
SHORT CONTRIBUTIONS 

DEDUCTIBLES AND THE INVERSE GAUSSIAN DISTRIBUTION 

BY PETER TER BERG 

lnterpolis, Tilburg. Netherlands 

KEYWORDS 

Inverse Gaussian; Censoring; Truncation; Deductibles; Limits; Moments. 

1. INTRODUCTION 

The calculation of mean claim sizes, in the presence of  a deductible, is usually 
achieved through numerical integration. In case of  a Lognormal or Gamma 
distribution, the quantities of interest can easily be expressed as functions of  the 
cumulative distribution function, with modified parameters. This also applies to the 
F-distribution, where the incomplete Beta function enters the scene; see for instance 
the appendix in HOGG and KLUGMAN (1984). 

The purpose of  this paper is to derive an explicit formula for the first two 
moments of  the Inverse Gaussian distribution, in the presence of  censoring. For 
reasons of  completeness we also consider truncation of  the Inverse Gaussian 
distribution by an upper limit. 

The tractability of  the derivation depends in a crucial way on two properties of  
the Inverse Gaussian distribution. Firstly, the cumulative distribution function of  the 
Inverse Gaussian can be written as a simple function using the Normal probability 
integral. Secondly, the moment generating function of  a censorized Inverse 
Gaussian distribution boils down to an expression containing the cumulative Inverse 
Gaussian distribution. This manifests itself most clearly in case of  life insurance 
where the quantity of  interest is the expectation of  a present value. In case of  
non-life insurance, where the dimension of  the Inverse Gaussian random variable is 
money instead of time, a further step is required: differentiation of the moment 
generating function. 

So, a natural order of this paper is to address ourselves first to the derivation for 
the life case and afterwards tackling the more laborious derivation for the non-life 
case. 

2. MATHEMATICAL PRELIMINARIES 

We denote the Inverse Gaussian density with mean ,u and variance u2/~ by 

(2.1) h (x [,u, ~b) = [#~b/2 ~x3] 'h exp { - ~ (x - u)2/2px} 
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and its cumulative distribution function as" 

(2.2) H(xlkt, c]))=N[(x-/~)'qT~ktx]+eZC~Nl-(x+l.t)'~t~xl 

where N denotes the Normal probability integral" 

N ( z ) = ( 2 ~ ) - ' ~ I  Z_~ exp(-½t2)dt 

which can be evaluated by means of expansions such as given in ABRAMOWITZ and . 
STEGUN (1970). Whenever the parameters do not enter explicitely in h or H we will 
assume these are ,u and ~b. 

Observe that e ~'h (x ],u, ~)  is proportional with an Inverse Gaussian density : 

(2.3) exp (tx) h (x l u, ¢)  = exp (¢ - f )  h (x I m , f )  

where the auxiliary parameters m and f depend on t: 

(2.4) m = ~dp/f 
f = (q~2 _ 2 t~q~) '~ 

Alternatively, we may say that the Esscher transform of (2.1) is h(x]m,f). 
Integration of (2.3) over part of  the positive axis is tractable using (2.2). Integrating 
(2.3) over the whole positive axis gives the moment  generating function of (2.1) 
a s :  

E [e 'x] = exp (~b - f )  

from which we easily see that the n-fold convolution of (2.1) is again an Inverse 
Gaussian density : 

h"* (x [ ,u, q~) = h (x [ n u, itS) 

a property which it has in common with the Gamma density and which formed the 
reason for HADWlGER (1942) tO put (2.1) forward as a modelling tool in insurance 
and demography. 

In case of  deductibles or limits, this property is lost, however. 

3. PRESENT VALUES IN LIFE INSURANCE 

Consider a, not necessarily human, life duration X, with density (2.1). A lump sum 
B will be paid at moment X. With a discount factor exp ( - 6) the present value V of 
B at moment  D < X is" 

(3.1) V= B exp [ 6 ( D -  X)] 

In case there is an upper limit L for the moment of  payment, (3.1) is valid as long 
as D<X--<L and for X >  L, (3.1) is replaced by:  

(3.2) V = B exp [6 (D - L)] 
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The expected value of  V r, where ~ = I or 2 is of  special economic interest, is then 
easy to derive. We have:  

(3.3) V ~ = B ~ exp [ 6 r ( D -  X)] D < X--< L 

= B ~ exp [63 (D - L)] L < X 

Using (2.1-2-3-4) with t = - 6 v  results in: 

(3.4) E [V  ~ ] = B ~ [ I - H ( D ) ]  -~ { Q [ H ( L B m ,  f ) - H ( D  ] m , f ) ] + R [ I - H ( L ) ] }  

where the auxiliary variables Q and R are given by :  

Q = exp [dp - f -  tD] 

R = exp I t ( L -  D)] 

Whenever  L ~ o~, (3.4) simplifies to : 

[ 1  - H(D]m,f)] 
(3.5) E[V ~1 = B~ Q 

[ 1 -  H ( D  I,u, q0)] 

4. EXPECTED VALUES IN NON-LIFE INSURANCE 

Now X represents the size of  a monetary loss, which is modified to a claim size Y 
by a deductible D and a limit L: 

Y = 0  X<--D 

= X - D  D < X < - - L  

= L - D  L < X  

So, the probabili ty of  a nilclaim is given by H(D). 
The moment generating function of  Y can be written as:  

M(t )  = H(O) + R[ I - H(L)] + Q {H(L l m, f ) -  H(D l m , f ) }  

In order to derive E[Y] and E[Y2], we have to differentiate M(t )  with respect to 
t, substituting t = 0 afterwards. 

The following auxiliary results are helpful in this task: 

dm/dt = m2/f 

df/dt = - m 

dQ/dt = Q (m - D) 

dH (z I m , f ) / d t  = 2 m  {N[(z - m) { f l m z  ] - H(z ]m , f ) }  

dU[(m - z) { f / m z  ]/dt = z Z f - l h ( z l m , f )  

where z is a dummy variable, which does not depend on t. 
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After some rewriting, we arrive then at: 

M' (t) = R ( L -  D) [l - H ( L ) ]  + 

+ Q(m + D) {H(D ] m , f ) - H ( L  ] m , f )}  + 

+ 2 Qm { N [(m - D) ~f/rnD ] - N [(m - L) ~ f /mL ] } 

M"(t)  = R ( L -  D) 2 [1 - H(L)] + 

+ Q [ m 2 f - t _ ( m  + D) 2] {H(D ] m , f ) - H ( L  ]m, f )}  + 

+ 2 a m f  - ' ( m  - 2fD)  {N[(m - D) ~f /mD] - N[(m - L) ~f/mL]} + 

+ 2 a m f - t [ D 2 h ( D l m ,  f ) - L 2 h ( L  [ m , f ) ]  

Now the main goal of  this paper follows easily by substituting t = 0:  

(4.1) E[Y]=M' (O)  

= ( L -  D) [1 - H ( L ) ]  + 

+ (/,t + D) [H(D) - H(L)] + 

+ 21~ I N [ ~ - O ) ' q T ~ t ~ O l - N [ ( k t - L ) ' q ~ i t L l }  

(4.2) E [ Y Z ] = M " ( 0 )  

= ( L -  D) z [1 - H ( L ) ]  + 

+ [,u 2 ~ - ' - C u + D) 2] [H (D) - H (L)] + 

+ 2/~¢ - ' ~  - 2~bO) { N [ ~  - O) ~a~~O ] - NI(/z - L) ' ~ / ~ L  l } + 

+ 2/~b - I [D 2 h (D) - L 2 h (L)] 

ff we let L---) ~,  (4.1) simplifies to: 

(4.3) E [ Y ] = 2 ~ N [ ( i t - D )  ~ / ~ ] - ~ + O ) [ I - H ( D ) ]  

= (It - D) N[Cu - D) qdpl#D] + (It + D) eZ~N[  - (u + D) ~[dpl/.,tD] 

which agrees with formula (15) in CHHIKARA and FOLKS (1977)~. 

The second moment (4.2) simplifies to: 

(4.4) E[Y 2 ] = [ ( u + D )  2 - ~ z ~ b - ~ ] [ l - H ( o ) ] +  

+ 2~dp -~ { O 2 h ( O ) + ( l z - 2 q S O ) N [ ~ - D ) ~ ' ~ i t O ] }  

Whenever interest focusses on moments, conditionally on X > D, the formu- 
lae (4.1-2-3-4) must be divided by the probability [1 - H ( D ) ] .  

I came across  this reference after complet ion of  this paper. It does not contain an explicit derivation of  
this result, however.  
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It is wellknown that deductibles have a loss eliminating effect. At the same time 
however, the coefficient of variation of the aggregate claim size distribution 
increases. A clear exposition of these matters can be found in chapter 5 of STERK 
(1979). 

The availability of (4.3) and (4.4) enables a routine illustration of these findings 
with the Inverse Gaussian distribution. 
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