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A B S T R A C T  

In this paper some results are given on the addivity of  chain-ladder projections. 
Given two claims development triangles, when do their chain-ladder projections add 
up to the projections of the combined triangle, that is the tr iangle being the 
element-wise sum of the two given triangles? 

Necessary and sufficient conditions for equality are given. These are of  a fairly 
simply form and are directly connected to the ordinary chain-ladder calculations. In 
addition, sufficient conditions of  the same form are given for inequality between the 
combined projection vector and the sum of the two original projections vectors. 

Chain-ladder projections. 

K E Y W O R D S  

I.  INTRODUCTION 

Consider two claims development triangles C and D. C consists of  positive 
elements C(i,j), where i denotes the accident years and runs from 0 to n. The index 
j denotes the development year. For each i it runs from 0 to n - i. Thus n denotes 
the calendar year at the end of  which the triangle C is observed, the oldest accident 
year observed being year number zero. For D the same things hold true with C(i,j) 
exchanged for D(i,j). 

The triangles C and D are thought of  as corresponding to two different 
subportfolios. The elements C(i,j) and D(i,j) are thought of as accumula ted  
claims data for accident year i at the end of  development year j, be it claims 
numbers or claims payments or payments plus known reserves. Below they are 
referred to as amounts. 

If now we fill out the triangles into full squares using the ordinary chain-ladder 
method, C(i, n) and D(i, n) will for each accident year i be the projected final 
accumulated amounts for that year. C(0, n) and D(0, n) are already there, being the 
final amounts for the base year. Adding C(i, n) and D(i, n) for all i, we will get the 
projected final accumulated amounts for the combined portfolio. 
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This, however, we can also get in another way. We can add the two triangles C 
and D to get a third triangle E with elements E( i , j ) ,  being sums of the 
corresponding C ( i , j )  and D( i , j ) .  Then we do the chain-ladder on E to obtain 
projected final accumulated amounts E(i, n) for the combined portfolio. 

The purpose of this paper is to study under what circumstances the two methods 
will give the same result. This is done in Section 3. When these circumstances are 
not present sufficient conditions will be given for one method to be more prudent 
than the other one. This is done in Section 4. 

The paper is an improved version of a paper presented to the 23rd ASTIN 
Colloquium (AJNE, 1991) with simpler proofs and somewhat more far-reaching 
results. 

The practical application is rather the opposite way round to that described above. 
We are given the total portfolio. When should we contemplate dividing it up into 
subportfolios in order to get more prudent estimates of its final amounts? 

In the appendix an illustration is given in the form of four pairs of simple 
development triangles (C, D). 

Among other things, the question of additivity of claims reserving methods is 
treated in an lecture given by Hans Bfihlmann at the 24th ASTIN Colloquium in 
Cambridge (BOHLMANN, 1993). 

2. S O M E  C H A I N - I . A D D E R  F O R M U L A S  

Let us recall some chain-ladder calculations. We do it for the triangle C, the 
corresponding being valid for D and E. 

Chain-ladder is performed using quotients between accumulated amounts as 
link-ratios. That is, putting 

n - j ! n - j  

k=O / ,=0  

we have 

(2) C(i, n) = C(i, n - i ) f ( n  - i+ I ) f ( n -  i+  2 ) . . . f ( n )  

The factors f ( j )  describe the estimated distribution of the claims amounts over 
the development years, assumed to be one and the same for all accident years in the 
underlying model. The distribution of the accumulated amounts is given by 
U (0), U (1) . . . . .  U (n) where 

(3) U ( j )  = l l f ( j +  l ) f ( j + 2 ) . . . f ( n )  for j = 0 . . .  ( n - 1 )  

U(n) = 1 

From (2) and (3) it follows that 

(4) C (i, II - i) = C (i, n) U (n - i) 

Denote by C(i )  the sum of the first (i + 1) projected amounts. Also, denote by 
C ( . , j )  the jth column sum (in the original triangle) and by C '  ( . , j)  the same sum 
with the term C ( n - j , j )  omitted. That is 

n - j  n - j -  I 

(5) C ( . , j ) =  ~ C ( k , j )  C ' ( . , j ) =  ~ C ( k , j )  
k=O k = 0  
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i 

(6) C ( i ) =  ~ C(k,n)  
k=o 

By induction it is proved that 

(7) C (i, n) = C (i - 1) C (i, n - i ) /C '  (., n - i) 

Formula (7) yields a rapid recursive calculation of the projections C(i ,  n) for 
i =  1. . .  n. On the author's part it goes back to an observation made by Kjell 
Andersson (ANDERSSON, 1992). 

From (4) and (7) we find 

(8) C ' ( . ,  , l -  i) = C ( i -  I) U(n - i) 

(9) C(., n -  i) = C ( i )  U(n  - i) 

Formulas (4) and (9) are contained in a theorem 
(MACK, 1991). 

by Thomas Mack 

3. NECESSARY AND SUFFICIENT CONDITIONS FOR EQUALITY 

We now bring all three triangles C, D and E into play. For D and E we use a 
notation corresponding to (5) and (6) above. The estimated cumulative distribution 
of  claims amounts over development years, corresponding to U for the triangle C, is 
denoted by V for the triangle D. 

Theorem 1 : The necessary and sufficient conditions for the chain-ladder projec- 
tions to be additive, 

E ( i , n ) = C ( i , n ) + D ( i , n )  for all i, 

is that for each positive i at least one of  the following two equalities (a) and (b) 
holds true 

(a) U ( n - i ) = V ( n - i )  

(b) C(i,  n)/(C(O, n) + ... + C ( i -  I, n)) = D(i ,  n)/(D(O, n) + ...  + D ( i -  1, n)) 

Proof: 

We want to compare E(i ,  n) with C(i,  n )+  D(i ,  n). 
For i = 0, equality trivially holds as all three entities are then elements of  the base 

triangles. 
Now consider the case when i is positive. Applying (7) to E(i ,  n) and observing 

that the E-triangle is the sum of the C- and D-triangles, we get 

E (i, n) = E ( i -  1) (C (i, n -  i) + O(i ,  n -  i ) ) / (C '  (., n -  i) + D '  (., n - i))  
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We then apply (4) to the numerator and (8) to the denominator to get 

E (i, n) = 
E (i - 1 ) (C (i, n) U (n - i) + O (i, n) V (n - i)) /(C (i - I ) U (n - i) + D (i - 1) V (n - i)) 

Dividing through by C(i, n)+ D(i ,  n), and in the right hand member  also both 
multiplying and dividing by C ( i -  1)+ D ( i -  I), we finally get 

(10) E ( i , n ) / ( C ( i , n ) + D ( i , n ) ) =  Q ( i ) × E ( i -  l ) / ( C ( i -  1 ) + O ( i -  I)) 

where Q(i )  is the quotient between 

(11) (C(i, n) U(n - i) + D(i ,  n) V(n - i))/(C(i ,  n) + D(i,  n)) 

and 

(12) ( C ( i -  1) U(n - i) + O ( i -  1) V(n - i ) ) / ( C ( i -  1) + O ( i -  1)) 

The last two expressions are the averages of U ( n -  i) and V ( n -  i) using as 
weights, in the first case C(i, n) and D(i,  n), and in the second case C ( i -  1) and 
D ( i -  I). Also remember that 

(13) C ( i -  1) = C(0, 17)+ ... + C ( i -  I, n) 

(14) D ( i -  I ) = D ( 0 ,  n ) +  ... + D ( i - 1 , 1 7 )  

(15) E ( i -  I) = E ( 0 ,  n )+  ... + E ( i -  I, n) 

Now the argument begins. First assume that the projections are additive so 
that 

(16) E ( i , n ) = C ( i , n ) + D ( i , n )  for all i 

Then, from (10), Q ( i ) =  l for each positive i. According to (11) and (12) this 
means that either 

(17) U ( n -  i) = V ( n -  i) 

or else, according to the interpretation of (11) and (12) as averages, 

(18) C(i, n)/D(i,  ii) = C ( i -  l ) / D ( i -  1) 

Conversely, if for each positive i at least one of (17) and (18) is true, then 
Q(i )  = 1 and (16) follows by induction from (10) and the fact that (16) is true for 
i = 0 .  

Condition (18) may be written 

(19) C(i, n)/(C(O, n) + ... + C ( i -  I, n)) = D(i,  n)/(D(O,,1) + ... + D ( i -  I, n)) 

This finishes the proof. 

C(i, n)and D(i,  n) are our estimated total claims amounts for accident year i for 
the two subportfolios. We will use either member of (19) as a measure of the ra te  
of  increase (in claims volume) of  the corresponding portfolio at accident year i. 

If  (17) holds for all i, or if (19) holds for all i, then the sufficient condition of 
Theorem I is fulfilled. We thus have the following two corollaries. 
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Corol lary  1:  If the two subportfolios are equally long-tailed, then the chain- 
ladder projections are additive. 

Corol lary  2 :  If the two subportfolios have the same rate of  increase for each 
accident year, then the chain-ladder projections are additive. 

4. SUFFICIENT CONDITIONS FOR INEQUALITY 

If, instead of  (17), we have 

(20) U(n  - i)  --< V(n  - i) for all positive i 

then the subportfolio C will have an estimated accumulated distribution of  claims 
amounts over development years which increases to one at a slower rate than that of  
D. We will then say that subportfolio C is at  least as long-tailed as subport- 
folio D. 

If, instead of  (19), we have 

(21) C(i ,  n ) /C( i  - 1) ~- D(i ,  n ) / D ( i -  1) for all positive i 

we will say that D increases at least as fast as C. 
If this is the case, we will also have 

C(i ,  n) /D(i ,  n) --< C( i  - l ) /D( i  - t) 

Theorem 2 : If one of  two subportfolios is at least as long-tailed as, and increases 
(in claims volume) at least as fast as, the other one, then the chain-ladder 
projections of  the combined portfolio are less than or equal to the sums of  the 
corresponding projections of  the two subportfolios. If one of  the subportfolios is at 
least as long-tailed as the other one, while the latter increases at least as fast as the 
first one, then the chain-ladder projections of the combined portfolio are greater 
than or equal to the sums of the corresponding projections of  the two subportfol- 
ios. 

Proof:  

If both (20) and (21) are fulfilled, then for the averages (11) and (12), which define 
the quotient Q( i ) ,  we find 

1) U ( n -  i) is less than or equal to V ( n -  i) 
2) The weight given to U ( n - i )  in the numerator is less than or equal to the 

weight given to it in the denominator. 

Thus Q ( i )  is greater than or equal to one for all positive i. From (10) it then 
follows by induction that 

E ( i , n ) / ( C ( i , n ) + D ( i , n ) )  > - I for all i 
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Arguing in the same way, we see that if C is at the same time more (or equally) 
long-tailed and faster (or equally) increasing as compared to D, that is (21) with 
reversed inequality sign and (20) hold true, then 

E(i,n)/(C(i,n)+D(i,n)) --< 1 for all i 

This finishes the proof. 
It may be noted that we have introduced only partial orderings between 

development triangles, in that the inequality signs in (20) and (21) in general may 
go in opposite directions for different i. 

5. CONCLUSIONS 

We have given a partial answer to the question of Section 1 on which method to 
use. The answer is almost self-evident, at least a posteriori. Assume, for instance, 
that we add together a long-tailed business which decreases in volume and a 
short-tailed, increasing one. The long-tailed character of  the early accident years 
will give high lag-factors for the later development years. These lag-fators will then 
grossly overestimate the final amounts for the dominating short-tailed business of 
the later accident years. That is, the combined method will give the highest 
projections. 

An example in the opposite direction may be a motor comprehensive account 
where no division is made between third party claims and hull damage claims. If 
the third party claims take an increasing share of  the total business, a separation o f  
the two types of  claims into different development triangles would certainly have 
been desirable from a prudent point of  view. 

Even if a certain degree of prudence is to be recommended, the goal is not to 
have as large reserves as possible, but to have as correct reserves as possible. So, in 
conclusion, the lesson to be learnt from this exercise in the following one. 

If one part of  a portfolio can be assumed to differ significantly from the rest of  
the portfolio with respect to both Iong-tailedness and rate of  change of the claims 
volume, that part should be treated separately in making chain-ladder projections. 
Returning to prudence, this is especially important if it is at the same time more 
long-tailed and faster increasing than the rest of  the portfolio. 

REFERENCES 

AJNE, B. (1991) A Note on the Additivity of  Chain-ladder Projections. Paper presented to the 23rd ASTIN 
Colloquium (Speaker's corner). 

ANDERSSON, K. (1992) A Direttissima in Chain-ladder attd tile Danger of  Direttissimas. Personal 
communication. 

Bt.JHLMANN, H. (1993) Claims Reserves : Theory and Practice. Mimeographed paper. 
MACK, T. (1991) A Simple Parametric Model for Rating Automobile Insurance or Estimating IBNR 

Claims Reserves. ASTIN Bulletin 21, 93-109. 



ADDITIVITY OF CHAIN-LADDER PROJECTIONS 317 

APPENDIX 

Below four pairs of simple development triangles (C, D) are exhibited. For the first 
three pairs, chain-ladder projectins do add. This means that the projected amounts 
corresponding to the combined triangle E are the sums of the corresponding 
projections for C and D, in accordance with the results of Section 3. 

For the fourth pair, treating C and D separately will give more prudent 
projections for the combined portfolio. This means that the projected amounts of E 
are less than or equal to the sums of the corresponding projections for C and D 
(with inequality sign in at least one place). This is in accordance with one of the 
two sufficient conditions of Section 4. 

In all the cases there are three accident years 0, I and 2. These are observed 
through development years 0 to 2, 0 to 1 and 0 only, respectively. Thus, in the 
notation of the main paper, n = 2. Projected amounts are shown within parentheses. 
The amounts in the third column are the chain-ladder projections. 

Case 1 

C D E 

100 200 300 
100 300 (450) 
160 (400) (600) 

100 250 375 200 450 675 
100 250 (375) 200 550 (825) 
100 (250) (375) 260 (650) (975) 

Proj (E) = Proj (C) + Proj (D) 

In this case C and D are equally long-tailed, the link-ratios (lag-factors) of 
formula (l) being f ( 1 ) = 2 . 5  and f ( 2 ) =  1.5. So projections add because of 
Corollary 1 of Section 3. 

Case 2 

C D E 

100 200 300 l0 100 150 110 300 450 
100 300 (450) 40 150 (225) 140 450 (675) 
260 (650) (975) 65 (325) (487.5) 325 (975) (1462.5) 

Proj (E) = Proj (C) + Proj (D) 

In this case C and D have the same rate of increase (but not the same link ratios), 
as shown by the fact that the third columns are proportional to each other. So 
projections add because of Corollary 2 of Section 3. 
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Case 3 

C D 

100 200 300 200 
200 400 (600) 200 
300 (600) (900) 400 

Pr~ (E )=  Pr~ (C)+  Pr~ (O) 

E 

300 450 300 500 750 
300 (450) 400 700 (1050) 
(600) (900) 700 (1200) (1800) 

In this case none of the above-mentioned circumstances are present but additivity 
follows from Theorem I in Section 3. For i = I, the equality (17) is fulfilled, as the 
link ratio f ( 2 ) =  1.5 for both C and D, making U ( I ) =  V(1). For i = 2 ,  the 
equality (19) is fulfilled, as the quotient between the third element in column three 
and the sum of the first two ones is I for both C and D. 

C is more long-tailed than D, as (20) is fulfilled with strict inequality for i = 2. It 
is also faster increasing than D as (21) is fulfilled with reversed inequality signs and 
strict inequality for i=  I. This illustrates why strict inequalities cannot be 
introduced in Theorem 2 in Section 4, without adding the rather pointless 
requirement that the necessary and sufficient condition of Theorem I must be 
fulfilled. 

Case 4 

C D 

100 250 375 10 I00 
100 250 (375) 40 150 
100 (250) (375) 65 (325) 

Proj(E) less than Pr~ (C)+  Pr~ (D) 

E 

150 I10 350 525 
(225) 140 400 (600) 
(487.5) 165 (495) (742.5) 

This case illustrates a normal use of Theorem 2 in Section 4. D is more 
long-tailed and faster increasing than C, and there is no equality sign in (21). 
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