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ABSTRACT 

Alexander  McNel l ' s  (1996) study of  the Damsh data on large fire insurance losses 
provides an excellent example of  the use of  extreme value theory m an m~portam 
apphcat |on context. We point out how several alternate statistical techmques and plot- 
ting devices can buttress McNel l ' s  conclusions and provide flexible tools for olher 
studies 
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t I N T R O D U C T I O N  

McNefl ' s  (1996) interesting study of  large fire insurance losses provides an excellent 
case history illustrating a variety of extreme value techniques The goal of  my return'ks 
Is to show additional techmques and plotting strategies which can be employed for 
sm~flar data. 

Our remarks concentrate on the following: 
• Dmgnostics for assessing the appropriateness of heavy tailed models 
• Diagnostics for testing for independence. 

It is customary in many insurance studies |nvolvmg heavy tailed phenomena to as- 
sume independence without actually stausucally checking this important fact so some 
attention is given to this issue 

2 APPROPRIATENESS OF HEAVY TAILED MODELS 

Given a particular data set, there are various methods of checking that a heavy tailed 
model is appropriate. The methods given below (these are also reviewed in Resnlck 
1995, 1996, Feigln and Restock, 1996) supplement  the techniques discussed by 
McNeil such as mean excess plot,, and QQ-plots against exponenual quantdes. Unhke 
the mean excess plot, the following methods do not depend on existence of  a finite 
mean for the marginal distribution of the stationary time series This is m~portant since 
it ~s becoming clear that it is not difficult to find examples of heavy tailed data which 
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require infinite mean models for adequate fits (See for example the teletraffic exam- 
pies m Restock (1995, 1996)). 

For the discussion that follows, we suppose {X,,, n > I } is a stationary sequence and 

that 

PIXi  > xl = x "~ H x ) .  ~. ~ o o  (2 1 ) 

where L ts slowly varying and ct > 0 Consider the following techniques 
(1) The  Htl l  plot.  Let 

Xi~ ) > Xc2 ~ > . > X~,,~ 

be the order statistics of the sample X~,. , X,, We pick k < n and def, ne the Hill estn- 
mator (Hdl, 1975) to be 

1 ~ log X~'-----L-) 
Hk'n = k ~=1 X(/~+l) 

Note k ~s the number of upper order statistics used m the estmaatlon The Hill plot ~s 

the plot of 

( (L Hi.I,,), I < Ic < n) 

and ff the {X,,} process ns lid or a linear moving average or satnsfies certain mtxmg 

condtt,ons then since HA.,, P > a -I as n --~ oo k/n --, 0 the Hall plot should have a 

stable regime sitting at height roughly ~x See Mason (1982), Hsmg (1991), Restock 

and Stanca (1995, 1996a), Rootzen et al (1990), Rootzen (1996). In the Hd case, under 
a second order regular variation condition, H~, is asymptotically normal wnth asymp- 
totnc variance I / ~  (See de Haan and Restock, 1996) 

(2) The  .~mooHtll  P lo t  The Hill Plot often exh~bnts extreme volatnhty whuch makes 
finding a stable regm~e m the plot more guesswork than scnence and to counteract this, 

Restock andSt.~nc~ (1996a) developed a smoothing techmque y,eldmg the smooHlll 
plot Puck an integer u (usually 2 or 3) and define 

smooH~,,, (. 1)----~" y~ Hi.,, 
J=/~+l 

In the hid case when a second order regular variation cond~tnon holds, lhe asymptotic 

varmnce of~mooH~, ,  is less than that of the Hill estimator, namely. 

I 2 log u 
c~ 2 u (I - u ) 

The senstttvtty of the Htll esttmate to the chotce of k corresponds m McNefl's work to 
the sensitivity of the fit of the generalized Pareto to the data to the choice of threshold 

Perhaps some comparable smoothing technique would help m GPD fitting. 

(3) Al t  p lot t ing,  C h a n g i n g  the ~cale. As an alternatnve to the Hill plot, it ts sometu- 
mes useful to dxsplay the mfrormatton provided by the Hall or smooHlll estnmatlon as 
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and smallarly for the smooHtll plot where we write Fy-[ for the smallest integer greater 
or equal to y > 0 We call such plots the alternanue Hill plotabbrcviated AItHlll and 

the alternative smoothed Hill plot abbrevmted AltsmooHfll The alternative display is 
sometimes revealing since the mmal order statistics get shown more clearly and cover 
a bigger portion of the displayed space. However, when the data is Pareto or nearly 
Pareto, this alternate plotting device is less useful since in the Pareto case, the Hill 
estimator applied to the full data set is the maxmmm likelihood estimator and hence 
the correct answer is usually found at the right end of the Hill plot 

(4) Dynamic and static QQ-plots As we did [-'or the Hill plots, pick k upper order 
statistics 

X(i  ) > X(2  ) > . > X(k ) 

and neglect the rest Plot 

{ ( - l o g 0  - k---~), log X¢j)), I < j' < k}. (2.2) 

If the data are approximately Pareto or even if the marginal tall is only regularly va- 
rying, this should be approxmlately a straight hne with slope I/~.  The slope of  the 
least squares line through the points Is an esumator called the QQ-estunator (Kratz and 
Restock. 1996) Computing the slope we find that the QQ-estlmator is given by 

1 , 

i Y-,i--, ,, 
or---k,,, (2 3) 

k Z~=I ( -  log( k+-I ))- - ( k I 

There are two different plots one can make based on the QQ-est lmator  There is the 
A 

dynamic QQ-plot obtained from plomng {k, l /a- l t , , , , l  < k _< n} which is similar to the 

Hill plot. Another plot, the statfc QQ-plot,  is obtained by choosing and fixing k, plot- 
ting the points m (3 2) and putting the least squares line through the points while com- 
puting the slope as the estimate of ~-~ 

The QQ-estlmator is consistent for the nd model if k --~ ~ and k/n ---) 0 and tinder a 
second order regular vm lanon condmon and further restriction o n  k(n), it is asymptoti- 
cally normal with asymptotic variance 2 / ~  Th~s is larger than the asymptotic variance 
of the Hill estimator but the volatility of the QQ-plot always seems to be less than that 
of the Hill estmlator. 

(5) De Haan's moment es,mator McNeil discusses the extreme value distributions 
(see also Restock, 1987; de Haan, 1970, Leadbette~ et al, 1983, Casnllo,  1988, Em- 
brechts et al 1997) which can be parameterlzed as a one parameter family 

G¢ ( a ) =  exp{-( l  + ~x)-~--' }, ~ ~ 91,1 +~.r > 0 

When ~ = 0, we interpret Go as the Gumbel distribution 

Go(x) = e x p { - e - '  }. x ~ 9l. 
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A distribution whose sample maxima when properly centered and scaled converges 
in distribution to G~ is said to be in thedomam of attraction of G¢ which m McNetl ' s  
notation is written F6 MDA(G~) If ~ > 0 and F~ MDA(G 0 then I - F ~  RV_i/~ De 

Haan 's  moment est imator ~,,, (Dekker 's ,  Elnmahl, de Haan, 1989, de Haan. 1991, 

Dekkers and de Haan, 1991; Resntck and Startca, 1996b) ts designed to estimate ~ = 

1/C~ Note that ~x.,,, like the Hill estimator, is based on the k-largest order statistics 

Since most common densities such as the exponentml, normal, gamma and Welbull  
densities and many others are m the MDA(Go), the domain of attraction of  the Gumbel 
distribution, this provides another method of  dectdmg when a distribution ts heavy 

tailed or not If ~.,,  is negative or very close to zero, there is considerable doubt that 

heavy taded analysis ~hould be apphed and the moment esttmator is usually much 

more rehable in these circumstances than the Hill estmlator In particular, when ~ = 0, 
the Hill estimator is not usually informatwe and the moment estm~ator does a much 
better job of identffymg exponential ly bounded tails Smoothed versions of  the mo- 
ment est imator can also be devised (Resntck and Starlca, 1996b) which overcome 

volatility in the plot of {k,~x ,,, I _< k _< n} 

o 

D a n i s h  D ~ . t  e t  Q Q  D a n i s h  

~ 0 0  ~ 0 0 0  ~ 5 0 0  2 0 0 0  

FIGURL2 I T~plot and QQ plot of Damsh data 

Q Q  D a n i s h . a l l  

° . ~ . ~ .  . . . . . . .  % . . . . .  ~ , . ,  

P ~ r f l t  D a n i s h  

°i 
FIGURE 2 2 QQ plot of Ddm~h oil dala and parameter cst]mate 
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Hi l l  a n d  D y n a m i c  Q Q  

0 5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  0 5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  
n u m b e r  of  o r d e r  5 t e t l s t l c s  n u m b e r  o f  o r d e r  8 te t l s t Jcs  

FIGURE2 3 Hdl and QQ-ploI of  Damsh data 

Figure 2 1 gives a time series plot of the 2156 Danish data consisting of  losses over 
one million Danish Krone (DKK) and the right hand plot is the QQ-plot (2 2) of this 
data yielding a remarkebly strmght plot Figure 2.2 gives the QQ-plot  of  all of the 
2492 losses recorded In the data set labeled danish.all and shows why McNeil  was 
statistically wise to drop losses below one mdhon DKK (In the left hand plot the data 
is scaled to have a range of (0.3134041, 263 2503660) and the dots below hexght 0 

represent the 325 values which are less than 1 m the scaled data.) The right hand plot 
in Figure 2 2 puts a line through the QQ-plot  of  the losses above one milhon and 
yields an estimate of  a = I 386 Using only the largest 1500 order statistics and then 
estimating t~ from the slope of the LS line produces an estimate of a = 1 4 

We next attempted to estimate a by means of the Hill plot Figure 2 3 shows a Hill 
plot side by side with the dynamic QQ-plot .  Because the plot m the right side of  
Figure 2 I is so straight, we tend to trust the Hill plot near the right end of the plot 
This is because the ~tralght plot m Figure 2 I mdlcate~ the underlying distribution ~s 
close to Pareto and for the Pareto dlstnbuuon the maxmmm likelihood esumator of the 
shape parameter  ~s the Hill esumator  calculated using all thc data This analysis Is 
confirmed by the excellent  fit achieved by McNeil using a GPD with ~ = 0 684 or 

= 1.46 corresponding to losses exceeding a threshold of 20 million DKK. Such a 
GPD is a shlftcd Pareto 

On the other hand, examining the altHlll and al tsmooHdl plots in Figure 2 4 makes 
it seem unlikely that ~ could be as large as 2 01 which is what Is given m M c N e d ' s  
Figure 7. This corresponds to a ~ = 0 497. Our methods indicate a likely value of c~ = 
1 45 

In Figure 2 5 we present four views of the moment esumator  ~k.,, ol ~ = f la .  The 

upper right graph and the lower two graphs are m a l t  scale where k, I _< k_< n is 
replaced by Vn°]. 0 <_ 0 _< I Interestingly, we see here and m the four views of the Hall 
plot, that when the data are very close to Pareto, the alt scale is not advantageous 
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When the data ~s close to Pareto, the rehable part of the graph ~s toward the end and 
this is the part of the graph under emphasized by the air scale The s~tuatmn ~s very 
different for something hke stable data (Restock, 1995) where the tradmonal Hill plot 

is incapable of identifying the correct value of ~ but the alt plot does a superior job. 
Based on an amalgam of the QQ, Hill and moment plots, we settle on an esumate of 

a = l . 4 o r ~ =  71 

o. 

~ .  04 

ID 

E 

Hill pl0t AltHill 
o. 

Q. OD 

500 1000 1500 2000 0.2 0 4 0 6 0.8 1 0 
number of order statistics theta 

AltsmooHill  AItHill and AItsmooHil l  
q 

Ea.o~ 

0 2  0.4 0 6  0 8  0.2 0 4  0 6  0 8  1.0 
theta theta 

FIGURE2 4 Hill and smooHfll plot s., tor Dam~h data 

3 TESTING FOR INDEPENDENCE 

We outline several tests for mdependence which can help reassure the analyst that an 
ud model is adequate and that ~t ,s not necessary to try to fit a stationary ame series 

with dependencies to the data. Some of our tests are motivated by our experience 
trying to fit autoregressive processes to heavy taded data 

Here .s a survey of several methods which can be used to test independence Some 
of these are based on asymptotic inethods using heavy tailed ,malysls and the rest are 
standard rune series tests of homogeneity 

(1) Method based on sample acf: An exploratory, informal method for testing for 
independence can be based on the sample autocorrelatlon funcnon ,6(h) where for h 

any posmve integer 
/ t -h  

,b(h) = 2. , ,=,  (X,  - X ) ( X , . h  -- X )  

Z 2 ,  - 
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In many studies of heavy tailed data, the centering by the sample mean is omitted 
since If mathematical expectation does not exist, there is no advantage or sense to 

centering by the sample mean However, since our chosen value of ~ =1 4 imphes 
EIXJ < oo, we have decided to include the centering From Davis and Resnlck (1985a), 
if {X,} are nd with regularly varying tall probabilities, then 

hnl /~(h)={ I' I f h=0 ,  
, , ~  0, lfh :*: 0. 

Thus, ~f upon graphing /3(h), h = 0, ., n - h we get only small values for h # 0 there 
is no evidence against independence The Matt distribution of /~(h), h = I, . , q is 
known (Daws and Resntck, 1985b, 1986 Corollary 1) but it is somewhat difficult to 
work with and the percentiles must be calculated by simulation It is important to 
leahze that the 95% confidence bands drawn by a typical statistics package like Splus 
are drawn using Bartlett 's formula (Biockwell and Davis, 1991) on the assumption 

that the data is Gausslan or at least has flmte fourth moment This assumption is to- 
tally inappropriate for heavy tailed data and the confidence band must be drawn taking 
,nto account the heavy tailed limit distribution for f3(h), h = I , .  , l 

O 
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A l t s m o o  AI t  a n d  a l t s m o o  p lo t  
O 

o g  
E , ¢  

0 3  0 4  0.5 0 6  0 7  0 8  o 0 4  0.6 0 8  1 0  
theta theta  

FIGURE2 5 Moment esmnalor plots for Damsh data 

We discuss Jmplementauon of the acf based procedure when 1 < o~ < 2 since m the 
case of the Danish loss data we have settled on an estnnate of o~ = 1.4 Suppose { Yi, 

, Y.} are lid non-negative random variables satisfying 

P[,~ > x J - x - a L ( x ) ,  x ~ o o ,  l < ~ < 2  
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where L is slowly varying From Corollary 1, page 553 of Davis and Restock (1986), 
if we set /3y (]1) to be the lag h sample acf for Y~, . . Yo, then we have 

hm P[Ig,~-' b,~ tSr(h ) _< x l  = PIUh / V o -< x] 
/ t . - . ) ~  

where Uh is a one sided stable random variable with index o~ = 1 4 and V o is a posture 

stable random variable with index cd2 = 0.7 and b,, is the solution to 

PI Yz > x I = I / n 

and /~,, is the soluhon to 

P[YJY2 > x ] =  IIn 

Thus an approximate symmetric 95% confidence window for the sample correlauons 

of  the Y's would be placed at _+l/~,,/b,~ where /sausfies 

P[luh/v01-< l] = .95. 

We estimate the 95%-quantlle of  IUj/Uol by sm]ulatlon and if we assume the dlstnbu- 
uon of Y,'s ~s Pareto from some point on, we find 

i b,, l( n I -'`a 
b,; 

The assumpuon o f a  Pareto dlstnbuuon seems mild m view of Figure 2 2 and the good 
fit found by McNed of the GPD with posluve shape parameter 

F=gure 3 I presents this techmque apphed to the Damsh loss data. No sDke is 
protruding trom the band and hence this acf based techmque does not provide any 
evidence against the assumpuon of independence. 

9 5 %  C o n f i d e n c e  B a n d  

Q 

9 

I I , ] 
i ' i ' ) 

5 1 0  1 5  2 0  
L a g  

FIGURE 3 1 95% confidence band for the acf of the Dam~h loss data 
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(2) Test~ based on asymptotic theory Estm~ators of autoregresswe coefficients for 
heavy tailed time series can be used to fashion tests for independence against autore- 
gresswe alternatives If the autoregress~on ~s described as 

P 

X, ='~-'~,X,_, +Z, ,  t = 0 , 1  .... 

where {Z,} are lid heavy tailed residuals, then we test if 

4'1 = - = Or,  = O,  

that ~s independence, by rejecting when the maximal estimated coeff|cient 

P 

is too large This procedure has been mlplemented by Felgm. Restock and Statics1 
(1996) based on hnear programming (LP) estimators under the assumption that the lid 
heavy taded residuals {Z,} are non-negauve. See also Felgln and Restock (1993) 

It would not be possible to fix the size of  the LP test if the hmlt distribution of  the 
LP estimator d~d not considerably sunphfy Fortunately it does under the null hypothe- 
sis of  independence and we then have 

b,,(6,(,~), . , 6 , 0 ~ ) )  ~ L --- (V i - '  . . . .  V~7 ~ ) 

where for .~, > 0, ~ = 1, , p we have that 

P[V, < x , . l =  1. ,p]=expl- j~f  F(dy I) F(dye)} (3 2) 
- ~. ~'.)~10 ~1" = " ) ' I X I  " 

This means that i f  we want a 0 05 level rejection region, we should reject when 

v p I~ , (n) l  > K (05 )  where K(05)  is defined by t=] 

and to find an approxmlate value of K(.05) we write 

P ~,(n)l> g (  05) = P  L,>b,,K(05) <_pP[L,>b,,K(O5)]=pe -c(°~KC°5:, (33)  

where c = E(Z{ ~) Thl~ yields 

K( O5)= I-I°g('-O5 / p) ) _ ( l °g (~Op) / I / a  

b. b,, 

We need to esumate c~, c and b. One way to do this is to use the QQ-plot (Fe~gm. 
Restock andStfincfi, 1996; Kratz and Restock. 1996) which yields both /~. (as the 
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intercept of the fitted line) and ~ (as the reciprocal of the slope of the fitted line) and 
then we can get 

= ,,-'  x 7  
t= l  

The asymptotic test is implemented and shown In Figure 3 2 None of the estimated 
coefficient values extend above the bar representing K(05) so this method provides no 
evidence against the hypothesis of independence 

A s y m p t o t i c  T e s t  

Q 

Q 

g I I I I 
2 4 6 8 

n u m b e r  o t  c o e f f i c i e n t s  

FIGURE3 2 Asymptotic test for independence for the Damsh loss data 

1 0  

(3) Standard tests of  randomness. There are several standard time series tests of 

randomness (Brockwell and Davis, 1991, Section 9 4) which are non-parametric and 
can be employed In the present context. We give some examples below We use the 
notation 

Z,, ~ AN(p,,, a,~ ) 

as shorthand to mean that 
(Z,, - p , , ) l o ,  ~ N(O, I) 

( I )  Turn ing point test [ f  T is the number of  turning points alnong X~,.  , X,, then 
under the null hypothesis that the random variables are l id we have 

T ~ AN(2(n - 2) 13, (I 6n - 29) 190) 

and thls can be used as the basis of  a test 

(2) Difference-sign test Let S be the number of t = 2, , n such that X, - X, ~ is po- 
sitive Under the null hypothesis that the random varlablesX~ . . . .  X,, are lid we 
have 

S -  A N ( ~ ( n -  l),(n + 1)/12). 
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(3) Rank test Let P be the number of pairs (~,j) such that Xj > X, lo r j  > t and t = I, 

, n - I Under the null hypothesis that the random variables X~, , X,, are lid 
we have 

- A N ( ~ n ( n  - I ) , n (n  - l ) ( 2 n  P + 5)/8).  

We would reJect the lid hypothesis at the 0 05 level If any of these standardized vana- 
bles had an absolute value greather than 1 96. All of these tests are implemented m the 

Brockwell and Davis (1991) package ITSM. Data can easily be imported into their 

program and tested within the package for randomness. 
We canied out these tests on the Danish loss data using ITSM and achieved the 

following results 
Turning points 1409 AN (1436 00, 19 572) 
Diffelence-slgn 1079 AN (1077.50, 13.412) 

Rank test 1055894 AN (1161545, 50071 902) 

The rank test reJects the hypothesis of independence at the 5% level The turning 
points and difference-sign tests fail to reJect. 

(4) Stability testmg on subsets of the data An informal but useful technique us to 

take a stam~tnc, such as the sample acf, and compute it relative to different subsets of 
the sample If the data is uud, the values of the statistic should be smaular across diffe- 
rent subsets. 
For the sample acf, nf the graphs of /gu (h), h = I . . . . .  q look different for different 
subsets, then one should be skeptical of the correctness ot the rid assumption Often ut 
is enough to split the sample unto halves or thirds to generate some skepticism One 

could make acf subset plots for the Damsh data but since the acf values are not signifi- 

cantly different from 0, there seems httle point to pursuing this diagnostic in this case 

(5) Permutatton te~t for independence. Another approach to testing for indepen- 
dence in tmle series analysis us based on permutation tests. Here we can use any desi- 
red statistic that is designed to measure some form of dependence between successive 

data Thus statistic umght be a maxm~um autocorrelatuon or partial autocorrelatlon, or it 
may be a maximal autoregressuve coefficient estimated by the linear programming 

paradigm 
The permutation test us based on companng the observed value of the statistic with 

the permutation distribution of that statistic - -  that us with the distribution of values of 
the statistic under all the possible permutations of the time series data If there us no 

dependence structure m the data, then the observed value should be a typical value for 
this reference permutation distribution. If there us some dependence of the type to 
which the statistic us sensitive, then the observed value should be extreme with respect 
to thus reference distribution 

This approach allows one to perform tests without relying on the asymptotic theory 
for the partlculai statistic. As we have seen earlier, the asymptotic distribution for 
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P 
v ,~,(n) 
I=l  

revolves vattous parameters that have to be esumated Moreover, the fact that we are 
not sure of the rate of convergence to the asymptotic distribution, also suggests the 

precautionary tactic of using a pernautat~on test 
In the implementation we use below, we approxmaate the p - va lue  of the actually 

observed statistic This is achieved by generating 99 permutations of the time series, 
computing the statistic for each one, and counting the number (C) of these that are 
greater than or equal to the actually observed statistic The p-value is approximated by 
(1+C)%. The statistics considered are the maximum absolute autocorrelauon (macf), 

the maximum absolute partial autocorrelat~on (mpacf), and the maximum absolute 
linear programming coefficient estimate (mphl) In each case, one must specify the 
value of p, the order over which the maxunum is taken 

For the Damsh loss data, we took the order to be 10 and ran the tests yielding the 
tollowmg p-values 

maximum autocorrelatlon 0.52 

maximum partial autocorrelatlon 0.51 
maximum LP coefficient 0 22 

and thus at a reasonable level, none of these tests would reject independence 

4 CONCLUDING REMARKS 

There is very little evidence argtung against the hypothesis of independence and it 
seems McNell 's  presumption that the data were independent was a safe assumption to 
make for this data set Independence is not that common among teletraffic of finance 
data in my experience and thus should be treasured in the present insurance context 
Fittmg dependent data with a heavy tailed stationary time series model can be a frus- 
trating business (see Restock, 1996b, Felgln and Resnlck, 1996) so when one conclu- 

des the data can be modelled as ud, a loud sigh of rehef is heard 
The sensitivity of the estmmtion and fitting methods to the choice of threshold or 

the choice of the number of order statistics used in estimation ~s a persistent and 
troubhng theme In McNefl 's and my remarks. This seems inherent m the heavy tall 
and extreme value methods It ~s not clear at this point how much the techmques can 
be improved to reduce sensmv~ty to choice of k or threshold Smoothing techniques 

and alternate plotting help but are not a universal panacea. 
It is encouraging to see the accumulating mass of theoretical and software tools 

which can be used to analyze such data sets 
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