (2 5) and (2 6)

T T
X =&,Sy + By + £.dS, + / n.dB, (27
0 0

The arbitrage-free price process (F(t,S:))gc,<y associtated with a simple
claim specifying the payment g(S7) at tme 7 can now be characterized by
the partial differential equation (PDE)

—i1(1,8)F(1,8) + Fi(t,8) + r(1,5)sF (1, 8) + %a(l,.s‘)zszf'm(t,s) =0, (2.8)

with boundary value (T, s) = g(s) Here, exemplifying a general notational
convention adopted throughout, F(z,s) denotes the partial derivative of
(1, 5) with respect to s, F,,(7,s) denotes the second order partial derivative
with respect to s, and so on.
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The arbitrage-free price process associated with the claim g(Sr) is also
given 1n terms of the unique equivalent martingale measure by

F(1,S) = E° [Cxp<~ /, " du)g(S-r)|g,} . (29)

(Throughout E£* denotes expectation with respect to P*). Thus, the price is
determined by discounting the T-payment with the asset B and then
calculating the conditional expectation under the martingale measure P*.

2.2. The insurance portfolio

In this paragraph we will introduce a model to describe the lifetimes n a
group of individuals. For simplicity, we assume that the lfetimes are
mutually independent and identically distributed. The 11d. assumption
implies that the individuals are selected from a cohort of equal age x, say,
and we denote by /, the number of persons in the group Mathematically,
this 1s described by representing the individual remaining hfetimes as a
sequence 7, .., T;, of 1.1.d. non-negative random variables defined on
(0, F, P). Assuming that the distribution of T; 1s absolutely continuous with
hazard rate function y,,, the survival function 1s

t
p=P(T, >1) = exp(—/ Josr dT) .
0

Now define a univariate process N = (N,)y.,<r counting the number of
deaths in the group; T

N

No=Y T, <),

=1

and denote by H = (H;)yc,.r the natural filtration generated by N,
ic H,=o{N, u<t} By defimtion, N is cadlag (right-continuous with
left-limits) and, since the lifetimes 7, are 11d., the counting process N 1s an
H-Markov process. The (stochastic) mntensity process A of the counting
process N can be informally defined by

E[dN[ l H/_] = (/\ - Nr_)l.b_\+[(/[ = /\1(/[,

the hazard rate function p,,, times the number of individuals under
exposure just before time 1. The compensated counting process M defined by

t
M, =N, —/ Adu (2.10)
0

1s an H-martingale
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2.3. The combined model

Now ntroduce the filtration F = (F,).,«r generated by the economy and
the insurance portfolio, that is T

]'-, - g[ \% Hl-
We assume throughout that Gr and H 7 are independent and take
F=GrVo{l(T, Su),0<u<T, i=1,.,L}.

At time 0 the insurance company issues an insurance contract for each of the
{, individuals. These contracts specify payments of benefits and premiums
that are contingent on the remaining hfetime of the policyholder, and are
linked to the development on the financial market. During the period [0, 7
the company 1s allowed to trade the assets B and S freely (without
transaction costs, taxes and short sales restrictions) based on the complete
information F Furthermore, we allow for continuous rebalancing of the
portfolio of stocks and bonds in order to hedge against the msurance claims

In the following, we present the two basic forms of insurance contracts to
be analyzed in this paper: the pure endowment and the term insurance. With a
pure endowment contract, the sum msured 1s to be paid at the term 7 i1f the
insured 1s then sull alive. The sum 1s of the form g(S7) for some continuous
function g stipulated 1n the contract, thus depending on the price of the risky
asset at time 7. Some specific functions will be considered as examples, e g.
g(s) = s and g(s) = max(s, K) which are known from the literature as puie
unit-inked and wnir-linked with guarantee msurance policies, sec Aase and
Persson (1994). For each insured person the obligation of the insurance
company 1s given by the present value

H, = I(T, > T)g(St)B7! = I(T, > T)g(Sr)e” o " @2.11)

Here we have adopted widely accepted actuarial usage of the term present
value, 1t 1s taken to be the payments discounted using the bond price process
described by (2.2) Thus, the present value 1s an Fy-measurable random
variable. This usage may bc at variance with the economical one, where
present value typically refers to an Fy-measurable value. The entire portfohio
generates the discounted claim

1,
H =g(ST)B7' > (T, > T) = g(S7)B7' (I, - Nr), (212)

1=1

where (/, — N+) 1s the number of survivors at the end of the insurance
period It should be noted that the undiscounted mnsurance claim H B taken
from (2.12) 1s a function of Sy and Ny only. Insurance claims that are
payable at ime 7 and are functions of S7 and N only will be called simple
T-claums, whereas more general insurance claims payable at time T arc
denoted (general) T-claims
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The term msurance states that the sum msured 1s due immediately upon
death before time T. In this case, we consider a time dependent contract
function g, = g(¢, S;). By the definition of the contract, payments can occur
at any time during [0, 7] and obligations generated by such contracts do not
form T-claims without mtroducing special assumptions. A simple way of
transforming the obligations into a (general) 7-claim 1s to assume that all
payments are deferred to the term of the contract and are accumulated with
the nsk-free rate of interest r. With this specific construction, the heirs of a
policyholder who died at time ¢ would receive the benefit g(¢, S,)BrB, ! at
time T. The deferred payments could as well be accumulated differently, for
example by using some deterministic first order interest rate 6 or by investing
g(t,S;) according to a predefined strategy. These ways of modifying the
contracts by deferring the benefits might seem most reasonable for contracts
with short time horizons, say one year Although time horizons associated
with traditional life insurance contracts are typically much longer, we will
assume that the benefits are actually deferred to the end of the insurance
period. The nsurer’s habilities in respect of a portfolio of term insurance
contracts with payments that are deferred and accumulated using the riskless
asset B are now described by the discounted general T-claim

IN IA T
Hr=B7'> ¢(T,,Sr)By'BrI(T, < T) = / g(u, S.) B dI(T, < w),
=1 =1 70
which can be rewritten as an integral with respect to the counting process N:
T
Hy = / ¢(u1.5.)B. " dN, (2.13)
Jo

Various other insurance contracts can be obtained as combinations of the
pure endowment and the term insurance. For example, with the endowment
insurance, the sum nsured 1s payable at the time of death of the insured
persons or maturity, whichever comes first. The present value of this claim 1s
a sum of (2.12) and (2 13). Throughout, we assume that premiums are paid
as single premiums at ume 0. Thus, the present value of all premiums 1s
simply = = [, - m, where = is the single premium paid by the insured.

In Section 2 1 1t was pointed out that in the complete market every
contingent claim can be represented as an integral with respect to the price
processes S and B, see (2.7). As we will show later, this property 1s not
preserved when the model consists of the assets (B, S) and filtration F
Intmuvely, this follows from the fact that the claims (2 12)-(2 13) are not
generated by the price processes (B, S) alone since the uncertainty
concerning the insured lives contributes essentially to the final outcome of
the claims
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We end this section by discussing choice of martingale measure in the
combined model. For any H-predictable process 4, such that # > —1, define
a likelthood process L by

dL, = L,_h,dM,, (2.14)

and nitial conditional Ly =1 Provided that Ef[L7], a new probability
measure P can be defined by

(—=UT-LT, (215)

where Uy 1s given by (2.3). Using the definition of the measure P and the
independence between N and (B, S) under P we see that §* defined by (2.4) 1s
also a P-martingale: for u < ¢ we have

E[S;UrLr|F.] _E[S;Ur|F.] E[Lr|F.)

Bl = g Lo~ ElOnE LA

E*[S*If”] = u’

using that $* 1s a P*-martingale, and so cach P 1s an equivalent martingale
measure. Due to this non-uniqueness of the equivalent martingale measure,
contracts cannot 1n general be priced uniquely by no-arbitrage pricing theory
alone Actually, all prices

n(P) = E’[H)

for the claims (2 12)-(2.13) obtained by admissible choices of /1 are consistent
with absence of arbitrage. Furthermore, (8, S) and N are independent under
P and, by the Girsanov theorem, the process M” defined by

!
M'=N, - / (1 + by )ddu
0

i1s an (F, P)-martingale. The term Ly in (2.15) essentially changes the hazard
rate in the model to 1., (1 + f1,). In particular, the measure P* defined by
(2.3) can be obtained from (2.15) with # =0 Note that the change of
measure form P to P* does not affect the distribution of N and that M is an
(F, P*)-martingalc.

Throughout this paper we will apply the specific martingale measure P*
defined by (2.3) which 1s also known as the munumal martingale measure, cf
Schweizer (1991, 1995) This particular measure 1s normally appled to
pricing of umt-linked contracts, the motivation being the nsurer’s risk
neutrality with respect to mortality, see e.g. Aase and Persson (1994). Thus,
we consider the probability space (2, F, P*) endowed with the filtration F.
Note that F 1s equivalently generated by the P*-martingales $* and M:

Fr=o{(S;,M,), 0<u<t}.
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In the analysis below, we could equally well apply any of the martingale
measures P defined by (2.15) for adnmussible choices of /i In this case we
would obtain similar results with the hazard rate function p replaced by
(1 +h)p and M replaced by M". However, there do exist martingale
measures which do not preserve independence between (B, S) and N, and
such choices of martingale measures would certainly complicate calculations
in Section 4 greatly.

3. A REVIEW OF RISK-MINIMIZATION

In the previous section, a model describing a financial market and an
insurance portfolio was introduced. It was pointed out that this market is
incomplete 1n the sense that contingent claims cannot in general be perfectly
duplicated by means of self-financing strategies. In this section, we briefly
review some results on the theory of rnsk-minimization, dealing with
incomplete as well as complete markets.

Follmer and Sondermann (1986) extended the established theory for
complete markets to the case of an incomplete market. By introducing the
concept of mean-self-financing strategies they obtained optimal strategies n
the sense of minimization of a certain squared error process. In Follmer and
Schweizer (1988) a discrete time multiperiod model was examined within this
set-up, and they obtained recursion formulas describing the optimal
strategies The theory has been further developed by Schweizer (1991,
1994). Féllmer and Sondermann (1986) originally considered the case where
the original probability measure P is in fact a martingale measure. Schweizer
(1991) mtroduced the concept of local risk-muumization for price processes
which are only semimartingales and this criterion was similar to performing
risk-minimization using the mimimal martingale measure P*

Recall the space (2, F, P*), filtration F and the (F, P*)-martingales $* and
M. The deflated value process V'* 1s defined by

V;*"sz;"B,“lzg,S,*-|—77,’ (3.1

where V% 1s given by (25) From Folimer and Sondermann (1986) and
Schweizer (1994) we have a shightly modlﬁed definmtion of strategies and the
value process. Introducing the space £2(P%) of F-predictable square-
integrable processes £ satisfying

* TZ *:|
E[/O £d(s"),| < oo

they state-
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Definition 3.1 An F-strategy is any process o = (§,m) with £ € Cz(Pg) and n
F-adapted such that the (deflated) value process V¥ s cadlag and
Ve e L2(P*) for all 1.

The cost process C¥ associated with the strategy « s defined by

!
=V’ - / £.dS;, (3.2)

0

and the risk process R of o 1s defined by
Rf =E*[(CF - CYIF,] . (33)

In this definition, the notion risk process is attached to the conditioned
expected squared value of future costs. This usage differs from the
traditional actuarial one, where “‘risk process” would typically denote the
cash flow of premiums and benefits

The cost C¥ 1s the value of the portfolio less the accumulated income
from the asset S. The total costs C/ incurred in [0, r] decompose into the
costs incurred during (0, ¢] and an imtial cost CJ = V¥, which typically 1s
greater than zero. A strategy s said to be mean-self-financing |f the cost
process C¥ = (CY)oc,<7 15 an (F, P*)-martingale. Furthermore, 1t should be
noted that the strategy ¢ = (£,n) 1s self-financing 1f and only 1f

Ve = Vet / £.dS?,

that 1s, 1f and only if C7 = C§ = V¢ P*-as.

Let us now turn to the problem of characterizing the optimal strategies.
We consider a general contingent claim specifying the Fyr-payment H at
time T and focus on adnussible strategies ¢ satisfying

Ve =H as.

By means of admussible strategies, the hedger is able to generate the
contingent claim, but only at some cost defined by C%. In particular, for
attamable claims, C¥ = C§ = V¥ 1s known at time 0.

As a first result, adn11551b]e strategies mimimizing the mean squared error
RY defined by (3 3) are determined. For any admissible o we have

)
co= vy / (ST = H— / £.dS", (3.4)
0

hence

T 2
R =E[(CF-Cpy] = [(H - / £,dS? — Cg’) } . (3.5)
0
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and so Ry 1s mimmized for C§ = E*[H| (= E*[C7]). Thus, we should choose
£ so as to mintmize the vanance

E'[(ch - E(cf) (3.6)

This criterion does not yield a unique strategy, but it characterizes an entire
class of strategies all mimimzing the mean squared error (3.5). The non-
uniqueness of the optimal admussible strategy 1s a natural consequence of the
simple criterion of minimizing (3.5), which involves only the value of the cost
process C¥ at time T, given by (3.4) Furthermore, note that H = £7S% + 07,
which does not depend on (7)yc,c7- Thus, we should not expect the
minimization criterion associated with the squared error (3.5) to impose any
constraints on the number of bonds held in the time nterval (0, 7).

The construction of the strategies is based on an application of the
Galtchouk-Kunita-Watanabe decomposition, see Follmer and Sondermann
(1986). Defining the nrincic value process V* by

Vt* = E*[H|‘F1] )

and noting that V* s an (F, P*)-martingale, the Galtchouk-Kunita-
Watanabe decomposition theorem allows us to write V' umquely in the
form

!
Vv =E'[H] +/0 elhass + LY, (3.7)
where LY = (L"), .7 1s a zero-mean (F, P*)-martingale, L” and S* are

orthogonal, and ¢# is a predictable process in EZ(PE). By applying the
orthogonalty of the martingales L” and S*, and using V= H, Follmer and
Sondermann (1986, Theorem 1) prove.

Theorem 3.2 (Foéllmer and Sondermann) An adnussible strategy ¢ = (€,7)
has muumal variance

B [(cp—mieny] =& [@h)]
of and only if € = €1,

Note that 1f, furthermore, the number of bonds held at time 0 1s determined
such that the initial value of the portfolio equals E*[H], 1.

no = E"[H] — &Sg,

then Ry = E° [(C?;—E*[Cﬂ)z]. Thus, the variance is interpreted as the

minimal obtainable risk.
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A more precise result 1s obtained by looking for admissible strategies,
that 1s V¥ = H, mmimizing the remamning risk, defined by RY at any tume 1.
Such strategies are said to be risk-nunimizing. Now fix some admissible
strategy v When considering the remaining risk RY at some point in time ¢,
only admissible strategies ¢ coinciding with ¢ in the interval [0, 1) should be
compared. This condition ensures, that the cost processes are given by the
same value C¥ = C7 al the ume of consideration In this case the strategy @
1s said to be an adnussible continuation of ¢ at time ¢, see Follmer and
Sondermann (1986) for more details. The risk-minimmizing strategy,
minimizing the risk process (R} )oc,<7 1s determined by Follmer and
Sondermann (1986, Theorem 2). T

Theorem 3.3 (Follmer and Sondermann) There exists a unique admissible
risk-nuninuzing strategy o = (€,m) given by

(Enm) = (€M, vV —glishH, 0<e<T
The associated risk process is given by RY = E* [( LI — L1 ]:,}

The nisk process associated with the risk-minimizing strategy 1s also called
the wntrinsic risk process

4. UNIT-LINKED CONTRACTS WITH SINGLE PREMIUM

In this section, we apply the technique of risk-minimization in the
investigation of the insurance contracts introduced n Section 2. An
important step will be the construction of the decomposition (3.7) of the
present values (2.12)-(2.13). Having determined this, risk-mimnimizing
strategies and the intrinsic risk process associated with the pure endowment
and the deferred term insurance contract can be determined by Theorems 3.2
and 3.3.

From the classical actuarial theory it 1s known that in the case of fixed
premiums and sum insured, the “‘relative risk” associated with the portfolio
decreases as the size /, of the portfolio increases. More precisely, this means
that the ratio between the standard deviation of the present value of all
payments and the size of the portfolio /, will converge to 0 as /, 1s increased
In the present set-up, we cannot expect such results since the payments
associated with different insurance contracts are now hinked to the same
asset and hence are no longer stochastically independent. However the initial
intrincis risk Ry can be taken as a measure of the nisk associated with
the non-hedgeable part of the claims, and we will accordingly examine

the ratio Ro//,



30 THOMAS MOLLER

4.1. The pure endowment
Consider the claim with present value H in (2.12);
H = g(Sr) B! (I = N7), “@n
and define the (deflated) intrinsic value process V* = (V) <1 by
Vi =EH|F],

for all ¢ € [0, T]. Due to the stochastic independence between N and (B, S)
under P*, we get

Vi =E(h - Nr)|F)B'E [¢(ST) BB | F] (4.2)
Here, the first faclor 1s eastly determined as

=Y BT, > T)|T, >

1 Ty>t

l,
E*[(l\ - NT)lfl] =FE" [Zl(ﬂ > T)‘]:I
=1

= Z T—tPxt+r = (/\ - N/)T_,P.H-h

1 T,>t

that 1s, at any time ¢ the expected number of individuals alive at the time of
maturity 7 1s simply the number of survivors at time ¢ multiplied by the
probability 7_,p.,, of survival to T for an individual, conditional on his/her
survival to t. The second factor in (4.2) corresponds to the representation
(2.9) of the unmque arbitrage-free price process associated with the simple 7-
claim g(S7) in the complete model with filtration G. In the present model,
the insured lives are included in the filtration F, and arbitrage-free prices are
in general not unique. However, as N and (B, S) are stochastically
independent, the conditional distribution of (B, §) given F, does not depend
on information concerning the insured lives H, and thus

E [g(ST)B,B}'U:,] =E" [g(ST)BtB;Ing:I = F*(1,S,),

where the function F¥(r,s) satisfies the same second order PDE as 1n the
complete case (2.8). Consequently, we arrive at the expression

Vi=(h- N’)T—lp"HBI—‘Fg(” Si). (4.3)

The process ¥* can be interpreted as the market value process assoctated
with the entire portfolio of pure endowment contracts, using the pricing rule
P*. In particular, the mtial value Vj=/rp.F8(0,S) 1s a natural
candidate for the single premium for the entire portfolio. This specific
choice of single premium would be 1n accordance with the well established
actuarial principle of equivalence (stating that premiums and benefits should
balance on average), but exercised under the martingale measure P*
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Applying the 1t6 formula to (4.3), we get

!
V,* =V5 +/ (/\ - Nu—)B,?ng(uaSu)T_,lp\+11/14\+udu
0

b [ = M) B 80+ 3 (V2= VL),

O<n<t

To determine the integral involving d(B; ' F&(1,S,)), recall the definition of
the deflated price process S7 = §,B;"', implying that

dS, = S:dBI -+ B’(IS:( == S,i',([/ + B,[IS;.
Using the Ito-formula and the PDE (2.8). 1t 1s seen that
d(B7'F8(1,8)) = —r(t, S))B F¢(1, S,)dr

|
+ B! <F,"'(t, Sodi + FY¥(t, S,)dS, + 5 FE(t, S)o (1, 51)25,2(”>
= F&(1, S,)dS;
Also, since
I
S =V == [ B P S s N
O<u<t 0

we obtain.

Lemma 4.1 For the conungent claim H m (4.1) the process V* defined by
Vi =E*[H|F/] has the decomposition

= Vi + /g”ds* / vitam,,

where (1,011 are given by

7=l = N rop s FR(1,S)), (4.4)
v = =B F8(4,8) o s, 0S 1S T (453)

Admissible strategies minimizing the variance

B |(CF - B [Cf))] (4.6)
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can now be characterized by applying Theorem 3.2 and Lemma 4.1. By use
of the Fubimi theorem, the associated minimum obtainable variance 1s
rewritten as

oL 20 -t

T
=F [/ B F (20, 8u) 7 _ ‘p\+,,) /\,,du}
0

T
/ E‘ B Fg u S,,)) ] r_,,pf+,,E*[(/\ _Nll),u‘.\-i-u] du
0

T

= E* B Fs Ll Su)) } T—up_%_;_,, IN uPx Bntu du

=/ TP\ / E* [(B,,—IFg(uasu))z] T—uPstu tr+u du (4 7)
JO
Thus we have obtained

Theorem 4.2 Consider the pure endowment given by the conungent claim H in
(4 1). Adimussible strategies ¢* puninuzing the variance (4 6) are deternuned
by
E,* = (1\ - N,_) r- 1/7\+1F\g(f751)7 0<t LT,
np=H - ST

The muumal variance is given by (4.7)

The insurance company 1s able to reduce the total risk associated with the
portfolio of unit-linked insurance contracts to the “intrmsic nsk™ R, by
following a strategy according to Theorem 42 which also satisfies
Cy = E*[H] In particular, it 1s seen that R} is proportional to /,, implying

that the ratio between /Ry and /, converges to 0 as /, converges to infinity

Before determining the unique risk-minimizing strategy, we present one
specific strategy from Theorem 4 2, see Follmer and Sondermann (1986,
Example 1).

Example 4.3 We shall present one strategy ¢ that does not require any extra
investments during the time interval (0, 7). It 1s self-financing on (0, 7T),
followed by a possible extra payment at time T Define the strategy by

=67 0<1<T, (4.8)

n = E*[H] + / £dS: — 68, 0< 1< T, (4.9)



RISK-MINIMIZING HEDGING STRATEGIES FOR UNIT-LINKED LIFE INSURANCE CONTRACTS 33

and nr = H — {rS%. By definition, this strategy 1s self-financing on the
interval (0, 7). Substituting the decomposition of A from Lemma 4.1 into
the expression of 77, we gel

T T
mr=H =Sy =B [0+ [ elasi+ [ vllas, - grs;
JO [}

Likewise we have from (4.9) that

T— T
nr- =E*[H] + ST — Er_Sh_ = E'[H] + / £.dS” — £7 83,
0 0

which proves that

T
nr —Nr- = / l/lfla'M,, = L;’
JO

Thus, the loss L¥ 1s an extra payment/investment to be made at tume 7 in
order to satisfy the condition of admissibility.

The vanance-minimizing trading strategy in Example 4.3 represents a very
simple dynamic portfolio strategy from the point of view of the insurer.
According to this strategy he i1s to make an imitial investment at time 0 in
stocks and bonds. During the time interval (0, 7) this portfolio 1s then
adjusted continuously without any additional inflow or outflow of capital as
defined by the equations (4.8)-(4 9) At the term T the insurance company
now provides the difference LY between the claim H and the value V%_ of
the portfolio However, there are reasons why this strategy should not be
applied. Indeed, 1t does minimize the variance or the imtial ntrinsic risk, but
at any time 7 during the insurance period the value V¥ of the portfolio will 1n
general not equal the conditional expected present value of the claim V.
Since this difference may be substantial due to adverse development within
the insurance portfolio, one should at least require that the value of the
portfolio equals ¥} n order to cnhance the solvency of the insurer This
additional requirement, n addition with the mimimal vanance criterion, 1s
actually sufficient to determine the unique risk-minimizing strategy . The
assoclated intrinsic nsk process 1s described in Theorem 3 3, and we get

T 2 T
E* [(L’Tl - L,H)2 [ .7:,] =FE [(/ V,?(/M,,) |.7-',] =FE* [/ (uf)z/\,,du|.7i]
1 H
r 2
_ / B [ B [0 = Nl 7]

' T
=(/, - N,)/ E* {(Vl’ll)2|]-",] u—tPrtr fata du. (4.10)
H
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From Theorem 3.3 we now have:

Theorem 4.4 For the pure endowment given by the contingent claim (4.1) the
unique adwussible risk-nunimizing strategy s grven by

fr = (l\ - Nl—) T—Ip\+-IFyg(I)Sl)1
n; = (L — N T—rP.\+tB,_1Fg(fa S)—-¢S8;,0<:1<T

The ntrinsic risk process R? s given by (4 10)

In the model the insurance company 1s allowed to trade the assets S and B
continuously, thus being able to hedge all contingent claims involving these
assets only. This eliminates a part of the total uncertainty, leaving only the
uncertainty of “'not knowing how many of the insured persons will die in the
insurance period”. The latter 15 described by the martingale M, which
generates the insurer’s loss L.

dL!" = vdM, = — B F5(1,S,) 7_per(dN, — \dlt). (4.11)

The insurer adjusts his trading strategy according to the conditional
expected number of insured persons surviving the insurance period. During
the infinitesimal time interval [¢, 1 + dr) the insurer will experience the gain
dM, muluplied by the term B[ 'F#(1,S,) 7_,p.s, ., the latter denoting the
price at time ¢ of one security with payment g(Sr) at time T contingent on
the survival of some individual That s, a death will produce an immediate
gain for the insurer due to the downwards adjustment of the expected
number of survivors, whereas no deaths will cause a small loss The
expression (4.11) for the loss 1s similar to the one obtained by Norberg
(1992) for general payment streams., using a quite different approach. With
this terminology, the term (v B,) 1s recognized as the sum at risk at time 1.

We now turn to some examples in the case of constant deterministic short
rate of interest, constant drift term «, and volatility parameter o on S. We
will investigate three different contract functions: pure unit-linked, where
g(s) = s; unit-hnked with guarantee, where g(s) = max(s, K); and the case of
deterministic benefits, g(s) = K

Example 4.5 Consider a standard Black-Scholes market, where all
coefficients r, @ and o are constant. Let the contract function be of the
simple form g(s) = s, 1e. the insured 1s to be paid the value of the stock at
the maturity date. In this case, the process (F4(t,S/))o<,<7 1S easily
determined as T

F8(1,S,) = B [e—'(T-'>ST|f, _s,
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implying that F8(¢, S;) = 1. The intrinsic value process 1s
V,* = (/\ - Nz) T—tPr+1 e"'S, = (/_\ - N1) T=1P\+1 S,*;

and n particular V§ =/, rp. §;. From Theorem 4.4 we have the unique risk-
minimizing strategy

(&,m) = (= Ni2) 72Prg, = AN, T2 ST ) (4.12)
where AN, = N, — N,_. Finally, we have thec aggregated loss

T
L“ = — / S:; T—uPv4u dMu:
J0

and the intrinsic risk process

T
Rllp = (l\ - NI) T—Ip\+I/ E* [(S;)2|]:I] T—ull\+u Hatu du
1

T
= (/\ - N/) T—I/)\+I(Sl*)2/ (')02(”_[) T—1Px+u Hadu du
/

The risk-minimizing strategy given by (4.12) 15 casy to interpret: at any time 7
the nsurance company should hold a number of stocks, corresponding to
the expected number of surviving individuals Since the number of stocks is
controlled by a predictable process &, some adjustments are made each time
a death occur within the portfolio in order to ensure that ¥ = V7 for all +.
This 1s described by the adapted process 1), which denotes the amount to be
cashed by the insurance company n connection with the observed death.

Example 4.6 Now consider the contract function g(s) = max(s, K), where K
1s some non-ncgative constant. Note, that K = 0 1s just the case treated
above in Example 4.5 As n the previous example, prices are described by a
standard Black-Scholes market.

Writing the contract function max(s, K) on the form K + (s — K)", the
process (F4(1, S))g<,<7 can be evaluated by means of the well-known Black-
Scholes formula

Fe(1,S,) = E* [e"(T"’)(K +(S7 - K)+)]f,]
= K70 4 (S,<I>(z,) — Ke 108 (z, —oV/T = 1))
:Ke"(T_’)<D(—z,+a\/T—f> + S,8(z,), (4 13)

where ® 1s the standard normal distribution function and

__log(Si/K) + (r +a*/2)(T = 1)
o oVT — 1 '
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In particular, the first order partial derivative 1s F#(r, S;) = ®(z,). Thus, the
risk-minimizing strategy 1s given by

&= =N_) roipsi®(z0), (4 14)
m = (I.\ - N/) T—tP+r e_”Fg(’a S:) - (/.\ - Nl—) T—IP\+I(I)(T-'1)S,*

=, = N;) 7=tDvss Ke"’Tq)(—z, +ovVT - r>
— AN; 7opr 1 ®(20) ST (4 15)

and the intrinsic risk process R¥ 1s now given by

T
R:p = (l\ - Nl) T—I/)\+I/ E* [(efrqu(u,S”))Zl]_-Ijl T =1 4u Pxtu ([ll,
!
with F¥ defined by (4.13).

Example 4.7 As a last example, consider the case of deterministic benefits,
that 1s g(S7) = K for some non-negative K. Here, the risk-minimizing
strategy 1s given by

(&) = (07 (k= Ni) 7P Ke _IT) > (4.16)

and the ntrinsic risk process 1s

T
R? = (. = N;) 7_uPvis / K2e™ T r_up i g dut
S

=/ -N) T—rP\+f(1 - T—Ip\+t)K20~2rT-

In Example 4.5-4 7, we have determined risk-minimizing strategies for three
different contract functions, 1in the setting of a standard Black-Scholes
market. The strategies are associated with an entire portfolio /,; single-hfe
strategies are obtained by specializing to /, = 1. For example, the strategy
(4 14)-(4.15) for a single life becomes

E=1(T > 1) r_ipas®(2)), (4.17)
m=1(T) > 1) T_,p_\+,Ke_’T<I>(~z, +ovVT — t)
—I(Th =1) 7-p 2 2(2,)S], (4.18)

and the intrinsic value process is
Vi=IT >1t) T_,p\+,(Ke_’T<I)<—z, +oVT — I) + Sf@(z,))
The process V* 1s in a sense similar to a traditional prospective reserve. First,

an indicator function appears, which guarantees that the reserve 15 only
different from zero as long as the policyholder 1s still alive. The rest of the
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terms are interpreted as the conditional expected present value of the
insurance benefit, given the policyholder 1s alive at 1. Provided that the
policyholder survives to the matunty date, that 1s 77 > T, the nsk-
minimizing strategy (4 17)-(4 18) for a single life reduces to the strategy

(5?777?) = <T—1P\+I‘I’(31), T—IP.\+1K€_'T(I)(—ZI + U\/T—“—f>),

which 1s exactly equal to the corresponding duplicating strategy obtained by
Aase and Persson (1994). The result (4.17)-(4.18) 1s to be interpreted as
follows: As long as the policyholder 1s alive, the insurance company should
hold a portfolio, where the number of stocks 1s determuined as the probability
7P+ Of survial to T conditioned on survival to 1 times the factor ®(z,); the
latter 1s recognized as the hedge from the Black-Scholes formula of a
European Call Option. If the policyholder dies before the maturity date 7,
the insurer immediately cashes the reserve, as is apparent in the definition of
7. These interpretations are easily carried over to the situation where the
insurance portfoho consists of more than one individual In this case, the
numbers of stocks and bods held are adjusted in accordance with the
conditional expected number of survivors to T, that is (/\ — N))_pups
Thus, the nsk-minimizing strategies reflect the actual development in the
msurance portfolio, and bring to the surface the uncertainty associated with
the insured lives. For example, we obtain expressions for the intrinsic rnisk
processes, which serve as characterizations of the non-hedgeable risk
imherent 1n a portfolio of unit-linked contracts. In Section 6 we present
some numerical results 1n the set-up of Examples 4.5 and 4.6 obtained by
Monte Carlo simulation.

4.2. Term insurance

Now consider the term msurance with single premium 7* paid at time 0. The
payments generated by this contract are described by the discounted claim

T
HT=/ g(u, 8,)B;dN, (4.19)
0

An mmportant step s the construction of the decomposition for the intrinsic
value process for Hy First of all, observe that

t T
Ve =EH7|F) = / g(u, S,)B; dN, + E* [ / g(u, S,)B;'dN,| F,
0 !

I T
- / e(u, S) B dN, + / B (1, S) (1 = N et fisa dit
0 4
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where

Fo(1,8) = B | g0, 8,) | G,

1s the umque arbitrage-free price at time ¢ of the simple u-claim g(u, S,;) 1n
the complete model with filtration G. Secondly, by calculations similar to the
ones in the previous section, we see that

d(B;'F&(1,S,)) = F&(1,S,)dS;

Using the general It6 formula and the Fubim Theorem for It processes, see
Ikeda and Watanabe (1981), V* can now be rewritten as

1
Ve= v} +/ (=B7 ' F¥ (7, Sr)paer (I = Ny)) d
0

t T
+/ (g(T, ST)BT_I - / BT_IF "(Tu ST) u--rp\+'r/1'.\+udu> dN‘r
0

JT

1 r
+ / </ B:ngu (7', ST) u~7‘p\+'r,u'\+ud“) (l\ - NT—)/".\'+T(]T
J0

T

l T
+ / ((/\ - N‘r~)/ F?" (Tu S‘r) II—TP\'+T/‘[‘,\'+Hdu) dS-,*—
JO T

Upon gathering terms, and using F#/(t,S,) = g(t,S;), we obtain a decom-
position corresponding to Lemma 4 1:

Lemma 4.8 For the claim Hy i (4.19) the process V* defined by
V! =E"[Hr|F/] has the decomposition

=V;+ /f”dS* / vl am,,

where (€1, 0") are given by

T
pr = (,\ _NI—)/ tu—tPa+e /l,‘+,, (’ S:)d (420)

l/[H :g(’asl)Bl_l - / Fg'(’ S) t u—t Pyt ftu du (421)

St
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Using Theorem 3.3 we have now proved:

Theorem 4.9 For the term nswance given by the contingent claim (4.19) the
umque admissible risk-nuninuzing straregy is given by

T
{,* = (/\ - N{—)/ F;g"(f’ S[) w—1P\+1 Ha+u d":
'

! T
777‘ = / g(L[, S”)B;l(/N” -+ ([\ - N,)/ BI—IF‘E"(f, S/) u—tPatt fotu du
JO t
_51*51*7 OS’S T.

The mtrmnsic risk process R¥ is given by

T
R = (= N) [ B [WIVIF] aeaposs s
JI
where v 1s taken from (4 21).

To give the resulting portfolio an interpretation, note that ¢ = (£,7) 1s
determined such that

' T
vt = [ gl 5087 N, + B [ | ews)Bam|7,
0 !

Thus, V7 1s determined as the sum of the benefits sct aside to deaths already
occurred and the expected discounted value of payments associated with
future deaths

As in the case of the pure endowment, the term v/ denotes the immediate
loss due to the death of one of the insured persons. Here, the insurer has to
set aside the sum insured g(1,S;) immediately upon a death within the
portfolio at time ¢. In connection with the incurred death, the insurance
company adjusts 1ts expectations regarding the further development of the
msurance portfolio. Since the number of survivors has been reduced by one,
the insurer now reduces his reserves by the amount

T
/ Fg“(’v SI)BI‘I u—tPa+1 frtu du,
'

which 1s the expected discounted value of future payments conditional on
survival to time ¢.

Example 4.10 Consider a unit-hinked term insurance contract with guarantee
in the case of a standard Black-Scholes market. Let the contract function be
on the form g(u,s) = max(s, Ke®), that 1s the guarantee 1s adjusted in
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accordance with some constant force of inflation § The functions F®«(1,s)
are determined by

Fo(1,8,) = Kee~r =0 (-:E"’ + o= z) + 8,3(z"), (4.22)
with
) _ log(Si/Ke™) + (r + 0*/2)(u — 1)

<t

ovu—1

Using Theorem 4.9 we find the risk-minimizing strategy

r
&=(h— N/—)/ u—tP\+i ;L\+,,(I)(:'$“))du,
{
T
= (I, —N,) / u—t1Pra+1 M\-+11Ke_(r_b)"¢’(_:5u) +ovu—1t)du
!

! T
+ / ¢(u, S,)B;'dN, — AN, / wiPrst @ (=) S*du.
0 Ji1

The intrinsic risk process 1s also determined by that theorem upon inserting
the functions F% from (4 22) in (4.21).

5. EXTENDING THE FINANCIAL MARKET

In the previous sections we have analyzed a model where the financial
market consists of two assets only, namely a risk-free asset B (the bond) and
a risky asset S (the stock). That model, which also describes the development
of a given portfolio of insured lives, is incomplete. We considered two
different basic types of insurance products, and in both cases risk-
minimizing strategies were constructed and the corresponding intrinsic risk
processes were determined. Due to incompleteness, the risk could not be
eliminated completely and thus some uncertainty regarding the course of the
insured lives in the portfolio (the intrinstc risk) remains with the insurance
company.

The present section is devoted to a brief investigation of the situation
where the financial market 1s extended by a third tradeable asset that is
related to the specific insured lives. As in Section 4, focus will be on the pure
endowment, but all results can be repeated for the term msurance and the
endowment surance as well. Furthermore we restrict the analysis to the
case where the risk-free interest rate r 1s assumed to be constant.

In addition to the assets (B, S) with prices processes defined by (2 1) and
(2.2), respectively, we introduce an asset with price process Z = (Z,)y<, <7
where T

Z,={l, = N/) r-iD e e~ 0, (5.1)
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The mitial value Zy = /, 7p, ' 1s equal to the price at time 0 of /, standard
pure endowment contracts with sum insured | calculated on a valuation
basis consisting of the mortality hazard function j¢, and the risk-free interest
rate r. Assuming that premiums are paid as a single premium at time 0, Z,
represents, at any time 0 < ¢ < T, the traditional prospective reserve for the
portfolio. This reserve 1s calculated as the conditional expected value of
future benefits, given the current number of survivors (/, — N,). The
introduction of this extra investment possibility 1s motivated by the existence
of remsurance markets, where the direct insurer 15 able to reduce his total
risk by selling some part of the insurance portfolio. Trading on the
reinsurance markets will typically be controlled by certain restrictions such
as short-selling constraints and upper limits for the amount reinsured.
However, in the present formulation we do not impose any restrictions on
the trading of any of the three assets

As an example, let us now consider an insurer facing the contingent claim
arising from the portfolio of pure endowment unit-linked contracts with sum
insured g(St) for the portfolio, that 1s

H = (I, — N7)B7'g(St), (52)

and assume that the msurer 1s allowed to trade continuously on the extended
market (B, S, Z) Note that the asset Z depends on the uncertainty from the
insured lives only and evolves independently of the other assets (8, S). The
insurance claim H, however, depends on both sources of uncertainty.

Define the deflated price processes S* and Z* by §* =S§/B and
Z* = Z/B, respectively. In this new setup a trading strategy 1s a sufficiently
integrable process ¢ = (£,9,n), where & and ¢ are F-predictable and » 1s
F-adapted. At any time ¢, 9J,, & and 1, are the number of units held of
standard pure endowment contracts, stocks, and bonds respectively, and the
(discounted) value process V¥ 1s now given by

V=¢8I +9,Z +n,

We set out by verifying that the measure P* defined by (2 3) 1s a martingale
measure for $* and Z*. It already follows from the calculations in Section 4
that §* 1s an (F, P*)-martingale, and the process Z* 1s obviously also an
(F, P*)-martingale, stnce

(/\ - N/) T—tPrdt = E*[([.\ - NT)lfl] .

From the decomposition for the intrinsic value process V* for (5.2) and a
similar representation result for Z* with respect to M, we obtain

t !
V= v+ / £1dsS? + / 9Haze,
JO 0
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with
(6,01 = (L = Neo) rop o FE(L S, TR, S)). (53)

The intrinsic value process V* has now been rewritien as a sum of two
integrals with respect to the price processes S* and Z* This implies that the
contingent claim H associated with the pure endowment can be replicated by
means of self-financing strategies in terms of the three assets (B, S, Z). We
can summarize this result by

Theorem 5.1 Consider the pure endowment with present value (5.2) and
assiume that standard pure endowment contracts with sum msured 1 are traded
freely on a financial market with constant short rate of wmteresi. A self-
financing admussible (risk-mimmizing) strategy o* 1s given by

5; = (/\ - Nl—) T—/P\uFf(’aS/)a (5 4)
19;. — el(T I)Fg(l,S,), (5 5)
W=V S -0, 01T (5.6)

Furthermore, the intrinsic risk process R” is identically 0.

The msurer 1s now able to eliminate the risk associated with the insurance
claims completely by following a strategy in accordance with Theorem 5 1

According to this result. the insurer should not only adjust the portfolio of
stocks and bonds continuously — also the portfolio of reinsurance contracts
should be contiuously rcbalanced. By some simple calculations involving
(5.4) and (5.5), formula (5.6) can be rewnitten as

77: = —(/\ - Nl—)T /17\HF§(,’S’)SI‘ = _£7S7

Furthermore, ¢* satisfies V; =9;Z;. Thus, the self-financing (and risk-
minimizing) strategy consists of a number J* of shares of standard pure
endowment contracts on the portfolio of insured hves, which 1s adjusted
such that the value 9 Z, exactly equals the intrinsic value process V" at any
time ¢ € [0, 7] When allowing trading of reinsurance contracts, the criterion
of risk-minimization simply states that all risk should be surrendered to the
remnsurer. Furthermore. the number of stocks £* to be held 1s the same as in
the situation where standard insurance contracts are not traded. By the
above calculabions, we see that this position is financed by an equivalent
short position n* 1n the nsk-free asset. that 1s, 1; = —£'S;.

We end this section by mentioning that P* would not be a martingale
measure for Z* had we defined the price process Z = (Z,)<,<7 by

Z=(l - Nr)7‘_/1)\+1€_h(TA’)-
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Here, the nsk-free mterest rate r has been replaced by some first order
interest rate 6 # r. In this case, a martingale measure P for (Z*, S*) could be
defined by (2.15) with /i, = (6 — r)/ i+, provided that &, > —1 for all ¢. Thus,
mn turn, would mmpose unique arbitrage-free prices for the umt-linked
contracts that differ from those computed using the minimal martingale
measure P*

6. NUMERICAL RESULTS

We round off by presenting some Monte Carlo simulation results We
consider the pure endowment where the sum insured 1s due at the matunty
date if the insured 1s then still alive. Premiums are assumed to be paid as a
single premium at time 0 The contract functions from Example 4.5-4 6 will
then be examined by evaluating the mitial value of the intrinsic risk process
Vs, the mitial intrinsic nisk Ry and the risk-increase associated with some
simple (pieccwise constant) strategies. Since these quantities are proportional
to the size of the portfolio /,, recall c.g. (4.3) and (4.10), we consider an
msurance portfolio consisting of only one individual, that 1s, we take /, = 1.
Furthermore we take the age of the policyholder to be x = 45 upon 1ssue of
the contract, and fix the term of the contract to be 7 = 15 years. We use the
Gompertz-Makeham hazard function as mortahty law of the policyholder

ftarr = 0 0005 + 0.000075858 1.09144** >0,

which 1s used 1 the Danish 1982 technical basis for men. With this mortality
law, the conditional probability (spss of surviving another 15 years given
survival to age 45 15 0 8796 The basic financial market 1s standard Black-
Scholes with parameters o = 025 and r = 0.06. that 1s, the deterministic
risk-free interest 1s 6% and the volatility of the stock is 25% Furtherniore,
we take So =1 and By =1 The importance of the volatility parameter 1s
illustrated by considering, 1n addition, the case of small market volatihty
(0 = 015) and large market volatility (¢ = 0 35).
The value at time 0 of the intrinsic value process V*, given by

Vo =1 rp F4(0,5)), (6.1)

1s evaluated by simply inserting the parameters (r, o) and Sy =1 1n the
function F* determimed in Example 4 5 and 4.6. Results are listed 1n Table |
for different choices of guarantees, the pure umt-linked msurance
corresponds to guarantee K = 0 The mmitial intrinsic risk Rg 1s given by

T
Ro=FE" |:l\ TP\ / (e—ran(u, Sn))z T—uP+u Hatu du > (6 2)
0

and since_we have no explicit expression for the expected value of
(F&(u, Sy))", we apply Monte Carlo simulation combined with numerical
integration 1n order to evaluate (6.2)
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The price process for the stock S under P*
Sl — e(r—%ﬂ'z)l+aiV, (63)

can be simulated by simply simulating a standard Brownian motion
and nserting this in (6.3). Let n = 100 be the number of time intervals
per time unit (one year) and denote by Af = | /n the mesh of this partition.
Also let M denote the number of paths of S to be simulated and let
sj('"), m=1, ., M,j=1,..,T nbca scquence of simulated independent
standard normal variables The simulated versions S™ of (6.3) are
determined as

alm 1 A 1
S,E, ):exp<(r—502)k-At+ZavAt€j( )>, k=1, ., T-n,m=1, M,
2 =

where S,(('") has same distribution as Sia,. The mutial nsk Ry 1s now
approximated numerically by applying Monte Carlo simulation for the
integral (6.2) which is discretized using the so-called summed Simpson rule,
see e.g. Schwarz (1989). In all computations we apply the step size
Ar=1/100 In Table 1 we have also presented the estimate for Ry and the
standard error on this estimate based on M = 300000 simulated paths for
o = 0.15and 025 and M = 500000 for ¢ = 0 35.

TABLE |

THE INITIAL INTRINSIC VALUES AND RISKS ASSOCIATED WITH UNIT-LINKFD PURE ENDOWMENT CONTRACTS
FOR YARIOLS CHOICFS OF GUARANTEF AND VOLATILITY

Guarantee (K) Vs Ro (std.dev.) VRV,

=015 0 08796 0131 0411
05 exp(rT) 0 8996 0134 (0 0002) 0 407

exp(rT) 10807 0173 (0 0002) 0385

(M = 300000) 2 exp(rT) 17993 0 446 (0 0001) 0371
=025 0 08796 0 194 - 0501
05 exp(rT) 09580 0 205 (0.001) 0474

exp(r T) 1 2066 0261 (0 001) 0422

(Af = 300000) 2 exp(rT) 19161 0538 (0 001) 0383
o =035 0 0 8796 0365 0687
05 exp(rT) 10255 0 380 (0 005) 0 608

exp(rT) 13213 0 449 (0 005) 0513

(M = 500000) 2 exp(rT) 20511 0743 (0 005) 0423
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The unrestricted nsk-minimizing strategies are not applicable 1n practice,
since they are based on the assumption of continuously adjustable
portfolios. However, the expressions can be used as a guide 1n practical
portfolio administration. For example, the insurer could apply a piecewise
constant strategy on the form

J

&= I (o, 48, (6.4)

=1

where € denotes the unrestricted risk-mimimizing strategy determined in
Section 4. Thus, the portfolio of stocks 1s adjusted at fixed times
O=rn<n< < ty_1 <ty =T, asanapproximation to the continuously
adjustable risk-mimimizing strategy. Here, we have chosen f =, and
t, = /12, which implies trading once a year and once a month, respectively.
In Table 2, we have lIisted the risk-increase associated with the piecewise
constant strategies (6.4), obtained by evaluating the expression

J y
Z E* / (f,, - &, )20“25';2(&1
J=1 Ul

In Moeller (1996) optimal simple strategies are derived by means of some
heuristic calculations

TABLE 2

THE RISk INCREASE ASSOCIATED WITH SIMPLE STRATEGIFS WITH YEARLY AND MONTHLY ADJUSTMENTS
FOR UNIT-LINKLD PURE ENDOWM1I NT CONTRACTS

K Ry Yearly (std. dev.) Monthly (std. dev.)
o=015 0 0131 00015 - 0 00012 -

05 exp(rT) 0134 00014 (15 10°% 000012 (13 10°7)

exp(rT) 0173 00011 (16 10°%) 000009 (13 1077)

(M = 1000000) 2 exp(rT) 0 446 00004 (14 10°%) 000003 (11 1077)
=025 0 0194 0 0060 0 00051 -

05 exp(r 0205 00058 (19 107%) 000050 (16 10°%)

exp(rT) 0261 0 0051 (19 107%) 000044 (16 10 °)

(M = 1000000) 2 exp(rT) 0538 00040 (19 10°%) 000034 (16 10 %)
c=035 0 0365 00225 - 000187 -

05 exp(t7) 0380 00218 (31 10% 000186 (26 107%)

exp(rT) 0449 00209 (31 10% 000178 (26 107%)

(M = 1000000) 2 exp(rT) 0743 00193 (31 10 000160 (26 1075)
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With volatility parameter ¢ = 0.25, the ratio between the square root of the
initial intrinsic risk /Rp and the mtrinsic value process ¥ 1s 0.5 for the pure
unit-hnked life insurance, see Table |. By increasing the size /, of the
portfolio to 100, say, the corresponding ratio 1s reduced by the factor
v 100/100 =0 1 to 0 05. As mentioned in the previous sections, Vg can be
interpreted as a natural candidate for the single premium In non-hfe
insurance premiums are often increased by adding a safety loading, typically
twice the standard deviation of the total hability This procedure would lead
to a safety loading about 2 - 5%, that is 10% when /, = 100. Furthermore, 1t
1s noted that the minimal risk associated with the simple strategy (6 4) with
trading once per year 1s only 0.006 higher than the minimum obtainable risk
Ry = 0.194. Thus corresponds to an increase of 3 1% Thus, the uncertainty
associated with the death of the policyholders seems to be by far the most
important

The results obtained for the unit-hinked contract with guarantee different
from O indicate lower values of the ratio between the square root of the
munimal obtainable risk Ry and the ntrinsic value process ¥ than in the
pure unit-iinked case. Furthermore, the ratio seems to be decreasing as a
function of the guaranteed amount Also the relative risk increase assoclated
with simple strategies 1s smaller than the corresponding results for the pure
untt-linked life mnsurance. These properties could be partly explained by
considering the exact form of the sum insured, described by the underlying
derivative

max(Sy, K) = K + (St — K)*

Obviously, the probability of the European Call Option (Sy — K)¥ being in
the money will converge to zero as K converges to infinity. In this way the
relative uncertainty associated with the sum nsured should decrease when
the guaranteed amount increases.

Table 1 also gives indications of the consequences of possible mis-
specification of the volatility parameter o. It 1s seen that all quantities listed
here seem to be non-decreasing functions of the volatility. In particular,
calculation of premiums based on the initial intrinsic value ¥ only would
neglect the increase n the ratio v/Rg/ ¥V} as o increases. Thus, this principle
could result in premiums which are not adequate to cover the insurer’s
liabihties to the insured
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