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A B S T R A C T  

In the present paper we discuss error bounds for approximations to aggregate 
claims distributions. We consider approximations to convolutions by approx- 
imating each of the distributions and taking the convolution of these 
approximations. For compound distributions we consider two classes of 
approximations. In the first class we approximate the counting distribution, but 
keep the severity distribution unchanged, whereas in the second class we 
approximate the severity distribution, but keep the counting distribution 
unchanged. We finally look at some examples. 

1. INTRODUCTION 

During the last two decades there has developed a large literature on 
approximations to aggregate claims distributions and related functions, in 
particular their stop loss transforms. In the present paper we give bounds for 
some measures of errors caused by such approximations. These measures can also 
be applied as measures for the distance between two distributions. 

In Section 2 we introduce some notation and conventions, and in a short 
Section 3 we present some simple inequalities for error bounds. 

Approximations to convolutions of distributions is the topic of Section 4. We 
approximate a convolution by approximating each of the distributions in the 
convolution and then taking the convolution of the approximations. 

Approximations to compound distributions is the topic of Section 5. We 
consider two classes of approximations. In the first class we approximate the 
counting distribution, but keep the severity distribution unchanged, whereas in 
the second class we approximate the severity distribution, but keep the counting 
distribution unchanged. Error bounds for approximations where both the 
counting distribution and the severity distribution are approximated, can be 
found by application of triangle inequalities. 

In Section 6 we finally consider some applications. Further applications of 
results from the present paper are given in Dhaene & Sundt (1996). 
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The main topic of  the present paper is approximations to probability 
distributions. These approximations are not necessarily distributions themselves. 
Sometimes one would apply an approximation that could be naturally split into 
more than one step, e.g. approximating a compound distribution by first 
approximating its counting distribution and then its severity distribution. In this 
situation one could first give bounds for the approximation error of the 
approximation with correct severity distribution and approximated counting 
distribution, then for the final approximation considered as an approximation to 
this intermediary approximation,  and finally use triangle inequalities to assess the 
approximation error of the aggregate approximation. In such a procedure, the 
intermediary approximation would not necessarily be a distribution, and thus in 
our frame-work it is also of  interest to discuss approximations to ftmctions. On 
this background we have sometimes in our results assumed that the quantity to be 
approximated is a more general function than a probability distribution. Such 
generalisations are also possible in some of the other results where we for 
simplicity have made more restrictive assumptions. 

2. NOTATION AND CONVENTIONS 

In the present paper we shall be concerned with probability distributions on the 
non-negative integers. We shall approximate such distributions by approximating 
their discrete densities. Thus we identify a distribution by its discrete density, and 
for convenience we shall usually mean its discrete density when we talk about a 
distribution. 

Let 7 9 denote the class of (discrete densities of) probability distributions on the 
non-negative integers. When discussing approximations to compound distribu- 
tions, we shall restrict the severity distribution to the positive integers, and we 
therefore also introduce 79+ as the class of  distributions on the positive integers. 
As we shall approximate distributions in 79 and 79+ by functions which are not 
necessarily distributions themselves, we shall also need the classes .f" and .f '+. 
being respectively the class of  functions on the non-negative integers and the class 
of  functions on the positive integers. We see that 79+ C 79 C .f" and 79+C . f '÷C .f'. 

For a function f E ..T we introduce 

oo 

t,,,(J) = ~ xT(.,) 6" = 0, 1) 
x=0 

Fr(.x') = ~ f ( y )  r [ f (x)  = ( y -  x ) f 0 ,  ). fir = o, I~ 2, ...) 
y : O  . 1 ' : . ~ , ' - ~  - ] 

When the quantities fro( f )  and Itl ( f )  appear, it will always be silently assumed 
that they exist and are finite. When Hf(x) appears, it is assumed that f ro( f )  and 
t.tt ( f )  converge so that IHj.(x) is well defined and has a finite value. 

I f f  E 79, then I~f is the corresponding cumulative distribution, H f t h e  stop 
loss transform, l,tx ( f )  the mean, a n d / t o ( f )  = I. 
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As the main purpose of  this paper is to study the approximat ion error  for 
approximat ions  to a distribution, we introduce the following measures for the 
distance between two f u n c t i o n s f , g  E ~ :  

o o  

ej(J', g ) =  ~ x J l f ( x ) - g ( x ) l  ( j = O ,  1) 
. ~ ~ 0  

g) : s n p l n / ( x )  - n A x ) l .  
x>O 

For evaluating the quality of  an approximat ion only considered as an 
approximat ion to the discrete density, e0(f, g) is a natural measure for the 
approximat ion error. If we want to evaluate the corresponding approximat ion to 
the stop loss transform, then 'rl(/',g) is a natural measure. We see that e0(/', g), 
e l ~ ,  g), and 'lT~,g) are equal to zero if and only i f f = g  

By the notat ion x+ we shall mean the maximum of  x and zero. 
We denote by 1 the indicator function defined by I(A) = 1 if the condit ion A 

is true and / (A) = 0 if it is false. 
We shall interpret Eib=,,vi = 0 and l-Iih=,,vi = I when b < a. 

3. SOME USEFUL INEQUALITIES 

The following lemma gives some useful inequalities that we shall need later. 

L e m m a  3.1 Forf  , g, h E .Tandj=O, l, wehave 

eA/', g) <_ eZ/ ,  /,) + ej(/,, g) 

' l (f ,  g)<- ' tU ' ,  h ) +  ,/(h, g) 

[t~.l ( f )  - m (g) l  < el ( f ,  g) ,  

andJbr f , g E P 

1 
[f(0)  - g ( 0 ) l  <_ ~eo(f, g) _< e l ( f ,  g). 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Proof. The inequalities (3. I)-(3.3) are obvious. 
For  (3.4) we have 

e0(.f, g) - 2If(0)  - g(0)] = ~ I f (x)  - g(x) I - v~l ( f ( x )  - g(x))  
Y =  I . " =  

> 0 ,  
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which proves the first inequality. Fur thermore ,  

.,.=~ g(x))  eo(f, g) = (f(.v) - + ~ I f (x )  - g(x)l  <_ 
.V= [ 

oo 

2 ~ . v l f ( . v )  - g(x)l = 2e~ ( f ,  g), 
x =  [ 

which proves the second inequality. 
This completes the proof  of  Lemma 3.1. Q.E.D. 

4. CONVOLUTIONS 

4A. When for i = 1 . . . . .  17, approximat ing f,-E 7 9 by gi E .T', which is not 
necessarily in 79 itself, it is also natural to approximate  the convolut ion ." '  c by i = l a t  
*'i"==g, The convolut ion I1= "112 of two functions hi and 112 O11 the non-negative 
integers is defined by 

(/1~ •/12)¢,-) = ~ / 1 ~  (y)h2(.,- - ,,); (x = 0, l ,  ...) 
. | '=0 

we also define h°*(.v) = I (x  = 0) for a funct ion/ i  on the non-negative integers. 
The following well-known properties o fconvolu t ions  ofdis t r ibut ions  in 79 also 

hold for convolut ions of  functions in .T': 

/11 */.'2 = It2 */;q 

(h! */12) */13 =/11 * (/12 * h3) 

Ill */13 +/12 * h3 = (/in +/12) */13. 

Furthermore ,  we easily see that 

I& * h21 _< lh, l * 11121 

#j(/,,) < ,t,j(h2). (Iq _< h2; j = 0, 1) 

L e m m a  4.1 l fh  , h2 E f f  such that #o(1/1,1) < c ~ f o r  i = I, 2, then 

l~o(& * h2) = #o(h~)/~o(h2). 
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P r o o f i  We have 

#o(h,  • 11,_) = ~ (h, • h2)(.,-) = h, (y)h2(.,- - y )  = 
x=O .v=O y=O 

00 oo 

h ,  (y) ~ h 2 ( . , -  - y) = ~,o(h,)f,o(h~). 
y=O x = y  

Q.E.D.  

,m t: , ' "  'h ~ Fo r  the p r o o f  o f  our  4B. We shall first consider  bounds  for ~0( ,=l.fi, i=l a j .  
main result we shall need the fol lowing lemma. 

L e m m a 4 . 2  For f , g, h ~ .U we kave 

e00 c • h, g ,  h) _< #0(Ihl)E00 ¢, g). 

Proof.  We have 

c~ 

e0(f  * h, g * k) = Z I(/" * h)(x)  - (g * h)(x)l  = 
A'=0 

,,=o y)) oo ~ hO,)( f (x  - y ) - g ( x -  _< ~ [ h ( y ) l L f ( x - y ) - g ( x - y ) l  = 
x=0 . x=O y=0  

(3(3 130 

~ Ih(y)l ~ [ f ( x  - . v )  - g ( x  - Y)I = no( Ih l )~o( f ,  g) ,  
3'~0 x = y  

Q.E.D.  

T h e o r e m  4.1 For£, gi E ,T" ( i= I . . . . .  m),  wehave 

eo i=*Ji,,__* g, _< so(f ,  gi) #o t',o(lgj • 
i =  I "= k , i = i +  I 

(4.1) 

Proof.  If #0([Xi])= o,9 or  p,o([gi[)= 0<) for some i, then the theorem obvious ly  
holds.  Let us therefore assume that  #0( f )  and #o(gi) are finite for all i. Under  this 
assumpt ion  we shall prove (4.1) by induct ion on m. Fo r  m = 1 it tr ivially holds.  
We now assume that  it holds for m = I . . . . .  n. By using successively (3.1), Lemma 
4.2, Lemma 4.1, and (4.1), we obta in  
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:,,+ ,,+,) :,,+ ( , , ) )  ,,+,) 
£Oki~l f i ,  i=*l gi ~ EOki_*lfi, i_~lJi * g , , + l  + ¢ 0  \ \ i = 1  " * g"+l'i-~l -< 

(" ,,) 
~Lo i i f ,  ¢oU; ,+l ,g , ,+J)+P.o( lg , ,+l l )co  i__*l.6,i__*tgi _< 

i= I "= kj'=i+ I 

that is, (4.1) also holds for m =n + I. By induction it holds for all m. Q.E.D. 

One somewhat disappointing aspect of Theorem 4. I is that the upper bound in 
(4. l) is not in general invariant against permutations of the pairs ~., gi) (i = 1 ..... 
m). However, in the special case whenfi ,  gi E 79, (4.1) reduces to 

CO **lJi *l gi __< ~0((~, gi), 
= = i=1 

which is mvariant. 

, iit 4C. For q(*,=l c , " '  "~ j i ,  i=lg,: we have the lbllowing result. 

T h e o r e m  4 . 2  Forfi, gi E 7 9 ( i  = 1, . . , ,  m ) ,  wehave  

I-I.::, :(.¥)-rL,~, ~,,(x) _< ~ sup(rI/(~;)-n~.(v)) 
- i = l  . v > O  . . . .  

(x=o, 1 ,2 , . . )  (4.2) 

i=1 

Proof.  Formula (4.2) follows from Lemma 6 in De Pril & Dhaene (1992), and 
(4.3) follows immediately from (4.2). Q.E.D. 

In (4.2) we gave an upper bound for the difference between the two stop loss 
transforms. By symmetry we can ilnmediately obtain an analogous lower bound. 
Similarly, we shall also in the following often present our results only with upper 
bounds when the analogous lower bounds follow immediately by symmetry. 
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5. C O M P O U N D  DISTRIBUTIONS 

5A. In this section we shall discuss approximations to compound distributions. 
For simplicity we assume that the severity distribution is in 79+. 

We denote the compound distribution with cotmting distribution p E 79 and 
severity distribution h E 79+ by p V h, that is, 

( p V h ) ( x ) = ~ p ( n ) h " * ( x ) ,  (x---O, I, 2, ...) 
II=0 

and we extend this definition of the function p v h  to the case when p E .T" and 
hE.T+ . 

5B. We first consider the case when we approximate a compound distribution 
by approximating the counting distribution and keeping the severity distribution 
unchanged. 

T h e o r e m  5.1 For p, q E f and h E F+ with [Lo([hl) < 1, we have 

eo(p V h, q v h) <Go(p, q), 

Proof .  We have 

e0~, v/1, q v h) = ~ I(p v/,)(x) - (q v h)(x)l = 
x=0 

(5.1) 

O0 O0 O0 

Ip(n) - q(n)l ~ Ihn*l(x) = ~ Ip(n) - q(n)l/t0(Ih"*l) <_ 
n=0 x=0 n=0 

oo oo 

[p(n) - q(n)l/t;(Ihl) ~ ~ [p(n) - q(n)l = e0(p, q). 
tl=O n=O 

Q.E.D. 

To deduce bounds for the approximation error for approximations to stop loss 
premiums, we shall need the following lemma, which is proved as formula (38) in 
De Pril & Dhaene (1992). 

L e m m a  5.1 F o r f  E 79wehave 

n l F l f ( x ) _ < I I f ° . ( x ) < ( n - l ) / t t ( f ) + I I f ( x ) .  ( x = 0 ,  1, ...; n =  1, 2, ...) 

T h e o r e m  5.2 For II E 79+, p, q E ~ with /tt(IPl) < ~ , / t t ( [q l )  < ~ ,  and 
B(p, q) = e, (p, q) - G0(p, q) + 2(p(0) - q(0))++/t, (p) - / t ,  (q) - / t 0 (p )  +/t0(q), 
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we ]lave 

1 
n~,vj,(.,-) = I~v,,(x) <_ ~ (#, (h) - nh(x) )B(p ,  q) + ~h(x) (# ,  (p) - #~ (q)) 

( x = O ,  ~, 2, ...) 

l 
~I(P V It, q V tl) < ~ # t ( h ) ( e l ( p ,  q) + [# l (P)  - # l (q) [ )  _< # l (h )¢ l (p ,  q). 

P r o o f .  F o r  x = 0, I, 2 . . . . .  we have  

n,,vh(x) - n,,vh(X) = ~ (s - x)((p v h)(y) - (q v h)(y))  = 
y=.7. + [ 

O' - x) ~ (p(n) - q(n))h"* (,7) = ~ O')(n) - q(,O)rI,,,,. (x) ,  
y = . v +  I n =  I n =  I 

f rom which we ob ta in  

OO 

n,,v,,(x) - n,~v,,(x) = ~ (e(,,) - q(,,))(nh,.. (x) - , , n , , ( x ) ) +  
/ 1 =  [ 

nh(x ) (# ,  (p) - #, (q)). 

T w o  app l i ca t i ons  o f  L e m m a  5. I give 

~2 ~ ( n )  - q(n))(lrIh,,. (x) - nl-l,,(x)) _< 

(p(n) - q(n))+(nh,, .  (x) -nn~,( .v))  < 
11= I 

~ ( , )  - q( ,O)+(, ,  - l ) (#,  (h) - rI,,(x)) = 

OC 

± (IZ~ (h) - Fit,(x)) E (tP(n) - q(n)] + p(n) - q(n) ) (n  - 1) = 2 
n =  I 

½ (#, (h) - 17h(.v))B(p, q), 

which  t oge the r  with (5.4) p roves  (5.2). 

(5.2) 

(5.3) 

(5.4) 
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A s  

OO 

B(p, q) = e, (p, q) + tq (P) - I.~, (q) - 2 Z (p(n) - q(n))+ <_el (p, q) + I~, (P) - l'., (q), 
t l =  I 

(5.2) gives 

I 
n,,vh(X) - n,~vh(.~-) _< ~ (#, (/,) - l~j,(.,-))(~ (p, q) + l,, (p) - / ,~ (q))+ 

I 
rx/,(x)(#, (p) - / , ,  (q)) _< 2 m  (10(el(p, q) + re(p) - m (q)). 

Together with the analogous inequality with interchanging o f p  and q, this gives 
the first inequality in (5.3); the last inequality in (5.3) follows by (3.3). 

This completes the proof  of Theorem 5.2. Q.E.D. 

The following theorem is a special case of  Theorem 1 in Sundt & Dhaene 
(1996). 

T h e o r e m  5.3 Forp ,  q E 79andh E 79+, w e h a v e  

rIpvh(X) -- l-lqv/,(x) < (fLI (11) -- r lh(x))lIIp(I)  + II/,(x)(#l (p) - t,Li (q)).  

(x  = 0, I, 2, ...) (5.5) 

The bounds in (5.1), (5.2), and (5.3) become equal to zero when p = q. 
Unfortunately, this is not the case with the bound in (5.5) unless 17:(I) = 0, that 
is, p is a Bernoulli distribution. On the other hand, we see that the bound in (5.5) 
is sharper than the bound in (5.2) when I//,(I) = 0 a n d p  -¢ q. We shall discuss this 
case in more detail in subsection 6.2. 

5C. Let us now consider the special case with h E 79+ and p, q C 79 with 
#j (p) = #~ (q). In that case (5.2), (5.5), and (5.3) reduce to respectively 

n:v/,(x) - n,,w,(x) < 

l (#l(h) - Hh(X)) (el (p, q) - E0(p, q) + 2(p(0) - q(0))+) 
2 

(x = 0, I, 2, ...) 

(5.6) 

Flpv/,(x) - Hqv/,(x) _< (#1 (h) - H/,(x))FI/,(I ) (x = 0, 1, 2, ...) (5.7) 

' q ( p V h ,  q V h )  _< {p,l(h)~l(p, q). (5.8) 
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From (5.6) we obtain 

71(pVh, q v h ) <  ~l~l(h)(~l(p, q)-Eo(p, q)+Z[p(O)-q(O)[). (5.9) 

F rom (3.4) we see that this is sharper  than or equal to the bound in (5.8). 
We see that the bounds  in (5.6) and (5.7) are non-decreasing in x. For x = 0 

these bounds become equal to zero. 

5D. In subsections 5B-C we discussed approx imat ing  a compound  distribution 
by approx imat ing  the count ing distribution and keeping the severity distribution 
unchanged.  Let us now instead consider approx imat ing  the severity distribution 
and keeping the count ing distribution unchanged.  For  such approx imat ions  we 
have the following theorem: 

T h e o r e m  5.4 For p E ~ and h, k E ~+ with lto([h[) _< I and ~Lo(lk]) _< I, we have 

e0(p vh, pv#)  < m(Ipl)~0(J', /,')- (5.10) 

If  in addit ion h, k E "P+, then 

, l (pVh,  p V k )  _< m(]p[),I(h, k). (5.11) 

P r o o f .  By applicat ion of  Theorem 4.1 we obtain 

E0(p v/ , ,  p v k) = ~.~ IO) v/,)(.,-) - ~) v k ) (x ) l  = 
.~.'=0 

C o  C o  

- k"*(.¥)) < ,=,  Ip(,,)lrh"*(x) - k"*(x)l = , , = ,  

c o  Co Co 

Z IP(n)l Zlhn*(x)  - kn*(x)l Z ~P( )[¢0(h ,k ) _< 
I 1 =  [ A ' =  [ n = ] 

~.~ Ip(,01,~0(t,, k)=m(Jpl)E0(h, k), 

which proves (5. I 0). 
We now assume that h, k e 'P+. For  x = 0, I, 2 . . . .  we obtain 

Co 

Ilqpvh(X) -- Hpvk(x)l = ,~=tp(n)(IIk,,.(x) - II1,.,,.(x)) _< 

C~3 

~-'~ I P(,,)lllqh,,. (x) - r~k,,.(x)l _< ~ lp(n)l~j(h"*,k"*). 
~1=|  r t = ]  
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Application of  (4.3) gives 

Irxpw,(x)- npvk(x)l _< ~lp(n) ln~(h,  k ) =  ul(lPl)',l(h, k), 
tl= I 

from which we obtain (5.11). 
This completes the proof  of  Theorem 5.3. Q.E.D. 

5E. We shall now discuss two classes of  approximations that can be convenient 
both for the counting distribution and the severity distribution in a compound 
distribution. 

F o r f  E 7 z' we define the approximation f (° for a positive integer r by 

f(O(x) = f ( x ) i ( x  <_ r). (.v -- O, I, 2, ...) 

<,(r,i<"')-- Z .,.'ilxl, o=o,  ,/ 
.v=r+ I 

0=o ,  i) 

As 

.v=O 

we obtain 

+ #,//> (5.~2) 

#o(f (0) = Ff(r ) (5.13) 

~, t i ,# "  ) = ml,.I + 
i N  

r ( l  r / , . ) ) .  

A s f ( x )  >f(")(x) for x = 0, I, 2 . . . .  , Hi(x ) -1-I/,,l(x) is non-negative and non- 
increasing in x, and we obtain 

We see that unless Ps(r) = 1, the approximation f ( o  will not be a proper 
distribution as #o(/"(r)) < ~0(J) -= 1. To obtain a proper distribution, we can apply 
the modified approximation )?(r) defined by 

p / ( x )  = [ ' f ( x )  - I) (x  = 0,  l ,  . . . ,  ,- - I) 
/10. - ~ f ( r  

For j = O, I we get 

ej(f,j~<,,) = e j ( f , . f ( r ) ) + , d ( , -F f ( r ) ) .  

X ~ r )  

( x = r + l ,  r + 2 ,  ...) 
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It is easily shown that 

H i ( x  ) - Fl/ul (x) = r I / (m~cx(x ,  ,-)), (.x = 0, 1, 2, ...) 

from which we obtain 

rl(f , ) c(')) = l - I f ( r ) .  (5.14) 

If X is a random variable with distribution f ,  then .fl') is the distribution of  
~")  = rain(X, r). As ,f'(") _< X, we immediately obtain inequalities like 

r~jlr) (.~k °) ~ "]~f (.%~) l'I~(,) (.%t ") ~ l~j '(~). (-i~ = 01 l,  21 ...) 

Theorem 5.5 i f  p, h E 79 and r and x are positive integers, then 

0 ~ .I'~pvh(X ) -- ~{r)v//(.~" ) 5 ~1 (Ill)IF[p('') (5.15) 

0 _< npv~,(x) -npvD,,, (x) < nh(,-)m (p). (5.16) 

Proof.  Sundt  (1991) proved (5.15). The last inequality ill (5.16) follows from 
Theorem 5.4 and (5.14), and the first inequality is immediately seen by 
interpreting Ilpvh(X) -- IlpvDU~ (x) as the mean of  a non-negative random variable. 

This completes the p roof  of  Theorem 5.5. Q.E.D. 

We notice that 

7,¢:r(r); 77¢,fIr)). 

5F. By combining the results from Section 5 with the results from Section 4, we 
can Obtain error  bounds for approximat ions  to convolut ions of  compound  
distributions. For  a simple illustration, letpi E 7::' and hi C ~+ (i = 1 ..... m). From 
Theorem 4.1, (5.1), (5.12), and (5.13), we obtain 

( ))" ' (  ) I I I  I I I  ~o ,= ,~ ,vh , ) . ,  nvh, _ < ~ o  p, v ,% p}"/ v h, _< 
' '= i=1 

i:1 i = l  
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6. APPLICATIONS 

255 

6.1. In t roduc t ion  

In this section we shall under various assumptions discuss approximations to 
compound distributions by approximating the counting distribution with another 
distribution with the same mean and keeping the severity distribution fixed, that 
is, we want to approximate p V h  with qVh when p, qE72, h E 7 ' +  and 
#1 (q) = #1 (P). 

6.2. Bernoull i  distribution 

L e m m a  6.1 l f  p is a Bernoulli  distribution and q E 72 with t~l (q) = ILl (p), then 

q(0) ~ p(0) q(I) ~ p(I) 

e0(p,q) =et(p,q) =20 ( I )  - q(I)) 

n.(I) =0  

n.(I) =q(0) -p(0). 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Proof.  We have 

oo oo 

1 - p ( 0 )  = p ( I )  = #I(P) =/zt(q) = Z n q ( n )  >_ Z q ( n )  = I - q(0) >_ q(l), 
tl=[ n = l  

which proves (6. I). 
We have 

e0(P, q) = ~ IP(") - q(n)l = q(0) -p (0 )  + p ( l )  - q( l )+ ~ q(n) = 
n = 0  n = 2  

2(/)(1) - q ( l ) )  

e , (p ,q)  = nlp(n ) - q(n)[ = p(l) - q(I) + ~ n q ( n )  = 
n =  I n = 2  

p(I) - q ( l ) + ~ t ( q )  - q ( I )  =2(p ( l )  - q ( l ) ) ,  

which prove (6.2). 
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Formula  (6.3) is obvious. 
We have 

Hq(l)  = ~ ( n -  l)q(n) = lq(q)  - (1 - q(0)) = p ( l )  - 1 + q(0) = q(0) - p ( 0 ) ,  

which proves (6.4). 
This completes the p roof  of  Lemma 6.1. Q.E.D. 

By application of  (6.2) to respectively (5.1) and (5.9), we obtain 

eo(pV h, q v  h) < 2 ( p ( l ) -  q(I))  (6.5) 

r/(p V h, q V h) <_ ,Lt, (h)(q(0) - p(0)),  (6.6) 

and insertion of  (6.3) and (6.4) in (5.7) gives 

- ( # , ( h )  - Hh(.\'))(q(0) - -p(0))  _< rlpw,(x) - 1-Iuvh(x ) _< 0 (x = 0, 

the second inequality was proved by Bfihlmann et al. (1977). 

1, 2, ...) 

(6.7) 

6.3. B inomial  distribution 

We now assume that 

( n = O ,  I, ..., t; t =  1, 2, ...; 0 < T r <  1) ' (6.8) 

The Bernoulli distribution discussed in subsection 6.2 occurs as a special case with 
t = 1. However,  unfortunately the situation becomes more complicated when 
t >  1. 

In the general case we have 

# l ( p ) = t ~  

YIp(I) = t~--I-(l - ~ ) ' - I  Ylq(l)=t~+q(O) - I, (6.9) 

and insertion in (5.7) gives 

-(#z (t,)- r~h(x))(t~ + q(0)-  l) _< l~,vh(x)- n,~vh(x) _< 

(# l (h ) -H/ , ( x ) ) ( tTr - ( I -Tr ) t - l ) .  ( x = 0 ,  I, 2, ...) (6.10) 



ON ERROR BOUNDS FOR APPROXIMATIONS TO AGGREGATE CLAIMS 257 

Unfortunately,  when t > 1, the upper bound does not become equal to zero like 
in the case t = 1. However,  as the present binomial distribution is the t-fold 
convolut ion of  the Bernoulli distribution p, given by 

p,(1) = 1 - p,(0) = 7r, 

it is tempting to apply the results of  Theorems 4.1 and 4.2. To be able to do that, 
we have to assume that there exists a distribution qt E "P such that q = q~*. Under 
this assumption we have 

p V h = (p, V h)'" q V h = (q, v h) t*. 

From Theorem 4.1 and (6.5) we obtain 

e0(p V h, q V h) <_ te0(p, V h, q, V h) < 2t(Tr - q,( l)) .  (6.1 I) 

We obviously have 

q(0) = q,(0)' (6.12) 

Thus 

q( l )= tq , (O) ' - ' q , ( l ) .  

l q ( l )  ,.,÷ 
qt( l)  = 7 q - ~ q t u ) ,  

and insertion in (6.1 I) gives 

q(l) 
eo(pV h, qV  h) < 2  t T r - q ~ q ( o ) ' ) .  

From Theorem 4.2, (6.7), and (6.10) we obtain 

- (/_q (tt) - IIh(X))(tTr + q(0) -- I) < 1-It, vh(X ) -- I-[qvh(X) < 0, 

( x = 0 ,  1, 2, ...) 

which implies 

'q(p V h, q V h) _< I~l(h)(tTr + q(O) - I). 

(6.13) 

(6.14) 

However,  from Theorem 4.2, (6.6), and (6.12) we obtain 

rl(p V h, q V h) < t[,t(h)(rr + q ( 0 ) L  1) (6.15) 

which gives a sharper bound when t > 1. This implies that the lower bound in 
(6.14) is sharper than the bound in (6.15) only for high values for IHh(X), that is, 
low values of  x. 
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The distribution q is called it~nitely divisible if there for each positive integer 
m exists a distr ibution q,,, such that q = q',',',* (cf. e.g. Feller (1968)). In particular,  
this condit ion should hold for m = t, and thus (6.13)-(6.15) hold when q is 
infinitely divisible. 

The condit ion that there has to exist a distr ibution qr such that q = q't*, may 
seem intuitively unnatural .  However ,  the following example  shows that the 
inequality 1-Iqvh _< Hpw, does not necessarily hold when this condit ion is not 
fulfilled. 

Example. Let t = 2, ¢r = ½, and 

1 3 
q(0) = q(2) = ~ q( l )  = ~. 

Then ;~l (I?) = lzl(q) = 1. and applicat ion of  (6.9) gives l ip( l )  - 1-Iq(I) = ½ > 0. 

6.4. T w o  inf in i te ly  d iv is ib le  d i s t r i b u t i o n s  

We shall now assume that both p and q are infinitely divisible. F rom Theorem 
4.2, (5.7), and (6.1 2) we obtain that for each positive integer 177 

- , ,  (/1)(~, (p)+ 11,q(O)~-m) < ~,,v,,(-,) - n,,v,,(.¥) _< 

~,( / , ) (~ ,0)  +, , ,p/O)L,, , ) ,  /., = o, l, 2, ...) 

and by letting 177 go to infinity we obtain 

- m  (/,)(m (p) + in q(O)) < n~,v~,(x) - nqvh(x) _< 

F~, (h)(m (p) + h,p(O)). (x = o, I, 2, ...) (6.16) 

6.5.  P o i s s o n  vs .  i n f i n i t e l v  d i v i s i b l e  d i s t r i b u t i o n  

We now assume that  

p ( n ) = - - e  - ' \ ,  ( n = O ,  1, 2, . . . ; A > O )  (6.17) 
17 

and that q is infinitely divisible. Then p is also infinitely divisible, and we have 
m (p) = A. 
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Let 

_ 

Then 

p(n) = limP,(n). (n = 0, 1, 2, ...) 
tTcx~ 

From (6.13) we obtain 

- ( q(I) ,,,,÷~ 
e0(P, V h,q v h) < 2 _ A - q ~ q L u ,  ), 

and as this bound is decreasing in t, we obtain 

eo(P V I,,qV It) <- 2( A-q(l)]q(O)j 
by letting t go to infinity. A similar limiting argument for (6.14) gives 

- ( # , ( h )  - Hh(X))(A + q(0) - 1) _< YIpvh(X) -- IIqvh(X) _< 0. 

( n = 0 ,  1, ..., m ; t =  1, 2, ...) 

(6.18) 

( x = 0 ,  1, 2, ...) 

(6.19) 

From (6.16) and (6.19) we obtain 

r/(p V h, q V h) _< #, (h)(A + In q(0)), (6.20) 

which could also have been found by a limiting argument in (6.15). As 
In q(0) < q(0) - 1, the lower bound in (6.19) in weaker than (6.20) for large 
values of  x. 

6.6. Binomial vs. negative binomial distribution 

We now assume that p is the binomial distribution given by (6.8), and that q is 
given by 

q(n)=(a+n-l) (I-p)~p''n ( n = 0 ,  1, . . . , ' c ~ > 0 ; 0 < p < l )  (6.21) 

Then q is infinitely divisible with 

, tq(q)=cY P 
l - p '  

and from (6.13)-(6.15) we obtain 
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eo(P V h, q v  h) <_ 2,7r(1 - (1 - p)~+') (6.22) 

- (# l (h )  - Flh(X))[tTr+ (1 - p ) " -  1] _< Hpvh(X) -- I[qvh(x) _< 0 

(x = O, 1, 2, ...) (6.23) 

,TCp v h,q v h) _< , , ,  {h) (~  +{ I  - p ) ~ - l ) .  (6.24) 
\ / 

6.7. B i n o m i a l  vs. P o i s s o n  d is tr ibut ion  

We now assume that p is the binomial distribution given by (6.8) and q the 
Poisson distribution given by (6.17). Then (6.13)-(6.15) give 

e0(p V tl, q V h) < 217r(1 - e -~) (6.25) 

- ( u ~  (h) - n , , ( x ) ) ( t~ -  + e - ' ~  - l )  _< n p v h ( x )  - n q v h ( x )  _< o 

(x = 0, 1, 2, ...) (6.26) 

~7(p v h, q v h) < t#l(h)(Tr + e -~ - 1), (6.27) 

which can also be deduced from (6.22)-(6.24) by a limiting argument. 

6.8. P o i s s o n  vs. negat ive  b i n o m i a l  d i s tr ibut ion  

We now assume that p is the Poisson distribution given by (6.17) and q the 
negative binomial distribution given by (6.21). Then (6.18)-(6.20) give 

p2 
e0(p V/7, q V h) < 2 t x - -  (6.28) 

l - p  

-(#,(h) - Hh(x))(o~ p p)"- ) + ( l -  i <_Hpvh(X)-IIqv/,(x)<O 

(x = O, 1, 2, ...) (6.29) 

P + ln ( l  - p ) ) ,  (6.30) r l ( p v h ,  q v h )  <alzt (h)  l - p  

which can also be deduced from (6.22)-(6.24) by a limiting argument. 
The bound in (6.28) was deduced by Gerber (1984) and the bound in (6.30) by 

Dhaene ( 1991 ). 
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6.9. C o l l e c t i v e  a p p r o x i m a t i o n  to individual  model 

For i = I, . . . , m, let hi E '~+ and Pi be the Bernoulli distribution given by 

pi( l )  = l - p i (O) = 71"i. 

We approximate p~ V h~ with the compound Poisson distribution qi V h~ with 

q i ( n ) = - ~ - e -  . ( n = 0 ,  1, 2, ...) 

It is well known that then *'" (qi V hi) = q V h with i=1 

q ( n ) = - - e  -a ( n = 0 ,  I, 2, ...) 
1l 

A = 7ri h = - ~ 7rihi. 
i=1 A/__~ 

By a trivial generalisation of  (6.25) and (6.27) we obtain 

eo i=* Vhi) ,qVh < 2  7 r i ( l - e  -~') (6.31) 
i= I ) ± 71 iS Vhi ) ,qVh < tt~(hi)(~~-e . . . .  1). (6.32) 

i= I 

Unfortunately we have not been able to generalise the first inequality in (6.26), 
but the second inequality is easily generalised to 

1Fi.7,__,~,vh,)(x) <- Hqvh(X). (x = 0, I, 2, ...) (6.33) 

The inequalities in (6.31)-(6.33) have been deduced by respectively Gerber 
(1984), De Pril & Dhaene (1992), and Biihlmann et al. (1977). 

When 7ri and h~ are the same for all i, we are back in the situation of  sub- 
section 6.7. 
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