
O N T H E E X A C T C A L C U L A T I O N OF T H E A G G R E G A T E CLAIMS
D I S T R I B U T I O N IN T H E I N D I V I D U A L LIFE M O D E L

BY KARL-HEINZ W A L D M A N N

lnstitut fffr Wirtschaftstheorle und Operatlon~" Research,
Untversititt Karlsruhe

ABSTRACT

An iteration scheme is derwed for calculating the aggregate claims dlsmbut ion
in the individual life model. The (exact) procedure is an efficient reformulation
of De Pnl 's (1986) algorithm, considerably reducing both the number of
arithmetic operations to be carried out and the number of data to be kept at
each step of ~teration. Scaling functions are used to stabihze the algorithm in
case of a portfolio with a large number of polloes Some numerical results are
displayed to demonstrate the efficiency of the method.

K E Y W O R D S

Individual hfe model , aggregate claims distribution, De Phi algorithm.

I. 1NTROI~UCT~ON

Consider a portfolio of m independent hfe insurance polioes Suppose each
pohcy to have an amount at risk i ~ l = {1 a} and a mortahty rate qj with
j E J = {1, . . , b}. Let m,j denote the number of all pohcles with amount at risk
and mor tahty rate qj.

In the individual risk model the total amount of claims, S, is the sum
S = X t + ... +.X'm of the m individual claims X~ X,,, produced by the
pohcies. The distribution of S, f (s) = P(S = s), referred to as the aggregate
claims distribution, can be obtained by successively convoluting the m two-
point distributions of the mdw~dual claims. Since the numerical calculauon of
an m-fold convolution is usually very t~me-consummg, numerous approxima-
tions can be found m the literature. See, e .g , BEARD, PENT1KAINEN and
PESONEN (1984) for more details. The method derived m DE PRIL (1986) ~S a
remarkable progress m computing the distribution of S exactly. Compared with
Panjer 's (1981) recurslon formula, however, which can be thought of as the
counterpart within the collectwe risk model, the computing time remains large
(cf KUON, REICH and REIMERS (1987), DE PRIL (1988), REIMERS (1988))

In the present paper we shall reformulate the ~teratmn scheme underlying the
method of DE PRIL (1986). A (much) more efficient orgamzaUon of the data
will considerably reduce both the number of an thmehc operations to be carried
out and the number of data to be kept at each step of lnteration. Further, we
shall stabilize the algorithm by introducing a statable scahng function. Thxs
scaling function will enable us to apply the algorithm to a portfolio wIth an

ASTIN BULLETIN, Vol 24, No I, 1994

90 K A R L - H E I N Z W A L D M A N N

essentially larger number of policies. Finally, some numerical results will be
dnsplayed to demonstrate the efficiency of the method

2. T H E A G G R E G A T E C L A I M S D I S T R I B U T I O N

F o r j ~ J , we setpj = l - q j , zj = qj/pj, mj = Z,~lm,j, and c = Zt~lZj~sim v.
Further, we use Ix] to denote the greatest integer less than or equal to x.

It has been shown in DE PRIL (1986) that the aggregate claims dnstnbutlon
can be computed recurswely via

b

(1) f(O) = I--I (pj).t,
j = l

and for s = I,

(2)

where

(3)

. . ~ C

I m m (a , s) [s#]

f (s) = Z Z g(t,k)f(s-kt)
S t = l k = l

b

g(i'k)=(--l)k+lt 2 mYzJ k
.1~1

Theorem 1: Equation (2) can be written as

l mm (a, ~) b

(4) f (s) = - 2 Z imvr(s'z,J)
S t=l J--I

where, for all i~I,j~J, l<s
(5) r(s, i,)) = zj{J (s- t) -r(s- i , l,j)}

and r(s, i,j) = 0 otherwise.

Proof: Let
lq,]

r(s, i,j) = Z
k ~ l

Then, utdlzing

(_ l)k +l z~f(s-- kt)

r(s, i,j) = zj { f (s - i) -
ls#]
2 (--1)Ck-I)+tz~ - ' f (s - i - (k - 1) t) }

k = 2

[(~-,)#1
=zj { f (s - t) - k~,2 (--l)k+l zJ k f (s - i -k i) }

= z j{ f (s-O-r(s- t , l,j)}

the assertion immediately follows from (2) []

A G G R E G A T E C L A I M S D I S T R I B U T I O N IN T H E I N D I V I D U A L LIFE M O D E L 91

Equations (4) and (5) can be thought of as an efficient reformulation of
equation (2). The superiority results from

(a) a lower number of arithmetic operations to be carried out at each step of
iteration

(b) arrays of smaller size to keep the data needed for further iterations

To specify (a), we first study equation (2). Fix (s, t, k). Then, having already
computed g(~, k - 1) , .q(i, k) can be obtained as the result of

b

{1(- I) k} ~ (- z j) { m , z : - ' }
j = I

which can be managed by b + I multiphcatlons and b addltlons. Two addJt)onal
multiplicahons and one subtraction are necessary to compute g(t, k) f (s - k i) .
Summing over k there is a need of (b+3) [s/t] multlphcahons and (b+ I) [s/i]
addmons/subtractlons.

On the other hand, by applying equations (4) and (5), for fixed (s, i,j), one
multiplication and two subtractions are necessary to compute r (s, i, j). Further,
one addlhonal multlphcahon is needed to obtain (t mv} r(s, t,j) Summing over
3, there is a need of 2b multiplications and 2b additions/subtractions.

Now let (,,(s) (resp. (a(s)) denote the number of multlphcatlons (resp.
additions/subtractions) to be saved by applying equations (4) and (5) m place
of equation (2) at stage s of iteration. Then it easdy follows that

mm (a, s)

~m(S) = ~ { (b+3)[s / i] -2b}~{ (b+3) log(a+l) } s -2ab

mm (a, s)

~a(s) = ~ { (b + l) [s / i] - 2 b } ~ { (b + l) l o g (a + l) } s - 2 a b
i=1

where use has been made of log (a + 1) < Eo,-i l/t < 1 + log (a) (cf. e.g., Ross
(1983)).

Now let us speofy (b). To apply iteration scheme (2), an array with ac (resp.
c+ I) elements is needed to keep g(t, k) (resp f (s - k i)) for further iterations.
On the other hand, utdizlng equations (4) and (5), an efficient Implementation
of r(s, i,j) (resp . f (s - i)) needs an array with a(a+ I)b/2 (resp. a + 1) elements
only

To illustrate the basic idea underlying the implementatlon of r(s, i,j),
observe (see Figure 1) that the r(s, i,j) within the upper triangle (sohd hne)
have to be kept at stage s, while at stage s+ I the r(s, t,j) of the lower triangle
(dashed hne) have to be retained.

To manage these data in an efficient way, we rearrange the elements of the
upper trmngle m an array with a(a+ I)/2 rows and b columns, and, switching
to the lower triangle, we replace the entries of (S-l , l , j) (not needed any
longer) by the ones of (s, t,J) (to be kept for further use) and let the other
entries unchanged.

92 KARL-HEINZ WALDMANN

•) (s-2,2J) (s-3,3j) ..- (s-a, aO)

. 7
I

'

I

" 4

FIGURE I Actuahzatmn of the data

Formally, we introduce

v, = t (i - l) / 2 + l

w, = O, t e l

and actualize w, at each step s(s > 1) of iteration accordmg to

w = { ~ , + 1 , if w , < t - I

otherwise

Then w, coincides with s modulo t and (v ,+w, , j) is the position in the array,
in which the entry of (s, i , j) c a n be found.

3. STABILIZATION OF THE ALGORITHM WITH RESPECT

TO U NDERFLOW/OVERFLOW

Applying the algorithm to a portfolio with a large number of contracts, the
initial value f (0) ts close to zero. This fact may cause an underflow followed by
an abort or irregular running of the procedure.

To discuss this aspect in more detail, let 09 and £2 denote the smallest and
greatest numbers that can be represented on the computer to carry out the
algorithm. Suppose f (0) < co. Then the algorithm stops with an underflow. On
the other hand, by formally setting f (0) equal to zero, the sequence f (s) of
iterates degenerates to a sequence that has all ItS elements equal to zero, whtch
is not consistent with the property of being a probabdlty mass function.

There are a variety of ways to overcome this dtfficulty. Three methods of
different effictency and/or apphcabxhty are to be stated as methods 1 to 3.
There f * (s) , 0 < s < c, ts used to denote the sequence of transformed
iterates

A G G R E G A T E CLAIMS DISTRIBUTION IN THE I N D I V I D U A L LIFE M O D E L 93

Method 1: Suppose

f * (s) = i f (s) , 0 _< s < c

for some constant y with co < i f (0) < Q, Then the transformed iterates f * (s)
can be obtained by formally starting (4) (resp. (2)) with i f (0) in place of
f (0) . []

The use of a constant scaling function is the simplest way to stabihze the
algorithm. A more refined method is to combine a constant scaling function
with an exponential scaling function, which has been suggested by PANJER and
WILLMOT (1986) within the collective risk theory.

Method 2: Suppose

f * (s) = y e - ~ ' + P) f (s) , 0 _< s < c

where ~, fl, ~, are constants with 0 ~ ~ _< 0.5, y > O, and

(6) fl = 2 my log (pj)
t = l J = |

To compute f * (s), iteration scheme (4) has to be reformulated as

f * (0) = ye 0 -~)~

I mln (a, s) h

= - X X im,
S t = l j = l

where, for all i ~ l , j e J

t (i , j) = z je -~'

r* (s, t , j) = tO, j) { f * (s - l) - r* (s - i, l, j)},

and r*(s , i , j) --- 0 otherwise.

1 < s < _ c

t<_s

[]

Method 2 starts with a larger initial value as well as method 1 and addmonally
reduces the increase of the Iterates. For large s, however, things may change
and the transformation may lead to an ealier abort on account of an
underflow. Our third method is one way to overcome this principal difficulty.
It again starts with a larger initial value, reduces the increase of the iterates
for s < E (S) , and, additionally, reduces the decrease of the iterates for
s > E (S) .

Method 3: Suppose

f * (s) = ye~(S-~): f (s) , O ~ s ~ c

94 K A R L - H E I N Z W A L D M A N N

where

(X = - - j ~ /] J 2

b

= E(S)= ~ mj%
./=1

and fl as in (6) To compute f * (s), the modified iteration scheme reads

f * (0) = y
I mm (a .s) b

f * (s) = - Z Z tmvr*(s , i , j) , l <_s<_c
S t = l j = l

where, for all iel, j e J

{ zje ~'(2(s-t')-'), l _< s < 2 a - 1
t(s,t,J) = t (s - t , t , J) e2a?, 2 a < s < c

r*(s,i , j) = t (s , i , j) { f * (s - i) - r * (s - i , i , j) } , t<s<_c

and r*(s, t , j)= 0 otherwise. []

It ~s not surprising that the last scaling function is superior to the other ones,
since it ~s stimulated by the central hmtt theorem and thus best utilizes the
asymptotic behavior of S as m --, ~ . Some numerical results to be given in the
next section will illustrate the efficiency. We finally remark that t(s, i j) and
r*(s, i,j) can be implemented in the same way as r(s, l,j).

4. NUMERICAL RESULTS AND DISCUSSION

We consider as a starting point the portfoho dtscussed m GERBER (1979),
p. 53.

ql mq

0 03 2 3 I 2 - -
0 0 4 - - 1 2 2 1
0 05 - - 2 4 2 2
0 06 - - 2 2 2 1

Since the portfoho consists of 31 pohc~es only, there Is no need for a
reformulation or stabilization of the algorithm We therefore expand the
portfoho by considering krn~ pohcles in place of m. (for all i e l and jeJ) .

Let k = 5000 (corresponding to 155 000 policies) to xllustrate the numerical
progress resulting from the application of equations (4) and (5) in place of

AGGREGATE CLAIMS DISTRIBUTION IN THE INDIVIDUAL LIFE MODEL 95

equation (2). Then, being interested m computing the aggregate claims
distribution up to the smallest c* with P(S > c*) _< 10 -4, there is a saving of
more than 4 .4 .109 multiplications and a saving of more than 3.1.109
additons/subtractions. Moreover, the arrays to be kept at each step of iteration
can be reduced by 140 851 elements

The maximal k ~mplymg a stable algorithm has been deterrmned on the basis
of extended numbers (ie co= 1.9 .10 -4951, I 2 = 1 . 1 . 104932). There stable
means that the algorithm does not stop with an underflow or overflow and that
both I E' (S) - E" (S)I/E" (S) _< 10-5 and IVar' (S) ~ - Var" (S) '/'[/Var" (S) ~ <_
10 -5 hold, where E' (S), Vat' (S) are determined with help of the probability
mass function of S and E"(S) , Var"(S) result from the moments of the
individual claims and the properties of expectation and variance. The maximal
k and the associated number of policies to be obtained in this way for
y = 104500 are displayed m Table 1.

TABLE 1

STABILITY OF THE ALGORITHMS UNDER CONSIDERATION (~ = 1045°°)

Method maximal k number of policies

Equations (4) and (5) 7 900 244 900
Method I 15 100 468 100
Method 2 (ct = 0 31) 22 100 685 100
Method 3 80 100 2483 100

Stability of our numerical results thus means stability with respect to the first
two moments. For a more theoretml treatment of the numerical stabihty of
recurswe formulae the reader is referred to PANJER and WANG (1993).

ACKNOWLEDGEMENT

I would hke to thank the referees for their detailed and helpful comments.

REFERENCES

BEARD, R E, PENTIKAINEN, T and PESONEN, E (1984) Risk Theory 3rd edition Chapman and
Hall, London

DE PRIL, N (1986) On the exact computation of the aggregate claims distribution m the mdwldual
hfe model A S T I N Bulletin 16, 109-112

DE PRIL, N 0988) Improved Approximations for the Aggregate Claims Dlstnbutlon of a Life
Insurance Portfolio Scan Actuar~alJ 1988, 61-68

GERBER, H U (1979) An Introduction to Mathematical Risk Theory Huebner Foundation Mono-
graph 8, Phdadelphta

KUON, S, REICH, A and REIMERS, L (1987) Panjer vs Kornya vs De Prd A comparison from a
pracllcal point of vzew A S T I N Bullelm 17, 183-191

PANJER, H H (1981) Recurslve evaluation of a family of compound dlstnhutlons A S T I N Bulletin
12, 22-26

96 KARL-HEINZ WALDMANN

PANJER H H and WILLMOT, G E (1986) Computattonal aspects of recurstve evaluatton of
compound dtstnbut~ons blsurance MathematJcs and Economics 5, 113-116

PAI431ER, H H and WANG, S (1993) On the Stabdlty of Recurslve Algorithms ASTIN Bulletin, to
appear

REtM~aS, L (1988) Letter to the Editor ASTIN Bulletin 18, 113 114
Ross, S M (1983) Stoeha~tzc Processes John Wiley, New York

P r o f . Dr . KARL-HEINZ WALDMANN

lnstitut fur Wirtschaftstheorie und Operations Research,
Untversitiit Karlsruhe, Postf. 6980, D-76128 Karlsruhe.

