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ABSTRACT 

The generahzed Polsson dlsmbution with parameters 0 and A was 
introduced by Consul and Jain (1973) and has recently found several 
instances of apphcation 111 the actuarial literature. The most frequently used 
version of the distribution assumes that 0 > 0 and 0 < A < 1, m whmh case 
the mean and variance are 0 / ( 1 -  A) and 0 / ( 1 -  A N, respectwety. These 
simple moment expressxons, along with nearly all of the other theoretical 
results avadable for this d~stnbut~on, fad when A < 0 or A >1  (e.g., 
Johnson, Kotz, and Kemnp, 1992, page 397). In these cases, even the 
definmon of the probabihty mass funchon usually gwen in the hterature as 
not properly normahzed so that ~ts values do not sum to unity. For this 
reason, ~t ~s common to truncate the support of the d~stnbut~on and 
exphcltly normahze the probability mass function. In this paper we discuss 
the estimation of the parameters of this truncated generahzed Po~sson 
dlstnbuhon using a Bayesmn method 
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I. INTRODUCTION 

A great many distributions are avadable for modelling discrete data arising 
in the insurance field. A large number of these discrete distributions are 
described m Chapter 3 of Klugman, Panjer, and Wilhnot (1997). Recently, 
some authors have also explored the use of Consul's Generalized Polsson 
D~smbutlon (GPD) m actuarial settings. Consul (1990) demonstrated that 
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the GPD, sometimes also known as the Lagranglan Po~sson distribution, is a 
plausible model for claim frequency data, Goovaerts and Kaas (1991) and 
Ambagaspltxya and Balakrlshnan (1994) presented recurslve methods to 
compute the total claims distribution for certain compound GPD models, as 
did Hesselager (1997) for a class of compound Lagrangian distributions 
including the compound GPD; Scollnlk (1995a) used the GPD, and its 
extension to a regression context, in order to model various sorts of claim 
frequency data and showed how Markov chain Monte Carlo (MCMC) 
methods could be used to implement Bayesmn posterior and predictive 
analyses of these models (see also Scollnlk, 1995b and 1995c); Famoye and 
Consul (1995) introduced a version of blvarlate GPD (BGPD), discussed 
parameter estimation by the method of moments and double zero frequency 
and by the method of maximum likelihood, and fit the BGPD to a data set 
on accidents sustained by a group of shunters, Vernlc (1997) considered the 
same BGPD as did Famoye and Consul, and used method of moments 
estimation to fit this BGPD to the aggregate amount of claims lbr a 
COlnpound class of policies submitted to clamas of two kinds whose yearly 
frequencies are a priori dependent. 

The purpose of this paper is to clarify some points relating to the GPD 
which are frequently misrepresented in the literature and to discuss how 
Bayesian posterior and predictive analysis of the truncated GPD and of a 
truncated BGPD can proceed using MCMC methods. We begin with a 
discussion of GPD models. 

2. GENERALIZED POISSON DISTRIBUTION MODELS 

The probability mass function of the basic untruncated GPD is commonly 
given by 

0 0 nA ,,-lexp(-o-,,~) P r ( N = n ) = p , , ( O , A , m ) =  ( + ) ;7 f o r n = O , l , 2 , . . . , m  (I) 
0 Jorn > m when A < O, 

and zero otherwise, where 0 > 0, ram<(- 1, - O / m )  <_ A < 1, and m is usually 
taken equal to the largest possible positive integer such that 0 + m A  > 0 
when A is negative. Often it is explicitly further required that m >_ 4 (e.g., as 
in Vernlc, 1997) in order to ensure that there are at least five classes with 
non-zero probability when A ~s negative (see Consul, 1989, page 4), but this 
obviously need not be the case. At this time, we will review a few of the 
properties associated with (1) Most of these properties are documented in 
Consul's (1989) treatment of the GPD. Additional references will be 
introduced as required. The reader is forewarned that some authors switch 
the roles of the parameters 0 and A. We have adopted the parametrlzatlon 
found in Consul (1989) and Johnson, Kotz and Kemp (1992, page 396). 
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To begin with, suppose that 0 < A < 1 and the value of m is taken equal 
to oz. For this case it is known that 

0 0 
E(N) - i _ A and Var(N) - (i _ A) - - - - - - ~  ' (2) 

so the variance of the GPD is always larger than or equal to the mean. It is 
apparent that this instance of the GPD reduces to the standard Poisson with 
parameter 0 when A = 0. The two moment expressions m (2), along with 
simple formulae for skewness and kurtosls and virtually all of the other 
theoretical results obtained relating to the GPD (e.g., Consul and Jam, 1973; 
Ambagaspltlya and Balakrlshnan, 1995; Vernic, 1997), are only valid for the 
case of the GPD presently under cons~deratlon, i.e. when 0 > 0, 0 < A < 1, 
and m = oo. 

Henze and Klar (1995, page 1877) make the claim that this fact has not 
been emphasized enough In the literature, and point to a paper by Alzald 
and AI-Osh (1993) in which it is tacitly assumed that (2) also holds for 
negative values ofA. Famoye and Consul (1995, page 128) recently made the 
same errant assumption, w~thout alerting the reader as to its nature. It is also 
very common for authors to estimate the GPD parameters by equating 
empirical moments to the theoretical moments obtained in the special case 
described above, even when the sample variance is strictly less than the 
sample mean so that negative estimates of A result (e.g., Consul, 1989, see 
also Vernlc, 1997). 

Actually, in order to permit cases where the variance is smaller than the 
mean, Consul and Jam (1973) had proposed to admit negative values of A. 
However, when the value ofA ~s negative the probability mass function (1) is 
no longer normalized. To see this, suppose that 0 = 1.6, A = - 0 . 7 5  and 
m = 2 .  Then P r ( N = O ) = 0 . 2 0 1 9 ,  P r ( N = l ) = 0 . 6 8 3 9 ,  P r ( N = 2 ) =  
0.0724, Pr(N > 2 ) =  0.0, and the sum of these supposedly exhaustive 
'probabilities' IS only 0.9582. This problem was not recogmzed m the early 
literature concerning the GPD (e.g., Consul and Jam, 1973) until Nelson 
(1975) indicated that a cautious approach was warranted in the use of the 
GPD model with negative values of A. One solution to this problem is to 
simply normalize the function in (1) when A < 0. In fact, (1) will generally 
need to be normalized except in the special case that 0 > 0, 0 _< A < 1, and 
m = oo Accordingly, Consul and Famoye (1989) defined the probability 
mass function of the truncated GPD to be 

P r ( N = n ) = q , , ( O , A ,  nT) -pn(O'A 'm)  f o r n = O ,  1,2, . . . ,m (3) 
K(O,A,m) 

and zero otherwise, where 0 > 0, -vo  < A < oo, 

I I I  

K(O,A,m) = Z p , , ( O , A , m )  
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and m is any positive integer such that 0 + mA > 0. Usually, m is taken equal 
to the largest such value. Note that the definition of the truncated GPD 
extends the permitted range of the parameter A to the entire real lane. 

When class frequencies are inappropriately calculated using (1) instead of 
(3), an error of truncation is said to occur Consul and Shoukri (1985) and 
Consul (1989, Section 9.1.1) have made an analysis of the error of truncation 
when -1 < A < 0. The simulation study they conduct is not exhaustive, but 
it does appear to indicate that the error of truncation may be serious when 
the number of non-zero probability classes is 3 or 4 and the value of 0 is 
approximately between 0 7 and 4.5. The reader can easily verify that the 
error of truncation may also be serious when A < - !  or A > 1. 

Consul and Famoye (1989) studied the truncated GPD in some detail and 
discussed parameter inference using maximum hkelihood (ML) estimation 
and estimation based upon the empirical mean and the ratio of the first two 
empirical class frequencies. Their main conclusion was that the ML 
estimates determined using (3) as the basis of the likelihood function are 
generally closer to the true values of the population parameters than are the 
ML estimates determined on the basis of (1) Hence, even though the error 
of truncation associated with using (i) may be small in some cases, they 
suggested that one should estimate the values of the parameters 0 and A 
using the truncated GPD model (3). It should be noted that the estimation 
methods persued by Consul and Famoye (1989) are implemented in such a 
way so as to determine estimates of 0 and A condmonal upon a presumed 
known value of re. Since m IS not known, Consul and Famoye (1989) simply 
set it equal to the value of the largest observation. 

Bayesmn estamahon as a hkehhood based style of inference that 
incorporates prior reformation on the unknown variables ML estimates 
are eqmvalent to the nodes of the Bayesian posterior &stributlon, when the 
prior distribution for the unknown variables is flat. However, the goal of a 
Bayesmn analysas as generally not just a point estimate like the posteraor 
mode (or mean or median), but a representation of the entire distribution for 
the unknown parameter(s) (Gelman, Carhn, Stern, Rubln, 1995, page 301). 
In the next Section, we discuss how a Bayesian analysis of the truncated 
GPD with an informative prior distrabution can be accomphshed using a 
MCMC approach. We emphasize that the Bayesian estimation method 
yields a posterior dlstrlbutaon for all of the unknown parameters, including 
m (cf. Consul and Famoye, 1989). 

3. A BAYESIAN ANALYSIS OF THE TRUNCATED G P D  MODEL 

Consul and Famoye (1989) argue that any discrete probability model for a 
random variable N defined on the set of non-negative integers is 
automatically truncated in real life situations because the sample size is 
always finite and the probabdities for large values of N become so small so as 
to be unobservable. This is particularly true m an insurance setting when the 
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number of  claims per pohcy is small Assuming this context, we suppose that 
the samphng model is taken to be approximately truncated G P D  as in (3) 
with parameters 0, A, and  m, so that 

P r ( N  = J lO, A, m) = qj (0, A, m) - p/(0, A, m) K(O,A ,m)  for j = 0 ,  1,2, . ,m ,  (4) 

and zero otherwise, with 0 > 0 and - o o  < A < oo, with m equal to some 
positive integer such that 0 + mA > 0, and with 1 < m _< M so that there is 
at least one non-zero class with non-zero probability. Setting M equal to a 
value between 5 & 15, say, will generally suffice when tile number of  clamas 
per pohcy or accidents per mdxvldual Js small. We recognize that the value 
selected for the parameter  M is formally an expression of  a prtori knowledge 
This is further discussed m the next paragraph. If  the data  consists of  
observed class frequencies n/, j  = O, . . ,  M ,  with n = no + ... rim, then the 
likehhood function is of  the form 

• -,m "0 
l (O,A,m)  o( qj(O,A,m)'" = ],la=0Pjt ,A,m)'" 

j=0 K(O, m)" (5) 

If  the data  includes some grouped class frequencies, then the hkehhood 
function is modified in the obvious way. For  example, if we observe the first 
two class frequencies no and n~ along with the grouped class frequency 
g2 = #12 -4- ... -4-- nat, then the likelihood function is of  form 

n0 {1 -- qo(O, A, m) - q, (0, A, m)}  g2. I(0, A, m) ¢x qo(O, A, m) ql (0, A, m)"' 

In order to complete the definition of  a full probability model, ~t is now 
necessary to specify a prior distribution for the unknown parameters 0, A, 
and m The reader is free to use any reasonable prior specificatmn as befits 
the expert opinion that is available to him or her. For  our  presentation, we 
will consider 3 different forms of  prior density specification (PDS). For  the 
first PDS, we w,II assume that the parameters are distributed a prtort In the 
following way: 

p(O, A, m) ¢x p(O)p(A)p(m) when 0 + mA > O, (6) 

and zero otherwise, with 

p(O) ~ Gamma (1, 2) ,  (7) 

p(A) ~ Normal  (0, 0 .1) ,  (8) 

p(m)  ~ Uniform {I, .., M } .  (9) 

The Gamma distribution in (7) is parametrized so as to have mean and 
s tandard dewation both equal to 0.5, and the Normal  distribution in (8) has 
s tandard deviation equal to 0.1 With respect to the Umform distribution in 
(9), we are free to attach a hyper-prior dlstr lbutmn to the parameter  M. We 
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have not pursued this pamcula r  avenue, al though m Sectmn 5 we will 
compare the use of  several different values of  M in the context of  a particular 
data  analysas 

Another  approach is to forgo the mtroductmn of  M entirely, and rather 
specify a dlstr lbutmn p(m) on the entirety of  the non-negatwe integers (m 
effect, M = ~ ) .  In this case, equatmns (6), (7) and (8) would be unchanged, 
and (9) might be replaced with 

p(m) ~ Poisson (/_,) , (10) 

for some specified value # > 0 The parameter restrictions m effect would be 
0 > 0, - o c  < A < cx~, and 0 + mA > 0. An analysis of  the truncated GPD 
model incorporating this second form of  PDS will also follow in Section 5. 

Our third PDS wall be samalar to the two above, with the added restriction 
that m = M, for some specified value M < oo. That  as, our thard analysas wall 
be condmonal  on a fixed value of  m < (x~. 

By multiplying the hkehhood and prior density functaons together, we 
obtain the form of  the posteraor dlstnbutaon up to a normahzlng constant,  
that as 

p(O,A, mlno, .,n,,,)ocp(O)p(A)p(m)l(O,A,m) w h e n 0 + m A > 0 ,  (11) 

and zero otherwise, wath 0 > 0 and - o e  < A < ~ .  If  we let n* denote the 
value of  the largest observation, then we also require that m E {n*, .... M}. 
Here, either the value o f M  < e¢ is known as in the case of  our  first PDS, or 
else M = oc as in the second. In the case of  our third PDS, M as assumed to 
be known and we further condition upon the assumption that m = M < co. 
At thas stage, the complete probabdaty model can be analysed using a 
numeracal method. We propose the use of  a M C M C  method in order to 
complete the analysis of  the posterior and predictive dasmbutions. 

4. COMPLETING THE BAYESIAN ANALYSIS USING A M C M C  METHOD 

In order to complete the Bayesian analysis of  the truncated G P D  model, we 
adopt  a M C M C  method.  In particular, we implement a 'single-component 
Metropohs-Hast ings '  (Gllks, Richardson, and Splegelhalter, 1996, page 10), 
or 'variable-at-a-time Metropolis-Hastings '  (cf. Chan and Geyer 's  discussion 
of  Tierney's 1994 paper, page 1748; also, Haastrup and Arjas, 1996, page 
156), algorithm. This algorithm simulates a realization of  a Markov chain 
which has the posterior distribution of  the unknown parameters 0, A, and m 
as ItS equilibrium distribution The algorithm generates a sequence of  
simulated parameter  values, 0/°), A (°), m (°), O0), A(I), m(l), . , whose empiri- 
cal distribution converges towards the posterior distribution of  the unknown 
parameters. The posterior distribution can thus be approximated on the 
basis of  these values, and the approximation can be made as exact as we 
desire by simply increasing the length of  the simulation. Note that 
predictions can also be obtained by samply averaging the truncated G P D  
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probability mass functmn over the sampled parameter values. That is, the 
probability mass function for a future observation Nf, given the observed 
class frequencms no, ., nm, can be estimated using the result that 

e r ( U f  = J  ] n0, ..., , , , )  (12) 

= ,~ / / Pr(Ns =J l O,~,m)p(O,~,m l no, ..., n,,,) dO d~ 

B+L Pr(Nf  I 0('), ,~(') ~ = j  ,m(')) 
£ 

t = B +  1 

Here, B represents the number of iterations for which the Markov chain is 
allowed to 'burn-In' and L represents the number of  lteratmns the Markov 
chain is run thereafter. A method for checking the convergence of the 
Markov chain by comparing several different and independently simulated 
sequences IS given in Gelman, Carhn, Stern, and Rubin (1995, pages 330- 
333) If several different and independently simulated sequences are 
available, then the sample average in (12) should be taken over all of  the 
available sample paths. 

There are many ways of implementing the Markov chain described 
above. We proceed in the following manner. Let 8 (°), k (°), and m (°) denote 
arbitrary starting values for the 3 random variables under examination In 
this context, the tth iteration of the single-component Metropohs-Hastlngs 
algorithm consists of 3 updating steps. 

Step I 
We enter the first step of  the ith iteration with values 0 ('-I), A ('-I), and m 0-1) 

In this step, we update the value of  0 by generating a candidate value 0* from 
a proposal dlstnbutmn indexed by Ot,-I) with density qo(O[O('-I)). The 
candidate value is accepted with probability 

P(O*'A( ' -Z) 'm( ' - ' )[n° '  "'" n"')q°(O('-I)lO*) "~ (13) 
mm 1, p(0(,_l),A(,_j),m(,_l)[ n0, ..., n,,,)qo(O*[OO-t))J ' 

where the density p(O,A,m[no, . . . ,  n,,,) is as given in equation (I 1). If the 
candidate value is accepted, we assign 0(') equal to 0* Otherwise, 0(') is set 
equal to 0('-~); 

Step 2 
We enter the second step of  the ith iteration with values 0('), A ('-I), and 
m 0-1). In this step, we update the value of A by generating a candidate value 
A* from a proposal distribution indexed by A ('-I) with density q~(AIk('-l)). 
The candidate value ~s accepted with probability 

p(O(,),A.,m(,_t)]no,., n,,,)qx(A('-l) I A* ) "~ 
mm 1, p(O(,),A(,_l),m(,_l) [ no, ..., n,,,)q.~(A* l A('-I))J , (14) 
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If the candidate value is accepted, we assign A (0 equal to A*. Otherwise, A(') is 
set equal to A('-'), 

Step 3 
We enter the third and last step of the ;th iteration with values 0('), A('), and 
m ('-~). In this step, we update the value o fm by generating a candidate value 
m* from a proposal distribution with density q,,,(m[m('-I)). The candidate 
value is accepted with probability 

p(O(O,A('),m * In0, ..,nm) qm(m ('-') !m*) "~ 
mm 1, p ( ~ i ~ i m ~ - - ' i [ n 0 ,  ..., n,,,)q,,,(m* [ mO-'))J ' (15) 

If the candidate value is accepted, we assign m(') equal to m*. Otherwise, m(;) 
is set equal to m ('-I). This concludes the third step of the tth iteration, and we 
exit from it with the updated values 0('), A('), and m('). 

The specification of the proposal distributions q0(.].), qa(.[.), and q,,(I ) 
appearing in the steps above still remains. This is discussed in Section 5. It 
should be emphasized that the algorithm given above describes only one 
possible implementation of the single-component Metropolis-Hastings 
algorithm. A fuller discussion of this algorithm and other MCMC methods 
will not be presented at th~s time, since several such discussions are readily 
available m the texts by Carlin and Louis (1996, Section 5.4), Tanner (1996, 
Chapter 6), and Gelman, Carhn, Stern, and Rubin (1995, Chapter 11). 
W~thln the actuarml literature, the recent articles by Haastrup and Arjas 
(1996) and Scollnik (1995d) may prove instructive to a reader unfamiliar 
with these methods. Also, Pal (1997) discusses the use of MCMC to perform 
a Bayesmn analysis to scrutinize the compound loss distribution. 

5 NUMERICAL ILLUSTRATION 

The data we analyse is taken from Adelsteln (1949, p. 379) and gives the 
observed number of accidents in the age-group 26-30 years during the first 
year of service for a group of rallyard shunters. The data appears in Table 1, 
and is underdlspersed with a sample mean of 0 5815 and a sample variance 
of 0 5719. Consul and Famoye (1989) previously fit a truncated GPD model 
to this data and obtained the ML estimates 0 = 0.6115 and )~ = -0.0676. 
However, Consul and Famoye (1989) proceeded by grouping the last three 
of the class frequencies appearing in Table I into a single class of frequencles 
greater than or equal to 4 and also appear to have set m = 4 for the purposes 
of estimation even though one worker experienced 6 accidents. Conse- 
quently, their ML estimates are adversely affected. Our own analysis will use 
the original form of the data presented by Adelsteln. 
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TABLE I 

ADELSTEIN'S (1949) SIIUNTERS ACCIDENTb DATA 

FIRST YEAR OF SHUNTING AGE 26-30 YEARS 

143 

Number of  Accidents Number of  Men 

0 121 

I 8 5  

2 19 

3 1 

4 0 

5 0 

6 I 

We proceed to analyse Adelstein's data using the truncated GPD model 
along with each PDS introduced in Sect.on 3. We Utdlse the MCMC method 
described m Section 4. A few specxfics concerning the implementation of the 
Markov chain are worthy of note. For the univanate proposal distributions 
assocmted with the parameters 0 and A, we found that normal &strlbut~ons 
centered at the current value of the parameter m question and with standard 
deviation of 0.05, that is 

qo(O[s) ~ N o r m a l  (s, 0 05) and qA(A[s) ~ N o r m a l  (s, 0.05), 

yielded acceptance rates m the 50 to 75 per cent range. The proposal 
distribution for the parameter m was taken to be Potsson  with mean ~t in the 
case of the analysis incorporating the second PDS, that is 

qm(mls )  --= qm(m) ~ Potsson  (~L) . 

This makes Step 3 of the algorithm an independence sampler (Gdks, 
Richardson, and Spxegelhalter, 1996, page 9; also, Tterney, 1994, page 1706) 
since q, , , (mlm ('-1)) no longer depends on the value ofrn ('-I). For the analysis 
incorporating the first PDS, exact draws of m from its full con&tional 
posterior &stributlon were used. In this case, the acceptance probability (15) 
is always equal to 1. For the analysis incorporating the third PDS, no draws 
of m were required since this analys|s assumed that the value of m was fixed 
and known. 

For each analysis, four realizations of a Markov chain were simulated 
Each chain was permitted to run for 10,000 Iterations. The results of the first 
5,000 iterations were discarded as 'burn-in', and convergence of the Markov 
chains for each analysis was formally momtored by applying the diagnostic 
of Gelman, Carhn, Stern, and Rubin (1995, page 330-333) to the output of 
iterations 5001 through 10,000. The behawour of the realised Markov chain 
sample paths associated with one of the simulations (corresponding to the 
second PDS with ~ = I0) is illustrated in Figures 2, 3 and 4. In these plots, it 
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is apparent that the simulated Markov chains are well on their way towards 
convergence by the 100th iteration in each case. Estimated posterior 
distributions for the parameters 0, A, and m are presented in Figures 5, 6 and 
7. These posterior distributions are estimated on the basis of the 20,000 
(4 times 5,000) simulated draws for each parameter from ItS posterior 
distribution. 
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FIGURE I Sample Paths for the Parameter  0 
IteraUons I to 100 and 5000 to 5100 

(Second PDS with # = 10) 
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FIGURE 3 Sample Paths for the Parameter n t  

Iterations I to 100 and 5000 to 5100 
(Second PDS w~th Ii ~ 10) 
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FIGURE 6 Estimated Posterior Density Funct2ons for the Parameter m 

(Second PDS with /L = 10) 

Summary results for all of  our analyses appear m Tables 2 through 7. 
From Tables 3, 5, and 7, one can observe that predictive inferences are 
largely unaffected by the particular choice of  PDS. 

TABLE 2 

ESTIMATED POSTERIOR glEANS AND SDs FOR THE PARAMETERS 0, .,~, AND /71 
RESULTING UNDER THE FIRST PDS FOR 3 VALUES OF M (m < M) 

Parameter M -  6 M =  10 M = 25 

0 0 5837 0 5861 0 5807 

(0 0556) (0 0541) (0 0536) 

0 0034 0 0009 0 0085 

(0 0353) (0 0340) (0 0316) 

]11 6 8 0016 14 9864 

(0) (I 4196) (5 7347) 
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TABLE 3 

T I l E  ESTIMATED PREDIC r i v e  DISTRIBUTION Pr( N f  = 11f1.9, , IG,,) 
RESULTING UNDER THE FIRST P D S  FOR 3 VALUES OF ,A[ (771 < .AI) 
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n f  M = 6  M = 1 0  M = 2 5  

0 0 5587 0 5573 0 5603 

I 0 3237 0 3251 0 3213 

2 0 0951 0 0953 0 0952 

3 0 0190 0 0189 0 0194 

4 0 0030 0 0029 0 0032 

5 0 0004 0 0004 0 0005 

6 0 0001 0 0001 0 0001 

m e a n  0 5857 0 5867 0 5858 

(atO (0 7711) (0 7697) (0 7749) 

TABLE 4 

EgTIMA [ED POSTERIOR MEANS a, NI) SDs I'OR TIlE PARAMETERS 0,  A, AND I l l  

R E S U L T I N G  UNDER THE SECOND PDS I OR 4 D IFFERENT VALUE.S OF I t  

P a r a m e t e r  /L = 2 t~ = 5 It = 10 IL = 2 5  

0 0 5810 0 5831 0 5828 0 5774 

(0 0529) (0 0544) (0 0531) (0 0529) 

A 0 0034 0 0032 0 0051 0 0150 

(0 0346) (0 0350) (0 0335) (0 0291) 

.7 6 32473 7 2713 10 3290 24 6669 

(0 6319) (1 4242) (2 7903) (5 0021) 

TABLE 5 

THE ESTIMATED PREDICFIVE DISTRIBUTION P , ' ( N  I = r i l l . o ,  . n , , , )  
R E S U L T I N G  UNDER t H E  SECOND P D S  FOR 4 D I F F E R E N T  V A L U L S  OF I L 

nf  , /1=2 i t : 5  i t =  I0 / t = 2 5  

0 0 5602 0 5590 0 5591 0 5621 

1 0 3231 0 3236 0 3230 0 3184 

2 0 0945 0 0949 0 0951 0 0953 

3 0 0188 0 0189 0 0192 0 0201 

4 0 0030 0 0030 0 0031 0 0034 

5 0 0004 0 0004 0 0004 0 0005 

6 0 0001 0 0001 0 0001 0 0001 

m e a n  0 5830 0 5849 0 5858 0 5863 

(w/) (0 7692) (0 7704) (0 7724) (0 7803) 
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TABLE 6 

ESTIMATED POSTERIOR MEANS AND S D s  [ OR THE PARAMETERS 0, A, AND m 

RESULTING UNDER THE THIRD PDS ~OR 3 VALUES OF M(m = M) 

Parameter M = 6 M = I0 M = 25 

0 5844 0 5838 0 5748 

(0 0532) (0 0545) (0 0511) 

0 0025 0 0029 0 0160 

(0 0343) (0 0333) (0 0279) 

m 6 10 25 

(0) (0) (0) 

TABLE 7 

THE ESTIMATED PREDICTIVE DI'gTRIBUTION Pr(N.f = n fit;o, , 11.,) 
RESULTING LNDER THE THIRD P D S  FOR 3 VALUES OF M ( m  = M )  

nf M = 6  M =  10 M = 2 5  

0 0 5583 0 5586 0 5636 

I 0 3243 0 3238 0 3175 

2 0 0951 0 0951 0 0948 

3 0 0189 0 0189 0 0200 

4 0 0030 0 0030 0 0034 

5 0 0004 0 0004 0 0005 

6 0 0001 0 0001 0 0001 

mean 0 5857 0 5854 0 5842 

(~d) (0 7700) (0 7703) (0 7796) 

6. F U T U R E  RESEARCH T H E  C O R R E L A T E D  T R U N C A T E D  B G P D  M O D E L  

Famoye and Consul (1995) and Vermc (1997) have both considered a BGPD 
(bivanate GPD) formed by applying the method of tnvarmte reduction. This 
method proceeds as follows: let Ni,  N2 and N3 be independent GPD random 
vanables with respective parameters (01,A1), (02, A2), and (03, A3). Then the 
random vector (X, Y) as stud to have a correlated BGPD ff X = Ni + N2 and 
Y = N2 + N3. Unfortunately, both Famoye and Consul (1995) and Vermc 
(1997) tmphc~tly permit the parameters A,, t = 1, 2, 3, to take on negatwe 
values but fall to correct the defimtions of  the affected GPD and BGPD 
&stnbutions by appropriately truncating and normahzmg them. 

In order to correct this problem, we define a correlated truncated BGPD 
by the method of tnvanate reduction. Let Ni, N2 and N3 be independent 
truncated GPD random variables with respectwe parameters (01,Ai,ml),  
(02, A2, m2), and (03, A3, m3). Then the random vector (X, Y) will be said to 
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have a correlated truncated BGPD if X = Ni + N2 and Y = N2 + N3 as 
before. It should be possible to mlplement Bayesmn posterior and predictive 
mferences for this distribution by using an extension of  the MCMC method 
described in Sectmns 3 and 4 along with a data augmentation method to 
simulate the unobserved values of  Nl, N2 and N3, given the observatmns X 
and Y along with the current simulated values of the parameters (0,, A,, rn,), 
i = I, 2, 3. This procedure will be further explained, and also apphed to a 
numerical example, in a paper to follow. 
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