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ABSTRACT 

This paper gives a method for prelmum rating by postcode area The method is 
based on spatial models in a Bayesian framework and uses the Gibbs sampler for 
esmnation.  A summary of the theory of Bayesmn spatml methods is given and the 
data which was analysed by TAYLOR (1989) is reanalysed An indication is given of  
the wide range of  models within this class which would be suitable for insurance 
data. The aim of  the paper Is to introduce the models and to show how they can be 
utihsed m an insurance setting. 
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] .  I N T R O D U C T I O N  

The problem of  accessing risk as a function of geographical area occurs in a number 
of  fields, including insurance rating and epldemiology.  The aim of the statistical 
analysis of  the data ~s to assess the underlying variation in risk by area, usually 
postcode area. Two approaches can be taken. Either the raw data can be smoothed 
in order to remove as much random vanauon as possible, or the data can be used to 
allocate each postcode area to a rating category, allowing for the inherent random 
variation The example m this paper uses the first approach, although the methods 
can also be used for the second approach. The authors believe that the second 
approach may be more satisfactory if the data are m a statable form. 

The only previous paper, of which the authors are aware, which uses mathema- 
tical and statistical techmques for premium rating by postcode area is TAYLOR 
(1989). That paper used two-dimensional splines on a plane linked to the map of  the 
region by a transformation chosen to match the features of the specific region. The 
present paper uses an entirely different approach, although some of the preproces- 
sing aspects of  the analysis wil be the same as those used by TAYLOR (1989). The 
example in Section 4 of  this paper uses the data from TAYLOR (1989) As will 
become clear, there are disadvantages m using the data m the form avadable from 
that paper. The example is valid m that it applies a suitable model to the particular 
data set given However,  the present authors believe that a slightly different model 
based on data for claim numbers and clann amounts separately could provide more 
reformative results. 
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The methods described here are based on statistical methods for spatml data 
These methods have been developed for image restoration, often using data from 
satellites. However,  the techntques can also be used for risk assessment m an 
insurance setting The alms of the analysis and some of  the assumptions underlying 
the models differ from those m other apphcations, but the stanst~cal and mathema- 
tical techmques are simdar. The basis of  the method is the use of a spatial 
probabdlst~c model in a Bayeslan context. The Gibbs sampler ~s used to denve  the 
posterior distribution from which inferences about the spatml structure of  the data 
can be made These references can be used to assess the nsk due to the geographic 
area. The basic philosophy is that there ~s an underlying " t r u e "  risk pattern over 
the whole region, and the data are a version of this pattern contaminated by random 

noise. The aim of  the model is to reconstruct the " t r u e "  picture as far as possible. 
The analogy with image restoration is clear 

The literature on spatial methods is large, and we mention just a few references 
whtch are pamculary relevant to the work in this paper. The book by CRESSlE 
(1991) provides a useful overview and summary of the field. BESAO et al (1991) 
gives a summary of the Bayesian models and describe applications in archeology 
and epidemiology.  The use of  the Gibbs sampler was the subject of  a discussion 
meeting at the Royal Statistical Society recently The papers and discussion are 
contained m part 1 of  the Journal of  the Royal Stat~sucal Society, 1993 We would 
menuon pamculary  GILKS et al. (1993) and SMITH and ROBERTS (1993). 

The paper is set out as follows. Section 2 contains a specification of the spanal 
model. Section 3 describes the Gibbs sampler and smmlauon techmques which are 
used to estimate the posterior densities. Section 4 contains an example using the 
data from TAYLOR (1989) and the final section has the conclusions. 

2. A BAYESIAN MODEL FOR SPATIAL DATA 

The basis for any model for spatial data Is that areas which are close together are 
more likely to be s tmdar (m some sense) than areas which are far apart. In the 
context of  image restoration, this would mean that adjacent areas would be likely to 
be the same, or similar, co]our. In an insurance context, it means that we expect 
adjacent areas to be similar from the point of  view of the underlying risk. 

It Is important to remember that we are interested in the true, underlying risk, and 
the data ~s just a sample providing an estimate of  this risk In addition, we are 
considering only the risk due to geographical area. We wdl assume that the other 
factors have already been analysed, using (for example) a generalised linear 
model. 

We assume that the geographical areas are numbered from 1 to n. Usually, the 
areas wdl correspond to postcode areas. Define x, to be the true risk m area t and :.r.. 
to be the vector of  risks over the whole region {x,. t = 1 . . . . .  n}. The joint  prior 
distribution of  x is not specified expho t ly  Instead, it is more useful to define the 
conditional densmes 

(2 I) p,(x, lxt , x 2 . . . . .  x,_ i ,x,+ 1 . . . . .  x~) 

l =  l , . . . , n .  
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This conditional density is the density of  the risk at one location, given the risk at 
all the other locations. In reality, this will not depend on the risk at most of  the 
other locations. This means that we can replace (2 1) by the conditional density of  
x,, given the risk values m the neighbourhood of area t. 

(2 2) p, (x, 16,) 

6, is defined as areas in the nelghbourhood of the / th  area For example, if we had 
an evenly spaced latt,ce, the prior distribution might be defined so that 6, consisted 
of adjacent points One possibility is illustrated in the following diagram 

0 0 0 0 0 

0 0 

0 • --+ 

0 0 

• 0 0 

J. 

• X$ ~ -  • 0 

T 
• 0 0 

0 0 0 0 0 

In the insurance setting, 6, can be interpreted as postcode areas which are 
adjacent to, or close, to, the ~th area. 

Suppose that the data observed are denoted by y with components 
{ y , ' l =  1 . . . . .  n}. We use a snnplified notation here, giving only the random 
variable y,, and not the other (possibly non-random) information which may be m 
the data. The full hkelihood may be found from 

n 

(23)  /(.ELY_) = I-I f( .v,  lx,) 
t = l  

This assumes, as is reasonable, that the data are conditionally independent, given 
Y_ The posterior density of x, given Z, can be found using Bayes theorem" 

(24)  p (x l  Z) oc f ( z lL)p(y -~  

The usual Bayesian estmlate of  Y_ is the value of  Y_ which maximises the posterior 
density, the maximum a posteriort estimate. Of course, the most diffficult part of  
this maximisation Is to actually determine the posterior density p(~l ~Z) Although 
we have the con&tlonal prior distributions given by (2 2), it is not straightforward 
to find the unconditional prior distribution and the posterior distribution. Instead, 
we exploit the conditional densities to obtain reahsatlons from the posterior density. 
After obtam|ng a sufficient number of reahsations, we may use the emplncal 
density generated to find maximum a posteriort estimates. In other words, the 
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estunatlon ~s based on a Monte Carlo method. The mechamcs of  this, which are 
based on a variant of the Metropolis algor,thm called the G~bbs sampler (GEMAN 
and GEMAN (1984)) are given m Secuon 3. 

x, has been defined as the true risk m area i, and we now make the compounds of 
x, more explicit. The risk level is assumed to be the sum of  three components .  

(2.5) x, = t, + u, + v, 

t, Is based on known factors. It is measured through covanates  using, for example,  a 
generalised linear model We shall assume that this component of the risk has 
already been removed from the data. In effect, we assume that the data have already 
been " s t andard~sed"  to remove all varmtlon which can be explained by the usual 
covanates,  other than geographic location In the rest of this paper, t, ~s therefore 
dropped from the specificauon of the model. 

u, represents a component  w~th significant spatml structure. 

v, represents unexplained variation 

It is the component u, that is of interest m an analysis of the spatial structure of 
the data 

We must now formulate the condmonal  prior distribution of  x, 16,, (2.2), m terms 
of  u, and v,. Henceforth t, as ~gnored since ~t has already been removed from the 
data. It Is reasonable to assume that tt, and v, are independent Also, since there are 
no reasons to use any other distribution, we shall use a normal prior distribution for 
{v, : t  = 1 . . . .  n} 

I (2.6) p(v , )  ~ 2 - " Z e x p  - ~-~ 

We have assumed that the risk at the ~th region depends only on regions which 
are m the nelghbourhood of the tth region It is also assumed that the prior 
conditional density of the spatial component,  u,, can be factorized into components 
representing the dependencies on each of  the nelghbounng regions and hence can be 
written as 

(2.7) p , ( u ~ , t t l , t t  2 , , t i , _ , , t t , + ,  . . . . .  u,,) o: exp ( -  jcEb, q b ( u ' - u J )  3 

for some function q~. Note that the summation in (2 7) is only over j in 6, 
The function q~ must reflect the fact that the spatial dependence will reduce as the 

&stance between the regions increases It must therefore favour similar values for 
regions which are adjacent, and can be any even function. It could be preceded by a 
factor to allow for thc precise proximity of  the regions i and j .  In this case, (2 7) is 
replaced by 

3 ( 2 8 )  p,(u, lul,u2 . . . . .  u , _ l , u , + l  . . . .  u , , ) ~ e x p [ -  ~ w v q 3 ( u , - % )  
I k. j c  b~ 
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Possible choices for q~ include 

Z 2 Izl 
O ( z ) -  and q~ (z) = - -  • 

2 x  

In this paper, we use the first of these possiblhtles. Thus, 

-/ (29)  p,(u, lut ,u2, ,U ,_ l ,U,+  I . . . . .  u,,)ccexp - - -  ( u , -  
2 x  je ,~, 

The two scale parameters x and 2, which determine the varmnces of u and v must 
also be given a prior distribution. A suitable choice for this prior distribution, which 
is close to the usual umnformative d~stnbunon but which avoids technical 
dlfflculnes xs 

(2.10) pr,or (x, 2) ~ exp - 
2~  22 

where e ~s a small posmve constant, say 0 01. For a mole detmled discussion of this 
choice, see BESAG et al (1991) 

The conditional prior dlstribunon for x,I d,, (2 2), can now be replaced by the 
prior distributions of u, u, x and 2 The posterior density of the parameters can be 
found as m (2 4), using Bayes theorem: 

(2 II) 
t l  

P ( u , v ' x ' 2 1 Z ) ~  H f ( y ,  lx,) x - ' ' ' n x  
I= l  

( '  / / ' /  x exp - - -  2 ( l l ,  - -  lid) 2 2 - 1/2 exp -- v, z prior (x, 2) 
2 x  j~ 0, - ~  

where n, is the cardlnahty of 6,.  
Note that the joint prior dlstnbutlon of Lt has been obtained from the conditional 

prior densmes, (2.9), using the denvauon given in Section 2 of BESAG (1974) 
Various forms for [(y, lx,) are appropriate for insurance data. In the example m 
gecuon 4, we use a normal distribution For data on clmm nulnbers a Polsson 
&stnbuUon would be appropriate In the case of Poisson data, Jt is usual to assume 
that the mean of this distribution is c,e", where c, is the expected number of claims 
in region t ignoring the spatial effect. Then 

(2 12) J (y, lx,) = 
exp ( - c,e") (c,e")" 

A normal dlsmbutlon for f (y , l . t , )  is also useful in practice. The mean and 
variance of this dls tnbuuon will depend on the application, and an example of this 
case is given in Secuon 4. 
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3. THE G I B B S  SAMPLER 

Having defined the Bayesian model, the remamg problem is to obtain maxlmumn a 
posteriori estimates for the parameters The complexity, high dlmenslonahty and 
multimodahty of  the problem rules out any normal optimization routines. However, 
it is possible to set up a Markov chain whose stationary d~stnbutton is consistent 
with the posterior distribution. One approach which produces such a Markov chain 
is called the Gibbs sampler. The pnnciple of  the Gibbs sampler ts as follows 

At each step in the chain the current value of  each parameter is replaced by a new 
one which is chosen randomly from its distribution given all the other parameter 
values and the observed data Thus, in the terminology of Section 2, a value for x, is 
sampled at random from the density 

(3 1) p,(x, lc),,Z) 

The values of the risk parameters in all regions other than ~, including in 6,, are 
assumed fixed at their current values in this step. This step revolves samphng from 
each of  the distributions subsumed into x, : i.e. for u,, u,, x and 2. Initial values of 
the parameters must be supphed. 

Typically, the chain must be allowed to run for 1,000 steps before it will have 
converged to its stationary distribution, which can be used to find the maximum a 
postertort estimates for the parameters. Once convergence has been obtained, a 
sample of  every 10th step over the next 10,000 steps usually provides a reasonable 
estimate of  the stationary distribution. This can be treated as a an empirical 
distribution from which the required estimates can be obtained in the usual way. 

Note that the conditional posterior d~stnbutions which are required by the Gibbs 
sampler can be obtained in a straightforward manner. For example, 

(3.2) p(u, lu_, ,  v, x, 2, Z) ~ f ( y ,  Ix,) p(u, l u - , ,  x) 

where u_ ,  denotes all values in u except u,. 
For example, when the data have Polsson distributions and the posterior density 

is gwen by (2.11) and (2.12), then the marginal posterior of u, is given by 

/ n / 
(3.3) p(u, lu_,,u_,x,  2, z ) ~ e x  p - c , e " ' ÷ ' + u , y ,  - - - ( u , - g , )  2 

2 x  

where if, is the mean value of  u, over 6, Detads of  the marginal distributions of the 
other parameters in the case of  Poisson data can be found in BESAG et al. 
(1991) 

Once the marginal densxtles have been found and initial values of  all the 
parameters supplied, the Gibbs sampler can be used to generate values of the 
parameters from the required posterior dlstnbutlon. In effect, the procedure exploits 
the simpler conditional dlstnbutxons to simulate the posterior distribution. 

In some cases the random sampling does not present any problems. For example, 
when the data are normally distributed, the posterior d~stnbut~ons are also normal 
and the samphng procedure described above is fairly straightforward In other cases, 
the posterior distribut~ons are more complicated and samples cannot be obtained by 
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a direct method. Instead, a method such as adaptive rejection sampling must be 
used. It is very important that the sampling procedure and the computational 
approach are highly efficient m order to produce results reasonably fast. A 
particularly efficient from of rejection sampling is described by GILKS and WILD 
(1992). This form of  samphng has to be used, for example,  in the case of  Polsson 
data. We now summanse  the sampling process as described m greater detad in 
GmKs and WInD (1992). 

Suppose a sample is required from the dls tnbuuon whose density function is 
f ( x ) .  For example,  this density might take the form given in (3.3). The density, 
f(x), need only be known up to a constant of integration. I.e. instead of  knowing 
f(x), we may only know g(x )  where 

(3.4) g (x )  = cf(x) 
and c is an unknown constant. 

It is necessary to define an envelope funcnon g,,(x) such that g , ( x )  > g (x )  for 
all x, and a squeezing function gt(x) such that gt(x) <- g(x) for all x. The procedure 
to obtain a sample from f(x) is then as follows 

Take a sample x* from g,,(x) and a sample u: from U(O, 1). Now use the 
squeezing funcnon to test the value 

g/(x *) 
ff u: _< - -  then accept x* ; ff not then test 

g.(x*) 

g(x*) 
if w --< - -  then accept x* ;  otherwise reject x* 

g,, (x*) 

FIGURE I 

After each rejection of a sample value, the envelope and squeezing funcnons are 
redefined so as to reduce the probabili ty of further rejection If the log density, 
h ( a ) =  log (g (x ) )  is considered, it can be seen that for the density (3.3), and for 
many others, h " ( x ) < 0 ,  Vx.  It is therefore possible to define an envelope 
hu(x)=log(g.(x)) where h.(x) is a plecewise linear function such that each 
line segment is a tangent to h(x) .  Similarly,  a piecewlse linear function 
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ht(.~) = log (gt(x)) can be defined by chords meeting h(x)  at the same points as 
h,, (x). 

After each rejection of a value of  x*, this value is added to the set of points at 
which ht(x ) and /1.(O meet h (x)  GILKS and WILD (1992) show that this provides 
an efficient method of  generating samples for the Gibbs sampler 

4. EXAMPLE 

In order to illustrate the methods and to give an indication of  the nature of  the 
results, the data from TAYLOR (1989) are reanalysed in this section We would 
emphasise that this is really an illustration and does not represent a definitive rating 
conclusion. In particular, we would prefer to analyse claim numbers and claim 
amounts separate ly '  see Section 5 for a more detailed discussion However, this 
example does enable the results to be compared with the method used by Taylor, 
which imposed a much greater degree of smoothness onto the results 

The data relates to Household Contents Insurance m and around Sydney, 
Australia This region is divided into approximately 200 postcode areas The data 
have already been processed to remove the effects of  all factors which can be 
modelled using generahsed linear modelhng techniques. All factors corresponding 
to t, in (2.5) have been controlled out in order to make the data suitable for 
investigating the spatial effects Taylor  also included a " r o u g h  fit of  the 
'geographic  area ef fec t '  " in order to improve the fit of  the other factors but this 
effect was, of course, not controlled out The final data used in this example 
consists of adjusted loss ratios. 

The adjusted loss ratios are assumed to be normally distr ibuted: 

where e, is the earned exposure m postcode area t, 

and c~ is a constant, chosen as indicated below. 

As noted in TALON (1989), this normal approximation may be poor where e, is 
small. However,  in the model considered here, areas with low values of e, will have 
a limited effect on the overall results. The constant ~ controls the amount of 
smoothing applied, as can be seen from the following maps. The maps show the 
values of  the adjusted loss ratios divided into six bandes as follows" 

A Less than 0.5 
B 0.5 to 0 7 
C 0.7 to 0 9 
D 0.9 to 1 1 
E l 1 to 1.3 
F Greater than 1.3 

Map 1 shows the adjusted loss ratios of  the raw data before the fitting of  the 
spatial model. Maps 2 to 5 show those of  the fits for various values of  o~. A value of  
100 appears to be produce a similar level of smoothing to that achieved by Taylor  
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and the overall pattern ~s very smnlar with areas of low risk m the south-east and 
north-east corners and a band of hlgb risk just south of the river. 

A referee has pointed out that a value of o~ of around 100 can be justified as 
follows 

c~ = variance of loss ratio for a single risk 

If it is assumed that losses occur according to a Polsson process with rate 0 and 
that the first and second moments of the distribution of the size of mdwldual losses 
are y~ and ¢t2, then 

O, u2 

(0/~,) 2 

o r  

( I + r) 2 

0 

where r = coefficient of variance of claim size. 
From the data the observed value of 0 is approximately 0 1, so that ~ =  100 

corresponds to a value of r of 3 which seems reasonable. However, the choice of 
value for o~ should be a pragmatic one based on the level of smoothing which is 
thought to be appropriate 

n l I 

. FmT--T-I 

c 

D 

E 

m 

MAP I Raw Data 
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" [ ~ 1  
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5 CONCLUSIONS 

This paper has described how spatml statistical models can be used to analyse the 
geographic area effect m insurance data. The methods are applicable to all data in 
which there is a geographic area effect. The authors believe that the potential for 
these methods m insurance applications is great, and that they represent the best 
way of  premium rating by postcode area. 

The example has been approached from the point of  wew of smoothing the data 
over the postcode areas, using a continuous scale for the rating results These 
smoothed results have then been divided into bands for rating purposes An 
alternative approach would be to use a discrete scale for the results, corresponding 
to the reqmred number of rating classes The spatial model would then be required 
to allocate each postcode area to one of the rating classes The use of  thts type of  
model ~s at present under investigation. 

Unlike the method used m TAYLOR (1989) this method could easily be extended 
to an entire country rather than just one metropohtan area 

It would be preferable to analyse the data for claim numbers and claim amounts 
separately This approach ~s already used to model claims experience with respect to 
other factors c.f RENSHAW (1993) Such a separation is particularly tmportant in 
cases where clmm seventy has a long tailed d~stnbutlon (e g. hability) where one 
large claim could dominate the loss ratto of a small area It may also prove to be the 
case that a simpler model using only a few of the factors ~s appropriate for claim 
severity while a more complicated model including spatial data can be used for the 
frequency. This involves more complex computations since the data would no 
longer be normally distributed. Again, this ~s under investigation and wtll be the 
subject of a subsequent paper. 
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