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A B S T R A C T  

We consider the classical risk model with subexponential claim size distribution. 
Three methods are presented to simulate the probability of  ultimate ruin and we 
investigate their asymptotic efficiency. One, based upon a conditional Monte 
Carlo idea involving the order statistics, is shown to be asymptotically efficient in 
a certain sense. We use the simulation methods to study the accuracy of the 
standard Embrechts-Veraverbeke [16] approximation for the ruin probability and 
also suggest a new one based upon ideas of  Hogan [21]. 
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1. I N T R O D U C T I O N  

This paper is concerned with the simulation of the probability 'g,(u) of  ruin in a 
classical compound Poisson risk process U(t) with initial (large) reserve u = U(0) 
in the case where the claim size distribution B is heavy-tailed. Our main aim is to 
investigate ways to improve upon crude Monte Carlo simulation. 
We assume that the claim arrival process {N(t), t >_ O} (N(O)=O) is a 
homogeneous Poisson process with rate A > O. The claim sizes are assumed to 
independent and identically distributed non-negative random variables ~i(i E N) 
with cumulative distribution function B(x) and finite mean p,8, and independent 
of  {N(t), t > 0}. The net premium is considered to be payable at a constant rate 
c over time, where 

c = (1 + 0) A#B 

and 0 > 0 is the relative security loading. The insurance surplus at time t is U(t). 
The total claim process R(t) = E ~=(1)~i is by the assumptions above a compound 
Poisson process and thus 

u ( : )  = u + ct - R ( O .  

The probability of  ruin is defined as 

~p(u) = P(inf U(t) < 0). 
t_>0 
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All simulation methods  that we study are based upon representing the ruin 
probabi l i ty  as ~b(u) = z = EZ for some r.v. Z that  can be generated by 
simulation, simulate iid replicates Zi ,  ..., Z., of  Z, est imate ~(u) by _~ = (Zi +.. .  + 
Z,,)/n and use the empirical variance of  the Zi  to produce confidence intervals. 
The  per formance  measure  of  a part icular  simulation method is the relative error 
crz/~p(u) where ¢7 z = var(Z) (when compar ing  different simulation methods  based 
upon Z( I ) ,  Z(2), say, this in only reasonable if the compute r  times needed to 
generate Z( I ) ,  Z(2) are roughly the same; we assume this to be the case without  
further discussion). We face two difficulties: 
I) The ruin problem has infinite horizon so that it is not s t ra ightforward to find 

the desired representat ion ~b(u) = z = E[Z] for some simulatable Z. 
2) Since u is large, the ruin probabi l i ty  ~/J(u) is small and hence we are in the 

f ramework  of  rare events simulation (see Heidelberger [20] or Asmussen & 
Rubinstein [7] for surveys). Neglecting problem I) for a moment ,  assume that  
we can generate Z = l(T(u) < oo) where I(.) stands for the indicator function 
and ~-(u) is the time of  ruin with initial capital u. This procedure  is known in 
the literature as the the crude Monte  Car lo  method and leads to a relative 
error  

crz V/~(u)(l  - '~(u)) 1 
_ _  --- ,  o o ,  u - - - ,  ( 1 )  

In the case where B is light-tailed, a solution to both problems was suggested by 
Siegmund [29] and Asmussen [4] who used impor tance  sampling (Rubinstein [28] 
or Glynn & Iglehart  [18]). One then performs a change of  measure,  replacing 
the given governing probabi l i ty  measure P by a different one P satisfying 
P(~-(u) < o o ) =  1 and takes Z = dP/dP where the likelihood ratio (Radon-  
N ikodym derivative) is computed  on f'~(,,). More  precisely, P corresponds  to an 
exponential  change of  measure  involving the Lundberg  exponent  (adjustment  
coefficient) R, such that the Poisson intensity and the claim size distribution is 
changed in a certain way given by R. Tha t  problem 1) is solved follows from 
P('r(u) < oo) = I. Empirical  evidence strongly suggests that  also problem 2) is 
solved, and the theoretical verification of  this has been the subject of  much 
research. We follow here a s tandard current  criterion (e.g. Heidelberger [20] or 
Asmussen [7]) for calling a rare events simulation es t imator  asymptot ical ly  (or 
logarithmically) efficient: one should have 

lira inf logcrz - -  > I.  ( 2 )  
,,-~o log~(u)  - 

In particular,  it suffices that 

~z, < '¢(u)Zp(llog '~(u)l ) (3) 
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for some polynomial  p, and this is well-known to hold in the setting of  
Siegmund [29], Asmussen [4] with p constant .  Note  that the C M C  method can 
never be efficient according to (2) because it always gives rise to the limit 1/2 
rather  than I there• 
The present paper  is concerned with the simulation of  '¢'(u) in the case where B 
does not have exponential  moments  so that R does not exist and the method of  
Siegmund [29], Asmussen [4] is not applicable.  A m o n g  such distr ibutions we focus 
on the class of  subexponent ial  distr ibutions S. To  be more  precise: 

D e f i n i t i o n  1.1. A non negative random variable X with distr ibulionJunction F is 
ca/led subexponent ial  ( F E S),  i f for  a/In _> 2, 

lira P(Xi + ... + X,, > x) = 1, 
. , - u P ( m a x ( X , ,  ..., x,,) > x) 

where Xi  ... . .  X,, are iid copies o f  X. 

This class is quite broad and contains many  of  the c o m m o n  claim size 
distributions, i.e. longtailed distr ibutions such as Pareto,  Lognormal  or Weibull 
with decreasing failure rate. G o o d  summaries  of  the propert ies of  this class are 
given in Embrechts  and Veraverbeke [16] and Kli ippelberg [23]. 
Our  vehicle to deal with problem I) in this setting is the Pol laczeck-Khinchine 
formula (see Asmussen [5]) 

oo 

• ~(u) = I - (I - p ) ~ p " B ; " ( u ) ,  u > 0, (4) 
t t = O  

where p =-i--~, Bo(u) = f~'b0(s)ds' and b0(s) =-L/~(s )  with /~(s) = I - B(s); 
• l I B  

B;" denotes the n-th convolut ion of  B0 with itself. Note  that  (4) means that 
1 - 'g,(u) is a compound  geometr ic  distribution function, 

~.,(u) = P(Sh. > u), (5) 

where Sh. = X~ +... +... XK, K is geometr ic  with pa ramete r  p, independent  o f  the 
X~'s, and the .¥~, X2 . . . .  are non-negative lid r andom variables with c o m m o n  
density bo. This means that the C M C  method is applicable: ~ ( u ) =  z = E[Z] 
where Z = I (SK > u). The algori thm is as follows: 

1. Genera te  Ki ,,~ geometric  (p) , i.e. P ( K i = k ) =  (1 - p ) p k ( k  = 0, 1, 2 ...). 

2. Genera te  X~, X i from the density b0 and let SK, =X~ + + X i 
• ""  : K ,  " ' "  K , "  

3. I fSK,  > u then Z~= I, otherwise Z~=0.  

4. Repeat  steps I to 3 n times. 
^ _1 ~-.,, 5. Est imate E [Z] by z = ,,z-,i=l Zi. 

As a C M C  algori thm, this procedure (referred to as Algor i thm 1 in the following) 
cannot  be efficient in the sense of  (2). To  deal with problem 2), we suggest (Section 
2) two condit ional  Monte  Car lo  est imators.  The idea is to replace the C M C  
est imator  Z by E(Z ] G) for a suitable a-field ~, which ahvays leads to reduction in 
variance, cf. Rubinstein [28]. We show that  one of  the es t imators  is efficient in the 
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sense of  (2) in the particular case where the tail of  B is regularly varying. This 
result is remarkable since, to our knowledge, it is the first example in the general 
area of  rare events simulation of an asymptotically efficient solution to a problem 
involving heavy tails. It also has the unusual feature that the asymptotic efficient 
solution is not given in terms of  importance sampling. 

In addition to simulation methodology, we also discuss analytic approxima- 
tions, of which the most standard ones are Panjer's recursion (cf. Section 4.1) and 

'~,(u) ~ lB0(u),  u ---, o~ (6) 
O 

(Embrechts and Veraverbeke [I 6] and references therein) which will be refered to 
as ~/3Ev(u) in the sequel. The accuracy of (6) is for instance discussed in Abate, 
Choudhury and Whitt [1]. They computed exact values by transform inversion 
(for a summary of inversion methods and applicability of this approach see Abate 
and Whitt [2] and references therein). In the latter paper, a class PME (Pareto 
Mixtures of Exponentials, see further Section 4) with explicit Laplace transforms 
was constructed and numerical comparisons of exact values and (6) were given 
with rather negative results concerning the accuracy of (6). We present some 
further numerical results along the same lines, computing the exact values by 
simulation also for more general claim size distributions than the ones in PME. 
Motivated by these negative findings, we suggest an alternative approximation, 
essentially an adaptation of the correction due to Hogan [21] of the standard 
diffusion approximation 

where ~ denotes the variance of B. This approximation is introduced and 
discussed in more detail in Section 3. 

2. CONDITIONAL MONTE CARLO ARALGORITHMS 

In this section random variables are mostly denoted with capital letters (e.g. Z, K, 
St,., X i ,  X2  . . . .  ), the realization of simulation i (i = I . . . . .  n) with indexed capital 
letters (e.g. Zi, Ki, X~,X~ .... ). 

Recall that we refer to the CMC method as Algorithm 1 and that a conditional 
Monte Carlo estimator always reduces variance. 

The 95% asymptotic confidence intervals are given by: 

6 
~(u) :t: 1 .96-~ ,  

where ~(u) stands for the estimated ruin probability and ~ = ;;~rE'i~,  (Z i  - 2)  2. 



S I M U L A T I O N  O F  R U I N  P R O B A B I L I T I E S  F O R  S U B E X P O N E N T I A L  C L A I M S  301 

2.1. A l g o r i t h m  II .  Write 

~b(u) = P(XI + ... + St," > u) 

= E[P(Xi + ... + XK > ulXi, ..., XK-t)] 

= E [ ~ o ( , , -  x ,  - ... - X , , . _ , ) ] .  

Thus we generate only Xa . . . . .  XK-I, compute  Y =  u - X i  - ... - Xk-i and set 
Z = B0(Y), the probability that the next claim causes ruin. More precisely: 

I. Generate Ki,~ geometric (p) i.e. P(Ki = k) = (1 - p)pk(k = 0, !, 2, ...). 

2. Generate ~ ,  X~.,_, from the density bo and let Yi = u -  X I - - X i 
" " ~  " ' "  K i - I "  

3. Let Zi = Bo(Yi) (Zi = I if Yi < 0) 

4. Repeat steps I to 3 n times. 
.L X-'" Z, 5. Estimate E[Z] by .~ = n z_.,i=l 

Again .~ is an unbiased estimator for "~b(u). However, even i f  the variance must be 
smaller than for A lgor i thm 1, the performance as measured by (2) is not 
asymptotical ly better: 

lira log az  
u-co log g'(u) 

P r o o f  

P r o p o s i t i o n  2.1. Assume that B E S. Then for  Algorithm I!, 

I 

2 

= _ ~ - 2  E [ ~ 2 0 ( . -  X,);K_> 2] (I p- )Bo(u  ) + 

_ - _ p ' ) B 0 ( . )  + p 2 ~ 0 ( , , ) .  p-)B~(u) + E B~(t, X t ) ,X ,  > u, K > 2  ( I -  9 --2 

The last equality follows from the fact that the event (X/ > u) occurs with 
- -9  

probabili ty B0(u) and then B ~ ( u -  X i ) =  I. Since 

2 I - - 2 .  x E[z] 2= g,(,,) ~ ~ B 0 ~ . ) ,  

it follows that a z  is o f  the order o f  magnitude at least .~/2 ~ (O.~(u))Uz. Hence 
log az  cannot  go to - oo faster than log ~(u) /2  so that I/2 is an upper bound for 
]im inf in (2). That  I/2 is also a lower bound for lim sup follows since the 
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algorithm, based upon conditional Monte Carlo, is an improvement of the CMC 
algorithm 

D 

2.2. Algor i thm III .  The third algorithm is slightly more complicated. The main 
idea underlying this algorithm is that for subexponential distributions only the 
largest claim and not the sum of all claims causes ruin as stated in Definition 1. I. 
The following two lemmas will elaborate on this idea. 

L e m m a  2.1. Let Xi,  X2 . . . . .  X,, ,.~ Bo be non negative iid random variables andde- 
note by X(i) < X(2) < ... < X(,,) the order statistic. Furthermore let Jz(,,_j) = 
(r(X(,), ..., X(,,_,)). 
Then 

P(X(,,) > x[ ) x) 

where a V b standsJbr max (a, b) .  

Proof. Suppose XI, ..., Xn iid and Xi's are absolutely continuous, then the order 
statistics form a Markov chain. 

P(X(,,) > x I .T'(,,_,))= P(X(, , )> x[X(,,_,)) 

and 

1 M x < y,  
P(X(,,) > x[X(,,_,) = y )  = f,..lxi.,lx,,,_,,(uly)du, x >_ y, 

where 

f ° ° f  x~,,,ix,._ , (uly)du = 
~o(.,) 

.,. BOO') 

(see for instance Arnold, Balakrishnan and Nagaraja [3], p. 23). Hence 

Bo (X(,,_, V x) P(X(,,) > x I ,T'(,,_,)) = ) 
a0(x(,,_,)) 

R e m a r k :  If the Xg'S are not absolutely continuous a different proof can be given 
using combinatorical arguments. 
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L e m m a 2 . 2 .  L e t S , , = Y l  + ... + X,, and S(k)=X(i)+. . .  + XCt.)(I < k < n). Then 

~0((,,- s~,,_,)) v x~,,_,~) 
P(S,, > u) = E ~0(x(,,_,>) 

Proof  By conditioning, 

P(S,, > u) = E[P(S,, > ul..T'(,,_l))] 

= E [ p ( x ( , , ) +  s(,,_,) > ul &,_,~)]  

= E[P(X(,,~ > , , -  s(,,-,~l & , - , / ) ]  

and applying L e m m a  2. I completes  the proof .  

Algor i thm II1 can then be written as: 

I. Genera te  Ki as geometric  (p), i.e. P[K, = k] = (I - p)pk(k = 0, 1, 2, ...). 
= ' - ...- X i and 2. Genera te  Xil, ..., xix, from the density b0 and set yi u - X(i ) (K,-I) 

i 
Dli = X(K,-  I)" 

Bo( Yi V mi) 
3. Set Zi = 

B0(mi) 
4. Repeat  steps I to 3 n times. 

5. Est imate E [Z] by 2 = .L,, z_,T'"i= ~ Zi. 

The main result o f  the paper  is the following 

T h e o r e m  2.1. Assume that Bo(x) = L(.v)/x('(c~ > I) with L slowly varying (i.e. 
lim~.._~ L(X,-)L(.,.) = l for  all A > 0). Then Algorithm l l lsat is f ies  

. . ~ l o g  a z  
m~mr - -  > 1. 
,,-oo l og~b(u ) -  

In order to p roo f  Theorem 2.1 we first give three Lemmas.  

L e m m a  2.3. For Algorithm II1 we have 

o'~ < E[K 2 / I --~/u'~ ~2 [ u (8) 

Proof  We first derive the condit ional  densityfx(^._,,(x) of  the r andom variable 
X(h' -I )  g i v e n  K: 

P(XK-i _< x) = P(Xo) <_ x, ..., X(K-,) <_ x) 
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Hence the density is: 
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+ P(XI _< x, ..., XK-I ~ x, X K ~ x) 

= KBg -I (x)Bo(x) + Bff(x). 

fx(x_,, (x) = K(K - l)B~'-2(x)-Bo(x)bo(x). (9) 

Next we calculate 

B,,(x(,.,>) ] j 

-- e L ~ -~o(X(~._,,) ,. x,~_,> _ 

-I-E[I," X(K_,)>~IK].  (12) 

The first summand (10) can be bounded as follows. If X(K-~)_<~ 
Bo(u - S(K-i)) _< Bo(~,), so that 

~2 { u) f./K .A'~._,~ (x)</r 
-< °kK / Jo B~o(-") 

< 
- J o  Bo(x) 

i,.~2/u~ 

then 
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The second summand (l I) can be bounded in the same way. 
< X(K-,) <_ ~, B o ( ( u -  S(K-,)) V X(K-,)) < Bo(~), yielding 

----2 :u/2 fxca.,l(X)d,~ 

l,~,, \ [,,/2 So(x),.,. 
< K ( K -  ) O~-~) j,,iK Bo(x) 

, ~ ' " '  (,o~o/2)/- lo~/~o/-~/)) = - K ( K -  ) 0~-~) 

TO find an upper bound for (12) we write 

E I ; X ( K _ i )  > i l K  = 

= K ( K -  1) BK-2(x)-Bo(x)bo(x)dx 
2 

t; o < K ( K -  I) (x)bo(x)dx 

1--2 u 
= K ( K - l ) ~ B o ( ~ ) .  

Adding the above inequalities leads to 

[ 1 "~2 --9 U ~I:,~l -~ ~ ,)~ 0(2) ~o(~),o~(~o(2))) 

-(.)) 
_ i Bo .~ + Bg .~ IlogB0 ~1 

and hence 

E[E[Z2IK]] E [ Z ]  2 

< E[K2fll--2/tt\ --2/u\ .~ /u\  
m 

305 

For 
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L e m m a  2.4. /.fBo(.x') = L(x___) L slowly varying then for any e > 0 there exist con- 
A ~  , 

stants C_(~) and C+ (e) such that 

(Y) C-(e)d"-Lv . . . .  • < Bo ~ _< C+(e)d~-ex . . . .  ~, Vx > 0 V d > O. 

Proo£ From Bo(x)x ~-~ = x-eL(x)  it follows that lim.\._0 x-•L(x)  = 0 and that L 
is a continuous function. Since L is slowly varying also l im.\ ._~x-~L(x)= O. 
Hence there exists a constant C+(e) such that L(x) < C+(e).v s for all x and hence 

_ ( ) x  _ _< • 

For the lower bound the proof is similar. Just note that if L is slowly varying 
then also I/l_. is slowly varying. 

[] 

Lemma 2.5. lf-Bo(x) = ~ L slowly varying thenJbr any e > 0 there exis't con- 
stants D l(e) and D2 (g) such that 

E[Z 2] _< (D, ( e )+  D2(e)llog Ut)U 2e-2". 

Proqfi From Lmnma 2.3 we have 

E[Z2] < E[K2(I- -2  (u) - -2(u)  ( u ) ) ]  _ ~B;  5 ÷ B° K I logB0 ~ [ 

Lemma 2.4 yields 

+E[C2+ (e)K 2°-2~+2 u-2"+2~ Ilog(C_ (e)2°-q, -°-• )  I] 

_< (DI (g) + D2(g)I log . I ) .  2¢-2'' 

where D, (e) = E[K 2] ½ C~ (e)2 2`'-2• + E[K 2''-2~+2] C~_(e)llog(C_(e)2 ''-~) 

and D2(g) = E[K 2''-2e+2] C~ (e)(~ + e). 

Now we have all the tools needed to prove Theorem 2.1. 
Proo/'ofTheorem 2. 1. From Lemma 2.5 we get 

log o-z _< log ~(D,  (e) + D2(e)llogul)u 2e-2¢' 

= ½log(D, (e) + D2(e)llogul) + (e - o.)logu 

[] 
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and therefore 

lira l o g a z  > lira ½log(D,(¢) + D2(c)llogul) + (e - o , ) logu 
,,-oo log ~(u) - ,,-oo log ~(u) 

using (6) yields 

! log(Di  (e) + D2(e)llog u[) + (e - ca)log u 
= l i ra  2 

I 
= l i ra  f log (Dr (e )  + D2(e)llog ul) + (e - ~t)log u 

. -oo - l o g  0 + log L(u) - ca log u 

E - - C a  ,~ 

Now let e ~ 0 which completes the proof. 

Remark: 
I. For  lognormal claimsizes Algorithm III| is also asymptotically efficient. The 
p roof  is given in Binswanger [8]. 

TABLE I 

SIMULATED RUIN PROBABILITIES AND THEIR PRECISION MEASURED BY (2) FOR PARETO DISTRIBUTED 
CLAIMS (ALL NUMBERS ARE ROUNDED TO THEIR LAST DIGIT) 

Pareto(1, 2), 0 = O.l, n = 1000 

,~(~,) ± ~.96-~ 
Algor i thm I Algor i thm 11 Algor i thm III ~,'('0 

u = 10 (5.6 ± 0 .3 ) .  10 -~ (6.0 ± 0 .3 ) .  10 -~ (5.5 ± 0 .3 ) .  10 -~ 5 .5 .  10 -~ 
1.21 1.56 1.38 

u = 50 (2.0 ± 0 .2 ) .  10 -I (2.0 ± 0 .2 ) .  10 -I ( I .9  ± 0.2) • 10 -I 1.9.  10 -I 
0.57 0.60 0.72 

u = 100 (8.1 ± 1.7).  10 -2 (9.0 ± 1.7).  10 -2 (8.6 ± 1.2).  10 -2 8 .5 .  10 -2 
0.52 0.54 0.69 

(I .2  ± 0 .7 ) .  10 -2 
0.50 

(1.0 ± 0 .2 ) .  10 -2 (0.9 ± 0 .5 ) .  10 -2 
0.51 

1.2- 10 -2 
u = 500 0.77 

u = 1000 (6.0 ± 4 .8 ) .  10 -3 (9.5 ± 5 .9 ) .  10 -3 (5.3 ± 0 .6 ) .  10 -3 5 . 4 - 1 0  -3 
0.50 0.51 0.88 
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"FABLE 2 

SIMULA'rED RUIN PROBABILI'I'IES AND THEIR PRECISION MEASURED BY [2) FOR PME DISTRIBUTED 
CLAIMS (ALL NUMBERS ARE ROUNDED TO "['IIEIR LAST DIGIT) 

P M E ( 3 ) ,  0 = 0.25,  ~t = 1000 

~,(,,) ± 1 . 9 6 - ~  

I o g ( 6 ) / l o g ( ~ )  A l g o r i t h m  1 A l g o r i t h m  II A l g o r i t h m  I I I  ~b(,u) 

u = 50 (5.0 • 4.4) 10 -3 ( I . 8  + 2.0) 10 -3 (3.0 + 0.9) 10 -3 3 . 1 .  10 -3 
0 .50  0 .54  0.74 

u = 60 (3.0 .4- 3.4) 10 -3 (4.3 ± 3.9) 10 -3 (2.4 -4- 2.0) 10 -3 1 .8 .  10 -3 
0 .50  0.51 0.57 

tt = 70 (2.0 =i: 2.8) 10 -3 (I .8 ± 0.1) l0  -3 (I .0 ± 0.2) 10 -3 1 .2 .  10 -3 
0.50 1.04 0.84 

u = 80 (1.4 ± 0.1) 10 -4 (8.8 ± 2.0) 10 .-4 8 . 2 .  10 -4 
1.05 0.82 

u = 90 ( I . 0  =k 2.0) 10 -3 ( I . 0  :::k 0.1) ]0 -4 (5.6 :t: I . I )  10 ~ 6.1 . 10 -4 
0.50 1.01 0 .84  

u = 100 ( I . 0  ± 2.0) 10 -3 (8.2 ± 0.3) 10 -5 (4.1 =k 0.7) 10 -4 4 . 7 .  10 -4 
0 .50  1.06 0.87 

TABLE 3 

SIMULATED RUIN PROBABILITIES AND THEIR PRECISION MEASURED BY (2) FOR LOGNORMAL 
DISTRIBUTED CLAIMS {ALL NUMBERS ARE ROUNDED TO TIIEIR LAST DIGITI 

L o g n o r m a l ( - I . 6 2 ,  1 . 8 ) . 0  = 0 . l , n  = 1000 

,~(..) ± ~.90-~ 
Iog(6")/Iog(¢') A l g o r i t h m  I A l g o r i l h m  II A l g o r i t h m  111 ,~(~l) 

u = 0 (8.3 ± 0 . 2 ) .  10 -I (8.9 • 0 . 2 ) .  10 -I (9.0 ± 0 . 2 ) .  10 -I 9.1 - 10 -~ 
5.35 I I . I  I 1.4 

u = 100 (3,5 ± 0 . 3 ) .  l0  -I (3.9 ~ 0 . 3 ) -  10 -1 (3.4 ± 0.3) 10 -I 3 . 4 -  10 -I 
0 .70 0.82 0 .84  

u = 1000 ( I . 2  ± 0 . 7 ) .  10 -2 (7.4 ± 4 . 8 ) .  10 -3 (8.0 ± 2 . 2 ) .  10 -3 1.1 - 10 -2 
0 .50  0 .52  0.69 

u = 1 0 0 0 0  0 (3.3 ± 0 . 1 ) .  10 -~' (3.5 ::t: 0 . 4 ) .  l0 -s 4 .  10 -5 
- 1.09 0.93 
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2. If B0 (or B) is a Weibull distribution, 

bo(x) = , , . ¢ - ' :"" ,  ~o(x)  = e-"", 

Algori thm Ill  is not efficient in the sense of  (2). Indeed, we get 

E[Z21K = 2] > [ , / 2  -B~ ( u y ) -  

- . 0  oty  --rT" sx,,,(y).y 

f 
. / 2  _~ 

= 2 B;(u - y)vy"- ldy 
.Io 

:u /2  

_> 2v(u/2)"- ' . /°  "B20(t'- y)d)' 

= 2v(u/2)"- ' .  Bo(Y)dy 
/2 

~/t 11 r --2 > 2 vy - J B o 0') dy 
• / 2  

So we get 

= e -2("/2)' - e -2"' = e-2 '-" '"(I  + 0( I ) )  

£1og(E[Z2IK= 2]P(K = 2 ) -  E[Z2]) 
lira log~7. < l ira2 
,,-~o~ log V~(u) - ,,-oo log(Bo(,)/O) 

21 -~'uv/2 I 
< lira - -  = - -  < I 

Of  course we should ment ion that this does not imply that the a lgor i thm does not 
work well in the Weibull setting; and indeed the numerical  experience is 
convincing. It should be noted that, as a condit ional  M C  algori thm, Algor i thm 
111 is always an improvement  on the crude MC method,  even in the light tailed 
case. (Though here we do not obtain any improvement  of  the asymptot ic  
efficiency and the a lgori thms of  Asmussen [4], Siegmund [29] are superior.)  

3. THE CORRECTED DIFFUSION APPROXIMATION 

The s tandard diffusion approx imat ion  (Iglehart  [22] or Grandel l  [19]) is given by 
(7). For light-tailed r andom walk problems Siegmund [30] derived a correction 
which was adapted  to ruin probabil i t ies by Asmussen [6] and shown to be 
extremely accurate.  An alternative covering also certain heavy-tailed cases was 
given in Theorem 2 o f  Hogan  [21]. As in Asmussen [6], it requires some 
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adaptation to ruin probabilities which we shall next present. The result will be an 
approximation of the type 

where 

qdH(t') = exp( -c ,  u)(l + c 2 u -  c3), 

C I 
20ml 402m~m3 20mlm3 

C 2 - - - ~  C 3 - -  
In2 3m~ 3,n~ 

(13) 

and m~ is the i-th moment of B. Note that formally the conditions of Theorem 2 
in Hogan [21] lead to the requirement that m5 < cxD though our numerical 
experience indicates that this is not crucial. 

To derive (13) from Hogan [21], substitute first v = ~/0 to get 

4T02 v 19Eo,S2T+'~ 
P-o('r,, < cxD) ~ e -2°~ 1 + ~ EoS~+ ,}" (14) 

Next we consider a RW with drift -IL and 0.2 = EoX~ not necessarily = I, and r .  
The normalized RW S,,/cr has drift - 0  = -/_L/0., 7 = EoX1/0 3,'u = u/a. Similar 
substitutions for the ladder height moments yield 

P_t,(7",, < oo) ,-~ e -2' ' ' /~ ( I  4 
4EoX~/cr 3. #2/o2. u/o" #/~[EoS~+/o2"~ 

3 EoS,+/0. J 

e_(_,/o_), , 4EoX~/fl ttEoS;+ "~ 
= l +  " g:G37 2 (15) 

In the next step, we take the RW as a discrete skeleton of  the risk process. 
S,,=R(nh)- cnh. Then 

eL = hOAnq, 0.2 = ham2, Eo,g~ = ham3. 

Further the risk process corresponding to 0 = 0 has ladder height distribution Bo 
so that 

EoS~+ ,[~,,o x2Bo(dx) 2m3 h ~ O. 
EoST+ * j ~  x Bo(dx) -- 3m2' 

Taking the limit h ,L 0 in (15) we thus get 

'~(u) ~. e -(2°'\''''/'x'''-')'' ( I  + 
4)m13 (O,,~ml )2 

3A3m~ 
2m30Am I 

=e-< '"( I  + c z u - c 3 ) .  
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Various other approximations and bounds for ~b(u) are known. For an overview 
see Embrechts and Kl/.ippelberg [15], Feilmeier and Bertram [17], Panjer [26], 
Buchwald, Chevallier and KI/ippelberg [9] and references therein. 

4. NUMERICAL RESULTS 

In this section we present the numerical evaluation of the algorithms for the PM E, 
the Pareto and the Lognormal case. For the PME distributions Abate, 
Choudhury and Whitt [I] have calculated the exact values of  the ruin 
probabilities. Therefore we choose the parameters in such a way that we can 
compare the simulation and the exact results. For the Pareto and the Lognormal 
case only few exact values are available. The Panjer approximation ~be(u) (see 
below) is chosen as a benchmark. 
The simulation has been done with MATLAB 4.2a. To construct Bo distributed 
random variables we used the inversion method for the Pareto case and the 
inversion/rejection method by Newton-Raphson iteration for the other two. For 
more details see for instance Devroye [11]. 

4.1. The  Pan je r  recurs ion .  Panjer [27] suggested to use a recursion formula for 
calculating the probability of  ultimate survival q~ = 1 - ,~b. The recursion formula 
is based on a discretisation of the density ~b' which we denote by q~* leading to 

1 
~~gO,) (a*(u-  y) u = 1, 2, ... 

4 , * ( u )  - I + 0 - g ( 0 )  v = ,  

with 

0 
& ' ( 0 )  - 1 + 0 -  g ( 0 )  

where g is a discretised version of the density bo. Finally we get 

~ ( u ) ~  l - ~ * O : )  u = O ,  I, 2, ... 
y=O 

The time to evaluate this procedure increases for large u since the recursion 
always has to start with u = O. A great advantage of this method is that it leads to 
upper and lower bounds for '~(u) by choosing g in such a way that gl(x) < bo(x) 
for the lower bound and g . ( x ) >  bo(x) for the upper bound. Since b0 is a 
decreasing function we can set g / ( x ) =  B0([x]+ 1) -B0([x] )  and g , (x)=-  
B0([x]) - B0([x] - 1) (Ix] stands for the integer part of  x). For the approximation 
of ~b(u) denoted by "~,e(u) we choose g,(x)  = B0([x] + 1/2) - B0([.,-] - I /z) .  
Panjer's recursion method has meanwhile become the standard tool for actuaries; 
see for instance Dickson [13] for a comprehensive review. 
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4.2. P a r e t o  D i s t r i b u t i o n  ( P A R ( a ,  b)). The distribution function of  the Pareto 
distribution is given by: 

((°)+)  B(x) = 1 -  ~ l (x  > a) where a > O ,  b >  I, and x > O .  

The mean is #a  = ab/(b - I), and the density bo and the cdf  Bo of  the integrated 
tail distr ibution are respectively 

+-,( (+)+ ) = l (x  > a) , b0(x) ~ ; ( x < a ) +  x - 

( +, c°)+-,) 
a0(x)  = x I ( x  < a) + I - ~x t(.~ >__ a). 

For  the simulat ion with the inversion method we also need Bo I (x) which is 

° + ( +  ,) + c,>+ ,) 
e~'(x)=~-=-i-x I .~ < @ +(b(l_x))~_÷/ _ @  . 

4.3. P a r e t o  M i x t u r e  o f  E x p o n e n t i a l s  D i s t r i b u t i o n  (PME(r ) ) .  This class of  
distr ibution was defined in order  to have subexponent ial  distr ibutions with an 
explicit Laplace t ransform.  Start ing from a Pareto distribution the P M E  is 
defined as follows. 

D e f i n i t i o n  4.1. Let for r > 1 

/ ( x )  = r x - ( r + ~ / I ( x  > - - )  
I' 

be the density function o f  a Pareto distribution with mean 1. Then the density o f  a 
Pareto Mixture o f  E.wonentials is defined as 

h(x)  := f ( y )  o x p ( - x ) a y  = x-( '+~)v r +  l, ' 
y r - I  x '  

where ~(a, u) = t,,-l o x p ( - t )  dt is the incomplete Gamma fimction. 

The tail behavior  o f  the density of  a P M E  distribution is the same as for the 
Pareto distribution, namely ,--, CrX -(r+I) (Cr a constant  depending only on r). The 
distribution function Bo(x) can be calculated explicitly for some values of  r, for 
example  for r = 3: 

' (  ) B o ( x ) =  1-9--r2 8 - ( 8 + 1 2 x ) e x p ( - ~ )  . 
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4.4. L o g n o r m a l  Dis t r ibu t ion  (LN(m, s)). The density of a Lognormal distri- 
bution is given by 

_', 
b(x) - svT~.~exp(--~ ) i(x > 0) 

and the k-th moment #~ )=exp(km+½k2s2 ) .  B ( x ) = ~ ( w ( x ) )  where O(.) 
denotes the c.d.f, of a standard normal distribution and w(x) = ~ (log(x) - m). 
For efficient programming the following representation of Bo(x) is useful: 

If" Bo(u) = #-7Jo (I - B(x))  dx 

=-[- ( u--[-  f'' ['''l''l exp(-y2/2)dv v'T~.lo ~,-o~ 

I 
= - -  ( u  - u , ~ ( w ( u ) )  + # n ' ~ ( " ' ( "  - s ) ) .  

#n 

10 0 

I X  EV 

I 

10-' 

1 0  - 2  . . . . . . . .  i . . . . . . . .  I . . . . . . .  

10 ~ 10 2 10 3 10 4 

FiGUrE I: P A R ( I . I . 5 ) ,  0 = 0.3. 
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Thorin and Wikstad [31] have calculated the exact ruin probabilities for some 
values of  u and 0. Therefore we cornpare our estimates with those values. 

4,5. Resul ts .  The Tables I-3 contain the estimates for different initial reserve u de- 
rived from the three algorithms together with their confidence intervals and the 
precision meast.red by (2). The estimates for PAR(I,2)  distributed claims with se- 
curity loading 0 = 0. I are presented in Table I. The results for PME(3) distributed 
claims with t9 --- 0.25 are shown in Table 2 and for Lognormal (-1.62, 1.8) claims 
with 0 = 0.1 in Table 3. 
In the Figures I-5 we give the simulated values from Algorithm ill based upon n 
= 200 replications, the approximation "thEy(u) and ~/:H(U) (if the third moment  
exists). These values are compared with the estimates, lower and upper bound 
derived fi'om Panjer's approximation, Figure 1 shows the values for PAR(I,I .5) ,  
0 = 0.3, Figure 2 for PAR(I,2),  0 = 0.1 and Figure 3 for PAR(I,5),  0 = 0.1. For 
the Weibull distribution we give the figure for v = I/2,  0 =  0.2 and for 
v =  I/3,  0 = 0 . 1 .  

5. CONCLUSION 

Below we give an overview of the most important properties of the algorithms 
and approximations we considered. The key observations from the above tables 
and figures as well as other examples, see Binswanger [8], are: 
OI Algorithm I works fine for 'small '  initial capital and underestimates ~b(u) 

when u is 'large'. 
02  Algorithm II usually overestimates ~,(u) for "small' u and underestimates for 

' large' u. 
03  Algorithm Ill is always of the right order of  magnitude. 
0 4  The precision measured by (2) is usually around ½ for Algorithm 1. For 

Algorithm II it is also around ½ as long as the estimates are valid and around 
I when the estimates are wrong. The precision of the third algorithm is 
always around I even when the claim size distribution is Weibull. 

05  The corrected diffusion approximation (13) gives very satisfactory results for 
"small' initial capitals and is poor for 'large" initial reserves. The less heavy 
tailed the distribution of the claims is, the better the approximation is. 

0 6  The asymptotic approximation (6) often requires u to be so large that the 
resulting ruin probability becomes extremely small, in fact much smaller than 
typical values of  practical interest. The approximation turns out to be better 
the more heavy-tailed B is. In particular, it is much better for Pareto then for 
Weibull distributed claims. 

Of  course it would be nice to know what ' large' and "small" initial capitals mean. 
The interpretation of "large' or 'small" depends on the kind of distribution and on 
the choice of  its parameter as well as on the security loading 0. 
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A comparative study of the accuracy of the various bounds and approxima- 
tions in De Vylder and Goovaerts  [10], Dickson [12], Omey and Willekens [24] 
and Omey and Willekens [25] is given by Binswanger [8]. In the latter, also 
alternative variance reduction techniques, like the use of regression-adjusted 
control variates, are to be found. 

We point out also that Algorithm 111 applies to the total claims as well. That is, 
rather than the ruin probability, one wants to compute 

) G(x) = P t > x 

by simulation where M is the number of  claims in a given period. The simplest 
case is where M is Poisson with parameter A, say, and one can proceed just as for 
the ruin probability, generating M as Poisson rather than geometric. One again 
obtains the efficiency property (2). More generally, M could be allowed to have 
any distribution with finite second moment.  For example, one could treat risk 
processes where the arrivals occur according to some Cox process in this way. 

Besides Panjer's recursion also transform inversion via FFT offers an 
interesting estimation method. See for instance Embrechts, Griibel and Pitts 
[14] and Buchwald, Chevallier and Kliippelberg [9] for a discussion in the context 
of  insurance. 

For a broad overview of the application of numerical methods in risk theory, 
see Feilmeier and Bertram [17]. 
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