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ABSTRACT

Alexander McNetl's (1996) study of the Danish data on large fire insurance losses
provides an excellent example of the use of extreme value theory in an important
application context. We point out how several alternate staustical techniques and plot-
ting devices can buttress McNeil’s conclusions and provide flexible tools for other
studies
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| INTRODUCTION

McNeil’s (1996) interesting study of large fire insurance losses provides an excellent
case history 1llustrating a variety of extreme value techniques The goal of my remarks
1s to show additional techmiques and plotting strategies which can be employed for
similar data.

Our remarks concentrate on the following:
* Diagnostics for assessing the appropriateness of heavy tailed models
* Diagnostics for testing for independence.

It 1s customary in many nsurance studies involving heavy tailled phenomena to as-
sume ndependence without actually statistically checking this important fact so some
attention 1s given to this issue

2 APPROPRIATENESS OF HEAVY TAILED MODELS

Given a particular data set, there are various methods of checking that a heavy tailed
model 1s appropriate. The methods given below (these are also reviewed 1n Resnick
1995, 1996, Feigin and Resnick, 1996) supplement the techniques discussed by
McNeil such as mean excess plots and QQ-plots against exponenual quantiles. Unlike
the mean excess plot, the following methods do not depend on existence of a finite
mean for the marginal distribution of the stationary time series This is important since
1t 1s becoming clear that 1t 1s not difficult to find examples of heavy tailed data which
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require infinite mean models for adequate fits (See for example the teletraffic exam-
ples in Resnick (1995, 1996)).

For the discussion that follows, we suppose {X,, n 2 1} 1s a stationary sequence and
that

PIX, >x]=x%L(x), x oo @n

where L 1s slowly varying and a >0 Consider the following techniques
(1) The Hill plot. Let
Xiy>Xg>. >X,

be the order statistics of the sample X, . , X, We pick & <n and define the Hill esti-
mator (Hill, 1975) to be
S
H ,=—) log—
' k =1 X(I\'H)

Note & 1s the number of upper order stauisuics used 1n the esumation The Hhill plot 1s
the plot of

((kH ) < k<)

and 1f the {X,} process 1s nd or a linear moving average or satisfies certain mixing

conditions then since H, , —L a7 as n = oo, k/n — O the Hill plot should have a

stable regime sitting at height roughly oo See Mason (1982), Hsing (1991), Resnick
and Starica (1995, 1996a), Rootzen et al (1990), Rootzen (1996). In the ud case, under
a second order regular vanation condition, H, , 1s asymptotically normal with asymp-
totic variance I/a® (See de Haan and Resnick, 1996)

(2) The smooHul Plor The Hill Plot often exhibits extreme volatility which makes
finding a stable regime 1n the plot more guesswork than science and to counteract this,
Resnick and Starica (1996a) developed a smoothing technique yielding the smooHill
plot Pick an integer « (usually 2 or 3) and define

1 th

smooH, , =

— 2. H,.
(u—=1)k Py

In the ud case when a second order regular variation condition holds, the asymptotic
variance of smooH, , is less than that of the Hill estimator, namely.

The sensitivity of the Hill estimate to the choice of k corresponds in McNeil's work to
the sensiivity of the fit of the generalized Pareto to the data to the choice of threshold
Perhaps some comparable smoothing technique would help in GPD fitting.

(3) Alt ploning, Changing the scale. As an alternative to the Hill plot, 1t 15 someti-
mes useful to display the infrormation provided by the Hill or smooHill estimation as

1. Hf‘"‘gl”),o o<
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and simularly for the smooHill plot where we write rﬂ for the smallest integer greater
or equal to y 2 0 We call such plots the alternarve Hill plot abbreviated AltHill and
the alternative smoothed Huill plot abbreviated AltsmooHill The alternative display 1s
sometimes revcaling since the mitial order statistics get shown more clearly and cover
a bigger portion of the displayed space. However, when the data 1s Pareto or nearly
Pareto, this alternate plotuing device is less useful since in the Pareto case, the Hill
estimator apphed to the full data set 1s the maximum hkelthood estimator and hence
the correct answer 1s usually found at the nght end of the Hill plot

(4) Dynamic and stanc QQ-plots As we did for the Hill plots, pick £ upper order

statistics
Xy > Xy > - > Xy,

and neglect the rest Piot

((~log(1 =) log X)), 1 S y < k). (2.2)

If the data are approximately Pareto or even 1f the marginal tail 1s only regularly va-
rying, this should be approximately a straight line with slope [/c. The slope of the
least squares line through the points 1s an estimator called the QQ-estimator (Kratz and
Resnick. 1996) Computing the slope we ﬁnd that the QQ-estimator 1s given by

LS logt ! plog() - 1—2‘_1(— log(- - DA, ,
/?l U\+|) k = k +]
X L (2 3)

I 4 NI & (- 1
¢ Drer (108C (k 2o (logl )

There are two different plots one can make based on the QQ-esumator There 1s the

dynamic QQ-plot obtained from plotung {k,1/ 0~ oV 1 Sk <nf which 1s similar to the
Hill plot. Another plot, the static QQ-plot, s obtained by choosing and fixing &, plot-
ting the points in (3 2) and putting the lcast squares line through the points while com-
puting the slope as the esumate of o'

The QQ-estimator 1s consistent for the nd mode! 1f k = o0 and &/n — 0 and under a
second order regular variation condition and further restriction on k(n), 1t 1s asymptoti-
cally normal with asymptotic varance 2/¢¢ This 1s larger than the asymptolic variance
of the Hill esumator but the volatility of the QQ-plot always seems to be less than that
of the Hill esumator.

(5) De Haan's moment estimator McNell discusses the exticme value distributions
(see also Resnick, 1987; de Haan, 1970, Leadbetter et al, 1983, Castillo, 1988, Em-
brechts et al 1997) which can be parameterized as a one parameter fanuly

Ge()=expl—(1+&07 "), EeRT+&>0

When & = 0, we mterpret G, as the Gumbe! distribution

Go(x)=expl-¢™'}. xeR.
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A distribution whose sample maxima when properly centered and scaled converges
in distribution to G 1s said to be in the doman of atiraction of G, which in McNeil’s
notation 1s written Fe MDA(Gy 1If E>0and Fe MDA(G;) then 1 — Fe RV_; De
Haan’s moment esumator f,m (Dekker’s, Einmahl, de Haan, 1989, de Haan. 1991,
Dekkers and de Haan, 1991; Resnick and Starica, 1996b) 1s designed to estimate & =
1/a Note that &_”, like the Hill estimator, 1s based on the k-largest order statistics
Since most common densities such as the exponenual, normal. gamma and Weibull

densities and many others are in the MDA(G,), the domain of attraction of the Gumbel
distribution, this provides another method of deciding when a distribution 1s heavy
tailed or not If f,\.” 1s negative or very close to zero, there 1s considerable doubt that
heavy tailed analysis should be applied and the moment estimator 1s usually much
more reliable in these circumstances than the Hill esiimator In particular, when £ =0,
the Hill estimator 1s not usually informative and the moment estimator does a much
better job of identifying exponentially bounded tails Smoothed versions of the mo-
ment estimator can also be devised (Resnick and Starica, 1996b) which overcome

volatihty in the plot of {k.&, ,.1< k <n)

DODanish Data QCQ Danish
a s
8 -
2 k .
= g - {
8 F o
R —
- <>
o S00 1000 1500 2000 o 2 - L-
quantiles of exponenitial
FiGLrE2 | Tsplot and QQ plot of Damish data
QQ Danish.all Parfit Danish
— - _.f.--
8 8
g~ 37
‘8. -y
. —
=N
o =2 - L-3 o o E-3 - -

qQuantilea of exponential quantiles of exponential
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Hill and Dynamic QQ
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FIGURE2 3 Hill and QQ-plot of Damsh data

Figure 2 1 gives a time series plot of the 2156 Danish data consisting of losses over
one milhon Danish Krone (DKK) and the right hand plot 1s the QQ-plot (2 2) of this
data yielding a remarkebly straight plot Figure 2.2 gives the QQ-plot of all of the
2492 losses recorded 1n the data set labeled damish.all and shows why McNeil was
statistically wise to drop losses below one million DKK (In the left hand plot the data
1s scaled to have a range of (0.3134041, 263 2503660) and the dots below height 0
represent the 325 values which are less than 1 n the scaled data.) The nght hand plot
in Figure 2 2 puts a hine through the QQ-plot of the losses above one million and
yields an esumate of o= 1 386 Using only the largest 1500 order statistics and then
estimaung ¢ from the slope of the LS line produces an estimate of =14

We next attempted to estimate o by means of the Hill plot Figure 2 3 shows a Hill
plot side by side with the dynamic QQ-plot. Because the plot in the nght side of
Figure 2 | 1s so straight. we tend to trust the Hill plot near the nght end of the plot
This 1s because the straight plot (n Figure 2 1 indicates the underlying distribution 1s
close 1o Pareto and for the Pareto distribution the maximum hikelithood esumator of the
shape parameter 1s the Hill esuimator calculated using all the data This analysis 1s
confirmed by the excellent fit achieved by McNeil using a GPD with £ = 0684 or
a = 1.46 corresponding to losses exceeding a threshold of 20 million DKK. Such a
GPD 1s a shifted Pareto

On the other hand, examining the altHill and altsmooHill plots 1n Figure 2 4 makes
it seem unhkely that o could be as large as 2 01 which 15 what 1s given in McNeil’s
Figure 7. This corresponds to a £ = 0 497. Our methods indicate a likely value of o =
145 R

In Figure 2 5 we present four views of the moment estmator &, , ol &= 1/a. The

upper right graph and the lower two graphs are 1n alt scale where k, | < k< n 13
replaced by [nflos o< Interestingly, we see here and in the four views of the Hill
plot, that when the data are very close to Pareto, the alt scale 1s not advantageous
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When the data 1s close to Pareto, the reliable part of the graph 1s toward the end and
this 1s the part of the graph under emphasized by the alt scale The situation 1s very
different for something like stable data (Resnick, 1995) where the traditional Hill plot
1s incapable of identifying the correct value of & but the alt plot does a superior job.

Based on an amalgam of the QQ, Hill and moment plots, we settle on an estmate of
a=14o0ré= 71
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FIGURE2 4 Hill and smooHill plots for Danish data

3 TESTING FOR INDEPENDENCE

We outline several tests for independence which can help reassure the analyst that an
ud model 1s adequate and that 1t 1s not necessary to try to fit a stationary time series
with dependencies to the data. Some of our tests are motivated by our experience
trying to fit autoregressive processes (o heavy tailed data

Here 1s a survey of several methods which can be used to test independence Some
of these are based on asymptotic methods using heavy tatled analysis and the rest are
standard time series tests of homogeneity

(1) Method based on sample acf. An exploratory, informal method for testing for
independence can be based on the sample autocorrelation function p(h) where for h
any positive integer

zn—h(xl _ X/—)(Xl+h _ Y)

1=t

ZLI(XI - X)*

plh) =
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In many studies of heavy tailed data, the centering by the sample mean 1s omitted
since 1f mathemaucal expectation does not exist, there 1s no advantage or sense to
centering by the sample mean However, since our chosen value of a =14 imphes
EIX|| < e, we have decided to include the centering From Davis and Resnick (1985a),
if {X,} are nd with regularly varying tail probabilities, then

| 50 = 1, ifh=0,
P =0 e h o,

Thus, if upon graphing p(h), h =0, .,n—-h we get only small values for & # 0 there
1s no evidence against independence The limit distribution of p(h), h =1, . , g 1s
known (Davis and Resnick, 1985b, 1986 Corollary 1) but 1t 1s somewhat difficult to
work with and the percentiles must be calculated by simulation It 1s 1mportant to
1ealize that the 95% confidence bands drawn by a typical staustics package like Splus
are drawn usmg Bartlett’s formula (Brockwell and Dawvis, 1991) on the assumption
that the data 1s Gaussian or at least has fimte fourth moment This assumption 1s to-
tally inappropnate for heavy tailed data and the confidence band must be drawn taking
into account the heavy tailled limit distribution for p(h), h=1,. ,!
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FIGuRE2 5 Moment esimator plots for Damsh data

We discuss implementation of the acf based procedure when 1 < o < 2 since n the
case of the Danish loss data we have scttled on an esiimate of o = 1.4 Suppose {Y,,
, Y,} are nd non-negative random variables satisfying

PLY, >x]~x"%L(x), x> l<a<?
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where L 1s slowly varying From Corollary |, page 553 of Davis and Resnick (1986),

if we set P, (1) to be the lag & sample acf for ¥,, . .Y, then we have
Iim Pb;'b2py (MY < x] = PlU, 1V, £ x]

where U, 1s a one sided stable random variable with index o= 1 4 and V,, 15 a positive
stable random variable with index o/2 = 0.7 and b, is the solution to

PlY,>x|=1/n

and I;” 1s the solution to
PIYY, >x]=1/n

Thus an approximate symmetric 95% confidence window for the sample correlations
of the ¥’s would be placed at +/b, / b? where / satisfies

PllU, 1ol <] = 95.

We estimate the 95%-quanule of 1U,/U,| by stmulation and if we assume the distribu-
tion of ¥,’s 1s Pareto from some point on, we find

n ~la
Ib—’; _ /( n )
b, logn

The assumption of a Pareto distribution scems mild in view of Figure 2 2 and the good
fit found by McNeil of the GPD with positive shape parameter

Figure 3 | presents this technique applied to the Danish loss data. No spike is
protruding from the band and hence this acf based technique does not provide any
evidence aganst the assumption of independence.

95% Confidence Band
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FIGURE3 | 95% confidence band for the acf of the Danish loss data
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(2) Tests based on asymptotic theory Estimators of autoregressive coefficients for
heavy tailled ume series can be used to fashion tests for independence agamst autore-
gressive alternatives If the autoregression 1s described as

I
XI =2¢1X1—1 +Z,, {=0,1,...
1=]

where {Z,} are nd heavy tailed residuals, then we test 1f
(bl = .= ¢p =0,

that 1s independence, by rejecting when the maximal estimated coefficient
p ~
v I3 ()]
1=

18 too large This procedure has been mmplementied by Feigin, Resnick and Starica
(1996) based on linear programmung (LP) estimators under the assumption that the nd
heavy tailed residuals {Z,} are non-negative. See also Feigin and Resnick (1993)

It would not be possible to fix the size of the LP test if the limit distribution of the
LP estimator did not considerably simplify Fortunately 1t does under the null hypothe-
sis of independence and we then have

by($.(n), ()= L=V, V")
where fora,20,:=1, , p we have that
P -
PV, sx,.a=1 ,pl=exp{- oy )emmw[/\-"""'] F(dy,) . F(dy,)} (32)

=1

This means that if we want a 005 level rejection region, we should reject when
VP, 18,(n)1 > K( 05) where K( 05) 1s defined by

P
P[\/lqﬁ,(n)l > K( 05)} = 05
=1
and to find an approximate value of K(.05) we write
P p - a
P{v |.(m)| > K¢ 05)} ~ P[\/ L, > b,K( 05)j| < pP[Ly > b,K(05)] = pe KO (33
=1 1=1

where ¢ = E(Z;%) This yields

[—Eg<-05’ﬁ>)”“ (_'Lwﬂm)”“
K(05) = "b = <

n

b

n

We need to estimate o, ¢ and b, One way to do this 1s to use the QQ-plot (Feigin.
Resnick and Starica, 1996; Kratz and Resnick. 1996) which yields both b, (as the
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intercept of the fitted line) and & (as the reciprocal of the slope of the fitted line) and

then we can get
n
e=n"'Y X7
1=1

The asymptotic test ts implemented and shown in Figure 3 2 None of the estimated
coefficient values extend above the bar representing K( 05) so this method provides no
evidence against the hypothesis of independence

Asymptotic Test

004

phi

Lot

2 4 8 8 10
number ot coetficients

FIGURE3 2 Asymptouc test for independence for the Danish loss data

(3) Standard tests of randomness. There are several standard time series tests of
randomness (Brockwell and Davis, 1991, Section 9 4) which are non-parametric and
can be employed in the present context. We give some examples below We use the
notation

ln ~ AN(,U",O',;:)

as shorthand to mean that
(xn _#11)/011 = N(Ov I)

(1) Turning poiwnt test If 7 1s the number of turning points among X,, . , X, then
under the null hypothesis that the random variables are 11d we have
T ~ANQR2n=2)/3.(16n-29)/90)
and this can be used as the basis of a test
(2) Dnfference-sign test Let S be the number of 1 =2, , nsuch that X, - X, , 1s po-

sitive Under the null hypothesis that the random variables X, .. . X,, are nd we
have

S~ AN(%(n-l),(rH- 1)/12).
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(3) Rank test Let P be the number of pairs (1, j) such that X, > X, tory>and:= 1,
, n— 1 Under the null hypothesis that the random variables X, , X, are iid
we have

P~ AN(%n(n —1),n(n=1(2n+5)/8).

Wc would reject the nd hypothesis at the 0 05 level if any of these standardized vana-
bles had an absolute value greather than 1 96. All of these tests are implemented 1n the
Brockwell and Davis (1991) package ITSM. Data can easily be imported into thesr
program and tested within the package for randomness.
We cariied out these tests on the Danish loss data using I'TSM and achieved the

following results

Turning points 1409 AN (1436 00, 19 57%)

Difference-sign 1079 AN (1077.50, 13.41%)

Rank test 1055894 AN (1161545, 50071 90%)

The rank test rejects the hypothesis of independence at the 5% level The turning
points and difference-sign tests fail to reject.

(4) Stabiluy testing on subsets of the data An informal but useful techmique 1s to

take a statistic, such as the sample acf, and compute 1t relative to different subsets of
the sample If the data 1s nd, the values of the statistic should be sinular across diffe-
rent subsets.
For the sample acf, if the graphs of p, (1), h =1, ..., g look different for different
subsets, then one should be skeptical of the correctness ot the 11d assumption Often 1t
1s enough to sphit the sample nto halves or thirds to generate some skepticism One
could make acf subset plots for the Danish data but since the acf values are not signifi-
cantly different from O, there seems little point to pursuing this diagnostic 1n this case

(5) Permutaiton test for independence. Another approach to testing for indepen-
dence 1n ume series analysis 1s based on permutation tests. Here we can use any desi-
red stauistic that ts designed to measure some form of dependence between successive
data This statistic might be a maximum autocorrelation or partial autocorrelation, or 1t
may be a maximal autoregressive cocfficient estimated by the linear programming
paradigm

The permutation test 1s based on comparing the observed value of the statistic with
the permutation distribution of that statistic — that 15 with the distribution of values of
the statisuc under all the possible permutations of the time senes data 1f therc 1s no
dependence structure in the data, then the observed value should be a typical value for
this refcrence permutation distribution. If there 1s some dependence of the type to
which the statistic 1s sensitive, then the observed value should be extreme with respect
to this reference distribution

This approach allows one to perform tests without relying on the asymptotic theory
for the particular staustic. As we have seen earher, the asymptotic distrtbution for
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P .
vld’,(n)’
1=
involves vattous parameters that have to be estimated Moreover, the fact that we are
not sure of the rate of convergence to the asymptotic distribution, also suggests the
precautionary tactic of using a permutation test
In the implementation we use below, we approximate the p-value of the actually
observed statistic This 1s achieved by generating 99 permutations of the time series,
computing the statistic for each one, and counting the number (C) of these that are
greater than or equal to the actually observed staustic The p-value 1s approximated by
(1+C)%. The statnistics considered are the maximum absolute autocorrelation (macf),
the maximum absolute partial autocorrelation (mpacf), and the maximum absolute
linear programming coefficient estimate (mphi) In each case, one must specify the
value of p, the order over which the maximum 1s taken
For the Danish loss data, we took the order to be 10 and ran the tests yielding the
tollowing p-values

maximum autocorrelation 0.52
maximum partial autocorrelation  0.51
maximum LP coefficient 022

and thus at a reasonable level, none of these tests would reject independence
4 CONCLUDING REMARKS

There is very little evidence arguing against the hypothesis of independence and it
seems McNeil’s presumption that the data were independent was a safe assumption to
make for this data set Independence 1s not that common among teletraffic of finance
data 1n my experience and thus should be treasured 1n the present insurance context
Fitting dependent data with a heavy tailled stationary time series model can be a frus-
trating business (see Resnick, 1996b, Feigin and Resnick. 1996) so when one conclu-
des the data can be modelled as 11d. a loud sigh of relief 1s heard

The sensitivity of the estimation and fitung methods to the choice of threshold or
the choice of the number of order statistics used 1n estimation 1s a persistent and
troubling theme 1n McNeil's and my remarks. This seems inherent 1n the heavy tail
and extreme value methods It 1s not clear at this point how much the techmques can
be improved to reduce sensitivity to choice of & or threshold Smoothing techniques
and alternate plotting help but are not a universal panacea.

It 1s encouraging to see the accumulating mass of theoretical and software tools
which can be used to analyze such data sets
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