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A B S T R A C T  

The claims generating process for a non-life insurance portfolio is modelled as a 
marked Poisson process, where the mark associated with an incurred claim 
describes the development of that claim until final settlement. An unsettled claim is 
at any point in time assigned to a state in some state-space, and the transitions 
between different states are assumed to be governed by a Markovian law. All claims 
payments are assumed to occur at the time of transition between states. We develop 
separate expressions for the IBNR and RBNS reserves, and the corresponding 
prediction errors. 
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I .  INTRODUCTION 

HACHEMEISTER (1980) suggested to represent the information about an unsettled 
claim by modelling the development as the realization of a (discrete-time) Markov 
chain. The predicted future claims cost for a particular claim then depends on the 
current state of the claim, and the state space represents the possible types of 
information which the company may have (or want to consider) during the 
development process.. In this paper we adopt the ideas of HACHEMEISTER (1980) and 
describe the development of a claim from occurrence until final settlement as the 
realization of a time-inhomogeneous, continuous-time Markov chain. We extend the 
description by also modelling the claim occurrences - -  by a time-inhomogeneous 
Poisson process. This makes it possible to establish separate reserves for the pure 
IBNR (Incurred But Not Reported) claims and the RBNS (Reported But Not 
Settled) claims. 

The reserving (or prediction) problem is conveniently formulated within the 
framework of marked (Poisson) point processes, which was advocated in the 
context of claims reserving by ARJAS (1989), and further developed by NORBERG 
(1993). In this context it is then assumed that the marks consist of the realization of 
a Markov chain together with the claims payments, which are assumed to occur at 
the times of transition between different states. 

The present paper gives a time-continuous version of HACHEMEISTER'S (1980) 
model. Our way of modelling the claims payments, however, differs from that of 
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HACHEIMEISTER (1980), and hence also our formulas for the IBNR and RBNS 
reserves. In particular, the formulas given for the prediction errors, which are used 
to assess the quality of  the IBNR and RBNS reserves, appear to be new. 

2. THE MODEL 

Consider  a portfolio which has been observed during some time interval [0, r],  
where r represents the present moment. We denote by K ( t )  the number of  claims 
incurred during [0, t], and by 0 <  T I < T 2 < ... the corresponding times of  
occurrence. With the ith claim we associate a mark Zi ,  which describes the 
development  of  that claim until final settlement• The marks are constructed as 

Zi = Z C~l , 

where {Z°)}, > 0 is a family of  random elements. For the claims generating process 
we assume that 

(a) {K( t )} ,~0  is a Poisson process with intensity { ~ ( t ) } , > 0 ,  and {Z"~},_>0 are 
mutually independent and independent of  { K ( t ) } ,  _> o. 

A claim is at any point in time after occurrence assigned to one of at most 
countable many states, 5. Different states in the set ,5 represent different types of  
information about the claim which the company may have. During the development 
process a claim may change state as new information becomes available, and 
(partial) payments may be made at the times of  transition between states. We want 
the mark Z, to carry the information about how the ith claim is classified in the 
course of  time, and also payments being made on that claim. Thus, we let 

Z (t)= { {S ( t ) (u ) }u_>o ,  {Y~t,l , j}j=l, 2 ..... m - c n ,  m , n ~ S } ,  

where S¢ ' ) (u )  ~ 5 denotes the state at time t + u of  a claim incurred at time t, and 
y(t) denotes the payment made upon the j th  transition from m to n. / t i n ,  j 

For a claim incurred at time t, transitions from m to n occur at time epochs 
t + _,.,,,II (') j ,  t + '-'m.,t I (') 2, " - - ,  say. The payments Y¢')_,.,,, j are regarded as marks correspon- 
ding to the point process 0 < t / ( ' )  < i~(,~ < and are constructed as ~ l t l l l ,  ] I " - t l t l l l ,  2 " " " 

y(t) . = y(t) ( l l(O 
m n , j  -- I t l t l  \ - - l ? l ~ , j . ,  

where { Y,~,I (u)},  > 0 is a family of random elements. For the development  process 
we assume that 

(b) {S ~')(u)}, > 0 is a t ime-inhomogeneous Markov chain with transition probabil- 
ities 

p,,,, (u, v) = P (S  ~t) (v) = n] S ~'~ (u ) = m ) ,  

and intensities 

2, ,~(u) = lim p, . .  (ll,  II + h) /h .  
II --~ O +  
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The amounts { -,,,,Y°) (u)}, ,  ~ o are mutually independent for all m ¢ n ~ .5 and 
u - > 0 ,  and are independent of {S°)(u)}~_>0 with cumulative distribution 
function 

Fm,,(yl  u = P (Y%I, (u )  --< y ) .  

Remark  2.1. According to assumption (b), the distribution of  the mark Z (t) 
corresponding to a claim incurred at time t does not depend on time t. This 
assumption could be dropped without any consequences for the following - -  except 
that the intensities 2m,(u)  and the distributions F.,, ,(ylu) would then carry 

2 .... ( u ) = ) . . , . ( t + u )  topscript t. A particular dependence on time t is that where (') 
depends on calendar time t + u rather than waiting time u since occurrence of  the 
claim. This may be a reasonable specification e.g. for transitions corresponding to 
the settlement of  RBNS claims (see Examples 2 and 3 below). It is a different 
matter that the statistical estimation becomes more difficult in such cases. In fact, 
since the claims reserving problem is concerned with payments made at time epochs 
t + u > v, one will at time r only be able to estimate the relevant intensities 
2,,,,(t + u) if some parametric assumption is being made. []  

Example  1. 

0 ~ IBNR 

In the simplest possible model, 

~o~ (u) 1 ~ ,-,-, Sett led 

it is assumed that a claim is settled at the time of  notification. Let W be the waiting 
time until notification, and let G ( u )  = P (W -< u). With only two states, 5 = {0, zl }, 
where 0 ~ IBNR and Z l -  Settled, this model is trivially Markov, and the rate of 
settlement is 20,d (u) = G '  (u) / ( l  - G (u)). [ ]  

E x a m p l e  2. Consider the model, 

0 IBNR ~01 (u) ~'lzx (u) ~ 1 ~ RBNS .~ A ~ Sett led 

where the reporting as well as the settlement of claims is subject to a delay. The 
assumption (b), that the intensities ~,,,, depend on u, the time elapsed since 
occurrence, may seem inadequate as far as 2j~ is concerned. The management 
might want to assume that the rate of  settlement for RBNS claims is determined by 
the amount of  resources which are allocated to claims handling department,  and that 
2 ~zl should therefore depend on calendar time t + u. As pointed out in Remark 2.1 
above, this is also possible Within the current framework. One could take 

~%{ ( u )  = ~-o, (u). 
2%~ (u) = 20zl (t + u ) ,  
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in which case the rate of reporting depends on waiting time u since occurrence and 
the rate of  settlement depends on calendar time t + u. []  

Example  3. Consider the following example, inspired by HACHEMEISTER (1980). 
In some lines of  business, with the possibility .of having very large claims, it is 
customary that the claims handling department at the time of  notification reviews 
the details concerning a claim and makes an estimate whether the ultimate claim 
amount is likely to exceed some prescribed limit, say DDK 200.000. If so, a case 
reserve (RBNS) is calculated for this claim. The company may later receive new 
information which causes it to revise the initial estimate. A claim which at the time 
of  notification was judged to exceed the prescribed limit may then be re-classified 
as a " s m a l l "  claim, and vice versa. Obviously the model could be refined by 
introducing more states, representing different intervals for the individual estimate 
(case reserve) for a claim. 

0 ~ IBNR Z.21 (u) 

~0z ( u ) ~  

| rxa 

Reported ; 
n o  

case reserve 

2 

• (u) 

~'t2 (u) J 
S ~ ( u )  

Reported ; 
case reserve 

A ~ Settled 

[] 

For a claim incurred at time t we shall need the following quantities, 

l ,~')(u) = ! ( S ¢ ' ) ( u )  = m) ,  the indicator of  the event that the claim occupies state 
m a t  time t + u ,  

(t) 
Nm, , (u ) .  the number of  direct transitions from m to n during [t, t + u], 
- - u  y ( t  ) . ( t)  ' f f~ ' )=a ({S~ ' ) (u )}0_~< . ,  {_ . , , , . j ,  j I . . . . .  = N . , , , ( u ) } ) ,  the history generated 

during [t, t + u] by the claim, 

Ym,, (u )  = E -tonY(t) (U), the average claim amount paid at time t + u if a transition 
from m to n occurs at that time, 

2 y(t) o , . , , ( u )  = Var _.,,, (u), the variance on the claim amount paid at time t + u if a 
transition from m to n occurs at that time. 
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We shall also make use of  the fact that 

(2.1) (tl l ( t )  (,) d N , . , , ( u )  = (u - ) 2 . , , , ( u )  _,. du + d M  ,,,,7 (u ) . 

where u denotes the left-hand limit, and all (t) - M , , . , ( u )  for m, n e  5 and m ~ e n  are 
mutually orthogonal zero-mean martingales with respect to the internal history of  
the process {S(')(u)}. _> 0 (see e.g. ANDERSEN et al. (1985)). Because {S C') (u)}. > o 
is stochastically independent of the claim amounts according to assumption (b), it is 

(t) also true that M . , , , ( u )  is a zero-mean martingale with respect to the filtration 
{ HI, ')}, ,  _> o. Furthermore. 

(2.2) Var ~') [dM,,m (u ) l  M'c.t_ > ] =/~')  (u - ) 2, .n (u )  d u .  

Let X( t ) (u ,  v) denote the total payment made during ]t + u, t + v] in respect of  a 
claim incurred at time t. We may write X('J(u, v) as 

(2.3) X <') (u, v) = ~ Y~,I (~) dN}~, ) (~) .  
m ~ n I t  

We make the convention that 0 e S, and that this state represents IBNR claims. 
Also A e 5,  and A is an absorbing state representing fully settled claims. With this 
convention the number of claims incurred during [0, t], which at time r are 
classified as IBNR and RBNS claims, respectively, can be written as 

I (2.4) K/BNR (t) = /0 c~) (r -- S)  d K  ( s ) ,  
0 

I (2.5) KRBNS(t) = [l -- i0(')(~ -- s )  -- i f f ) ( r  - S)] d K ( s ) ,  
0 

and the corresponding outstanding (at time r) claims payments are 

I (2.6) XmNR ( t )  = X ('~ (r - s, oo) d K m u g  ( s ) ,  
0 

I (2.7) XRSNS(t)  = X ( ' ) ( r  - s, oo) dKRBus (S ) .  
0 

In Section 4 we derive expressions for the IBNR and RBNS reserves, defined as 
the expected claims payments Xmue(r) and XRnNS(r)  given the available informa- 
tion at time r, and the corresponding prediction errors. Before we proceed to do so, 
we shall in Section 3 derive the required moments of  the future payments 
X ( ' ) ( r - s , ~ )  in respect of  a single claim. 

3. FUTURE PAYMENTS ON A SINGLE CLAIM 

Consider the claims payments X ( ' ) ( u ,  ~ )  in respect of  a single claim incurred at 
time t, as defined in (2.3). We shall derive expressions for the conditional moments 
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of X°)(u,  oo), given the individual history H,I ') of  that claim. Since all quantities 
considered here are functions of  the mark Z (t) corresponding to a claim incurred at 
time t, and the distribution of Z ('1 does not depend on t according to assumption (b), 
we may in this section omit the superscript (t). 

Consider the conditional distribution of X (u, oo) given H,,. By the independence 
assumed in (b), the information about past claim amounts Y,,,,, (v) for v < u may be 
omitted from the history H,,. From the Markov property it furthermore follows that 
the only information contained in H,, about the future development of  {S(v)} is the 
present state S(u).  Thus, 

(3.1) E [X(u, ~)l  H,,] = E [X(u, ~)l  S(u)]  := V(ul S(u)) ,  

(3.2) War [X(u, oo)l H , , ] = V a r [ X ( u , ~ ) l S ( u ) l : = i - ' ( u l S ( u ) ) .  

With X(u, oo) given by (2.3) we obtain by independence of {S.(u)},,_>0 and 
{ Y,,,, (u)},  > 0. and by use of  the decomposition (2.1), that 

(3.3) V(u l j )  = E [X(u, oo)1S(u) = j ]  

t l  I1 u 

_-xl 
i l l  ~ I t  I t  

__xf 
m ~ Ii ii 

E (Ym,,(~)l S(u)  = j )  E (dN,,,,, (~)I S(u)  = j )  

y,,,,, (~) E [I,,, (~ - ) Z,,,,, (~) + dM,,,, (~)l S (u) = j ]  

y,,,,, (~) &,,, (u, ~) 2,,,, (~) d~, j ~ S ,  

where the latter equality in (3.3) follows by noting that 

E [dM,,,,, (~) ] S (u) = j ] = E { E [dM,,,n (~) [ H,,] ] S (u) = j } = 0 

for ~ >- u, because {M,,,n (u)},, ~_ 0 is a martingale with respect to the history of that 
claim. 

For the purpose of deriving formulas for the variance functions F ( u l j )  in (3.2), 
we shall find it convenient to work will the loss corresponding to ]u, v], defined as 

(3.4) L(u, v) = X (u, v) + V(v] S ( v ) ) -  V(u] S(u)) .  

The loss as defined in (3.4) plays a key role in connection with results of  
Hattendorff-type in life-insurance (e.g. PAPATRIANDAFYLOU ~ WATERS, 1984) due 
to the fact that {L(u, v)},>,, is a zero-mean martingale with respect to Hv} , z , , .  
This is most easily seen by writing 

L (u, v) = E [X (0, oo) ] Hv] - E [X (0, ~)1 H, ] ,  v -> u, 

which for u -< ~ -< v shows that 

E (L(u, v)l He) = E {E [X(0 ,~ ) I  Hv]l H~] - E  IX(0, ~)l  H,,] 

• = E [X(0, ~) l  H~] - E IX(0, oo)1 H , I  = L(u, ~) 
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Because of (3.4), with v = ~,  and because the increments of  a martingale are 
uncorrelated, we may then calculate the conditional variance (3.2) as 

(3.5) Var (X (u, ~)15/,) = Var (L (u, o~)1 '2-/,,) 

= Var (L (d~)l H,,),  
Lt 

where L(d~) is a short-hand for the loss corresponding to an infinitesimal interval 
containing ~'. An expression for Vat (L(d~)l H,,) may be obtained using calcula- 
tions similar to those in NORBERG (1992). According to (3.4) it holds that 

(3.6) L (d~) = ~ Y.,,, (~) dN,.,, (~) + dv(~l S (#)). 
tn  .~ t l  

By writing 

V(~] S(~)) = ~ lm(~) V(~] m), 
m 

we obtain that 

Since /m (~) increases by one if a transition into state m is made at time ~ and 
decreases by one if a transition out of state m is made at that time, we may write 

(3.8) dl m(~)= ~ dN,,,,,(~) - ~ dN,,,.(~). 
I I  :?1 ~ m 11 : i l  .~t~l 

The reserve V(~l m) is a prospective reserve for a Markov model, as used in 
classical life-insurance mathematics, in the present case, the reserve (3.3) contains 
no interest or premium payments, and Thiele 's  differential equation then 
becomes, 

d 
(3.9) - - V ( ~ ' l m ) = -  ,~, ~.,,,,(~)rm,,(~), 

d~ .... ~,, 

where 

(3. I 0) r,,,,, (¢) = y,,,, (~) + V (# I ,,) - V (¢1 m) 

denotes the (expected) sum at risk at time ~'. Combining (3.7) with (3.8) and (3.9) 
yields 

dv(~l S(~)) = ~ V(~i m) (dU,,,.(~)-dU,.,,(~)) - !,,,(~) ~., . (~)  r,,,.(~)d~ 
Ill  ~- I1 

= ~ ( v  (~l , )  - v (~l m)) aN,,,, (~) - i,,, (~) x m,, (~) ~.,., (~) d~. 
i n  ~¢ tl 
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Integrating (3.6) from u to v with dV(~] S(~)) given above, we then arrive at the 
expression 

(3.1 I) L(u. v) = ~ [Y,,,, (~) + V(~I n) - V(~I m)] dN,,,,(~)- 

- ~ /., (~) ~.,,, (~) r..° (~) d~. 
m r~ rJ Lt 

Since the latter integral in (3.1) is an ordinary Lebesgue integral, we may here 
replace /,,,(~) with its left-hand limit I , , ,(~-),  which allows the alternative 
expression 

(3.12) L(u,v)  " ~ Y,..(~)dN,,,,,(~) + ~ r,,,,,(~)dM,,,,,(~), 
t t I X :  11 tA I11 ~ n II 

where M,,.,(~) is the martingale (2.1) and 

Y,,,,, (~) = r,,,,, (~)  - y.,,, (~). 

For the purpose of calculating the conditional variance (3.5), the expression 
(3.12) is useful. 

The terms Y,,~, (~) dN,,,,, (~) are mutually uncorrelated given M~, as a consequence 
of assumption (b), and 

Var [ Y,,~ (~) dN,,,, (~)l M,,] = E [ Y,,,, (~)2 dN,,,, (~)21 H,] 
2 = a.,,,(~)ps(.j,, ,(u, ~) ,L,,,,(~) d~. 

The terms r,,,,,(~)dMm,,(~) are mutally uncorrelated because the martingales 
M,.,, (~) are, and by use of (2.2), 

Var [ r,,,,, (~) dM.,,, (~)l H,,] = r,,,,, (~)2 Ps <.)., (u. ~) ~.,,,,, (~) d~. 

Finally, the terms Y.,.(~)dN.,.(~) and r, . .(~)dM.,.(~) are uncorrelated as a 
consequence of assumption (b). From (3.5). (3.12) and the above expressions we 
then obtain that the variance functions l ' ( u l j )  appearing in (3.2) can be expressed 
a s  

F (3.13) F ( u l j ) =  ~, pj,,,(u,~)2,,,.(~)[cr2..,(~)+r,,,.(~)2]d~. 

In the context of life insurance, variance formulas analogous to (3.13) were 
obtained by RAMLAU-HANSEN (1988) for a Markov model and by NORBERG (1992) 
in a more general counting process, framework. However, in life insurance the size 
of the benefits is specified in the insurance contract, and these are consequently 

2 considered as deterministic. The variance o,,,,,(~) does therefore not appear in the 
formulas of RAMLAU-HANSEN (1988) and NORBERG (1992). 
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R e m a r k  3.1. To obtain tables of  V(u[j) and F(ul j )  from (3.3) and (3.13), 
respectively, one has to calculate first the transition probabilities Pjm(U ,V) by 
solving Kolmogorov ' s  differential equations. A computationally more convenient 
approach is to calculate V(ulj)  directly by solving Thiele 's  differential equation 
(3.9) with boundary conditions V(~lj)=0. In practice one will of course use a 
boundary condition V(u .... I j)=0, where Um~x is chosen such that all claims are 
fully settled within the first Um~x time units after occurrence. Comparing (3.3) and 
(3.13) shows that the formula (3.13) can be obtained from (3.3) by replacing the 

2 average claim amount y,,,,(~) by o,,,,,(~)+ r,,,,,(~) z. Taking the derivative with 
respect to u it then follows that I ' (ulj)  satisfies a Thiele 's  differential equa- 

2 ( t t )+ rm, , (u)  2 replaces Ym,,(u) also in this case. Thus, tion (3.9), except that o .... 

d 
(3.14) - -  F(u l j )=  - ~ 2 . / , , ( u ) I o j 2 , , , ( u ) + r j , , , ( u ) 2 + F ( u l m ) - F ( u l j ) ] ,  

du ,,,:m ~j 

and V(ulj)  as well as F(ul j )  may be calculated without necessarily calculating the 
transition probabilities. [] 

4 .  CLAIMS RESERVES 

By time 'r we have registered all known (reported) claim occurrences during [0, ~], 
and for a reported claim incurred at time t, say, we have also registered the 
individual history .q-:~t_) t of  that claim from the time of occurrence up tO present 
time r. Let -q'r denote the collection of this information. 

The IBNR and RBNS reserves at time v are defined as 

(4. ! ) V/iNn (r) = E (Xmg g (OI .,w0, 

(4.2) VrBNS(r ) = E (XRBNS(OI YO,  

where XtBNR(t) and XRBNS(t) are defined in (2.6) and (2.7). The corresponding 
prediction errors are denoted by 

(4.3) Fmu R (r) = Var (Xmu r 0:)l F~), 

(4.4) FRBNS (T) : War (XRBNS (r)[ Fr)- 

Considering RBNS claims, the occurrences {KRBuS(t) }o<,_< ~ are known from 
Fr, and from (2.7) we then obtain 

(4.5) VRBm(~) = E ( X ( ' ) ( r -  t, ~)1 f~)  dKRBNS(t). 
o 

By assumption (a) the conditional expectation appearing in (4.5) depends only on 
the history .~-/'~'.~, of  that particular claim, and from (3.1) we then have, 

(4.6) VrBNS(O = V(~" - t[ S (') (~ - t)) dKRBNS(t), 
o 
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where V(ul j )  is the reserve (3.3). By independence of  the marks corresponding to 
different claims we also have, 

FRRNS (3) = I 
0 

:If 

(4.7) Var [X(t)(r - t, ~)1 ZT] dKRBNS(t) 

F(3 - t[ S(° (3 -  t ) ) dKnaNs(t ), 

where F(ul j )  is defined in (3.13). Note that the integrals in (4.6), (3,13) simply 
represent summation over those claims which are RBNS at time 3. Thus, the RBNS 
reserve (4.6) is obtained by adding the reserves V(u I j) corresponding to the current 
states and durations for the RBNS claims at time r. 

From (2.4) and (2.5) we note that { KmNR (t) } 0 -<, -~ ~ and { KRBNS (t) } 0 --<, <- T are 
obtained as a marker dependent partition of  the Poisson process {K(t)}. From 
NORBERG (1993, Theorem 2) it then follows that the marked point processes 
corresponding to { KiBNR (t) }0 ~t -< r and {KRBNS (t)}o -~ t-< ~ are independent and 
(again) Poisson. The Poisson rate corresponding to IBNR claims is given by 

[liBUg (l) ---- ~ (t) P (S (t) (3 - t) = 0) = u (t) P00 (r - t) 

and the mark corresponding to an IBNR claim incurred at time t is distributed 
according to the conditional distribution of  Z (') given that S ( ' ) ( 3 -  t ) =  0. Since the 
history 7T is generated by reported claims (only), it then also follows that XmNR(t) 
is independent of  f~ ,  and from (4.1), (2.6) we obtain that 

(4.8) 

and 

VIBNR (3) = E XiBNR (27) 

PteNR (t ) E (XC'~ (r - t, ~ ) 1 S ( ° ( r  - t) = 0) dt :Ji 
:Ji PInNR(t) V ( r -  tl 0) dt, 

(4.9) FIBNR (r) = Var Xm,vR (r) 

= ~l~NR(t) E(X~'~(~--t,~)2[S('~(~--t)=O)dt 
0 

= ,UmNR (t) [F ( r  - t t 0) + V(r - t l 0) 2] dt. 
0 

We have now derived formulas for the IBNR and RBNS reserves (4.6), (4.8), 
and the corresponding prediction errors (4.7), (4.9), expressed in terms of  the 
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reserve- and variance functions (3.3) and (3.13). The total reserve is (of course) the 
sum of  IBNR and RBNS reserves. Because the marked point processes correspon- 
ding to {K/t~,vR(t)} and {KRBNS(t)} are stochastically independent, it also holds that 
the prediction error corresponding to the total reserve is obtained by adding the 
prediction errors corresponding to the IBNR and RBNS components.  

Remark  4.1. If V(ulj) and F ( u l j )  are calculated directly by solving Thiele's 
differential equation as advocated in Remark 3.1, one also needs an expression for 
P00(O, u) in order to calculate (4.8) and (4.9). However, since state 0 is strongly 
transient, we have the expression 

If  } poo(O,u)=exp - ~ 2o,,,(~)d~ • 
0 m~O 

[] 
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