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A B S T R A C T  

The problem of determining optimal retention levels for a non-life portfolio consisting 
of a number of independent sub-portfolios was first discussed by de Finetti (1940). He 
considered retention levels as optimal if they minimised the variance of the insurer's 
profit from the portfolio subject to the constraint of a fixed level of expected profit. In 
this paper we consider a similar problem, changing the criterion for optimality to mi- 
nimising the probability of ruin, either in discrete or continuous time. We investigate 
this problem through a series of case studies based on a real portfolio. 
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I .  I N T R O D U C T I O N  

This paper is a risk-theoretic discussion of the problem of determining the relative 
reinsurance retention levels for a non-life portfolio consisting of a number of indepen- 
dent sub-portfolios. We consider only simple forms of proportional and excess loss 
reinsurance. Our discussion will be based largely on numerical results derived from a 
"pseudo-real" portfolio. The characteristics and construction of this portfolio are 
described in detail in Section 2 below. 

The classical results in this area are due to de Finetti (1940) (see also Btihlmann 
(1970, section 5.2)). De Finetti derived relative retention levels which have simple 
forms by considering the insurer's net (of reinsurance) profit from the portfolio at the 
end of a given time period. He then minimised the variance of this profit subject to its 
expected value being fixed. A summary of de Finetti's results is given in Section 3 
below. 

In Section 4 we discuss some alternative criteria for determining relative retention 
levels. These alternatives are to minimise the insurer's probability of ruin over a finite 
time horizon, either in continuous or in discrete time. Questions of interest to us are: 
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(1) Do some or all of our probability of ruin criteria produce relative retention levels 
close to those given by de Finetti's approach? 

(2) Are the relative retention levels produced by a probability of ruin in continuous 
time criterion close to those produced by a discrete time criterion? 

(3) How do the relative retention levels produced by our probability of ruin criteria 
depend on: 
(i) the insurer's expected net profit? 
(ii) the time horizon for ruin? 
(iii) the insurer's initial surplus? 

These questions are investigated in Section 5 (proportional reinsurance) and Section 6 
(excess loss reinsurance). Our conclusions are set out in Section 7. 

2. THE PORTFOLIO 

In order to investigate the problems outlined in the previous section, we have con- 
structed a non-life insurance portfolio based on a study by Ramlau-Hansen of data 
supplied by a Danish insurance company. Ramlau-Hansen's work is detailed in a 
series of working papers (1986a, 1986b, 1986c and 1986d) and a conference paper 
(1983) and summarised in two papers (1988a and 1988b). 

Ramlau-Hansen analysed data from the Nye Danske Lloyd insurance company co- 
veting the period 1977 to 1981. The data related to policies on: 
- single-family houses, and, 
- dwellings (mainly apartment buildings, but also some office buildings). 
These policies covered the buildings, but not their contents, against: 
- glass damage, i.e. damage to windows and sanitary fittings, 
- fire damage, and, 
- windstorm damage. 
Claims from these three sources will have very different characteristics: 
- Glass claims: these will be relatively numerous but for rather small amounts. 

- Fire claims: these will be far less frequent than glass claims but will be for far grea- 
ter amounts .  

- Windstorm claims: the number of windstorms will be very small but each wind- 
storm will produce a large number of individual claims. 

In terms of claims experience, we would expect glass claims to be relatively stable, 
fire claims to be less stable and windstorm claims to be even less stable over time. 

Our portfolio is based on Ramlau-Hansen's "Standard Portfolio" (1986d, section 
4.3). It consists of three sub-portfolios covering glass, fire and windstorm claims, each 
of which can be reinsured separately. However, within each subportfolio, single- 
family houses and dwellings cannot be reinsured separately. The total annual expected 
claim amount, before reinsurance, is 500 × 106 of which 25% (125 x 10 6) is expected 
to come from glass claims, 70% (350 x 106) from fire claims and the remaining 5% 
(25 x 106) from windstorm claims. (Ramlau-Hansen's monetary unit was Danish Kro- 
ner at 1981 values, For our purposes only relative monetary values are important, not 
absolute values.) 
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Ramlau-Hansen modelled in some detail the annual claim numbers and amounts 
distributions for each sub-portfolio. We have adopted Ramlau-Hansen's models for 
our portfolio with some very minor simplifications. Our models are as follows: 

Glass claims: Since glass claim amounts are almost always relatively small, we 
have assumed that this sub-portfolio would not be reinsured under an excess loss 
treaty, but would be reinsured under a proportional reinsurance treaty. (This agrees 
with Ramlau-Hansen's study (1988b, section 3.2).) For this reason we need to specify 
a model for the aggregate annual glass claims but not for claim numbers and claim 
amounts separately. We have assumed that the aggregate annual glass claims have a 
normal distribution. This is a slight simplification of Ramlau-Hansen's model but his 
analysis (1986a, Table 12) does show that the skewness of aggregate annual glass 
claims is very small. The expected aggregate annual glass claims are 125 x 106, as 
explained above, and we have taken the standard deviation to be 4.3 x 10  6. The 
standard deviation has been inferred from the information given by Ramlau-Hansen 
(1986a, Table 14). 

Fire claims: The annual fire claim rate for dwellings is about 0.0885. (See Ramlau- 
Hansen (1986b, Tables 1 and 2).) The annual fire claim rate for single-family houses 
is 0.0127. (See Ramlau-Hansen (1983, Tables 1 and 7).) In 1981, the numbers of 
dwellings and single-family houses in Ramlau-Hansen's data were 12,318 and 83,699, 
respectively. These figures indicate that the expected number of claims each year is 
approximately the same for dwellings and single-family houses. Ramlau-Hansen 
(1988a, section 2.1) assumes claim numbers have a Poisson distribution. We have 
assumed the Poisson parameter for dwellings and for single-family houses is 7,893.9. 
(This value, when combined with the claim amount distributions specified below, 
gives a mean aggregate annual fire claim amount of 350 × 106, as required.) 

We use different claim amount distributions for dwellings and for single-family 
houses. In each case, the distribution is loggamma, truncated at an expected maximum 
loss (EML), with a density function of the form: 

ct r 1 
f ( x ; c z , y ) -  - -  (log(x/xo))Y-l(X/Xo) -Ca÷O forx 0 < x < EML 

F(7) Xo 

where in each case the lower limit x0 is 100. The other parameters and the resulting 
moments are: 

Dwellings Single-family houses 

EML 35 X 10 6 402,500 
tx 1.4177 1.1220 
y 5.1003 3.2477 
Mean 33,611 10,727 
St. Dev. 490,721 42,560 
Skewness 51.64 7.338 

Ramlau-Hansen (1988a, section 2.2 and 1983, section 3) uses parameter values which 
depend on the floor area of the dwelling or house. We have selected a "typical" distri- 
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bution for each type of  property. Let F(x; ~ 7) denote the distribution function corres- 
ponding to the density functionflx;  a, 7)- Then the aggregate annual fire claims have a 
compound Poisson distribution with Poisson parameter 15,787.8 and individual claim 
amount distribution F(x), where: 
F(x) = 0 forx < 100 
F(x) = (F(x; 1.4177,5. 1003) +F(x; 1. 1220,3.2477))/2 for 100 _< x < 402,500 
F(x) = ( 1 + F(x; 1.4177,5.1003))/2 for 402,500 _< x < 35 x 1 if' 
F(x) = 1 forx_> 35 x 10  6 

For our model, aggregate annual fire claims have the following moments: 
Mean 350 X 1 0  6 

St. Dev. 43.875 X 10  6 

Skewness 0.571 

Windstorm claims: Ramlau-Hansen (1988a) developed a complicated model for 
windstorms. He modelled the number of  storms per annum, the number of claims from 
each storm and the amount of the individual claims. For the purposes of  proportional 
reinsurance we need model only the aggregate annual windstorm claims. When we 
consider excess loss reinsurance, we shall assume the insurer protects the windstorm 
(sub-)portfolio with a catastrophe excess loss treaty whereby the reinsurer reimburses 
the insurer for the amount by which the total claim amount caused by a storm exceeds 
a given retention. See Ramlau-Hansen (1986c, p. 42). This means that we need model 
only the annual number of windstorms and the total claim amount from each wind- 
storm. 

The number of  windstorms per annum (in Denmark) in Ramlau-Hansen 's  model 
has a Poisson distribution with mean 4.36 and the expected cost of  a single windstorm 
is 9.3 x 106. Since we require the expected aggregate annual cost of  windstorms to be 
25 x 106, we need to scale down either the expected number of windstorms or the 
expected cost of  a single windstorm. We decided to do the latter, which is equivalent 
to an insurer (in Denmark) having fewer windstorm policies than in Ramlau-Hansen 's  
portfolio. 

Our model for windstorm claims is as follows: 
The number of storms per annum has a Poisson distribution with mean 4.36. 
The total claim amount from a single windstorm has the following moments: 

Mean 5.734 x 106 
St. Dev. 13.14 x 10 ~ 
Skewness 2.649 

We have assumed that the total claim amount from a single windstorm has a translated 
gamma distribution with the above moments, i.e. has the distribution of t¢+ Y, where Y 
has a F(a ,  fl) distribution. The parameters of this distribution are: 

= 0.5700 
,/3 = 5.746 x 10 "s 

= -4.187 x 106 
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This model gives the following moments for the aggregate annual claims from wind- 

storms: 
Mean 25 X 1 0  6 

St. Dev. 29.936 × 10  6 

Skewness 1.49 
Fol lowing Ramlau-Hansen,  we assume that all random variables in our model are 
independent unless specified otherwise, so that, for example,  aggregate claims from 
the three sub-portfolios are independent and aggregate claims in separate years are 
independent. In addition, we assume that the distributions do not change from year to 
year. It would not be difficult to relax this assumption, for example by incorporating 
inflation and business growth, but this would complicate  the presentation without 
adding significantly to the study. 

For the remainder of the paper we will work in units of one million, so that the ex- 
pected aggregate annual claim amount from the portfolio is 500. 

3. A REVIEW OF DE FINE'VTI'S RESULTS 

This section contains a brief summary of  the essential points of de Finet t i ' s  results. 
More details,  and proofs, can be found in de Finetti (1940) (see also BiJhlmann 
(1970)). The basic idea underlying these results is as follows. An insurer has a portfo- 
lio on n independent risks and wishes to effect the same type of reinsurance for each 
risk. The insurer 's  profit level from these risks clearly depends on the level of reinsu- 
rance. The insurer fixes a level for its expected profit from the portfolio over a given 
time period, say one year, and chooses retention levels to minimise the variance of  the 
profit from the portfolio over this period. De Finetti 's  results state how retention levels 
for proportional and excess loss reinsurance should be calculated under this criterion, 
which we shall refer to as the minimum variance criterion. 

Consider first proportional reinsurance. For a portfolio of n independent risks, let S,  

denote aggregate claims from the ith risk in a fixed time period for i = I, 2 . . . . .  n, and 
let Pi denote the premium received by the insurer to cover this risk. The insurer effects 
proportional reinsurance for each risk with proportion ai retained for the ith risk, pay- 
ing a reinsurance premium of (I + 0 3 ( I  - a , ) E ( S 3  for this reinsurance cover. Thus, the 
reinsurance premium is calculated by the expected value principle with a loading O, for 
the ith risk. The insurer 's profit over the period is 

rl 

Z(~)  = ~ (P~ - (I + Oi )(I - a i  ) E ( S i )  - a i S i  ) 

i=l 

Subject to the constraint E[Z(a) ]  = k, where k is a constant, V[Z(.q_)] is minimised by 

CO i E ( S  i ) 
a i - - -  for i  = 1,2 . . . . .  n 

V ( S ~  ) 

where c is a constant which is determined by the condition E[Z(a ) ]  = k. If this proce- 
dure produces a value of ai > 1, the solution is to set that value of  ai equal to 1, with 
the remaining retentions being of the above form. 
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In the case of  excess loss reinsurance, let Si and Pi have the same meaning as 
above. We assume that each S, has a compound Poisson distribution. The insurer ef- 
fects excess loss reinsurance with retention level Mi for the ith risk and pays a reinsu- 
rance premium of (1 + 0~)E (S~- S/) where S/denotes the insurer's aggregate retained 
claim amount from the ith risk. The insurer's profit over the period is 

I1 

= - + o i ) E ( s i  - s / ) -  s / )  
i=l 

Subject to the constraint E[Z(M)] = k, where k is a constant, V[Z(M)] is minimised 
by 

Mi=cO~ for i =  1,2 . . . . .  n 

where c is a constant which is determined by the condition E[Z(M)] = k. 
Tables 1 and 2 show optimal retention levels for the portfolio described in Section 2 

for proportional and excess loss reinsurance respectively. In the case of proportional 
reinsurance, the loadings in the reinsurance premiums are 10% (glass), 40% (fire) and 
80% (windstorm), while for excess loss reinsurance they are 40% (fire) and 80% 
(windstorm). The tables also show the mean and variance of the insurer's retained 
aggregate claims. We can see in each case that these quantities increase as the expec- 
ted net profit increases. We note that for each level of  expected net profit, the values 
of  mean retained aggregate claim amounts under each type of reinsurance are similar. 
However, for a given level of expected net profit, the variance of  the retained aggre- 
gate claim amount is considerably smaller under excess loss reinsurance. For example, 
when the expected net profit is 90, a reduction of  just 10 from its maximum value, the 
variance of  the insurer's retained aggregate claim amount can be reduced by 44% 
using excess loss reinsurance, compared to a reduction of only 24% using proportional 
reinsurance. 

TABLE I 
O P T I M A L  R E T E N T I O N S  - P R O P O R T I O N A L  R E I N S U R A N C E  

Expected Glass Fire Windstorm 
Net Profit Retention Retention Retention Mean Variance 

50 
60 
70 
80 
90 
100 

0.753 0.231 394 1,157 
0.821 0.252 419 1o373 
0.890 0.273 443 1,609 
0.958 0.294 468 1,863 

I 0.5 488 2,168 
I I 500 2,840 

Note that in the case of  proportional reinsurance, there is in fact no reinsurance for 
the glass sub-portfolio, nor for the fire sub-portfolio as the expected net profit incre- 
ases. In all other cases in Table I, the retentions for the fire and windstorm portfolios 
are in the same proportion. In Table 2, the retention levels for windstorm claims are 
twice those for fire claims since the reinsurance premium loading factors are in the 
ratio 2:1. 



RELATIVE REINSURANCE RETENTION LEVELS 213 

TABLE 2 
OPTIMAL RETENTIONS - EXCESS LOSS REINSURANCE 

Expected Fire Windstorm 
Net Profit Retention Retention Mean Variance 

50 2.08 4.15 397 213 
60 3.55 7.09 418 351 
70 5.86 11.72 438 582 
80 9.66 19.32 458 961 
90 16.88 33.77 478 1,602 
100 ~ ~ 500 2 ,840 

Thus, de Finetti's results provide simple formulae from which optimal retention le- 
vels can be calculated. In the case of  proportional reinsurance, the optimal retention 
levels depend on the first two moments of aggregate claims from each sub-portfolio. 
This is perhaps not surprising since the problem is specified in terms of the first two 
moments of profit from the n sub-portfolios considered together. In the case of excess 
loss reinsurance, the optimal retention level for each sub-portfolio depends only on the 
reinsurer's loading for that sub-portfolio. An interesting feature of this result is that the 
distribution of individual claims for a sub-portfolio has no bearing whatsoever on the 
retention level. 

The results are independent of the insurer's premium income (before reinsurance) 
and of  the amount of  the insurer's surplus. Intuitively we would expect these factors to 
play a part. We also note that these results hold for a single period analysis. If we 
assume that claims in successive time periods are independent, then a change in the 
time period considered does not alter the optimal retention levels. 

Finally, we note that if the optimality criterion is altered from minimising V[Z(b)] 
subject to the constraint E[Z(b_)] = k (where b denotes the vector of retention levels) 
to minimising V[Z(_b)I subject to the constraint E[Z(b_)] _> k then it is not difficult to 
prove that the solution to the problem is unchanged. In our case studies in Sections 5 
and 6, where we apply different criteria for optimality, we will see that a change in the 
constraint from E[Z( b )] = k to E[Z( b)l -> k can make a considerable difference. 

4. AN A L T E R N A T I V E  CRITERION FOR O P T I M A L I T Y  

In this section we consider an alternative criterion for optimality. We will consider a 
vector of retention levels to be optimal if those retentions minimise the insurer's pro- 
bability of ruin (net of reinsurance) subject to the constraint that the insurer's expected 
profit per unit time is greater than or equal to some constant. Thus we have not only 
changed the objective function from variance of profit to probability of ruin, but we 
have also altered the constraint. It will be clear in the examples in the next sections 
why it is sensible to do this. In our examples we will consider finite time ruin, both in 
discrete and in continuous time. 

Since the probability of ruin depends on all the characteristics of the surplus pro- 
cess, we might expect this new criterion to produce different optimal retention levels 
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to those produced by the minimum variance criterion. However, the following exam- 
ples suggest that this new criterion may not produce very different results. 

Example  1: It is well-known that if the adjustment coefficient, denoted R, for a risk 
exists, it can be approximated as 

2 × Expected Profit 
R =  

Variance of Profit 

Let us treat profit in this approximation as being the net of  reinsurance profit from a 
portfolio of risks over a fixed time period. A natural (and approximate) way of  obtai- 
ning retention levels to minimise the insurer's probability of ultimate ruin would be to 
find retention levels that maximise this approximation to R. When we apply the con- 
straint that the expected profit is constant, maximising R is equivalent to minimising 
the variance of profit, i.e. minimising the variance of net retained claims. 

Example  2: Suppose that an insurer has a portfolio of n risks and receives a total 
premium of P per annum to cover these risks. Suppose further that the insurer effects 
some form of reinsurance for each of these risks, defined by a vector b of  retention 
levels. Let l l ( b )  denote the total premium paid by the insurer for this reinsurance, and 
let S,,(_b) denote the aggregate claims, net of reinsurance, paid by the insurer up to 
time n. Finally, let U denote the insurer's initial surplus. 

We assume that the insurer's expected net profit per unit time, P -  l-1(b) - [S~(b)], 
is positive. Assuming that S,,(_b) has a normal distribution, and that aggregate claims 
are independent and identically distributed from year to year, the insurer's probability 
of  ruin at the end of n years is 

i_~lnP-nH(~)-nE(Sl(_b))+U I 
[nV(Si (_b))] I/z 

where • denotes the standard normal distribution function. Minimising this probabi- 
lity of  ruin (as a function of  b_) subject to the insurer's expected net profit per unit 
time being fixed is equivalent to minimising the variance of  the insurer's net profit per 
unit time subject to the same constraint. 

Example 3: Now let us extend the previous example by assuming in addition that the 
insurer's aggregate gain process { G,(_b) },~ is a Brownian motion with (positive) drift. 
Let tP(U, T I b)denote the probability of ruin in continuous time before time T, which 
may be finite or infinite. Let b~ and b2 be two reinsurance retention vectors which 
result in the same expected net profit for the insurer, say M per unit time, but different 
variances. Then using a coupling argument, i.e. regarding G,(b ~) as equivalent to 

/.It + (G, (b 2 ) - I~t)(V[G, (b I )] / V[G, (b2)]) I/2 

it is easy to see that tp(U, TIb~) > tP(U, Tlbz) i s  equivalent to V[G,(b~)]> V[G,(b~I 
Hence, minimising the probability of  ruin in continuous and finite or infinite time 
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subject to the insurer's expected net profit per unit time being fixed is equivalent to 
minimising the variance of the insurer's net profit subject to the same constraint. 

Each of these last two examples relies on being prepared to approximate the insu- 
rer's net surplus process by a process determined by just its mean and variance (see, 
for example, Grandell (1977)). They also apply the constraint that the expected net 
profit equals some constant, rather than is greater than or equal to that constant. 
Nevertheless, they suggest that a change in the optimality criterion from minimising 
variance to minimising a ruin probability may not result in very different retention 
levels. We shall see in Sections 5 and 6 that this can be the case, although we shall 
also see that the change in optimality criterion can lead to very different results. 

Since our new optimality criterion is to minimise a probability of ruin, we need to 
be able to calculate ruin probabilities. Our approach to this problem will not be to 
attempt to calculate exact ruin probabilities. Rather, we will use an approximation. We 
will approximate the retained aggregate claims process by a translated gamma process. 
There are two reasons for using this approximation. First, formulae exist from which 
ruin probabilities can be calculated. Second, recent evidence shows that this approach 
provides very good approximations to ruin probabilities, particularly in problems 
involving reinsurance. See Dickson and Waters (1993 and 1996). 

We conclude this section by describing how we calculated ruin probabilities. Con- 
sider first the discrete time ruin problem. We require probabilities of the form 

~1 (u, t) = Pr(u + Pn - X,, < 0 for some n, n = I, 2 ..... t) 

where P represents the insurer's premium income, net of reinsurance, per unit time, 
and X,, denotes aggregate claims up to time n, again net of reinsurance. We approxi- 
mated X,, by Y,, + kn where Y,, has a gamma distribution with parameters n a  and 13 and 
calculated probabilities from 

W l ( u , t ) = P r ( u + P * n - Y , ~  < 0  for somen,  n = l , 2  ..... t) 

where P* = P - k. The parameters ¢x, fl andk are found by matching the first three 
moments of X, and Y, + kn. Let G(x) and g(x) respectively denote the distribution 
function and density function of a gamma distribution with parameters c¢ and [3, so that 
the mean of the distribution is ¢x/[3. Then 

~l (u,I)=l-G(u+P*) 

and f o r t = l , 2 , 3  . . . .  
, . g u + P *  , 

W I ( u , t + l ) = W  1 (u , t )+J0 W n (x , t )g(u+ P * - x ) d x  

Values of  Wt (u, I) were calculated directly from computer routines which compute 
the gamma distribution function. Values of W~(u, t) for t > I were calculated by nume- 
rical integration. For each value of u required we performed numerical integration on 
the interval (0, [u + P*]), where [u + P*] denotes the greatest integer less than or 
equal to tt + P*, by applying the repeated trapezoidal rule on unit steps. The integral 
over the range ([u + P*], tt + P*) was calculated by the trapezoidal rule. Thus, except 
for the integral over the final part of the range, W~(x, t) values were required only for 
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integer values of x. For the integral over ([u + P*], u + P*) values of ~ ( x ,  t) were 
required for non-integer x. These were obtained by linear interpolation. For our nume- 
rical examples, a unit step size was deemed to be sufficiently large in view of the 
parameter values in our examples. In particular, the value of P* was typically between 
300 and 500. 

In the case of continuous time ruin probabilities, we require probabilities of the 
form 

W(u , t )  = Pr(u + PT - S(r) < 0 for some -r,0 < r _< t) 

where P is as above and {S(t)},  ~ o denotes the aggregate claims process, net of reinsu- 
rance. We approximate the process {S(t)},_,0 by the translated gamma process {S~(t) + 
kt},~o where {Sc(t)},ao is a gamma process with parameters a and/3. The parameters 
e~, fl and k are found by matching the first three moments of the two processes. Ruin 
probabilities for the translated gamma process were calculated by the method descri- 
bed by Dickson and Waters (1993). 

5. PROPORTIONAL REINSURANCE 

In this section we consider the problem of choosing proportional reinsurance retention 
levels for each of the three sub-portfolios, glass, fire and windstorm, of the portfolio 
described in Section 2. We will discuss two case studies which reveal rather different 
features. 

Case Study 1: We have set the insurer's premium income (before reinsurance) to be 
600 per unit time, i.e. 120% of the expected aggregate claims. The insurer's initial 
surplus has been set at 20. The initial surplus was chosen so that the one-year discrete 
time ruin probability is about 1% when the vector of retentions _a is given by the solu- 
tion under the minimum variance criterion with an expected net profit of 50. The rein- 
surer's premium loading factors are _0= (0.044, 0.1605, 1.533). These loading factors 
are in proportion to the standard deviation of aggregate claims per unit time for the 
three sub-portfolios and are such that, if the insurer reinsured the whole of each sub- 
portfolio, the reinsurance premium would be 600. 

Table 3A shows for the time horizons t = I, 2, 5, 10 and 20, the probability of ruin 
in continuous time and in discrete time assuming the insurer does not effect any rein- 
surance. In this case the insurer's expected net profit per unit time is 100, as shown in 
the final column of Table 3A. 
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TABLE 3 A  

C A S E  S T U D Y  I - NO REINSURANCE 

Prob'y of  ruin Prob 'y of ruin Expected 
t a (continuous) (discrete) n e t  profit 

1 (1, 1, l) 0.2413 0.0237 100 
2 (1, 1, 1) 0.2484 0.0262 100 
5 (1, 1, I) 0.2494 0.0267 100 
10 (1, I, 1) 0.2495 0.0267 100 
20 (1, I, 1) 0.2495 0.0267 100 

The proportional reinsurance retention levels which minimise the variance of the 
insurer's net (of reinsurance) aggregate claims subject to the constraint that the insu- 
rer's expected net profit per unit time should be 50 are _a= (1, 0.396, 0.581). Table 3B 
shows the insurer's probabilities of ruin with these retention levels. 

TABLE 3B 

C A S E  S T U D Y  | - MINIMUM VARIANCE 

Prob'y of  ruin Prob'y of ruin Expected 
t a (continuous) (discrete) n e t  profit 

1 ( l, 0.396, 0.58 I) 0.0898 0.0103 50 
2 (I, 0.396, 0.581) 0.0948 0.0115 50 
5 (I, 0.396, 0.581) 0.0955 0.0117 50 
10 (1,0.396, 0.581) 0.0955 0.0117 50 
20 (I, 0.396, 0.581) 0.0955 0.0117 50 

Table 3C shows for each time horizon, the retention levels which minimise the in- 
surer's probability of ruin in continuous time subject to the insurer's expected net 
profit being at least 50, the corresponding minimum probability of ruin, the probability 
of ruin in discrete time for these retention levels and finally the insurer's expected net 
profit. In this case, the optimal retention levels are such that the insurer's expected net 
profit is equal to 50 for each of the five time horizons. 

TABLE 3 C  

C A S E  S T U D Y  1 -- MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME 

Prob 'y o f  ruin Prob 'y of  ruin Expected 
t a (continuous) (discrete) n e t  profit 

D 

I (1,0.438, 0.519) 0.0882 0.0095 50 
2 (1, 0.438, 0.519) 0.0929 0.0106 50 
5 (1, 0.439, 0.518) 0.0935 0.0108 50 
10 ( I, 0.439, 0.518) 0.0935 0.0108 50 
20 ( 1,0.439, 0.518) 0.0935 0.0108 50 

Table 3D is similar to Table 3C except that for each time horizon, the retention le- 
vels are those which minimise the insurer's probability of ruin in discrete time subject 
to the insurer's expected net profit being at least 50. 
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T A B L E  3 D  

C A S E  S T U D Y  I -- MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME 

Prob'y of ruin Prob'y of ruin Expected 
t a (continuous) (discrete) net profit 

1 ( 1,0.456, 0.493) 0.0885 0.0094 50 
2 ( I, 0.456, 0.493) 0.0933 0.0105 50 
5 (I, 0.456, 0.493) 0.0939 0.0107 50 
10 (1, 0.456, 0.493) 0.0939 0.0107 50 
20 ( I, 0.456, 0.493) 0.0939 0.0107 50 

Case Study 2: We have again set the insurer's premium income to be 600 but have 
increased the initial surplus to 35. This initial surplus gives a one-year discrete time 
probability of ruin of about 1% when there is no reinsurance. We have set the reinsu- 
rance premium loading factors as O= (0. I, 0.4, 0.8). These are somewhat arbitrary 
choices but are designed to reflect the relative risk for the three sub-portfolios. With 
these loadings, the premium for reinsuring the whole portfolio is greater than 600. 
Adopting the same constraints as for Case Study 1, the retention levels which minimi- 
se the variance of the insurer's net claims are ( I, 0.753, 0.231). 

Tables 4A, 4B, 4C and 4D give the information relating to Case Study 2 which cor- 
responds to the information relating to Case Study I in Tables 3A, 3B, 3C and 3D. 

TABLE 4 A  

CA SE  S T U D Y  2 -- NO REINSURANCE 

Prob'y of ruin Prob'y of  ruin Expected 
t a (continuous) (discrete) net profit 

B 

I (I, 1, I) 0.1282 0.0146 100 
2 (I, I, 1) 0.1347 0.0164 100 
5 (I, I, I) 0.1357 0.0167 100 
10 (I, I, I) 0.1357 0.0167 100 
20 (1, 1, I) 0.1357 0.0167 100 

TABLE 4 B  

C A S E  ST U D Y  2 - MINIMUM VARIANCE 

Prob'y of ruin Prob'y of tTdn Expected 
t a (continuous) (discrete) net profit 

1 ( I, 0.753, 0.231 ) 0.0746 0.0147 50 
2 ( I, 0.753, 0.231 ) 0.086 t 0.Or 85 50 
5 ( I, 0.753, 0.231 ) 0.0894 0.0199 50 
10 (1, 0.753, 0.231) 0.0895 0.0199 50 
20 ( I, 0.753.0.231 ) 0.0895 0.0199 50 
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TABLE 4C 
CASE ST U D Y  2 - MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME 

Prob 'y o f  ruin Prob 'y of  ruin Expected 
t a (continuous) (discrete) net profit 

I (I, 0.749, 0.257) 0.0745 0.0147 50 
2 (1,0.749, 0.257) 0.0860 0.0184 50 
5 (I, 0.749.0.257) 0.0893 0.0198 50 
10 (I, 0.749, 0.257) 0.0894 0.0199 50 
20 (I, 0.749, 0.257) 0.0894 0.0199 50 

TABLE 4D 
CASE STUDY 2 - MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME 

Prob'y o f  ruin Prob'y o f  ruin Expected 
t a (continuous) (discrete) net profit 

1 ( 1, I, 0.42) 0.0957 0.0103 88.4 
2 (1, 1,0.43) 0.1011 0.0115 88.6 
5 (I, 1,0.43) 0.1018 0.0118 88.6 
10 (I, I, 0.43) 0.1018 0.0118 88.6 
20 (1, 1,0.43) 0.1018 0.0118 88.6 

Comparison of Tables 3A-D and 4A-D: 

(a) Comparing the ruin probabilities in Table 3A (no reinsurance) with those in Tables 
3B-D, and also those in Table 4A with those in Tables 4B-D, it is apparent that 
proportional reinsurance can reduce the probability of ruin considerably,  although 
in many cases 50% of the maximum expected profit has been sacrificed to achieve 
this reduction. 

(b) A feature of  Tables 3C-D and Tables 4C-D is that the optimal reinsurance reten- 
tions are not very sensitive to changes in the time horizon for ruin. This suggests 
that if we wish to choose proportional reinsurance retentions which minimise the 
insurer 's  probabili ty of  ruin in either continuous or discrete time, subject to a mi- 
nimum level for the insurer 's  expected net profit, it may be sufficient to calculate 
the optimal retentions for a short time horizon. 

(c) A feature of Case Study 1 is that the optimal retentions in Tables 3C (I ,  0.438/9, 
0.519/8), and 3D, (1, 0.456, 0.493), are close to each other and not too far from 
those in Table 3B, (I ,  0.396, 0.581). Also, the corresponding probabilit ies of ruin 
in Tables 3B-D are all very close to each other. This suggests that, in this example, 
if we wish to choose retention levels which minimise a probability of ruin, in either 
continuous or discrete time, an approximation can be obtained by calculating re- 
tention levels using the minimum variance criterion. This could be a significant 
point since the computational effort required for the latter is considerably less than 
that required for the former. 

(d) The comments in (c) above, all of which related to Case Study I, do not apply to 
Case Study 2. For Case Study 2, the optimal retentions, and ruin probabilities, cal- 
culated using a minimum variance criterion, Table 4B, and a continuous time ruin 
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criterion, Table 4C, are very close to each other. Also, the optimal retentions in 
Table 4C give an expected net profit for the insurer of  exactly 50. However, 
the optimal retentions and ruin probabilities calculated using the discrete time 
ruin criterion, Table 4D, are very different from those in Tables 4B and 4C. A no- 
ticeable feature of  Table 4D is that the optimal retentions give expected net profits, 
88.4/6, well in excess of the constrained minimum value of  50. 

(e) A common feature of  Tables 3A-D and 4A-D is that, for a given set of retentions 
and a given time horizon, the probaility of  ruin in continuous time is a factor of  
almost 10 times greater than the probability of ruin in discrete time. To see why 
this is the case, consider Table 3B. The insurer's initial surplus is 20 and the ex- 
pected surplus at the end of the first year is 70. This indicates that if ruin occurs in 
continuous time, it is likely to occur soon after time 0, so that there will be a large 
part of  the year remaining in which the surplus can recover to a positive value. In 
fact, the probability of ruin in continuous time within the first half year is 0.0758 
so that the probability of  ruin in the following half year, having not been ruined in 
the first half year, is 0.0140. In general we would expect the probabilities of ruin 
within a given time period (continuous) and at the end of the time period (discrete) 
to be much closer if either the insurer's initial surplus were larger and/or the ex- 
pected net profit in the time period were smaller. Referring again to the example in 
Table 3B, the probability of  ruin at the end of  0. I years is 0.0166. The important 
feature in this case is that the insurer's expected net profit in the time period is 
only 5. 
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Further discussion of Case Study 2: 

Figure I shows minimum discrete time ruin probabilities as a function of the insu- 
rer's expected net profit for t = 1 and t = 10. This figure shows the advantage to the 
insurer of constraining the expected net profit to be at least 50. In particular, when t = 
10 we see that any expected net profit greater than 50 results in a lower probability of 
ruin than when the expected net profit equals 50. Results showing the effect of diffe- 
rent values for the initial surplus are shown in Tables 5A, 5B, 6A and 6B, in all cases 
the reinsurance premium loadings are as in Case Study 2. Tables 5A and 6A show 
figures for an initial surplus of 20 and Tables 5B and 6B show figures for an initial 
surplus of 50. Tables 5A and 5B show for each of the five time horizons the optimal 
retention levels calculated using a continuous time ruin criterion, together with the 
resulting expected net profit for the insurer and the minimum value of the ruin proba- 
bility. These values should be compared with those in Table 4C. Tables 6A and 6B 
show the optimal retention levels calculated using a discrete time ruin criterion. These 
values should be compared with those in Table 4D. 

The optimal retentions in Table 5B are very close to those in Table 4C, indicating 
that increasing the insurer's initial surplus from 35 to 50 has had little effect in terms 
of optimal retention levels and the insurer's expected net profit. However, Table 5A 
displays different features. The optimal retention levels change as the time horizon 
increases, appearing to converge to (I, 0.827, 0.256), and the insurer's expected net 
profit moves away from the constrained minimum value. Table 5A indicates that the 
optimal retentions under a continuous time ruin criterion may depend on the time 
horizon and, by comparison with Tables 4C and 5B, on the insurer's initial surplus. 
Turning to Tables 6A and 6B, we see that a change in initial surplus has only a small 
impact on optimal retention levels and the insurer's expected net profit. 

TABLE 5 A  

MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME, U = 2 0  

Prob'y of  ruin Expected 
t a (continuous) net profit 

I (I, 0.753, 0.23 l) 0.1883 50.0 
2 (I, 0.799, 0.247) 0.2025 56.8 
5 (I, 0.827, 0.256) 0.2050 60.9 
10 (I, 0.827, 0.256) 0.2050 60.9 
20 (I, 0.827, 0.256) 0.2050 60.9 

TABLE 5B 

MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME, U = 5 0  

Prob'y of  ruin Expected 
t a (continuous) net profit 

m 

I (I, 0.747, 0.271) 0.0288 50 
2 (I, 0.747, 0.271 ) 0.0362 50 
5 (1,0.748, 0.264) 0.0387 50 
10 (1,0.748, 0.264) 0.0387 50 
20 (I, 0.748, 0.264) 0.0387 50 
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TABLE 6A 
MINIMUM PROBABILITY OF RUIN IN DISCRETE'rIME, U = 2 0  

Prob 'y o f  ruin Expected 
t a (continuous) net profit 

m 

I (I, I, 0.460) 0.0186 89.2 
2 (1, I, 0.470) 0.0205 89.4 
5 (I, 1,0.470) 0.0208 89.4 
10 (I, 1,0.470) 0.0208 89.4 
20 (I, I, 0.470) 0.0208 89.4 

TABLE 6B 
MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME, U = 5 0  

Prob'y o f  ruin Expected 
t a (continuous) net profit 

I (1, 1,0.390) 0.0055 87.8 
2 (I, 1,0.400) 0.0063 88.0 
5 ( I, 1,0.405) 0.0065 88.1 
10 (I, I, 0.405) 0.0065 88.1 
20 (1, 1,0.405) 0.0065 88.1 

6. EXCESS LOSS REINSURANCE 

Case S tudy  3: In this Case Study we investigate different optimal retention levels for 
excess loss reinsurance of the fire and windstorm sub-portfolios. For the reasons given 
in Section 2, we assume that the glass sub-portfolio is not reinsured under an excess 
loss treaty. The insurer 's premium income is 600, as in the previous two Case Studies, 
and the initial surplus is 35. The reinsurance premium loading factors are 100% (fire) 
and 200% (windstorm). These factors are higher than those in the previous two Case 
Studies, a consequence of the fact that excess loss, by its very nature, should be more 
expensive than proportional reinsurance. 

The probabili t ies of  ruin, for continuous and discrete time, and for different time 
horizons, when there is no reinsurance are as in Table 4A. We will assume that the 
insurer wishes to find the optimal excess loss retentions subject to the constraint that 
the expected net profit is at least 50. The minimum variance solution to this problem is 
._M= (~,  9.66, 19,32). The ruin probabilities with this set of retention levels are shown 
in Table 7B. Table 7C shows the optimal continuous time retentions and ruin probabi- 
lities for different time horizons, together with the discrete time ruin probabilit ies for 
these retentions and the insurer 's  expected net profit, which in every case is 50. Table 
7D shows the optimal discrete time retentions and ruin probabilities for different time 
horizons, together with the continuous time ruin probabilities for these retentions and 
the insurer 's expected net profit. 
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TABLE 7B  

CASE STUDY 3 - MINIMUM VARIANCE 

Prob'y of ruin Prob'y of ruin Expected 
t M (continuous) (discrete) net profit 

m 

I (~, 9.66, 19.32) 0.0420 0.0068 50 
2 (o~ 9.66, 19.32) 0.0485 0.0083 50 
5 (oo, 9.66, 19.32) 0.0499 0.0087 50 
10 (~, 9.66, 19.32) 0.0499 0.0087 50 
20 (~, 9.66, 19.32) 0.0499 0.0087 50 

TABLE 7C 

CASE STUDY 3 - MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME 

Prob'y of ruin Prob'y of ruin Expected 
t M (continuous) (discrete) net profit 

I (,o, 10.43, 17.39) 0.04 14 0.0066 50 
2 (oo, 10.39, 17.48) 0.0479 0.0081 50 
5 (o~, 10.38, 17.50) 0.0492 0.0085 50 
10 (oo 10.38, 17.50) 0.0493 0.0085 50 
20 (co, 10.38, 17.50) 0.0493 0.0085 50 

TABLE 7 D  

CASE STUDY 3 - MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME 

Prob'y of ruin Prob'y of ruin Expected 
t M (continuous) (discrete) net profit 

l (~,  I 1.52, 19.09) 0.0451 0.0066 54.7 
2 (~, 12.56, 20.78) 0.0543 0.0078 58.8 
5 (oo, 12.9 I, 21.37) 0.0564 0.0081 60. I 
10 (oo, 12.91,21.37) 0.0564 0.0081 60.1 
20 (co 12.91,21.37) 0.0564 0.0081 60. I 

A comparison of Tables 7B-D shows that the ruin probabilities in these tables, ei- 
ther continuous or discrete time, do not change significantly from one table to the 
next. This indicates that for many practical purposes the probability of ruin, in either 
discrete or continuous time, can be assumed to attain its minimum value at the solution 
to the minimum variance problem. However, the extra computational effort required to 
compute the optimal retentions for discrete time ruin in Table 7D may be considered 
worthwhile since they result in an expected net profit for the insurer in excess of  60, 
for t > 5, rather than 50 for the minimum variance optimal retentions. 
Other features of Tables 7B-D are: 
(a) the different time horizons in Tables 7C and 7D have little effect on the values of 

the optimal retention levels, and no effect for t > 5, and, 
(b) optimal retentions for continuous time ruin, Table 7C, are closer to the minimum 

variance solution than are the optimal retentions for discrete time ruin, Table 7D. 
In particular, the former give an expected net profit for the insurer of  50, i.e. on the 
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boundary of  the constraint, as for the minimum variance solution, whereas the lat- 
ter give an expected net profit away from the boundary. 

Figure 2 shows the minimum discrete time ruin probabilities as a function of the in- 
surer's expected net profit for t = I and t = 10. As in Figure I, we can again see the 
advantage of constraining the expected net profit to be at least 50 rather than exactly 
50. 

The effect of  altering the insurer's initial surplus is shown in Table 8. This table 
shows for U = 20 and U = 50 the optimal retentions for both the continuous time and 
the discrete time ruin criteria, together with the minimum value for the probability of  
ruin and the resulting expected net profit for the insurer. In all cases the time horizon 
for ruin is 20 years. 
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T A B L E  8 

CASE STUDY 3 -- DIFFERENT VALUES FOR. THE |Nn'IAL SURPLUS; t ---- 20 

Continuous / Expected 
t discrete M Prob 'y o f  ruin net profit 

20 Cont inuous  ( ~ ,  I 0.08,  18.22) 0 .1569 50 
50 Cont inuous  (~,, 10,49, 17.25) 0.0155 50 
20 Discrete (~ ,  16,18, 27.00) 0 .0182 70.5 
50 Discrete (~,, 10,89, 17.89) 0.0031 51.8 
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The important point revealed by Table 8 is that changing the insurer's initial surplus 
has little effect, in terms of the optimal retentions or the insurer's expected net profit, 
in the case of continuous time ruin but makes a considerable difference in the case of 
discrete time ruin. 

7. CONCLUSIONS 

Our purpose in this paper has been to investigate different criteria for determining the 
optimal relative retention limits for a non-life portfolio consisting of a number of in- 
dependent sub-portfolios. For the reasons discussed in Examples 1,2 and 3 in Section 
4, the minimum variance criterion could be regarded as a proxy for a probability of 
ruin criterion. The advantages of the minimum variance criterion are: 
(a) it is possible to express the retention levels in closed form, 
(b) the optimal retention levels depend only on the reinsurance premium Ioadings and, 

in the case of proportional reinsurance, on the first two moments of aggregate 
claims for the sub-portfolios, and, 

(c) the optimal retention levels can be calculated very easily. In contrast, the optimal 
retention levels using a ruin probability criterion cannot be expressed in closed 
form and can be time consuming to compute, particularly for the longer time hori- 
zons. 

Our method of investigation has been to carry out several "case studies" for a single 
portfolio. Using this method it can be difficult to draw any conclusions. Nevertheless, 
we consider that the numerical results in Sections 5 and 6, and the other examples we 
have investigated in the course of this study, enable us to reach the following tentative 
answers, for both proportional and for excess loss reinsurance, to the questions posed 
in Section 1: 
(I) The minimum variance criterion produces optimal relative retention levels close to 

those produced by the continuous time ruin criterion (see Tables 3B and 3C, Ta- 
bles 4B, 4C, 5A and 5B and Tables 7B, 7C and 8 (Continuous)) but not necessarily 
similar to those produced by the discrete time ruin criterion (see Tables 4B, 4D, 6A 
and 6B and Tables 7B, 7D and 8 (Discrete)). The three examples in Section 4 all 
indicated that optimality with respect to the minimum variance criterion might be 
approximately the same as optimality with respect to the probability of ruin in 
continuous time (Examples 1 and 3) and the probability of ruin in discrete time 
(Example 2). Specifically, we assumed in Examples 2 and 3 that the (retained) ag- 
gregate claim amount distribution could be reasonably approximated by a normal 
distribution, and hence is symmetric. However, with an expected net profit of at 
least 50 the coefficient of skewness of the retained aggregate claim amount distri- 
bution in Case Studies 1 and 2 turns out to be above 0.5 for all combinations of 
retention levels, and hence the distribution is not symmetric. For this reason it 
should not be surprising that optimality with respect to the minimum variance cri- 
terion can produce different results to optimality with respect to the probability of 
ruin in discrete time (Case Study 2). What may be considered surprising is the clo- 
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seness of the results in all three case studies under the minimum variance criterion 
and the continuous time ruin criterion. 

(2) As indicated in (1) above, the discrete time ruin criterion can produce very diffe- 
rent optimal retentions from those produced by the continuous time ruin criterion. 
This should not be too surprising since these two probabilities are rather different 
both in nature and, in our examples, numerically. See comment (e) in Section 5. 
That these two probabilities behave differently has already been observed in a so- 
mewhat different setting. See Dickson and Waters (1996, Section 8 and 9). 

(3) (i) In most cases we investigated, the optimal retention levels for continuous time 
ruin give an expected net profit for the insurer on the boundary of its constrained 
values (see Tables 3C, 4C, 5B, 7C and 8 (Continuous)). In one example this was 
not the case (see Table 5A). The exact reverse is true for the optimal retentions for 
discrete time ruin (see Table 3D for the former case and Tables 4D, 6A, 6B, 7D 
and 8 (Discrete) for the latter case). 
(ii) A marked feature of  all our calculations is that the time horizon for ruin, for 
one year and longer, has very little effect on the optimal retention levels in either 
continuous time or discrete time. In all cases the optimal retention levels are un- 
changed to three significant figures as the time horizon increases from five years to 
twenty years. 
(iii)The insurer's initial surplus, which is not considered by the minimum variance 
criterion, can have a considerable effect on the optimal retention levels using a 
probability of  ruin criterion (see Tables 7D and 8 (Discrete)). 
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