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ABSTRACT 

Many authors have observed that Hachemelsters Regression Model for Credlbdlty - ff 
apphed to simple linear r e g r e s s t o n -  leads to unstmsfactory credibili ty matrices they 
typically 'max up" the regressmn parameters and m particular lead to regression hnes 
that seem 'out of range' compared with both mdwldual and collectwe regression hnes 
We propose to anaend these shortcomings by an appropriate deflnmon of  the regres- 
sion parameters: 
- intercept 

- slope 
Contrary to standard pracnce the intercept should however not be defined as the value 
at time zero but as the value of the regressmn hne at the barycenter of tmle. With these 
definmons regression parameters which are uncorrelated m the collective can be esti- 
mated separately by standard one d~menmonal credibility techmques 

A slmdar convement reparalnetnzat~on can also be achieved in the general regres- 
stun case The good choice for the regression parameters Is such as to turn the design 
mamx into an array with orthogonal column,; 

1. THE GENERAL MODEL 

In his pioneering paper presented at the Berkeley Credibihty Conference 1974, Charhe 
Hachelnelstel introduced the lbl lowmg General Regression Case Czedlblhtg Model 
a) Descllpuon of individual risk r. 

risk quahty Or 
observanons (random vector) 

I XIr 1 
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with distribution dP(Xr/Or) and where X w = observat ion of  risk r at t ime t 

b) Descript ion o f  col lect ive.  

{ 0 , ( r =  1, 2, . , N)} are l i d with structure function U(O) 

We are interested in the (unknown) 

individually correct pure premiums 11,(0r) = E[X, JO,] (7 = 1,2, . , n) 

112 ( 0 , ) / =  11(0, ) where 11,(0,) = individual pure premium at t ime t 
/ 

t11,,(o,)) 

and we suppose that these individual pure premiums fo l low a regression pattern 

R) 11(0r) = Yr'(Or), 

where 11(0,) - n-vector ,  ~(Or) ~p -vec to r  and Yr - n * p-matr ix  (= design matrix) 

Remark: 

The model  is usually applied for p < n and maximal  rank of  Y,, m practice p is much 

smal ler  than n (e g. p = 2). 

The goal is to have credibil i ty es t imator  l~(Or) for ]~(0,) 

which by hneari ty leads to the crediblhty est imator  ~ (0 r )  for 11(0r). 

2 T H E  ESTIMATION P R O B L E M  AND ITS R E L E V A N T  P A R A M E T E R S  AND SOLUTION 

( G E N E R A L  CASE)  

We look for 

k(Or)  =a + AX r 

a ~ p -  vector  

A - p *  n matrix 

The fo l lowing quantit ies are the "relevant  parameters"  for finding this es t imator  

EICov[Xr ,X '  r / O r ]  ] = (I3 t (I3 t -- n:: n matrix (regular) 

Covl1~(Or),,/~ (0,)]  = A A ~ p ":'p matrix (regular) 

Elfl(O, )1 = b b - p -  vector  

We find the credibil i ty formula 

Z.)b + Z, br x 

O) 
(2) 

(3) 

(4) 
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where 

Z r = ( I - W 7  IA - I ) - t  = ( W  r + A - I ) - I W r  = A ( A + W 7  I)-I 

~ credibility inatrlx(p * p) 

W r = Y~71Y, .  ~ auxihary matrix ( p , p )  

br x = WT-tY,'~TIX,. ~ individual estimate (p*  1) 

(5) 

(6) 

(7) 

Discussion: 

The generality under which formula (4) can be proved is nnpresslv, but this generality 
is also ItS weakness Only by speclallsanon it is possible to understand how the for- 
mula can be used for practical applications Fol lowing the route of Hachemelsters  
original paper we hence use ~t now for the special case of snnple linear regressmn. 

3 SIMPLE LINEAR REGRESSION 

Let 

and 

hence R) becomes 

Y{il/ 
13(0r) = (13°(0' )1 

Ll ,(or); 

~,  ( 0 . )  = f l0 (0 i  ) "]- I /~L ( 0 , )  (8) 

which is one of the most frequently apphed regression cases Assume further that ~ r  is 
diagonal, i.e. that observations X,r, Xj, given O, are uncorrelated fort  a j  
To smlplJfy notanon, we drop in the following the index r, 1 e we write ~ instead of 
qb, W instead of W r and Z instead of Zr 

Hence 

e g  

Let 

l 
a i- 0 

qb = 02 

2 
k 0 0 .  

v, = "volume" of observation at time i 

/ 1 A =  T~ Tol 
'rio r ~ )  % l = r ' °  

(9) 
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We find 

W =  Y qb-n Y = a~ 
k 

It is convenient to write 

,~ 0 "~ 
a / = - - ,  v =  v~ 

g/~ ,~=1 

(which Is always possible for dnagonal O) Hence we have 

Think of V~ as samphng weights, then we have 
V. 

a -  (El ' l [k]  El"l[k2]) 

where E ~'~, Va/'~ denole the moments with respect to the samphng dlstnbutnon 

(1o)  

(11) 

One then also finds (see (7)) 

b x, = W-nyO-IXr 

_ I (E~"lkZl E'IX~rI-E<~JIk] E¢'JlkX~]] 
Va?~l[k] ~ E'[kX~]- E~'~[kl E~'~[X~I ) 

(12) 

where EC'llkX~l = --~-kXhr, E~'IIX~r] = ,Y__,--~--X~r 
k 

Remark: 

It is nnstrucuve to verLfy by dnrect calculation that the values gnven by (12) to b0~, bl x 

are identical with those obtained from 

v~ (x~r  - b0~; - ;,b,'~ ) :  = m m '  
I=1 

The calculatzons to obtain the credzblhty matr,x Z (see (5)) are as follows 

% r l  - r~l \ - r0u  r2 \+P01 ,0~ 
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Abbreviate 

Hence 

(W+ A -I )-i = 

0- 2 
pa 7=ho 

O -2 
7 = Jl, 
G 2 

Pol ~ = hol  

(~3) 

W+A_ I V ( l + h  o E(')[kl+hol] 
=-~L E~')lkl+hol E(')[k2l+lq 

~2 1 (E(a)(s) [k2] "l-hI -(g(0 [k]-[- hoi 1 
V. (l+ho)(EI~)[k2]+hl)-(E(~ik]+hol) 2(-(E Ik]+hoO I +h o 

N 

Z=(W+A-I)-I W (14) 

I (Var(')lkl+hn -ho]EI')[k] E(~)lkllh - E(')[k2]hol ) Z 
-N~, hoE(S)[k] - 1701 Var(')[k] + hoE(~)[k 21- 1701E(')lk ] 

Discussion: 

The cre&bfllty matrix obtained Js not sausfactory from a pracucal point of view 
a) m&wdual weights are not always between zero and one. 

b) both intercept /~o(0, ) of the credibility hne and slope /~l (0r)  of the credibility line 

may not lie between Intercept and slope of mdwldual line and collective line 

Numerical examples: 

n : 5  Vk-=l 

collective regression hne. b o = 100 b L = 10 

individual regression hne' b~" = 70 bl x = 7 

Example I 0 . = 2 0  z o = 1 0  r 1 = 5  r i o = 0  

resulting credlblhty hnc. ~o(Or) = 88.8 ]~l(Or) = 3.7 

Example2  0"=20  z o =100 '000  zj = 5  z u l = O  

resulting credibility hne: j~o(Or) = 64 5 ~j(Or) = 8.8 

Example3  cy=20  z o = 1 0  z I = 1 0 0 ' 0 0 0  " q o = 0  

resulung credlbdlty hne ~o(0~) = 94 7 ~ ( 0 ,  ) = 0.3 
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Comments:  

In none of  the 3 examples do both, intercept and slope of the credibili ty line, he bet- 

ween the collect ive and the individual values In example 2 there ~s a great prior 
uncertainty about the intercept (% very big) One would expect  that the credibil i ty 
estmlator gives full weight to the intercept of  the individual regression line and that 

[~o(Or) nearly coincides with bo x.  But j~o(Or) IS even .smaller than b o and bo x in 

example 3 there ~s a great prior uncertainty about the slope and one would expect, that 

~l (0r)  ~ bl X But J~l (0r)  is much smaller than b I and b~ c 

For this reason many actuaries have either considered Hachemelsters iegresslon model 
as not usable or have tried to impose artificially additional constraints (e g De Vylder 
(198l)  or De Vylder  (1985)) Dannenburg (1996) discusses the effects of  such con- 
stramts and shows that they have serious drawbacks This paper shows that by an 
appropriate reparametrization the defects of the Hacheme~ster model can be made to 
disappear and that hence no additional constraints are needed. 

Example 1 

180 - - 1 ~ ~ 4  ~ ~ 
140 

120 

I 

~3 

Exarnl~e 2 

160 

140 

I00 

0 1 2 3 4 5 

Example 3 

140 

120 

100 A . ~ ± 

8O 

6O 
0 1 2 3 4 5 6 

-m cogectzve -o- m d h n d u a l  - . -  Credzbddy 

4 SIMPLE LINEAR REGRESSION WITH BARYCENTRIC INTERCEPT 

The idea, that choosing the time scale in such a way as to have the intercept at the 
barycenter of  time, is already mentioned m Hachemelsters paper, although it is then 
not used to make the appropriate model assumptions. Choosing the intercept at the 
barycenter of the time scale means formally that our design matrix is chosen as 
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i i 1- E"tkl / 
Y = 2 - E(s)[k]lS ] 

n -  E C )[k I) 

R e m a r k :  

It is well known, that any linear transformation of the time scale (or more generally of 
the covarlates) does not change the credlbihty estimates. But what we do m the follo- 
wing changes the original model by assuming that the matrix A is now the covarlance 
matrix of the 'new'  vector ~(O~),flo(0~) now being the intercept at the barycenter of  
time instead of the intercept at the tmae zero. 
In our general formulae obtained m section 3 we have to replace 

E(S)[k] ~---0 E(a)[k 2] ~ Var(S)[k] 

It IS also important that sample variances and covanances are no___!t changed by this shift 
of time scale. 

We immediately obtain 

and 

b¢~, = E"~[X~, ] 

Coy (s) (k, X~)  
b b  

Var(s)lk] 

(12~,~) 

formulae with credlbdlty weights 
1 1 V.  

Z l~ - I + h----~ - 0------~ - 0------~ 
I + _ ~ , ,  V + - -  

r o V. T(~ 

Var( ° [ k ] Var( O [ k ] 
Z22 Var(,)[kl+hl VarCS)[k] t 0-2 

r~V. 

(15) 

V Var(~)[k] 
0 -2 

V. Var (s) [k] + - .~  

1 (VarC')[k]+hl -Var(')[klhol ) (14b.r) 
Z= (l+ho)(VarCS)[k]+hl)_ho21 ~ -hm Var(¢)[k](l+ho ) 

These formulae are now becoming very well understandable, m particular the 
crosseffect between the credJblhty formulae for intercept and slope is only due to their 
correlation m the collective (off diagonal elements m the matrix A) In case of  no 
correlation between regressmn parameters m the collective we have 

Z = 1 (Var(S)[k]+h. 0 ) (14~,p) 

(l+ho)(VarCS)[k]+hl)~, 0 Va/°[k](l+ho) 

which separates our credibility matrix into two separate one-dimensional credlbd~ty 
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Remark: 

Observe the classical form of the credibility weights m (15) with volumes V. for Z~ 
and V Var('~[k] forZ22. 

Numerical examples 

The model assumpuons of the following three examples numbered 4 - 6 are exactly 
the same as m the examples numbered I - 3 of  the previous section with the only 
difference that the first element of the vector fl(0r) now represents the intercept at the 
barycenter Thus we have. 

collective regression hne. b o = 130 b I = 10 

individual regression line bo x = 91 bi x = 7 
The resulting credJbd~ty lines are: 

Example4. /3o(0,)= 108 3 /3~(0r)=8.8 

Example 5. ~o(Or) = 91.0 /31(Or) = 8 8 

Example 6: ~o(0, ) = 108 3 /~i(0~) = 7 0 

Comments: 

Intercept and slope of the credibility lines are always lying between the values of  the 
mdwldual and of the collectwe regression hne In example 5 (respectively m example 

6) the intercept ~o(Or) (respectwely the slope ~,(Or)) coincides with box (resp. bX). 

It is also interesting to note that the cred|bfllty line of example 5 is exactly the same as 
the one of example 2. 

E~amp~, 4 

160 

140 

12'0 

tO0 

8O 

6O 
0 1 2 3 4 5 6 

180 

160 

140 

120 

100 

80 

Example 5 

x 

1 2 3 4 5 6 

Example 6 

160 

140 

120 

100 

8O 

8O 
0 1 2 3 4 5 

-II- co l l ecUve  .~- i n d M d u a l  ~ C red ib i l i t y  
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5 HOW TO CHOOSE TI-IE BARYCENTER 9 

Unfortunately the barycenter  for each risk is shifting depending on the individual 
sampling distribution. There is usually no way to bring - simultaneously for all risks - 
the matrices K W, Z Into the convenient  form as discussed in the last section. This 
discussion however suggests thai the most reasonable paralnetrlzatlon ~s the one using 
the Intercept at the barycenter of  the collective Th~s has two advantages: it is the point 

to which individual barycenters are (in the sum of least square sense) closest and the 
orthogonahty property of parameters still holds for the collective. 
In the fol lowing we work with this parametrlzatlon and assume that the regression 
parameters in this paralnetrlzatlon are uncorrelated. 

Hence we work from now on with the regression line 

ao(Or)+(k- K)al(Or) , 

where K is the barycenter of  the collective i.e K = '~"" -~- i .  
~.i.~r = I V 

We assume also that the collective parameters are uncorrelated, I e 

If we shift to the individual barycenter E~l[k] we obtain the line' 

fl0 (0r) + (k - E ( ')[k])]31 (0 r) 

Hence 

fl[ ( O r )  "~ (~[ ( 0  r ) 

a 
• (s) flo(Or)=aO(Or)+al(Or)(E [ k ] -  K) (16) 

A(~) = ( ~  + r~ (EC~)fkl- K)2 
r~(E~')[k]- K) 

For the/Y-line we have further 

1 
po2= - , 

~o ~ 

I 
Pol  = - A  'r--~- ' 

r~(E(')Ik]-K))=( v~ Arl 2 '~r~lvl 2 ) 

ho ~ ' -  ~ ° ~ 2  _/,o'~' 
r~ V 

hlfl)= (72 2 cY2 h~a) +dx2ho(~) 
# . - - 7  + a  ¢o2 v - - C  = 

0 .2 _ - ~ h ~  ~¢) 

h°~'~' = a ~o ~ v 
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has two orthogonal columns (using the weights of  the samphng distribution) This is 
the clue for the general regression case. The good choice of the regression parameters 
ts such as to render the design matrix into an array with orthogonal columns 

6.2  T h e  B a r y e e n t r i c  M o d e l  

Let [ ~l Y,2 ii"] __g~l : : 
Y= 

Ynl }~,2 p 

and assume volumes V~, V2, , V,, and let be V = Z ~ = ,  v~. 
We think of c o l u m n j  m g as a random variable Y~ whmh assumes I'~, with sampling 

weight Vk i n  short p(O[yj = yj~] = V~ where U 'J stands for the samphng distribution 
V V 

As m the case of  simple linear regression It turns out that also in the general case this 
sampling dlstnbuuon allows a concise and convement notauon. 
We have from (9) 

and from (10) 

where 

,t_~ =v__ v~ 

W = y , ~ - I y  = (w~j) 

v ec,)[y, Yjl WO = - -  
G2 

Under the barycenmc condmon we find 

w=7( o E(°[Y~] 
E(~)[gp21 

(18) 

i.e. a matrix of diagonal form. 
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Assulnmg non-correlation for the corresponding parametnzanon we have 

0 / 0 / 
A -- r~ A-I : ~ -  [ ]12 

0 r 2 0 hp 

with hj : -  - -  

Hence 

9 
I O'- 
2 V I"g 

( Ei ' )[ yi2 l + h I 

(W+A- ' )=7  0 E(~)[Yd]+h 2 
E(')[Y2p ]+hp 

and finally 

i 
r EcS)[ yi2 ] 0 

E(O[Yi2 ] + hi 
Z = (W + A-' )W = E(Olyi2] (19) 

0 E ( o I yp2 ] + hp 

(19) shows that our cred%d~ty rnatnx is of diagonal form. Hence the muludmlensJonal 
credibility formula breaks down into p one dimensional formulae with credlblhty 
weights. 

V E(~I[ Y) ] 
Zjj= o.2 (20) 

V E(')[Yj ] -t 
r; 

Observe the "volume" V. E(S)[ yjZ ] for the j-th component 

6.3 The Summary Statistics for the Barycentric Model 

From (7) we have 
b~ = W -I Y-I(l~-IXr = CX r 

where the elements of C are 

_ 1 Vj 
% E('[Y, 21% -7- (21) 

hence b,', ECS)[ Y, 2] j=l 
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o r  

e~'~tg Xr] b/r- t = 1,2,. p E(')[}~ 2 ] 
(22) 

6.4 How to find the Barycentric Reparametrization 

We start with the design mamx 
Y and its column vectors Y,, Y2 . . . . .  Yp 
and want to find the new design mamx 
Y* w,th orthogonal column vectors Yl", Y2 . . . . .  Y/~ 

The construcuon of the vectors Y~* is obtained recursively 

1) Start with ~* = Yi 

n) If you have constructed Yl', Y;, • , Y~-,, you find Y~ as follows 

a) Solve Ec')[(Y~ - a l  Y I - a z Y  z - . - a ~ _  I Y~_l) ']= mm I 

over all values of a ,  a> .., ak.~ 

b) Define Yt' "= Y a - a N Y 1 * - a ~ Y 2 ' -  - a ~ _ ,  Y~* , 

Remarks: 

1) obviously this leads to Y[ such that 

E(~)[Y~ Y/*I=0 forall  l < k  (23) 

11) The procedure of orthogonahsatlon is called weighted Gram-Schmltt  in Numerical 
Analysis 

ili) The result of this procedure depends on the order of  the colums of the original 
mamx  Hence there might be ~everal feasible solunons. 

With the new design ma tnxg '  we can now also find the new parameters 

fiE(Or) J = 1,2, p The regression equation becomes 

/~(0r) = Y'f*(Or) R) 

which reads componentwlse 

P 

.,(or)= Z 
./=l 

, V, and sum over Muluply both sides by Y,k "~- 

g. v, , 
Y,,,u,(or) -~-= Y,,Y, jI3j(O,) V 

t=l  j = l  I=] 

leading to 

EC~l Y;J'l(Or)] = E(s)[(Y;) 2] ill,. (Or) (24) 
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where, on the right hand sade, we have used the orthogonahty of Y~ and YJ* fory ¢ k 

Hence 

e, ,3~(Or)= E¢S)[Yk'g(Or)l k = 1,2 . . . .  p (25) 
E~s)[(Y[ )2 l 

which defines our new parameters an the barycentric model 
You should observe that this transformation of the regression parameters ~s (Or) may 

lead to new parameters 13~(0r) which are sometimes difficult to anterprete In each 

appllcanon one has therefore to decade whether the orthogonahty property of the de- 
sagn matrix or the mterpretabd,ty of the regressaon parameters ,s more m~portant 

Luckdy - as we have seen - there ~s no problem w~th the mterpretanon m the case of 

simple hnear regress,on and interpretabdity ~s also not decisive ~f we are interested in 
pred,ctaon only 

6.5 An example 

Suppose that we want to model gt(0r) as depending on nine m a quadranc manner, t e 

].1~ (Or) = 30(0,.) + k31 (Or) + k 21~2(Or) 

Our design matrix as hence of the following form 

:1 I I 

1 2 4 

Y= 
I k k 2 

1 n n 2 

Let us construct the destgn matrix Y' with orthogonal columns. 
Following the procedure as outlined m 6.4 we obwously have for the first two col- 
umns those obtaaned m the case of simple hnear regression (measuring tame from ~ts 

barycenter) and we only have to construct Y~' 

Formally 

1 1 -- E(S)[k] ~3  

2-E"~Ikl G 
y °  = 

n - E ~ ' ) [ k ]  Y,,'3 
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To find Y3 we must solve 
n * * 

v 
/{=1 

Using relation (23) we obtlan 

Hence we get 

Yt3 = k 2 - E ( ° [  k2] 

and from 

a I" = E¢Olk2  l 

, ECS)[k2(k _ E(')[k])] 

a 2 = Var(~)[k] 

E~I/"2 (k - E~)[k])] (k - E(')lk]) 
V a r ( ' ) l k ]  

k = 1, 2 ..... n (26) 

3 • . 

,u,(O) = Z s = t  Y,j ft., (O,.) R) 

we get both 

- the interpretation of j3j (0,) (use (25)) 
y4, ^ ,  

- t h e  predict,on ~ , ( 0 ) =  2 1 = ,  ,jj3j(0,) 
^ ,  

where fl~ (0r) it the credibility estimator. Due to orthogonahty of Y" it can be obtained 

componentwlse 

7. FINAL REMARKS 

Our whole discussion of  the general case is based on a pamcular fixed sampling dis- 
tribution. As this distribution typically varies from risk to risk ~ ,  ]3' and Z depend on 
the risk rand  we cannot achieve orthogonality of Y" simultaneously for all risks r This 
Is the problem whmh we have already discussed in section 5 The observations made 
there apply also to the general case and the basic lesson is the same You should con- 
struct the orthogonal Y" for the samphng distribution of the whole collective which 
then will often lead to "nearly orthogonal" design matrices for the individual risks 
which again "nearly separates" the credlblhty forrnula into componentwlse procedu- 
res 
The question not addressed in this paper is the one of chome of the number of regres- 
sion parameters In the case of  simple hnear regressmn this question would be. Should 
you use a linear regression function, a quadratic or a higher order polynommal? Ge- 
nerally the question is. How should one choose the design matrix to start with? We 
hope to address this question m a forthcoming paper 
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