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ABSTRACT 

This paper attempts to give an overview of the pricing of risks in a pure 
exchange economy, where trade takes place at time zero and where uncertainty 
is revealed at time one. An economic equilibrium model under uncertainty is 
formulated, where conditions characterizing a Pareto optimal exchange equilib- 
rium are derived. We present two sets of sufficient conditions for the existence 
of an equilibrium, and demonstrate how equilibria can be characterized 
through several examples. Uniqueness of equilibrium is also discussed. Special 
attention is given to the principal components that the premiums in a 
reinsurance market must depend upon. We also apply the general theory to the 
risk exchange problem between a policyholder and an insurer, and in particular 
we compute market premiums of the resulting optimal contracts. 

It is emphasized throughout how the formulation of a competitive equilib- 
rium, rather than merely a general risk exchange formulation, is of particular 
interest in deriving a well-defined and unique set of equilibrium premiums in an 
insurance market. The theory is put into a framework which is fruitful for 
extensions beyond the one-period case. 

K E Y W O R D S  

Reinsurance market; competitive equilibrium ; uniqueness of premiums; Pareto 
optimality; risk exchange; private insurance; CAPM; risk tolerance; complete 
markets. 

I. INTRODUCTION 

The following model is interpreted as a reinsurance syndicate, in which I 
insurers trade among themselves. We take as given 

(a) The preference of insurer i t  I = {l, 2 . . . . .  I}, ~ i ,  represented by expected 
u t i l i t y  E{ui( ' )~ . ,  where u / >  0 and ui" < O. 

(b) The initial net reserve of insurer i, represented by the random variable x,-, 
iEI .  

We assume that each xi ~ L2(-Q, .P'-, P) where (£2, ._9"-, P) is the probability 
space on which all the xi's are defined, all the insurers agree on the probability 
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measure P (homogeneous beliefs), and the events Y on which P is defined are 
generated by the I net reserves, which we sometimes call the initial portfolios, 
i.e., . ~ =  a{xt, x2 . . . .  , xl}. This means that the uncertainty in the model is 
totally described by the initial portfolios xi, i~ I. We briefly comment on the 
realism of  homogeneous beliefs in reinsurance: The assumption about homo- 
geneous beliefs appears reasonable for a reinsurance market, where trade is 
supposed to take place under conditions of  umberrimae.fidei, and no informa- 
tion is supposed to be hidden. Our pricing results for a reinsurance market are 
likely to influence premiums in the market for direct insurance as well. In the 
direct market the assumption about homogeneous beliefs seems more unrealis- 
tic. It is likely that the buyers of  insurance have more information about the 
risk they try to cover, than the insurers. This asymmetric information gives rise 
to adverse selection. In addition, the buyers can directly or indirectly influence 
events so that the probability distributions of the risks are altered. This can 
happen since the insurer is usually unable to monitor the insured, and the 
phenomenon gives rise to moral hazard. Whereas the problem of morel hazard 
does not seem important in a reinsurance market, the problem of  adverse 
selection may occur since the ceding company usually has more detailed 
information about the risks they underwrite than the reinsurers. It may of  
course be tempting for some direct insurer to sell some " b a d  risks" in the 
reinsurance market. In the long run this "p rac t i ce"  is not likely to pay off, 
since the reinsurance industry makes heavy use of  a detailed rating system for 
insurance companies (i.e., Insurance Solvency International), and there exist 
penalties for such actions. 

The competitive equilibrium (CE) that we shall demonstrate in this model, 
we claim to be of  particular interest in insurance, where its importance has 
been partly overlooked. Insurers of today seem to be turning to finance 
markets and their models, often without the understanding of the most basic 
exchange economy that can be thought of, and which we think is of  the utmost 
importance to general insurance markets; the syndicate described in this paper. 
The present model has also been a key motivation of much of the financial 
equilibrium theory which has dominated the literature of  financial economics. 

The usual formulation in insurance settings has been to derive the front of  
Pareto optimal (PO) risk exchanges, generally uncountable in number. This 
does not help to find unique premiums, as there will be one set of prices for 
each different Pareto optimal point. In order to find a well-defined set of  
premiums in this model, the budget constraints of the insurers must be 
employed. A well-posed model will then normally determine a unique set of  
equilibrium premiums subject to a normalization condition. 

The paper is organized as follows: In Section 2 we present the economic 
model of  uncertainty. Here we formulate one set of  sufficient conditions, the 
Inada conditions, for the existence of a unique equilibrium, and we demon- 
strate some properties of  this equilibrium. In Section 3 we demonstrate that the 
CE is Pareto optimal, and in Section 4 we present examples of  how optimal 
sharing rules might look like, and what their market values are. Here we 
introduce a different set of  sufficient conditions, called properness, for the 
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existence of  an equilibrium, which turns out to be satisfied in the examples. We 
discuss when a syndicated market can restrict attention to proportional 
treaties, and when non-proportional treaties are needed. In the latter case, we 
argue that this has nothing to do with the market being " incomple te" ,  as has 
been suggested in the economic literature. At least this is a definition which we 
do not find fruitful. In Section 5 we demonstrate some properties of  risk 
tolerances, and in Section 6 we risk adjust the probability measure in the 
present one-period framework. In Section 7 we present an insurance version of  
the capital asset pricing model, and in Section 8 we rewrite our results on 
portfolios to treat insurance premiums directly in this syndicate. In Section 9 
we employ the results of Sections 2-4 to the general treatment of  the risk 
exchange between a policyholder and an insurer, and in particular to the 
computation of  market premiums of  optimal contracts in such models. We end 
our exposition in Section 10 with some concluding remarks. 

2. THE ECONOMIC MODEL OF UNCERTAINTY 

In the market the I insurers exchange parts of their initial portfolios among 
themselves. As a result of these exchanges insurer i obtains a final portfolio, 
represented by the random variable y~(xl, x2 , . . . ,  xO. Market clearing requires 
that 

(2.o Z y, = Z x, = xM, e-as. ,  
i e /  i e /  

since the insurers only trade among themselves, where XM represents the 
"marke t  portfol io".  If some allocation of  risks (Yl, Y2 . . . . .  Yl) satisfy (2.1), it 
is called feasible. The premium functional we denote by 7t(.). In order to 
prevent arbitrage possibilities this must be a linear functional on L2(~,  J ,  P). 
As an illustration of  this point, assume on the contrary that 
7t(yl+y2) > 7t(y0+Tt(y2)  for two risks Ym and Y2. Then one agent could 
insure the bundle (Yl +Y2) and reinsure separately Yl and Y2. The cash flow at 
time zero equals {zt(yl+y2)-~z(yO-Tt(y2)} > 0. The cash flow at time one 
equals - ( Y t  +Y2)+Yl +Y2 = 0. This agent has no obligations at time one, so he 
has made a riskless profit at time zero. This is a money pump, or a " f ree  
lunch",  which is inconsistent with an economic equilibrium. 

By the Riesz' represenation theorem there exists some function 
U' e L 2 (~, J ' ,  P)  such that 

(2.2) zr(x) = E{xU'}, gx ~ L 2 (f2, J- ,  P ) .  

Since g =  ¢z{xl, x2, . . . ,  xl}, it follows that U' = U ' ( x l ,  x2, . . . ,  xl) is some 
Borel-measurable function of  (xl ,  x2 . . . . .  x/) (see e.g. TUCKER (1967), Th . l . l ) .  
(So far the prime on U' is just a matter of  notation. Later we show that under 
the present conditions U' (.) is also a derivative of  some function as well.) The 
statement in (2.2) means, in economic terms, that the market is complete in the 
following sense (BORCH (1962)): 
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D e f i n i t i o n  1 : 

A market model is complete if it assigns a unique value ~z(x) to an arbitrary 
random variable x ~ L 2 (,.Q, ,.~-, P ) .  

The economic theory of  pricing of  contingent claims started with Arrow's 
paper in (1953). BORCH (1960-62-68) developed these ideas further, and below 
we present some of  the elements of  this theory. Consider the following 
problem : 

(2.3) max E { u i ( y i ( x l ,  x 2 , . . . ,  x/))} 
y~(x)  ~ L 2 

subject to the budget constraint 

(2.4) ~z (Y i )  <- ~ (xi) ,  i ~ I. 

In order to avoid bankruptcy problems we also assume that Yi -> 0 a.s. An 
equilibrium is a collection (n; Yl, Y2, --., Yt) consisting of  a price functional ~ (.) 
and a feasible allocation (Yl, Y2, - . . ,  Yt) such that for each i, y, solves problem 
(2.3-4). 

The market value of the portfolio cannot increase when exchanges are settled 
at market prices. The expected utility of  the portfolio can however be increased 
by such exchanges, and this is the very purpose of reinsurance transactions. 

The Lagrangian of  this problem is 

(2.5) -.~(Yi; 2,) = E { u , ( y , ( x l ,  x2 . . . . .  x , ) ) - 2 , . ( y , - x , )  U'}. 

For  the purpose of the first result below, in addition to the assumptions (a) 
and (b) we now make the following three assumptions 

(c) The derivatives u i '(x) satisfy 

lim u i ' ( x ) = O  and lim u i ' ( x )=  +oo.  
x~oo x l 0  

(d) The functions x-- ,  xu; (x)  are all nondecreasing. 
(e) The aggregate market portfolio XM e [6, A] almost surely for finite con- 

stants A > 6 > 0. 

The assumption u / ( 0 + ) =  + c~ guarantees that the constraint XM > 0 will 
never be active, called the Inada condition. The condition u,' (x) --, 0 as x --* oo 
can be thought of  as a saturation effect. We now present a theorem giving 
sufficient conditions for the existence of  a competitive equilibrium. Assumption 
(d) is sufficient for uniqueness. The theorem also characterizes the equilibrium. 

T h e o r e m  1 : 

Suppose assumptions (a)-(c) and (e) hold. Then there exists a CE characterized 
by 

(2.6) u / ( y i ( x l ,  x2 . . . . .  xi)) = 2 i U '  (x t ,  x2 . . . . .  xl), i t  I, P-a.s., 
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where 2i are positive constants. If  in addition (d) holds, then the CE is 
unique. 

P r o o f :  Existence of CE in infinite dimensional spaces under out conditions are 
shown by DUFFLE and ZAME (1989). Uniqueness of  an interior CE under the 
additional assumption (d) has been shown by KARATZAS et al. (1988). As for 
the characterization (2.6), since the Bernoulli utility functions ui (') are concave, 
the program (2.3)-(2.4) is concave for each i. By the Saddle Point Theorem, if 
(Yi, 2~) is a saddle point of the Lagrangian for this program, yi(x)  solves the 
given program for all i. Again because of concavity, the conditions (2.6) are the 
Euler equations of  the maximization problem of  the Lagrangian in y (.), which 
in the present situation are necessary and sufficient for the solution of this 
sub-problem, since the optimal solution happens to be interior by our 
conditions. Thus the equations (2.6) must hold. 

R e m a r k s :  

- -  Uniqueness means relative to a normalization. In particular this means that 
if 2 = (2t,  22 . . . . .  2t) and if 2' = (2'1,2~ . . . .  ,2)) are two different vectors 
corresponding to a unique CE, then there exists a constant c > 0 such that 
2 = c 2  ', cn(y;  2) = n (y ;  2 ') and yi(x; 2) = yi(x; 2'), where yi(x; 2), 
i =  1, 2 , . . . ,  I, are the optimal sharing rules, or equilibrium allocations, 
corresponding to the vector 2, and n ( y ;  ~) stands for the corresponding 
pricing rule. Thus equilibrium premiums can be determined only up to a 
multiplicative constant, since there can always be a re-evaluation of  
currency; this is not going to afffect, however, the way in which the insurers 
share the risks among themselves. 

- - T h e  present economic interpretation of the function U'(x) is that it 
represents the marginal utility of  the market as a whole at the "por t fol io  
po in t"  x. Another common interpretation, especially in financial economics 
and in macroeconomics, is that U'(x)  represents the marginal utility 
function of  some representative insurer, or even of  some abstract central 
planner. A final interpretation is also possible; U'(x)  is the shadow price 
per unit of P-probability when x (w) = x (we return to this in Section 3). 

- -  In Section 4 we present a different set of  sufficient conditions for the 
existence of an equilibrium. It turns out that these conditions are inconsis- 
tent with the lnada condition (c), but otherwise they appear to be less 
restrictive. Here we need the above conditions in order to secure an interior 
optimum. 

Some immediate consequences of  (2.6) are: 

OU' (xl , x2 . . . . .  xl) 1 
(i) = , i ~ / ,  P-a.s. 

OXi ~ 2r 

tel Ur" (yr(X)) 
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This follows from differentiating (2.6). Since the right-hand side above does 
not depend on i, it follows directly that 

(2.7) U' (x i, x2, . . . ,  xl) =- U' (XM), P-a.s., 

so that only changes in the market portfolio XM affects U'. Similarly 

Oyi(xI ,  X2 . . . . .  Xt) 2i 
(ii) = i, j e  I, P-a.s., 

OA~ u T ( y i ( x )  ) ~'a ~r 
u T ( y r ( x ) )  

which again follows from (2.6). We notice that the right-hand side above does 
not depend upon j.  This means that the total derivative 

Oyi(x) ay i (x)  
dyi (x)  - - -  dXM -- - -  d x g ,  for any j,  k ~ l, and for all i E I, P-a.s., 

0xj ~x~ 

so that only changes in the aggregate portfolio XM affects the optimal final 
portfolios y~, i.e. 

(2.8) yi(Xt , X2, . . .  , Xl) ---- yi(XM), i ~ l, P-a.s. 

A consequence of  this is that the syndicate members can hand in all their 
initial portfolios to a pool, and let the pool's clerk distribute parts of  XM back 
to the syndicate's members according to the optimal sharing rules y~(XM). 

Here we remark that the consequences (2.7) and (2.8) could alternatively 
have been derived more directly from the Saddle Point Theorem. 

3. PARETO OPTIMALITY 

If  feasible, an allocation Yl, Y2, . . . ,  Y/is Pareto optimal if there is no feasible 
allocation zl ,  z2 . . . . .  zl such that E(ui(zi) ) ~ E(ui(y~) ) for all i, with strict 
inequality for at least one i. It is now easy to demonstrate that an), competitive 
equilibrium allocation is Pareto optimal. In order to show this, let 
(U'  (XM), Yl . . . .  , Yl) denote the CE in Theorem 1, and suppose z is a feasible 
allocation which Pareto dominates y. Then E(u,(z~)) > E(ui(y~)) for all i with 
at least one strict inequality, say for insurer j. Since E(u j ( z j ) )>  E(uj(Y3)), 
we know that n (zj) > n (yj). If for some i the quantity 

= n ( y i ) - n ( z i )  > 0, we could let Yi* = Z,+~U'(XM)/n(U'(XM)) ,  from which 
n(yi*)  = n(yi) .  But then, since u i is strictly increasing and U' > 0, we would 
have Eui(Yi*)> Eui(Yi), which is impossible by the definition of an equilib- 
rium. Thus n ( z i ) >  n(y i )  for all i. Using this, we now have the contradic- 
tion n(Exi)>_ n (Ez i )>  n ( Z y i ) =  n(Exi),  which proves the result. 

When the optimal solution is interior, an alternative construction is the 
following: It is well known the Pareto optimal sharing rules are found by 
solving (see e.g. BORCH (1960-62) or WILSON (1968)) 

(3.1) max E { E  k lu i (Y i (Xg ) ) }  
yi(xM) E L 2 iE I 
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such that 

E yi(XM)= Z Xi= XM' P - a . s . ,  

191 

iel i¢l 

where kt ,  k2 . . . .  , k~ are arbitrary positive constants. In two dimensions there is 
a nice graphical illustration of this point. The Lagrangian of problem (3.1) is 

(3.2) J{Y , ,Y2  . . . . .  Y';2(XM)}=EI E k~ui(yi(XM))--2(XM) E (Y'--Xi) I '  
t i~l iel ) 

where the Lagrangian multiplier 2(.) is now a Borel-measurable function, so 
that 2 = 2 (Xu) is an 5-measurable random variable. 

Theorem 2: (Borch's Theorem) 

Under our assumptions (a) and (b) on preferences, the Pareto optimal sharing 
rules yi(xu) are characterized by 

(3.3) kiui'(y~(xu)) = 2(Xu), ie I, P-a.s., 

where the kg are arbitrary positive constants. 

Proof: We assume that k~ can be chosen in such a way that the domains of the 
functions kiu[(.) have a nonvoid intersection. Then there exists at least one 
Pareto optimal treaty (see Do MOUCHEL (1968)). By the concavity of the 
Bernou~lli utility functions ui('), our program is concave. If (y~, 2) is the saddle 
point of the Lagrangian in (3.2), y~ solves the problem (3.1) since 2(.) is 
continuous (this latter property follows since any positive linear functional on 
L 2 is continuous). The saddle point must maximize the Lagrangian (3.2) in y, 
and this latter problem can be solved by the calculus of variations: Because of 
concavity of the u i for all i, a necessary and sufficient condition for this 
maximization is again given by the Euler equations. In this special case they are 
given by (3.3), since the derivatives of y~(XM) with respect to x M are not 
entering the equations (3.2). 

Corollary 1 : 

The competitive equilibrium of Theoream I is Pareto optimal. 

P r o o f :  By comparing (3.3) and (2.6-8), the result follows after simply identify- 
ing U'(xm) with 2(XM) and ki with !/2i. Alternatively, see the introduction to 
this section. 
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We may notice that the identification in the above proof  also explains that 
the function U' (.) may be interpreted as a shadow price, which is exactly what 
2(.) is. Finally we notice that the formulation (2.3) and (2.4) implies that the 
CE solutions Yi(XM), i ~ I, must satisfy individual rationality, since clearly the 
solution Y i ( X M ) =  Xi is possible, where x~ is square integrable and obviously 
satisfies (2.4). 

4. EXISTENCE AND UNIQUENESS OF CE: EXAMPLES 

4.1. Introduction 

Theorem I gives a set of  sufficient conditions for a CE when premiums, as a 
result of  a competitive equilibrium, are unique. Since equilibrium prices can be 
determined only up to a multiplicative constant, we should normally get unique 
premiums from the budget constraints after normalization. The family of 
solutions we get by varying the normalization constant will not affect the 
sharing rules, as will be demonstrated in the examples below. It turns out, 
however, that the conditions (c) and (d) for existence and uniqueness are far 
from necessary. After the examples we shall therefore present an alternative set 
of  sufficient conditions for existence of  CE. When the sharing rules are linear, 
it is possible to reach a Pareto optimum by an exchange of  fractions of the 
initial portfolios. Linear sharing rules are optimal when the individual utility 
functions are members of  the HARA class. In a reinsurance market this means 
that there should be no need for any other contract than the standard 
proportional reinsurance contract when this is true. Applied to a stock market, 
the assumption that the optimal sharing rules are linear implies that there 
should be no need for trading an.y other securities than ordinary shares 
(common stock). Non-proport ional  reinsurance and securities such as contin- 
gent claims and options both exist and are important, so we must conclude that 
the preferences of  decision makers are at least so diverse that they cannot be 
represented HARA-util i ty functions only. For  some reason many economists 
refer to a market in which it is impossible to reach a Pareto optimum through 
an exchange of  proportions of  the initial portfolio as an "incomplete 
market ". 

4.2. Illustrations 

Example 1: Exponential utility. 

Here 

ui' (xi) = exp { - xi loci}, o~i > O, i ~ I .  

Notice that neither (c) nor (d) hold true here. Nevertheless we shall 
demonstrate both existence and uniqueness of  an interior CE. 

Borch's Theorem gives 

k i u i ' ( y i ( x M ) )  = U'(XM), i ~ I, P-a.s., 
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which leads directly to 

K--XM }, where K= 2 0cilnki. 
(4.1) U'(XM) = exp Zi~lO~i iEI 

Notice how the marginal utility of the market depends upon the parameters 
~i from the individual preferences, and the positive constants ki. The latter can 
finally be determined from the budget constraints (2.4), which we return to 
below. 

We also notice that the optimal sharing rules are given by ( K) 
- - X M  + a ~ l n k ; - a ~ - -  , i ~ l ,  P-a.s., 

(4 .2)  y i ( x M ) -  ~Je lOlJ  ~ j~ lO~ j  

which verifies that the sharing rules are linear in XM. The Arrow-Pratt measure 
of absolute risk aversion equals 1/~i for each insurer i. Also the relative risk 
aversion is increasing in the net reserves for these insurers. The kind of treaty 
given in (4.2) seems common in reinsurance pratice. Insurer i will hold a share 
~i/E~j of the total market, inversely proportional to his coefficient of absolute 
risk aversion. In order to compensate for the fact that the least risk-averse 
insurer will hold the larger proportion of the market, zero-sum side-payments, 
or fees, occur between the insurers. The last term in (4.2) represents these fees. 
The quotas are determined by the risk-aversion parameters only. Quota-share 
treaties with side-payments also occur when all the insurers have preferences 
represented by logarithmic utilities, quadratic utilities, as well as by power 
utility functions with the same exponent. For further details see LEMARIE 
(1990). 

Let us for simplicty write (4.2) as 

0c i 
y i (XM)  -- - -  XMWf l i  

Ej~i ~j 

where 

/~i = ~i In k i - o~ i ~ J  e i o~j 

Employing the budget constraints (2.4), we determine these constants as 
follows 

,Bi = , i= 1,2 ..... I, 
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where A = Zaj,  so that the sharing rules are now uniquely determined. 
Moreover,  the ray (k I , k2, . . . ,  k~) is unique modulo a multiplicative constant. 
Normalizing so that 

K =  Z a / l n k i ,  
i ~ l  

we obtain the unique ray as follows 

k i = e x p  fli e~ i = 1 , 2  . . . . .  I .  

In the case where we have a riskless security in the economy in addition to 
the existing portfolios, it is natural to normalize so that E{U'(XM)} = 1, in 
which case the normalization constant K is determined from 

e A = E exp ~ , 

so that the unique vector of  constants (k~, k2, . . . ,  k/) is given by 

ki = , i = 1,2 . . . . .  I .  

Finally the unique set of  market  premiums of  the optimal portfolios Yi is 
given as 

r~(yi (Xg))- -  ~i E{XMeXp(- -XM/A)}  + p i =  E { x i e x p ( - X M / A ) } ,  i e l ,  

A E{exp ( - - x g / A ) }  E{exp (--XM/A)} 

i.e., by the Esscher premium principle of  actuarial sciences (see BOHLMANN 
(1980)). 

We now present another  example. 

Example 2: Logarithmic utility. 

Here 

ui(xi) = In (J3i+o~ixi), where ~ i+a ix i )  > 0 

The individual marginal utilities are given by 

P-a.s., ~i > 0. 

O~ i 
ui' (xi) - , i ~ I, 

fli-~- O~ i X i 

P-a.s. ,  
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and the absolute risk aversion and the relative risk aversion are both increasing 
with net reserve levels if,8~ > 0. In this case neither condition (c) nor (d) hold. 
Borch's Theorem gives 

kio~ i 
(4.3) - U '  (XM), i ~ I, P-a.s., 

fli + o~iYi (XM) 

which leads to 

~ i ~ l k i  
(4.4) U' (XM) = P-a.s., 

Z i ~  I fli/O~i"l- XM ' 

and the linear sharing rules 

- -  x M + - , i ~ I, P-a.s. 
(4.5) Yi(XM) -- •j e I k1 Z j  e I kj  • o~j o~i 

Using the budget constraints (2.4) we obtain the unique ray (kl ,  k2 . . . .  , kl) 
subject to Zk~ = k, as 

k ~ = k E ( X i + f l i / ~ i )  ' A + x M  i =  1, 2 , . . . ,  I ,  

where 

,,_._ 2 PJ 
j~ l  o~j 

In the case when the normalization is E { U ' ( x M )  } = 1, then the constant k 

equals 

k =  E 

so that the unique vector of positive constants ki is given by 

= , i =  1 , 2 , . . . , I ,  
A + x  M 

Finally the market values of the optimal portfolios yi are given by 

= , i =  1 , 2 , . . . , I ,  
A + x  M A q - x  M 

which is a new "premium principle" 

We now present an example where both the conditions (c) and (d) hold 
true. 
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E x a m p l e  3:  Power untility. 

Here 

u,. (xi) = xi  p', Pi ~ (0, 1 ), i e I .  

If condition (e) hold true, by Theorem 1 there exists a unique CE, which 
means that this model is complete by our Definition 1. Borch's Theorem 
gives 

k iP i (Y i (XM))  v ' - '  = U' (XM),  i ~  I ,  

and the optimal allocations are 

( ) ,/co,-,) 
1 U'(XM) , i ~ l ,  

yi(XM) = kipi  

so that from the market clearing condition we obtain the equation 

i e l  kip  i 

l/(p~- I) 
X M . 

The normalization E { U ' ( X M ) }  = 1 together with the budget constraints 
finally determine the constants ki. As an illustration, consider the case where 
I = 2 and Pl = 1/2, P2 = 3/4. Here 

y,  (XM) = ( k , p l )  2 (U'(XM)) -2, Y2(XM) = (k2p2) 4 (U'(XM))- ' .  

Only the ratio between, the two positive constants matter, so we can 
arbitrarily set k2 = 4/3. The marginal utility of the market equals 

and the optimal allocations are 

I 
1 ( ~ / h 2 + 4 h x n _ h ) ,  y2(XM) = X M + -- ( h - ~ / h S + 4 h X M ) ,  Yl (X M) = -~ 2 

where 

The normalization E { U '  (xM) } = 1 finally gives the equation for the constant 
h (or really kl), in which case the unique CE is determined. It should be clear 
that this Pareto optimum can not be achieved by an exchange of  proportional 
reinsurance contracts. Similarly, in a stock market this type of arrangement can 
not be reached by an exchange of common stock. 



E Q U I L I B R I U M  IN A R E I N S U R A N C E  S Y N D I C A T E  197 

Let us finally check condition (e). Supposing that XM is uniformly distributed 
on the interval [3, I +  3] where 6 is some given parameter,  we see that here is 

3 =  0 allowed, since the integral I0+ u-~/2du converges. In this particular 
case (e) is too strong. 

4.3. Uniform properness 

We now turn to another set of  sufficient conditions for the existence of  an 
equilibrium. 

Following MAS-COLELL (1986) and MAS-COLELL and ZAME (1991), we 
define an expected utility function U ( y ) =  E{u(y )}  to be x-proper  on 
X = L2+ (.Q, ~_9 r, P)  (or uniformly proper) if there exists a scalar e > 0 such that 
for all y in X, ~ > 0 and z in X, U ( y - o t x + z )  _> U ( y )  implies that [IzN >_ ~e. 
Here tlzll = (E{z2}) 112. 

The interpretation is that the portfolio x is desirable, in the sense that loss of  
an amount  ctx cannot  be compensated for by an additional amount  az for any 
portfolio z, if z is sufficiently " s m a l l " .  When preferences are convex, proper- 
ness of  U at y with respect to x is equivalent to the existence of a premium 
functional U' such that re(z) = E{zU'} > 7r(y) = E{yU'}  whenever 
U(z) > U ( y )  and has the additional property that re(x) > 0. The portfolio x in 
this definition is said to be extremely desirable for U. Thus, under risk aversion 
properness at XM is equivalent to the linear premium rule we know must exist, 
or individual properness at x m is equivalent to market  supportability of  lr. 

Now, it is known that properness of  Ui(y)  = E{ui(y)} at x is equivalent to 
the assertion that the random variable ui'(x) satisfies E{(ui '(x)) 2} < oo. A 
quasi-equilibrium is defined by the existence of a U ' e  X, U ' 4 :  0, such that 
7r(xi) = E{xiU'}  = 7r(yi) and 7r(v)> 7r(yi) whenever Ui(v) > Ui(Yi). A quasi- 
equilibrium is an equilibrium if Ui(v) > Ui(yi) implies that 7r(v) > ~(y~) for all 
i. This latter property holds at a quasi-equilibrium if n (xi)> 0 for all i. The 
following result is of  interest in our model of  an insurance market.  

Thereom 3: 

Suppose our conditions (a) and (b) hold and that there is any allocation z >_ 0 
with Zz~ = x M P-a.s. If  Xm > 0 P-a.s. and E{(ui'(zi)) 2} < ~ for each i, then 
there exists a quasi-equilibrium. 

- -  The proof  of  this theorem can be adapted from MAS-COLELL and ZAME 
(1991). 

- -  Consider now the examples above, and suppose the theorem holds for 
z - - y ,  the optimal allocation. The conditions for properness are then 

( f l i  + o~iy i (Xm)) 2 
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for the Examples i, 2 and 3 respectively. As an illustration, suppose that XM 
is exponentially distributed with probabili ty density f ( x ) =  2exp  { -2x} ,  
x_> O, f ( x ) =  0, x < 0. The properness condition in Example l is then 
equivalent to A = Ect~ > 0, which is indeed one of our assumptions. In 
Examples 2 and 3 the properness requirement does not seem to add any 
new restrictions to the ones that are already naturally present. 
One advantage with our conditions (a)-(e) is the interior solution they 
provide, which gives us the characterization (2.6). Theorem 3 does not rule 
out corner solutions. 
Uniform properness is incompatible with the condition ui'(O+)-- + co. 
Uniform properness was used in a model of  a reinsurance market  in AASE 
(1990). 

5. R I S K  T O L E R A N C E  

Here we demonstrate  a simple consequence of  Borch's Theo rem '  

ui" (Yi (XM)) Y[ (XM) U" (XM) 
(5.1) -- , i t  I, P-a.s. ,  

u[ (yi (XM)) U' (XM) 

which follows from differentiating (2.6). Equation (5.1) can alternatively be 
written 

Yi' (XM) 1 
- -  , i ~ I, P-a.s.,  

(5.2) R(XM) Ri(Yi(XM)) 

U ll 
where R = - - - ,  and 

U'  

ii 
U i  

R i  ~ m - -  
t 

U i  

stand for absolute risk aversion. Since Ziy [ (XM) = 1, we see that 

(5.3) - 2., ' P-a.s. 
R(xm) i~I Ri(Yi(Xg)) 

The quantity I/R is called the risk tolerance. The above result has been found 
by BORCH (1985); see also BOHLMANN (1980) for the special case of  exponen- 
tial utility functions. The result (5.3) says that in a Pareto opt imum the risk 
tolerance of  the market  as a whole is equal to the sum of the risk tolerances of  
the participants. I f  one member  is risk neutral, his risk tolerance will be 
infinite, and hence that of  the market. This may be interpreted as saying that in 
a Pareto op t imum all risk should be carried by the risk neutral participants. We 
can also easily derive the following 

Oyi (XM) R (XM) 
(5.4) -- , i e I, P-a.s. 

(~XM Ri(yi(XM)) 
I f  all the syndicate's members  are strictly risk averse, then Ri > 0, and R > 0 

follows from (5.3), so that y[ (XM) > 0 a.s. from (5.4). This means that as the 
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market portfolio increases, all the insurers increase their portfolios in a Pareto 
optimum. 

6. RISK ADJUSTMENT OF THE PROBABILITY MEASURE 

The premium functional ~ can alternatively be represented by a risk adjusted 
probability measure as follows : Suppose there exists a riskless security x0 in the 
economy, and assume without loss of  generality that x 0(co) = 1 P-a.s. We can 
then normalize such that E{U' (xM)} -- I, as we have suggested earlier. Suppose 
that P[U'(xM) > 0] = 1. Define a new measure P* as follows: 

(6.1) P*(A) = I U'(xM(og))dP(og). 
A 

Clearly P*(12)=  1 from our normalization assuption. Also it follows from 
integration theory that P*( . )  is countably additive, confirming that P* is a 
probability measure. Finally P* and P are mutually absolutely continuous with 
respect to each other, meaning that if P(B)= 0 then P * ( B ) = 0  and if 
P*(A) = 0 then P(A)= 0 for any A, B~..Y-. Using P* we can express the 
premium as follows 

(6.2) n(x) = E(U'(xM)x) = ~ U'(xM(o9)) x(o9) dP(og) 
d 12 

= ~ x(og) dP*(og)=E*(x), 
d 12 

where E* refers to the expectation operator under P*. The interpretation is 
that the market premium can be computed using an altered probability 
measure P* corresponding to a world of  market risk neutrality. We call P* the 
risk adjusted probability measure. Notice from (6.1) that the market 's marginal 
utility U'(xM) corresponds to the Radon-Nikodym derivative of  P* with 
respect to P, i.e. 

dP * 
(6.3) U' (xM) - 

dP 

This type of construction is of considerable importance in the time- 
continuous case (see e.g., AASE (1988-92-93). 

Returning to the illustrations in Section 4.2, we now see that in general the 
Radon-Nikodym derivative depends on the preferences. This at least holds in 
equilibrium models. This fact should be contrasted with the literature on 
contingent claims analysis. In the arbitrage pricing theory, where the uncer- 
tainty is modeled by Ito-diffusions, this quantity is preference independent, 
which clearly does not hold when " j u m p s "  can occur as in our model. 
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7. INSURANCE PREMIUMS 

The foregoing has been formulated in terms of  portfolios and market values of  
net reserves. To obtain market premiums of  insurance contracts, we note that 
the net reserves of  insurer i consist of assets ai less of liabilities under the 
insurance contracts held by the insurer. Let the non-negative random variable 
zi(o2) represent claim payments under the contracts if the state of  the world 
becomes o2e£2, i e  I. Let the events be completely specified by 
,.~"~-.~- O ' ( Z  I , Z 2 . . . .  , zl), so that the assets ai are riskless, and write 

(7. l) X i = a i -- z i ,  i ~ 1. 

Now we have that 

(7.2) n (xi)  = a i -  n (z,) = a i -  E { U '  (aM -- Z M) Zi} , 

where aM = Z a~ and ZM = Z z~. We define the market disut i l i ty  of  claim 
payments by the function V, where 

(7.3) V(ZM) = U '  (aM--  ZM). 

Clearly V ' ( Z M ) =  - - U " ( a M - - Z M ) >  0 because of  assumption (a) and (5.3). 
Formula (7.2) simply says that the market value of  the insurer's portfolio is 
equal to his riskless assets less the market premium for insurance of the 
liabilities. This formula makes it easy to translate results expressed in terms of  
net reserve values into insurance premiums. Notice in particular that if for 
some portfolio x~ the premium n ( x ; ) <  E(x~),  we get from (7.2) that the 
corresponding insurance premium satisfies n (z i )>  E(z~), so that the economic  
r i sk  p r e m i u m  { n ( z ~ ) - E ( z j ) }  of this insurance contract is positive. After 
normalization, we find in general that the risk premium can be written as 
follows 

(7.4) 7~(zi)-E{zi} = c o v  {zi ,  V(zM)}, i t  I .  

Since the marginal disutility of the market increases as the aggregate claims 
in the market increase, from (7.4) we may be tempted to believe that for claims 
which are positively correlated with zM, the risk premium is positive, and for 
claims which are negatively correlated with zM, the risk premium is negative. 
Both these cases make perfectly sense in a rational reinsurance market with risk 
averse insurers. However, there exist joint distributions for z = (z~,  zz  . . . . .  zl) 
under which this result may not hold true. Covariances are measures of  linear 
statistical dependance, and can only be considered as a good measure of  
"stochastic association" under multinormality. In insurance an assumption of 
jointly normally distributed claims is usually not very realistic. Among other 
things can claims only take on non-negative values. We are therefore reluctant 
to use the nice results obtainable from an assumption of  multinormality in 
insurance. Here we cite HARALD CRAM~R (1930) who wrote : " . . . i n  many cases 
the approximation obtained by using the normal function is not sufficiently 
good to justify the conclusions that have been drawn in this way".  In the last 
section of  the paper we nevertheless briefly discuss multinormality. 
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8. RISK EXCHANGE BETWEEN" A POLICYHOLDER AND AN INSURER 

The problem of  risk exchange between a buyer of insurance and an insurer has 
been extensively studied under varying conditions in insurance economics, and 
some of  the contributions can also be found in the actuarial literature. By 
restricting attention to the buyers problem only, MOSSIN (1968) showed that if 
the compensation c ( x ) =  o~x is received by the policyholder if the damage 
amounts to x, where 0 < ~ < 1 is a constant, and if the premium paid is ~tp, 
then if p > E x  it is never optimal to take full coverage. Borch later modified 
this, and considered instead a premium p =  o~Ex+c,  where c > 0  is some 
constant. He showed, simply using Jensen's inequality, that ct* = 1 is optimal if 
it is rational for the risk-averse customer to buy insurance. The constant c he 
interpreted as administrative costs. ARROW (1974) used Borch's original 
risk-exchange model of (1960-62), and found that a policy with a deductible is 
optimal. His premium contains a fixed percentage loading, which has later been 
interpreted as a special example of a cost function by RAVlV (1979), who 
analyzed the problem for general cost functions, using the maximum principle. 
Here we remark that a loading is perhaps more naturally associated with an 
economic risk premium. HOLMSTROM (1979) analyzed the problem under 
moral  hazard, and showed that this gives rise to deductibles. Moral hazard is 
clearly a problem in this particular kind of risk exchange. ROTHSCHILD and 
STIGLITZ (1976) considered the case with imperfect information, and demon- 
strated deductibles for low-risk individuals in a very simple model, and 
TOWNSEND (1979) established deductibles under a certain kind of  non- 
observability, where there is a cost involved by verification of the true state. 
LANDSBERGER and MEILIJSON (1990), on the other hand, explained deductibles 
in insurance from another perspective, by the use of preferences derived from 
so called star-shaped utility functions. MOFFET (1979) used Borch's Theorem 
directly on the risk exchange problem that we discuss below. 

In this section we want to demonstrate that the risk exchange model of  this 
paper can be used to establish some simple, yet general results, still abstracting 
from the problems caused by asymmetric information and moral hazard. These 
results, we claim, constitute the natural benchmark from which refinements 
should be obtained. In particular we are interested in the form of  the premium 
functional in this situaion, derived from (2.2). 

To this end we consider st policyholder with initial wealth w~, utility function 
ul satifying conditions (a) and (b). Against a premium p the insurer offers a 
policy that reimburses the policyholder an amount  l ( x )  if a claim of  amount  x 
occurs. The insurer has initial wealth w0, and his utility function we denote by 
u0(') satisfying u~(.) > 0, ud'(.) _< 0. A natural constraint on the compensation 
function l ( x )  is 

O _ < l ( x ) _ < x  for all x.  

Ignoring this constraint for the moment,  a direct application of  Borch's 
Theorem to the present sharing arrangement gives 

(8. I ) u~ (Wo + p - I (x  )) = (k ,  ]ko) u~ (w,  - p - x + I (x  ) ) . 
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Differentiating (8.1) with respect to x leads to 

~I(x) (k, /ko) u(' (w, - p -  x + 1(x)) 
(8.2) 

~x u~'(wo+p-I(x))+(~, /ko)  u , " ( w , - p - x + I ( x ) )  

Using (8.1), we get directly 

u ( ' ( w t - p - x + l ( x ) )  

31(x) u~ (wl - P -  x + l (x ) )  

ax u ~ ' ( w o + p - I ( x ) )  u ( ' ( w , - p - x - I ( x ) )  + 
u ~ ( w o + p - I ( x ) )  u ~ ( w t - p - x + l ( x ) )  

which can be written 

Ol(x) Ri (wl - p -  x + l(x))  
(8.3) 

3x R o ( w o + p - l ( x ) ) + R , ( w , - p - x + l ( x ) )  

where RI and R0 again stand for the measures of absolute risk aversion. If  both 
parties are risk averse, then from (8.3) we see that 

(8.4) 0 < l ' ( x ) <  1 for all x > 0 .  

Letting I(0) = 0, the mean value theorem implies that 

(8.5) 0 < l ( x ) < x  for all x > 0 .  

This means that the Pareto optimal sharing rule involves a positive amount  
of  coinsurance, or full coverage is not Pareto optimal. 

Notice that policies with a deductible can not be Parero optimal. This 
follows since l ( x )  = O, x <_ d, I (x )  = x - d ,  x > d has l ' ( x )  = O, x <_ d and 
I '  (x) = 1, x > d, both violating (8.4). This holds quite generally without using 
any constraints on the compensation function l (x) .  

Referring to the literature cited above, policies with a deductible can only be 
Pareto optimal in models where one or more of  the following are included; 
costs, moral hazard, asymmetric information, non-observability or alternative 
preferences (e.g., star-shaped utility). 

Example 1: (Exponential utility). 

Suppose u l (w l )=  1 - e x p { - a w l } ,  Uo(Wo)= 1 - e x p { - b w 0 }  for two positive 
constants a and b. In this case R0 = b and R~ = a, so the absolute risk 
aversions are constants and independent of wealth levels. It now follows 
directly from (8.3) that I ' ( x )  = a/(a+b), or l ( x )  = ax/(a+b)+c,  where c is an 
intergration constant. If I ( 0 ) =  0, c = 0. In this case if Ri = a is large 
compared to R o = b, l ( x )  is approximately equal to x, so that full coverage is 
then approximately Pareto optimal. In practice this seems reasonable, since the 
absolute risk aversion of  the policyholder is usually large compared to that of  
the insurer. 
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From (8.3) we see that the conclusion of  this example also holds quite 
generally, i.e., if R] is very large as compared to R 0 for all input values, then 
full coverage is approximately Pareto optimal. Quite generally, if we tried to 
solve the risk exchange problem in this section imposing the natural constraints 
on l ( x ) ,  the application of  the maximum principle would yield the same 
conclusions as above: The Pareto optimal deductible is zero in the absence of 
operating expenses (RAvIV (1979)). 

Turning to the premium, the problem of determining p is usually overlooked 
or ignored in the above kind of  analyses, where p is simply assumed to be given 
as " a  positive number" .  

Suppose we use the pricing principles of Section 2 of  this paper, and apply 
them to the present "mini -marke t" .  We would like to answer the question of  
how the resulting equilibrium-based premium p depends on the parameters of  
the problem. First we need to derive the shadow price. Using Borch's Theorem 
we get 

(8.6) kl u ~ ( w l - p - x +  l ( x ) )  = U'(wl  + W o - X )  

and 

(8.7) k o u ~ ( w o + p - I ( x ) )  = U'(wl  + W o - X ) .  

The budget constraints of the two parties are 

(8.8) rc {Y0 (XM)} = 7r {X0} 

and 

(8.9) ~{y] (XM)} = ~{Xl}. 

Here yo(xM) = W o + p - - I ( x ) , y i ( X M )  = W [ - - p - - x + I ( x ) ,  XM = WI +Wo--X = 
W--X, XO = WO and x, = Wl -x .  Using (8.8) we have E { ( w o + p - l ( x ) )  U'(xM)} 
= E{wo U'(XM)}, and since 

(8 .10)  p = ~ { / ( x ) }  = E{I(x) U'(XM)}, 

we obtain that the by now familiar normalization E{U'(xM)} = 1 must hold. 
Consider the following example: 

Example 2: (Exponential utility, continued). 

Using the results of the above example and of  Example ! in Section 4, we get 
the following : The shadow price equals U' ( w -  x) = exp { (K-  w + x) /A}  where 
K = (In kO/a+(ln  ko)/b and A = I /a+ l/b. From the normalization we find the 
constant K = w - A  In {E[exp (x/A)]}. Furthermore, from Example 1 we get, in 
the case where I(0) = 0, that the market premium p is given by 

a E{x  exp (x/A)} 
(8. I 1) p = E ( t ( x )  U' (XM)) = - -  

a + b  E{exp (x/A)} 

As an illustration, suppose that x is exponentially distributed with parameter 
2, so that Ex = 1/2. Then the simple formula p = a / [ 2 ( a + b ) - a b ]  obtains, 
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where the parameter 2 > 1/A. Notice that p increases with Ex and with a. If 
2 < a, then p increases with b, with the opposite result if 2 > a. Notice that an 
increase in R~ = a has here two effects, both working in the same direction: 
First the absolute risk aversion of  the policyholder increases, and second the 
coverage increases; so we would expect a large premium p in both cases. An 
increase in R 0 = b implies on the one hand less coverage, but on the other hand 
the insurer becomes more averse towards risk. These two mutually competing 
facts explain the more complex comparative statics for b. 

The risk neutral case can be studied by letting b---~ 0. Then p ~ Ex  follows 
from (8.11) by the monotone convergence theorem, i.e., we obtain the usual 
"actuarial  fa i r"  premium in the limit. Alternatively we could try the charac- 
terization in Section 2 directly with Uo (w) = b + cw, c > 0, a constant. It is then 
straightforward to show that the shadow price U'(XM)--Z !, again leading to 
premium given by the "principle of  equivalence" above. (Formally the latter 
derivation is not valid when u~ (w) = 0 for all w.) O 

Examples 1 and 2 are somewhat specialized in that the absolute risk aversion 
is independent of  wealth. In general we should also expect the premium to 
depend on the aggregate level of  wealth w in the market. This is indeed of 
importance in actual markets where insurance contracts are traded at market 
prices. Consider the following example: 

Example 3: (Power utility). 

Suppose Uo(W) = ul (w) = w p where p ~ (0, 1). In this case the shadow price is 

(w - x ) " -  I 
u '  (XM) = 

( ,  + , )  
(pko)I/(p- l) (pkt)I/~,-J) 

which becomes, after the standard normalization 

(~  - x ) P  - ' 

U '  ( X u )  = 
E ( ( w _ x ) . - ~ }  • 

The Pareto optimal sharing rule satisfies 

a l ( x )  w o + p - l ( x )  

Ox w - x  

depending, as we see, on the premium p. Solving this differential equation 
under the condition I(0) = 0 gives 

wo+p 
I ( x )  - - -  x ,  

m 

i.e., full coverage is only Pareto optimal if p =  w,. The present problem is 



EQUILIBRIUM IN A REINSURANCE SYNDICATE 205 

well-posed for the above utility functions only if x < min (w0, wl) P-a.s. Since 
p < wt must generally hold, coinsurance results. The premium p must satisfy 
p = E{xU' (XM)(wo+p) /w} ,  which leads to 

W ) - I  

P =  g{x~(xM)} 1 wo. 

Notice how the premium p in general depends on the wealth level w. It is 
seen that unless the wealth of the customer is too large, i.e., when 
wl < E{xU'(XM)}, the premium decreases as w0 increases as well as when wl 
increases, whereas the premium increases as a function of  w0 when 
wl > E{xU'(XM)}. In general the premium is a decreasing function ofw.  This is 
in accordance with the general observation that the premiums tend to decrease 
as the "capac i ty"  ( =  w) in the market increases and vice verca. 

In the limiting case where p ~ I, U ' ( X M ) ~  1 a.s. and p ~ Wo E x / ( w - E x )  by 
the dominated convergence theorem. In the limit, approaching risk neutrality, 
the optimal compensation scheme is I ( x )  = WoX/ (W-Ex) ,  costing its actuarial 
fair value E(I (x )}  = Wo E x / ( w -  Ex).  

As an illustration, suppose that x is uniformly distributed on (0, wl), where 
w0 > wt. The premium is then 

Wo [w (w  p - w ~ ) / p  - (w  p + ~ - w6 + ~)/(p + 1)] 
pp = 

(w p+ ~ -  wG + ~)/(p + l )  

which depends on the aggregate wealth w of the two parties, their attitude 
towards risk as measured by p and the reserves w0 of  the insurer. As p ~ 1, this 
expression is seen to converge to Pl = W l W o / 2 ( w - w l / 2 ) ,  which is exactly 
E{It(x)} ,  where l l ( x ) =  (wo+pl )x /w  is the optimal sharing rule for this 
particular premium Pl.  

9. AN INSURANCE VERSION OF THE CAPITAL ASSET PRICING MODEL 

We now discuss the case when x = (x~, x 2 , . . . ,  xt) is jointly multinormally 
distributed. As noted before, this case has limited applicability in insurance 
economics. However some of the results in this model remain true even if the 
assumption of normality is dropped. The first problem we encounter is to find 
a set of sufficient conditions for the existence of  a competitive equilibrium. Our 
earlier theorems can not be directly applied here, since x can take on negative 
values with positive probability. NIELSEN (1990) has a set of  sufficient 
conditions for the existence of equilibrium in a CAPM-model  in financial 
economics. In his model the investor has a utility function U(~, a )  which is a 
function of  the mean and the standard deviation of  the total portfolio return. 
Mean-variance behavior is consistent with expected utility maximization with 
general utility functions if the returns follow the distributions described by 
CHAMBERLAIN (1983) and OWEN and RABINOWITCH (1983), which include the 
multinormal distribution. In the present model the optimal allocation may not 
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be a linear function of  x u ,  in which case y is not necessarily multinormally 
distributed. Expected utility maximization with general utility functions can 
not, in our model of  an insurance market, in general be represented by 
mean-variance utility functions U(/z, a),  unless the utility functions happen to 
be members of  the HARA-family with the same cautiousness. In this latter case 
Nielsen's sufficient conditions are possibly appropriate in our model. 

For  the moment supposing an interior equilibrium exists, its characterization 
is then straightforward. Under our normalization assumption E{U'(XM)} = I, 
the premium functional can be written 

(9.1) n(xi) = E(xi)+cov (xi, U'(XM)) for all the xi. 

Here (n (xi)- E(xi)) is the economic risk premium of xi. From the assumption 
of  multinormality it follows that 

(9.2) cov(x/, U ' ( X M )  ) = E { U " ( X M ) } C O V ( X i ,  XM) for all the xi. 

Since (9.2) holds for each of the initial portfolios, clearly 

7C(Xi) = E(xi)+ E{U"(xM)} cov (xi, XM) for all the X i . 

By summation over i we obtain 

n (XM) = E(XM) + E{U" (XM)} var (XM) 

from the linearity of  the pricing functional n (.) and from standard properties 
of  the expectation and the covariance operators. Rearranging, we finally have 
the insurance version of  the capital asset pricing model as follows: 

coy (xi, xM) 
(9.3) n ( x i ) - E ( x i ) -  (n(XM)--E(XM)), for all i, 

var (XM) 

The risk premium of  any of  the initial portfolios can be written as the risk 
premium of  the market portfolio multiplied by the normalized covariance term, 
the portfolio's beta in the market. 

The result (9.2) is often referred to as Stein's lemma. The first derivation in 
the economics literature seems to be due to RUmNSTEIN (1973). Using a Taylor 
series expansion, he assumed that the function U' possesses derivatives of all 
orders and that these functions can be integrated. Below we give a simple 
proof, where U' need not even be one time differentiable for (9.3) to result by 
the above procedure. 

L e m m a  1 : 

Suppose (X, Y) is jointly bivariate normally distributed. Then 

coy (Y, g (Y)) 
(a) cov (X, g(Y)) = cov (X, Y). 

var Y 
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Suppose g'(-) exists for all real numbers and that EIg'(Y)[ < ~ .  Then 

(b) E (g' (Y)) = 
coy ( Y, g (Y)) 

var Y 

Proof: From the assumption of binormality it follows that E(X[Y)= ~+flY, 
where 

coy (x, Y) 
fl - and a = E X - f l E Y .  

var Y 

Also cov (X, g(Y)) = E{E{Xg(Y)I Y~}- EXEg( Y) = aEg(Y)+ f lE(Yg(Y)  ) 
- E X E g ( Y )  = f l { E ( Y g ( Y ) ) - E Y E g ( Y ) } ,  proving (a). As for (b), by integra- 
tion by parts, using the assumption that the expectation of g ' (Y)  exists, we 
find 

Eo'(Y)  = - g ( y ) f ~ ( y ) d y  - E { g ( Y ) ( Y - E Y ) }  
- o~ v a r  Y 

w h e r e f r ( y )  is the normal probability density function for Y. This proves (b). 
0 

Note that (9.3) follows from (a) only. Thus the assumptions that U' is one 
time differentiable and that the expectation of U'(XM) exists, are really not 
needed in the above step. If U" exists for all reals together with its expectation, 
then (a) and (b) imply (9.2). For an extension of this result, proved by entirely 
different methods, see WEI and LEE (1988). 

Note that we have used the equilibrium-result in Section 2 that 
U' (x )  = u '  (XM). 

We may also find the sign of the risk premium of any Pareto optimal, linear 
sharing rule yi(XM). In this case we find 

(9.4) 7g(yi(XM))_E(yi(XM))=E[Oyi(XM)|(TC(XM)_E(XM)),I\ f o r a l l  i. 
I ] O x  

By (5.4) we notice that this beta is positive. The risk premium of all the 
portfolios have then the same sign as the risk premium of the market portfolio, 
which in this case is negative. This result corresponds to "investors hold 
efficient portfolios in capital market equilibrium" in the theory of  capital 
markets, whereas the fact that E{y[(xg)}>O corresponds to "efficient 
portfolios have positive betas". Notice that the negative risk premiums 
here only mean that the insurers require a positive expected return on 
their reinsurance exchanges, since this expected return simply equals 
[E(yi)-z~(yi)]/z~(xi) > O. 

Returning to (9.3) suppose that one of the initial portfolios, x~ say, has a 
negative correlation with the market. The market finds this portfolio so 
valuable that it accepts a negative expected return on x~ in equilibrium. 
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As for the characterization (9.3), there might exist other joint probability 
distributions giving the same separation result (see for example Ross (1976) 
and CHAMBERLAIN (1983)). A different line of attack has traditionally been to 
impose further conditions on preferences. For example, if the marginal utility 
of the market U' is linear, then this separation follows as well. 

Apparently this result seems to require no assumptions regarding the joint 
probability distribution of x. However, linear marginal market utility is usually 
a consequence of  quadratic utility functions representing the preferences of the 
individual insurers, which means that the probabilities of falling beyond the 
satiation points should equal zero in order for condition (a) to remain valid. 
Otherwise the preferences are not monotonic, and risky investments are inferior 
compared to the riskless. Thus conditions must then indirectly be imposed on 
the joint probability distribution of x as well. For example is the multinormal 
distribution not acceptable in this situation. In such cases the conditions of 
Theorem 1 may be met, and the characterization (9.3) be valid. We should add, 
however, that one obvious advantage of imposing distributional assumptions 
on x rather than assumptions directly on preferences (if these can at all be 
avoided), is that the former can be empirically tested using statistical methods, 
whereas the latter are much harder to verify/refute from available data. 

The classical version of the one-period CAPM in a capital market was 
developed by Sharpe, Lintner and Mossin. The classical one-period CAPM has 
also been developed without the assumption of a riskless asset by BLACK 
(1972). In a multiperiod setting MERTON (1972) has developed an intertempo- 
ral CAPM, where the prices of  the risky assets are assumed to follow 
Ito-diffusions. In a dynamic, intertemporal reinsurance context, where the 
claims processes are represented by random, marked point processes, an 
insurance version of  an intertemporal CAPM can be found in AASE (1993). 

10. SUMMARY 

From the above analysis we observe that the premiums in a reinsurance market 
typicall); must depend on: 

(i) The stochastic properties of the risk itself. 
(ii) The stochastic relationship between the particular risk z and claims in the 

market as a whole, described by the covariance between V ( Z M )  and z. 
(iii) The attitude towards risk in the market as a whole, represented by 

V = U ' .  

(iv) The total assets of  all the insurers in the market, represented by a M . 

A realistic theory of insurance premiums must of course take all these four 
elements into account. This is however rarely done in actuarial risk theory. 
Several books have been written on insurance premium principles, some even 
recent, where only the first of these four elements are covered. 

Some obvious weaknesses of the above model are the following. There is in 
reality no time dimension in these models; trade is supposed to take place only 
at one point in time, and the world more or less ends at the next time point. In 
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models of  (re)insurance markets the risks may be more realistically represented 
by random, marked point processes. A model where trade can take place at 
any time point t in an interval [0, T] is given in AASE (1992-93). There it is 
shown that the market's attitude towards risk can be separated into two 
components;  one related to frequency risk and the other related to claim size 
risk, given that an accident has occurred. In order to fully understand these 
results, however, it appears to be essential to have the above model in mind. 
This is so since the present derivation basically tells us what happens at each 
time point of jump of  the vector x of the stochastic process representing the 
exogenously given portfolios in the reinsurance market. For  example is our 
interpretation of  the market marginal utility crucial also in the dynamic case. 
Therefore the one-period analysis can be viewed as a necessary preparation in 
order to proceed to more realistic, but at the same time more complicated and 
mathematically challenging models of  equilibrium premium formation in a 
dynamic exchange economy under uncertainty. 
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