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ABSTRACT

This paper deals with the bivanate generalized Poisson distribution. The distribution 1s
fitted to the aggregate amount of claims for a compound class of policies submitted to
claims of two kinds whose yearly frequencies are a priort dependent. A comparative
study with the bivanate Poisson distnbution and with two bivariate mixed Poisson
distributions has been carried out, based on data concerming natural events insurance
in the USA and third party hability automobile insurance in France
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1. INTRODUCTION

Whereas numerous bivariate discrete distributions are used 1n the statistic field
(KOCHERLAKOTA and KOCHERLAKOTA, 1992), only a few of them, apart from the
bivariate Poisson distribution, have been applied in the insurance field. It 1s worth
noting the studys by PICARD (1976), LEMAIRE (1985) and PARTRAT (1993)

In this paper, we discuss the bivariate generalized Poisson distribution (BGPD) n
detail. The distribution is derived from the generalized Poisson distribution (CONSUL,
1989; AMBAGASPITIYA and BALAKRISHNAN, 1994) using the trivanate reduction me-
thod. In section 2 we present some properties of the BGPD The method of moments 1s
used in section 3 for estimation of the parameters We 1llustrate the usage of this me-
thod through two examples 1n section 4

2. BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD)

2.1 Development of the distribution

We use the trivariate reduction method to construct the distribution (KOCHERLAKOTA
and KOCHERLAKOTA, 1992). Let N, N, and N, be independent generalized Poisson
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random variables (GPD), N, ~GPD (A, 6), i=1,2, 3. Let X =N, + N, and
Y =N, + N, We get the joint probability function (p.t') of (X, Y) as

minir,s)

PX=rY=s)= Y A(r—Kkf(s=k)fk), @2.1)

A=0

where f(n) 1s the p.f. of the random variable N,

Since N ~ GPD(A, 0).1f its p f 1s given by (CONSUL and SHOUKRI, 1985)

A(A+n6)"" exp(—A - n8) _
f(n)=P(N=n)= oy forn=0,1,2,... ’ @2
0 , otherwise

where A > 0, max(-1, -A/m) < 0 <1 and m 2 4 1s the largest positive integer for
which A 4+ 8m >0 when 8<0, from (2 1) we have

P(X =rY =5)=p(r.s)= LA, A, exp{—(ll +A, +A)—r6 — 992}

min(r.y) ]
o (r=Rs—k)'K!
exp{k(G, +8, - 63)}, rLsen.

(A +0 =008, (4 + (- 0)8,) ™ (A, +k8,)' ™ 23)

2.2 Properties of the distribution
Remark All the formulas that follows for the GPD are taken from AMBAGASPITIYA
and BALAKRISHNAN (1994) and the general equations for a bidimensional distribution
are from KOCHERLAKOTA and KOCHERLAKOTA (1992)
Probability generating function (pgf)
The pgf of a random variable N 1s defined by HN(r) = E(rN) and the pgf of the pair
of random vanables (X, Y)is [ (#.2) =E(z,"{12")

Let the pgf’s of the random variables under consideration be H’ ,1=1,2,3
Then the joint pgf of (X, Y)1s

[T =TT, en[ eI 1@ (24)

For simplicity, we assume the parameters 6, > 0, 1 = 1, 2, 3 AMBAGASPITIYA and
BALAKRISHNAN (1994) has expressed the pgf of the GPD in terms of Lambert’s W
function when 8> 0, as follows

HN n= exp{—%[W(—Hz exp(-6)) + e]}, (2.5)
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where the Lambert’s W function 1s defined as W(x) exp{W(x)) = x. For more details
about this function see CORLESS et al. (1994)

From (2 4) and (2 5), the pgf of (X, Y) 1s

A
[Tw.)= exp{— 5 W6t exp(=6) - gl W(=6,1, exp(~6,)) ~
1 2

(2.6)
A
— 22 W(-651,1, exp(-6,)) - l},
6,
withA =X, + 4, + A,
Moment generating function (mgf)
If the mgf of N, 1s M, (1),1 =1, 2, 3 then the mgf of (X, Y) 18
M1y, 1) = M ()M ()M (1) + 1) 2.7
The mgf of the GPD, when 8> 0, is given by
My = exp{—%[W(—9exp(—6+t))+9]} (2.8)
Using (2.8) 1n (2.7) we get
A e
M(t,.t;) = exp e W(-6, exp(=6, +1,)) - o W(-6, exp(=8, +1,)) -
. 1 2 29)
-—9—3 W(—G3 exp(—6; +1, +1, )) - /1}
3
Moments
The expressions for the first four central moments of the GPD are as follows
ENY=pu, =M
V(N) =y = AM°
210

Uy = A3M -2)m*
p, =32M® + A(1SM? ~20M +6)M°,  where M =(1-8)”".
Since X =N, + N, and N,, N, independent, we have E(X) = E(N,) + E(N,) and
V(X) = V(N,) + V(N,), so that
E(X)= LM, + .M,
V(X)= MM} + A M3
E(Y) =AM, + A3M,
V(Y) = L,M3 +AM3

(2.11)
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Let u,, = E[(X—ux)r()’—yy)s] be the (r, s)"" central moment of (X, Y). The

equation for u, given ,u{') the k* central moment of N, 1 = 1,2, 3.1s
ZZ[ ]( J Ty T
1=0 ;=0
Hence
=AM
Hyy 3V ) 2.12)
Hy =l = /13(3M3 - 2)M3

This 1s enough to apply the method of moments.

Recurrence relations

The terms 1n the first row and column can be computed using the univariate generali-
zed Poisson distribution, as is seen from

p(0,0) = exp{-A}
s—1

A4, +re)
rl

p(r,0) = exp{-2-r8 } = (A )exp{-(L + 4)}.  r>0

Given the probabilities 1n the first row and column, the probabilities forr > 1, s 2 |
can be computed recursively as

min{r,s}

1 -
p(r,s) = A5 exp{A} ,g:') F[)(r —k,0)p(0,5 = k)(Ay +k63)" ! exp{—k6;}

Independence
Using (2 12) we have cov(X,Y)= /13M;, hence
LM,
(M} + Aym3 )23 + 2yM3)|

Px.rz[ 77

Stnce A; 2 0 and M, > 0, it follows that for this model pyy2= 0. This shows that the
condition of zero correlation 1s a necessary and sufficient condition for the indepen-
dence of the random variables X and Y
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Marginal distributions

The marginal distributions are.

4 (ll +16, )‘_1(13 +(r— i)03)r_l_]
i'(r=1)! '

P(X=r)=4A exp{—(l, +A;)- r03}

exp{—:(@, —63)}
PY=s)=2 lee\(p{ (A + A4 —703}2 (A2 +10,) " (43 + (s-)6) .

"(s—-n)!

=0

exp{—z(92 -0, )}

In particular, 1if 8, = 8, = 0; = 0, this reduces to X ~ GP(A, +4,,8) and ¥ ~
GP(A; + A3, 6).

3 ESTIMATION OF THE PARAMETERS : METHOD OF MOMENTS

Let (x, y),i=1,2, .., n be a random sample of size n from the population. We will
assume that the frequency of the pair (r, s)i1sn, forr=0,1,2, .,s=0,1,2,.. We
recall that an =n. Also

r.s

LI 52 2 L5 o5y
n Z" ;r LOT. O-X n;(r .X) n,,
= — ) = ~2=l — 2
—”Z) % » Oy =~ mo(s y) i
< ’ @G
1 —
“ll_—z y—y)—; rsong,—-Xxy
ro=0
— 1
:u2l=;2 X, —X [ )=; Z(r—x)z(s_y)nrs
r.s=0

The classical method of moments consists of equating the sample moments to their
populations equivalents, expressed 1n terms of the parameters The number of mo-
ments required is six, equal to the number of parameters. Using (3 1), (2.11) and
(2 12) we have
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1++1+3a
e
v iy
X =AM, + A M, T oM}
y =AM, + M, 62 - iy,
. M, =[x Fu
6L =M} + A M} & 'R - AaM, 52)
. SR , .
0-)2/=12M23+A3M::: A _X_AGM:;
! T
Hyy = A M3 !
fiay = A3(3M5 —2)M3 | M, = }5')2/‘[111
V=AM,
y =AM,
A,Zz
M,
where a=@
Hyy

1
We use the fact that 6 < 1, so M =——>0, when chosen the solution for M,

r=1,2,3.

4, NUMERICAL EXAMPLES

Example 1: The North atlantic coastal states 1n the USA (from Texas to Maine) can
be affected by tropical cyclones. We divided these states into three geographical

zones:
Zone 1. Texas, Louisiane, The Mississip1, Alabama;

Zone 2: Florida;
Zone 3: Other states

We were 1nterested in studying the joint distribution of the pair (X, Y), where X and

Y are the yearly frequency of hurricanes affecting respectively zone 1 and zone 3. To
do that we used the data 1n table 1, first row in each cell, giving the realizations of

(X, Y) observed during the 93 years from 1899 to 1991 (PARTRAT, 1993)

For these data we compute
074194, 6% =0.62158, [i,, =002532,

=
y=047312, 52 -052885 f[iy =0.128341.

Under the hypothesis (X, Y) bivaniate Poisson distributed P,(4,.A,, 1), we have
from PARTRAT (1993), method of maximum likelthood, the mle /ll =0.71876,
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A, = 0.44994, 1 =0.02317. The theoretical frequencies for Pz(i,,/iz,/l) are given 1n

table 1, middle row 1n each cell

TABLE 1

COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES OF HURRICANES
(1899-1991) HAVING AFFECTED ZONE | AND ZONE 3

Zone 3
Zone 1 0 1 2 3 z
27 9 3 2 4]
0 28 24 1271 2 86 048 4429
2629 1126 284 065 41 04
24 13 1 0 38
i 2030 979 235 042 3286
23 81 1029 262 061 3733
8 2 1 0 11
2 729 375 096 019 1219
790 347 092 020 12 49
t 0 2 0 3
3 212 116 032 006 366
124 056 028 006 214
60 24 7 2
z 5795 2741 649 115 93
. 5924 2558 666 152

first row . observed frequeng:y
middle row : theoretical frequency for P,
last row . theoretical frequency for BGPD

The xz goodness-of-fit test, after grouping in 7 categories (0, 0, (0, 1), (0, 2 and
above), (1, 0), (1, 1), (2, 0), (other cases) to fulfill the Cochran criterium, lead us to
Xops = 2:(017.v—th)2 /th=596 and a significance value ¢& verifying 020 < @ <

054.

We consider now the case of (X, Y) BGPD-distributed Then from the method of
moments we have

A, = 081257, 6, =-0.10868
A, = 0.44555, 6, =0.03995
A; = 000538, 6, =0.40306

The theoretical frequencies in this case are given in table 1, last row in each cell,
and y2,. = 2.66 for the same categories: 0 < & < 0.85.
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Example 2: Automobile third party liability insurance.

The claims experience of a large automobile portfolio in France including 181038
liability policies was observed during the year 1989. The corresponding yearly claim
frequencies, collected 1n table 2 (first row in each cell), have been divided into mate-

nal damage only (type 1) and bodily injury (type 2) claims We obtain
¥ =0.05100, &y =0.05388, g, =0.00019,
y=000553, G2 =0.00552, fly =0.00023.

TABLE 2

COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES

Type 2
Type 1 0 1 2 and above z
171345 918 2 172265 00
171348 7 8971 47 172250 50
0 171348 7 8975 46 172250 80
171351 30 923 08 002 172274 40
8273 73 0 8346 00
82755 863 07 8362 50
1 8279 5 849 08 8365 20
8248 39 7101 014 8319 54
389 5 0 394 00
398 2 62 0 404 40
2 3915 70 01 398 60
41541 352 137 42030
31 | 0 3200
191 04 0 1950
3 213 06 0 2190
2218 019 006 2243
1 0 0 100
4 10 0l 0 110
and above 14 01 0 150
132 001 0 133
180039 997 2
180042 5 990 | 54
z 180042 4 990 1 55 181038.00
o . 180038 60 997 81 159
first row observed frequency
second row - theoretical frequency for P-G,
third row  : theoretical frequency for P-/G,
lastrow . theoretical frequency for BGPD
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For the comparative study we have, from PARTRAT (1993)

a=0.10840
* Buvariate Poisson Gamma P-G, (a; r, B) the m.l.e. <F =1.00772
B =1975693
The theoretical frequencies are provided n table 2, second row 1n each cell.
a =0 10840
* Buvariate Poisson Inverse Gaussian P_IG, (a, 1. ¥) the m le. {{i=005101}.
7=005155

The theoretical frequencies are provided 1n table 2, third row

Under the hypothesis (X, Y) BGPD, we have, using (3 1)
A, =004945, 6, =0 02701
i/_)_ =0.00537, éz =-000266;, the theoretical frequencies are given 1n table 2, last
A, =0.00016, 6, =0.04976

row

The )(2 goodness-of-fit test 1s applied on the 9 following categories: (0, 0), (0, 1),

(0, 2 and above); (I, 0), (1, | and above): (2, 0); (3, 0); (4 and above, 0); (other cases)
For this grouping we obtain
* Inthe P-G, case )(3,,\ =11.94 and a significance value 0.03< & <0 15;

* Inthe P-I G,case. y2,. = 8.8 and a sigmificance value 0.12 < & < 0.36

In the BGPD case we used 7 categories (0, 0), (0, 1), (1, 0); (1, 1), (2, 0), (3, 0);
(other cases), and we have xf,,‘ =636 with a significance value 0 00 < & < 0.4,

REFERENCES

AMBAGASPITIYA, R § & BALAKRISHNAN, N (1994) On the compound gencralized Poisson distributions
ASTIN Bulletn 24, 255-263

Consut, P C (1989) Generalized Poisson Distributions  Properties and Applicanons Marcel Dekker Inc ,
New York/Basel

ConsuL, P C & SHOUKRI, M M (1985) The generalized Poisson distribution when the sample mean 1s
larger than the sample vanance Commmunications in Stanstcs-Simulation and Computanon 14, 1533-
1547

CorLESs. R M, GONNET, G H, HARE, DEG &JEFFREY, D J (1994) The Lambert W funcuion To appear
in Advances im Computational Mathematics

KOCHERLAKOIA, S & KOCHERLAKOTA, K (1992) Bwvariate discrete distributions, Marcel Dekker Inc

LEMAIRE, ) (1985) Automobie insurance Actuarial models, Kluwer Pub)



32 RALUCA VERNIC

ParRTRAT, C (1993) Compound model for two dependent kinds of claim, XXIVe ASTIN Colloguum, Cam-
bridge

Picarp, P (1976) Generalisation de I'étude sur la survenance des smistres en assurance automobile, Bulle-
nn de I'Instiut des Actuaires Frangars, Vol. 297, 204-267

RaLuca VERNIC

Department of Mathematics and Informatics
Unuversity “Ovidus” of Constanta

Bd Mamaia 124

8700 Constanta

Romania



