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A B S T R A C T  

This paper  develops a discrete time model for valuing treasury bills and either 
forward or futures contracts written against them. It provides formulae for bill 
prices, forward prices, futures prices, and their conditional variances and risk 
premiums. The interest rate process is described by a multlphcatwe binomial 
random walk whose features conform to some principal characteristics of  
observed processes. Initial forward rates are constrained to match mltmlly 
observed term structure data. 

1. INTRODUCTION 

This paper  uses a discrete time multlplicatlve binomial model of  the spot 
interest rate process to derive pricing formulae for treasury bills, and forward 
and futures contracts written against them. All results are developed under 
assumptions of  zero arbitrage profits. The model ~s constrained to match the 
initial term structure of  interest rates, and uses an empirically plausible interest 
rate process. 

The model explicitly states the theoretical and empirical Importance of 
initially estimated forward rates, bond maturity dates, and forward and futures 
contract  delivery dates. We find pricing formulae and time dependent expres- 
sions for the condltlonal variance and conditional risk premiums of  bill prices, 
forward prices and futures prices. Finally, we use a property of  binomial 
processes to relate conditional variances and risk premiums, and hence provide 
theoretical support  for relations used m the empirical literature (ENGLE [1982], 
E N G L E ,  LILIEN and ROBINS [1987]) 

1.1. Organization of paper 

The paper  ~s orgamzed as follows. The rest of  this section reviews relevant 
hterature. The model and its underlying assumptions are described m Section 2, 
which also specifies how the spot rate and the term structure evolve. Section 3 

* Earher versions of this paper were presented to the Inaugural Meetings of  the Northern Finance 
Association, Ottawa, Canada,  September 23-24, 1989, and to the First AF1R International 
Colloquium of  the International Actuarial Association, Paris, Aprd 23-27, 1990 We thank the 
ed,tor and referees for constructive suggestions 
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develops formulae for treasury bill prices and shows how the conditional 
martingale probabilities are restricted by initial assumptions regarding the term 
structure. Section 4 develops formulae for consistently calculating forward 
prices, their conditmnal variances, and conditional risk premiums Section 5 
does the same for futures contracts, and Section 6 concludes. 

1.2. Theoretical literature 

BLACK [1976] prepares the groundwork for the theory of  commodmes futures 
pricing. Cox,  INGERSOLL and Ross [1981], FRENCH [1981], JARROW and 
OLDFIELD [1981] and RICHARD and SUNDARESAN [1981], all develop impor- 
tant properties of forward and futures contracts and prices. Our discrete time 
model is based on the approaches to options pricing used by Cox,  Ross and 
RUBINSTEIN [1979] and by Cox  and RUBINSTEIN [1985]. 

Our approach is analytically more tractable than Ho  and LEE [1986], 
RITCHKEN and BOENAWAN [1990], or RITCHKEN a n d  SANKARASUBRAMANIAN 
[1990]. In addition, we specify empirically plausible interest rate processes 
rather than specifying convenient processes and then constraining them, as do 
both Ho and Lee and Ritchken and Sankarasuhramanian. Like PEDERSEN, 

SHIU and THORLACIUS [1989] we induce shifting yield curve shapes, but also 
provide more explicit results than theirs. Our model, hke that of  TURNBULL 
and MILNE [1991], can be expanded to find bill and futures pricing formulae 
for interest rate processes with varying degrees of  mean reversion (cf. MORGAN 
and NEAVE [1992]). While both models can derive prices for many different 
kinds of  derivative securities, Turnbull and Milne price options, while we price 
forward and futures contracts 

We also obtain more explicit results than the more distantly related works of 
BLISS and RONN [1989] and of  KISHIMOTO [1989]. Bliss and Ronn offer a 
trinomml version of  the Ho and Lee model, while Klshimoto models both 
interest rate and asset price uncertainty. 

In some senses, our model is also more tractable than the continuous time 
models of  HEATH, JARROW and MORTON [1990, 1992] (hereafter HJM) and of 
JAMSHIDIAN [1989]. In contrast to HJM and in common with Jamshldian, our 
forward interest rate process can be extended to incorporate mean reversion; 
cf. MORGAN and NEAVE [1992] In contrast to both HJM and JAMSHIDJAN 
[1989], we find formulae for the martingale probabilities that are consistent 
both with the data we use and with the form of  stochastic process modelled. 
Our model also bears similarities to HJM [1990a] discrete time model, but 
HJM focus mainly on the existence of  the martingale while we focus mainly on 
interpretive issues. Moreover, we find conditions for uniqueness of the 
martingale which HJM [1990a] do not. Finally, we establish analytical relations 
between instruments' risk premiums and their prices' conditional variance that 
have not previously been obtained in any of  the other models mentioned 
above. 

JACOaS and JONES [1980] report one of  the first empirical stu&es of  treasury 
bill futures prices Their approach of  comparing model predicted with observed 
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prtces has smce become standard and ~s discussed in such works as BLACK, 
DERMAN and TOY [1990], HULL and WHITE [1990], RITCHKEN and SANKA- 
RASUBRAMANIAN [1990] and JAMSHIDIAN [1991]. Our model can be used in 
this way as well, but it has another advantage. It uses binomial model relations 
between risk premiums and conditional varmnces m conducting tests, and thus 
need not estimate many of the parameters used in the standard approach; cf. 
MORGAN and NEAVE [1992]. As HJM [1990a, p. 420] observe, estimates based 
on martingale probabdlt~es, as in Ho and Lee, can lead to instabilities. 

Our pricing theory does not incorporate dehvery options, the effects of  
which are considered in GAY and MANASTER [1984], HEMLER [1990], KANE 
and MARCUS [1986] and BOYLE [1989]. We could incorporate delivery opttons 
quite readily in expanded versions of  our model, but the data we have tested so 
far (cf. MORGAN and NEAVE [1992]) are for contracts without important 
dehvery options. 

2. ANALYTICAL MODEL 

Our model is based on a discrete time approach to options pricing originally 
proposed by Sharpe We follow the development in Cox and RUBINSTEIN 
[19851 

2.1. Useful mode properties 

We use spot interest rates as a state variable, allowing the term structure to 
evolve under the same potential set of  constraints as do other who follow H o  
and LEE [1986]. However as shown below, we choose martingale probablhties 
which, retain the originally assumed interest rate process, maintain consistency 
with the data, and ensure the absence of  arbitrage opportunities. 

In contrast, Ho and Lee first model the interest rate process and then assume 
constant martingale probabilities, thus altering their original mode of interest 
rate evolution to ensure consistency with the data,  cf. H o  and LEE [1986, 
eqn. (A 6)] In further contrast to Ho-Lee and others, our model does not 
permit negative spot interest factors (where an interest factor is one plus an 
interest rate), a useful feature which also suggests a way to ehmmate negative 
interest rates i. 

2.2. The interest factor process 

Let R, be the rlskless spot factor; t.e., one plus the one-period rlskless rate. Let 
R 0 be the imtlal spot factor, and {Rt) , t ~ I~T------{l, 2, . . ,  ~ ,  a (determimstic) 
sertes of  one period forward factors given by data avatlable at tIme 0. 
Throughout  the paper, it will be supposed that the time horizon T is greater 
than the longest bond maturity M which we wish to study explicitly. 

To ehmmate the posslbdlty of negaUve interest rates, an interest factor R, can be modelled to 
evolve a s  (Rt) u(t) In the event of an interest rate increase, and a s  (Rt) I/u(t) m the event of an interest 
rate decrease, where u(t)  ~s a smtably chosen function (whose values are greater than unity) 
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The forward factors can be determined from government treasury bill data at 
time zero For  example, if B0(l) and B0(2) are the time zero prices of  the one 
and two period zero coupon bonds respectively 2, then by the term structure of  
interest rates 

B0(l ) = l/Ro, 
and 

so that 
B0 (2) = l / (R0.  RO, 

R t = B0 (1)/B0 (2). 

The remaining values of  the {Rt} can be determined silrularly. 
The forward factors become spot factors as they are realized. Using the 

perspective of  time zero, we assume the future spot factors will evolve 
stochastically about  the {R,} according to a multlplicative factor u > I. I f  the 
time t spot factor is u: R t, 

(2.2.1) j 6  J,-={t, t - 2 ,  t - 4  . . . .  - t + 2 ,  - t } ;  

t ~ lj T, the t + l  spot factor will be either u :+lR,+l or u:-~Rt+l,  the possible 
realizations occurring with probabilities p and l -p - - -q  respectively. Between 
times t and t + l the spot factor must move either up or down, but it can return 
to the same level every two periods. The successive spot factors thus evolve 
according to : 

(2.2.2) S,+ I ---- Rt+l St U/Rt, 

where St is the spot factor at time t, and U ts a random variable which assumes 
the values u > 1 with probabili ty p and u - t  with probabili ty q. Since So ~ R0, it 
follows immediately from (2.2.2) that 

St+l = Rt+I Ut+I, 

Ut+~ is the random variable 3 generated by t + l  successive realizations 

(2.2.3) 

where 
of  U. 

The 

(2.2.4) 

(2.2.5) 

mean and variance of  U are respectively given by 

E (U) = pu + q/u and 

V(U) = pq[(u 2 -  l)/u] 2 . 

The drift of  the process (2.2 2) is determined 4 by E(U).  I f  E(U)  = 1, the 
process has a constant mean 5, apart  from any changes in R,. The spot factor 

2 The effect of changing interest rates ~s left ~mphclt m the notatmn of this sectmn and m that of 
the Appendix In the rest of the paper, ~t ~s helpful to recogmze interest rate effects exphc~tly 

3 For example, U3 has the outcomes u 3, u, u-~, and u-3, with probabdmes p3, 3p2 q, 3pq2 and q3 
respectively 

4 Apart from the influence of the parameters R~ 
s We are grateful to a referee for pointing out that if E(U)~ 1 (and u ~  1), then U,-*0  with 

probabdlty I by the supermartmgale convergence theorem If m addmon R t IS bounded, then St < I 
from some random point onwards, and from that point spot rates are negahve Thus to have a 
sensible model we want E(U)> 1 
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process has a lower bound of  zero and 6, for finite values of  u, t and R t ,  a finite 
upper bound of u t R t  . 

Finally, the condmonal variance of the spot factor process is determmed as 
follows. Recalling (2.2 3), let Z be a binomial random variable assuming the 
values x and y with probabllmes p and q = 1 - p  respectively, and suppose 
y > x. Then since 

z *  = ( Z - x ) / ( y - x )  

is a standardized random variable whose outcomes 0 and 1 occur with 
probabilities p and q respectively, 

(2.2.6) V(Z) = V ( Z * )  ( y - x )  2 = p q ( y - x )  2 . 

Applying (2.2.6) to (2.2 2), 

(2.2.7) ~ ( u J ) = p q [ ( u j + l  uJ-l) Rt+l] 2. 

For  any fixed value of t, Vt is an increasing function o f j .  

3. BILL PRICES AND INTEREST RATES 

We use martingale methods to derive bill prices from the mterest rate process 7 
We ensure consistency with observed data by finding martingale probabilities 
such that the time zero bill prices calculated under the martingale equal their 
time zero observed values, a procedure that involves as many restrictions on 
the martingale probabihtles as there are bond maturities 8 

The foregoing restrictions also ensure the absence of  arbitrage profits for 
trading in any combination of  bonds. For, assuming the originally observed 
bill prices reflect an equilibrium, they offer no arbitrage opportunities at time 
zero. Moreover, no combination of  outstanding bonds can offer arbitrage 
opportunities at any time strictly between zero and their maturity, because 
those prices are all calculated using exactly the same interest rate process and 
martingale probabd~ties9. Indeed, the condmons derived below correspond to 
condition (15) in  H E A T H ,  JARROW and MORTON [1990a], who focus on how 
the forward rate process must be restricted if the martmgale is to extst 

6 If R t is constant, the process converges to the Iognormal,  see for example Cox and RUBINSTEIN 

[19851 
7 It should be noted that whde it is customary to refer to condmonal  martingale probabdmes, 

these numbers are neither martingales nor probabdmes The number Pr, which is defined to be the 
condmonal  martingale probabd~ty denoting an upward move m the spot rate, ~s not the same as the 
actual probabdlty p of an upward move m the spot rate Rather, the Pt, are numbers which add to 
umty hke probabdmes They can be used tn risk neutral valuauon procedures because their exmtence 
is eqmvalent to the assumption of no arbitrage profit opportunmes Finally, the martingale itself ts 
the constant mean stochasuc process describing bond prices, after they have been normalized to 
remove the effects of the risk free interest rate For a full discussion, see HUANG and LITZENBERGER 
[1988, chapter 8] 

s However, since as wdl be shown the T+  2'nd condmon is just that PT+ t + qr+l = I, there are 
really only T+ I nontnvml condmons 

9 The assumption of zero arbitrage profits ~s both necessary and sufficient for existence of a 
martingale permitting pnecs to be found using expected value calculations, cf HUANG and 
LITZENBERGER [1988, 196-203, 242-244] 
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The rest of thls section shows how our term structure evolves, as in Ho and 
Lee, from initially specified values, and how that affects bdl prices. However, 
as summarized m Section 3 5, Ho and Lee can use constant martingale 
probabihtles because they restrict their initially specified interest rate process. 
In so doing, they do not analyze the imphcations for their orginally chosen 
interest rate process. In contrast, we use time dependent martingale probabdi- 
ties m order not to alter the initially specified process Rather, we state directly 
the spot interest rate process used in our model and find martingale probabd- 
ities which conform to it and the data. 

3.1. Interest rates, bill prices, and the martingale 

Given the time zero estimates of the forward factors {R,}, t ~ I f ,  all bills have a 
time zero value determined by l0 the geometric mean of R 0 and the {R,}. Let 
B, ( j ,  M)  represent the market price at time t, when the spot rate is u j R , , j  ~Jt, 
t ~ l f l -  1; of  a bill with maturity M. Finally, let all bills have a value of  unity at 
maturity. A one period bill's value is then related to the prevadmg risk free 
(spot) rate by 

(3.1.1) BM_i(J, M)  = 1/USRM_i. 

We denote the (conditional) martingale probabilities associated with an 
interest factor increase by Pt, and by q t=- l -p ,  with a decrease. Under the 
martingale, for t < M -  1, 

(3.1 2) B,(.I, M)  = [ptBt+t(j ,  M)+qtBt+ I ( j + 2 ,  M)]/uJRt . 

In Section 3.3, we find formulae for bill prices of any maturity. However, 
before doing so we wish to explore, through an example, the implied 
restrictions on the martingale probabilities when the model budder seeks 
consistency between time zero observed values and the model itself ~l 

3.2. Exemple 

The martingale probabihties may exhibit state dependency, time dependency, 
or both. If the model builder wishes the martingale probabdities to have certain 
properties, then only certain interest rate processes can be consistent with both 
the initial data and the absence of  arbitrage opportunities; cf. HJM [1990a]. 
To see this, constder the prices of  the three balls with maturities up to M = 3. 
For  consistency with the initial term structure, the time zero prices of bills must 
satisfy 

(3.2.2) Bo(O , M)  l/,h.u- = R,, M ~ { I ,  2, 3}. 
/ t - 0  

~0 The continuous tame hterature usually eslabhshes the exastence of the martingale but does not 
discuss ~ts exact relation to the model and the data ,  HJM [1992] as an exception Indeed, HJM 
search for methods that ehmmate the need to calculate or to estimate the martingale probabdat~es 
The discrete time hterature usually assumes constant martingale probabdJtaes, again HJM [1990a] ,s 
all exception 

II DYtlVlG [1989] notes that several authors m effect force the term structure to fit the model 
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Under  the martingale,  the one period bdl price must  also satisfy 

(3.2.3) Bo(0, 1) = [po+qo]/Ro, 

since the matur i ty  value o f  the bdl is unity whichever interest rate obtains at 
time I. 

The  value o f  the one period bill does not restrmt Po, but  the two period bill 
price must  satisfy both  

(3.2.4) B 0 (0, 2) = (1/Ro) {[Po/(uR l)] + [qo/(u-I  R ~)]} 

and (3.2.2). Since Po + qo = 1, the solutions are 

(3 2 5) Po = u/[u+ 1], qo = I / [u+  1]. 

Finally, consider finding the time zero price o f  the bill matur ing  at M = 3. 
At time 3 ~ts value ~s unity, and at time 2 it can assume any one of  the three 
values 

B2(J ,  3) = I/R2u2-:; j ~5 {0, 2, 4}. 

To  recogmze possible state dependence o f  the mart ingale probabil i tms 
p, ,  t > 0, denote  the mart ingale probabih ty  for an upward  move  from s t a t e j  at 
time t by P t ( J )  Cont inuing the calculation by backward mductmn,  at time ! 
the bill's two possible values are then 

Pl (0) q l (0) 
( 3 2 6 )  B~(0, 3) - B2(0, 3) + B2(2, 3) 

uR[ uRj 

= P l (0) + u 2 q l (0) 

u 3 R~ R2 

and 

(3.2.7) 
p, (2) 

B~ (2, 3) - B2 (2, 3) + - - -  
U - I g l  

Pl (2 )+  u2qt (2) 
= U 

Ri R 2 

Finally at time zero, 

q l (2) 
B 2 (4, 3) 

u - l R t  

(3.2.8) B o (0, 3) = [Po/Ro] Bi (0, 3) + [qo/Ro] Bi (2, 3), 

and the same bill price must  also satisfy (3.2.2) Substxtuting (3.2.2) and (3.2.5) 
in (3.2.8) gives 

Pl (0) + u 2 ql (0) + u 3 [Pl (2) + u 2 qt (2)] 

u2(u+ !) 



l 0  IG  MORGAN AND E H NEAVE 

which slmplies to 

(3.2.9) p, (0) = u2q, (2). 

Given u, R0, Rt,  R2, the valuation problem consists of  five equations; 
namely, (3.2.4), (3.2.9) and 

po+qo = I ; 

Pt ( J )  + q l ( j )  = I ; j ~ {0, 2}. 

Two of  the five equations are used to solve for P0 and q0. Since there are two 
unknown binomial probabilities at time 1, we need one of  the following three 
equivalent conditions to resolve the indeterminacy illustrated by (3.2.9): 

(3 2.10) p~ (0) = p~ (2), 

(3.2.11) B~ (2, 3)/B~ (0, 3) = u 4 , 

(3.2.12) Pl (0)  = U3/[ l  + u 3 ] .  

If as below we use (3.2.10) and assume the martingale probabilities at time 1 
are state independent, the same choice implies both (3 2.11) and (3 2 12) Note 
finally that with bonds maturing at dates 1, 2 and 3 our martingale probabil- 
ities must satisfy two constraints, expressed in the form of  bond valuation 
equations. This property extends to T+  I conditions in the next section, where 
there are T + 2  bonds. 

3.3. Bill prices for longer maturities 

The bill market is dynamically complete for a time horizon of  T If at time zero 
bills with maturities of  T + I  and T + 2  are available (HUANG and LITZEN- 
BERGER [1988]). As in Section 3.2, we assume either of  the following two 
equivalent conditions to eliminate remaining indetermlnacles" 

P,(J )  = Pt, J ¢ Jt; t ~ IiT+ l, (3.3.1) 

o r  

B, ( j  + 2, M)  Mill 
(3.3.2) - -  I)t. M ~ I ~ 112" 

B, ( j ,  M )  k=t 

Then for t > 2, backward induction procedures exactly like those of  
Section 3.2 show that 

p, = u2'+1/[1 + u  2'+1] 

We next simplify notation by suppressing the maturity M unless clarity 
requires otherwise In particular, we write v,, M as v,, and we also define 

OM, M ~ - I ) M  ~ 1 . 
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Then in ana logy  to (3.1.2), the bill prices can be wrztten recurslvely as  12 

(3.3.5) Bt( j ) = [pt Bt+ , ( j )  + qe B~+ , ( j  + Z)]/uRt. 

Then (3.3 5) and  

(3.3.6) B,+, ( j +  2) = v,+ i B,+ i ( J ) ;  

J ~ J t ,  t~  I ~  -~, can be used in the b a c k w a r d  m d u c h o n  a rgumen t s  o f  
Sect ion 3.2 to ob ta in  

M - I  

(3.3 7) B,(O) = H [Pk+Vk+lqk] " 
k=t U k R k 

for . . /=  t and  t ~ I~ t - j .  W h d e  equa t ion  (3.3.7) expresses the bdl  price in terms o f  
the m a x i m u m  poss ible  mteres t  rate one per iod  p r io r  to the bdl ' s  ma tu r i t y ,  tt 
can be used xn con junc t ion  with (3 3.6) to express  the bdl price in terms o f  any  
mteres t  rate  real izat ton.  

Since at  tmle t and  in s ta te  j the term s t ruc ture  is def ined by the bill price 
fo rmulae  (3.3.7), the de r iva t ion  o f  the bill prices implies  the term s t ruc ture  
evolves in a pa r t i cu la r  manner .  F o r  example ,  the interest  fac tor  terms for  two 
bdls  ma tu r ing  in successive per iods  are  gwen by l /B t ( j ,  t+ l) and 
[I/Bt(J, t + 2 ) ]  I/~. Moreover ,  the one per iod  fo rward  fac tor  between t imes t +  1 
and t +  2, cond i t iona l  on reaching  t ime t and  state j ,  ~s ~3 

~,,,+,(s)/B,,,+2(s) 

3 . 4 .  C o n d i t i o n a l  r i s k  p r e m i u m  a n d  v a r i a n c e  

I f  the process  is m state j a t  t ime t, Bt+ I ( j )  occurs  with p r o b a b i h t y  p and  
B,+ t ( j +  2) with p r o b a b i h t y  q. Then  by (3 3.6) the cond i t i ona l  risk p r e m i u m  of  
the bill price ts 

PB, t(J)  = E ,B ,+ ,  ( J ) - B , ( j ) u R , ,  

= (qv ,+ ,  + p )  B,+ ~ ( j )  - uj R , ,  

which under  the mar t inga le  becomes  

(3.4.1) PB.t(J) = (qvt+l+p) B,+l(J)--(qtv,+l+pt)  Bt+l(J) 

= (q -q t )  (v ,+l-  1) B,+ l ( J ) .  

S imdar ly ,  t ak ing  

y = vl+lBt+l( j )  and x = Bt+l ( j ) ,  

~2 Rewriting (3 3 5) to express the martingale m terms of bond prices shows how the price 
evoluuon would be constrained by assuming the martingale probabdlty is constant That is, (3 3 5) 
says that a conslant martingale probabd~ty p* must sattsfy 

p* = [uJ R, B, ( . t ) -  zd ÷ t B,+ i (./)]/[I - u J+ 1B,+ t ( / ) ] ,  

for all t and for all j In effect. Ho-LEE [1986] impose this constraint, ef Ihelr Appendix 
eqn (A6) 

13 Since by (3 3 2) v~ depends on M, the forward rate formulae for individual bonds are also 
maturzty dependent 
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and applying (2.2.6) to (3.3.7), shows that the conditional variance of  the bill 
pr tcets  

(3.4.2) VB. , ( J) = pq(v,+ 1 -- 1)2" [B,+ t (j)]2 

But then combining (3.4.1) and (3.4.2), 

(3.4.3) K~. ,-= P~. , ( j ) / [  V~. , (j)]l/2 = (p  _p) / (pq) l /2 .  

The r~sk premtum tn (3.4.1) ts postttve tf and only if 14 Pt > P Moreover, 
(3.4 3) shows that the conditional risk premium and the condinonal standard 
deviation are strictly proportional at any tame t, offering theoretical support for 
the ARCH-M model used by ENGE, LILIEN and ROUINS [1987]. Finally it is 
evident from the denvanon that (3.4 3) is a general feature of bmomml models, 
rather than being specific to the model of  this paper 15 

3.5. Relation to Ho-Lee type models 

It is instructive to mterpret the formulae of  Section 3 2 using the perturbation 
functions of Ho  and LEE [1986]. In our notation, equations (1) and (2) of 
BLISS and RONN [1989] summarize the relations between the perturbation 
functions 

a s  

(3.5.1) 

(3.5 2) 

h ( M - t ) ,  h * ( M - t )  

B t + l ( j )  = B , ( j ) u : R ,  h ( M - t ) ,  

Bt+ I ( J  "4- 2)  = B t ( j )  u j R t h* ( M -  t ) .  

Using (3.3.6) to rewrite (3.5.1) gwes 

h ( M - t )  = l / [p t+v ,+lq , ] ,  

and with further use of  (3.4.1), (3 5.2) gwes 

h * ( M - t )  = Vt+l/[p,+vt+lq,] .  

Comparison with BLISS and RONN [1989, eqn (3)] shows that p, plays a role 
analogous to r~ while vt+ ~ plays a role analogous to d M -'. Ho  and LEE [1986], 
Buss  and RONN [1989], KISHIMOTO [1989], RtTCHKEN and BOENAWAN [1990] 
and RITCHKEN and SANKARASUBRAMANIAN [1990] all treat zE as constant, and 
mdependent of  6, basing their argument on Ho,  LEE [1986, eqn. (A6)]. But 
none of  these authors exphcltly considers the implication of  the constant rt 
assumption for the originally chosen interest rate process ~6, and for this reason 

~4 We cannot specify the relat~onshJp between p and p, w~thout a general eqmhbnum analysis, but 
if agents are risk averse we know that Pt > P 

~5 We are grateful both to an unnamed referee and to David Laughton for pointing this out to us 
Note also that using thxs condition we can avoid the need to estimate martingale (pseudo) 
probabilities Thin ~s advantageous since as HJM [1990a, p 420] point out, estimating the pseudo 
probabdlnes can lead to mstabd~tles 

~6 The ~mphcattons are for the process as d~stmcl from its time zero values Ho-Lee's orgmal term 
structure ~s consistent with the data, but the stochastic process describing its evolutton ~s not 
considered exphc~tly after assuming n to be constant See aso note 10 above 
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it ts difficult to assess how the form of  interest rate evolution they use 
compares with estimated processes. 

4. FORWARD PRICES 

This section values develops expressions for forward prices, their conditional 
variances, and rtsk premiums A forward contract is a commttment  to buy or 
to sell an asset at some fixed future time, for an tmtially specified price called 
the forward price. A forward commitment  to buy is called a long position, a 
forward commitment  to sell a short positron. Typically, a forward contract  is 
wrttten at a forward price which makes its present value equal to zero. A long 
position in a forward contract leads to a capital gam if on the contract  
maturtty date ( In  futures market  parlance, the dehvery date) the underlying 
asset has a spot price In excess of  the forward price, and to a capital loss if the 
reverse is true. 

4.1. Recursive calculation of forward prices 

Let Gt(j, T, M) be the forward price at time t, when the spot factor ts u:R,, on 
a contract written at time t, with dehvery date T, against a bill maturing at time 
M>_ T. On the delivery date, the forward price equals the value of the 
underlying instrument; cf. Cox,  INGERSOLL, ROSS [1981]. Therefore, 

(4.1.1) GT(j, T, M) = Br(J, T, M). 

As before, the arguments T and M will be suppressed whenever no 
ambiguity results, and the forward price will usually be written Gt ( J ) ;  t ~ I~-; 
J ~ J t "  

Next, let the value at time t of  a forward contract  written at time 0, with 
exercise (delivery) price Xv, and when the spot factor is u j Rt, be defined as 
Ft(j, XT, T, M). As before, arguments will be suppressed unless needed for 
clarity, and the value of the forward contract will normally be written 17 

r t (J ,  XT). 
Consider first the problem of  valuing a forward contract  with an arbt trary 

delivery price; it wtll then be easy to calculate the forward price for that 
contract. Proceeding by backward InductIon, on the delivery date the contract  
value is the difference between the bond price and XT, the delivery price Thus, 
if the interest factor xs uTRT : 

(4.1.2) FT(T, Xr) = B r ( T ) - X T  = [I/[uT R,]M-r]--XT. 

~7 We shall show below how the notatton can accommodate forward contracts written at 
arbitrary t~mes t It ~s convement to define the value of the forward contract as well as the forward 
price so that bond prices, forward prices, and futures prices can all be related using the same 
methodology The notatton for forward and futures prices (G,(j) and Ht(J) respectwely) is 
consistent with Cox, INGERSOLL, ROSS [1981], and GI(J) ts the specml value of Xr such that the 
value of the forward contract ~s zero when zt is written, cf JARROW and OLDFIELD [1981] 
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Then noting that (4.1.2) can be written 

(4.1.3) Fr(T,  Xr) = Br(T ,  T, M ) - B T ( T ,  T, T ) X  T 

It follows ~mmedmtely from the results of  Section 3.2 that 

(4.1.4) F,(t, Xr) = B,(t, T, M ) - B , ( t ,  T, T )XT ,  

and in particular 

(4.1 5) Fo(O, XT) = Bo(O, T, M ) -  Bo(O, T, T) X r  

Next, equation (4.1.5) implicitly defines G0(0) by the condition 

F0 (0, Go (0)) = 0. 

That  is, 

(4.1.6) G0(0) = Bo(O, T, M)/Bo(O, T, T); 

cf. JARROW and OLDFIELD [1981, p. 381, eqn. (13)]. 

4.2. Conditional variance of forward prices 

The forward price on a contract written at time t does not change before the 
contract delivery date, time 7'. However, new contracts can be written at times 
s > t, and the conditional variance of  forward prices refers to the possible 
variations in the prices on these new contracts, which will be written to reflect 
the newly prevailing time and interest factor environment. 

For  theoretical purposes, assume a new contract is written at each point in 
time s, and that all contracts have the same delivery date T. Given the forward 
price G,( j ) ,  the forward price at time t + l  is either G , + l ( j + l ) ,  with 
probability p, or Gt+~ ( J -  1) w~th probablhty q. Then using methods similar to 
those of  Section 3 and using (4.1.7), (4.2.1) can be rewritten as 

pq(u2CM-, - I)_ i)Z. [Gt(j)]2 (pt+ uZCT-,-l)q,)2 
(4.2.2) V~ , ( j )  - 

(pt + u2CM--t-l) q,) 2 

Denoting the conditional variance of the rate of  change of  the forward price 
by V ~ , ( j )  = Vc. , ( j ) / [Gt( j )]  2, it follows immediately from (4.2.2) that 

pq(u2CM-,- i)_ 1)2. (p, + u 2¢r-,-i) q,)2 
(4 2.3) V~, , ( j )  = 

(pt + u2(M-,-  I) qt)2 

independent o f j .  

4.3. Conditional risk premiums in forward prices 

Define the conditional risk premium in a forward price by 

(4.3.1) Pc , (J)  = E,{Gt+ i ( J ) } -  G , ( j ) ,  
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where Et denotes the time t conditional expectation of  the time t + l forward 
price. 

Condition (4.3.1) can be rewritten 

F(p+ 2tM-_,[,)q) (p,+,2(T-,-,,q,) i] o,(j). 
(4.32) Po, t(J) = L (P,+u2(M-'-I)q,) 

An expression for the risk premium in rate of  return form can also be found 
using 

(4.3.3) PG, , ( J ) =  Po,,(J)/G,(J). 

4.4. Conditional risk premium and standard deviation 

As with bill prices, a proport ional  relationship between P~, , ( j )  and 
[V~ ,(j)]l/2 by using (4.33) and (4.22) to define an appropriate  proportionali ty 
constant .  

(4.4.1) P~, t ( j ) / [V~ ,  t ( j ) ] l / 2 ~  K~, t . 

After simplification 

Pt - -P  qt(u2(T-t - I)_ I) (1 + u 2 ( M - t -  I)qt)  
(4 4.2) K3,, - + - -  

(pq)l/z (pq)l/2 (u2(M-t-I)_ I) (I +U 2 ( r - ' -  I)qt ) 

The standardized risk premium for the forward price is a more complex 
expression than for the bond because the forward price is the ratio of  two bond 
prices, and this ratio reflects the influence of  both bonds '  prices. 

5. FUTURES PRICES 

This section develops expressions for futures prices, their conditional variances, 
and risk premiums. A futures contract can be thought of  as a series of  forward 
contracts, so designed that any capital gains or losses are realized on a day to 
day basis To see this, consider the value of  a long forward contract,  as 
described at the beginning of Section 4, after one day of  its life has elapsed If  
the asset has risen In value over the day, the value of  the forward contract  will 
have increased from zero. With a forward contract any such capital gain (or 
loss) goes unreahzed until its delivery date, when any capital gains or losses are 
realized in a single transaction 

However ,f the contract is a futures contract  written on exactly the same 
terms, then at the end of day one the holder of  the long position is paid the 
capital gain, or pays the capital loss The futures price (the delivery price under 
the contract) is then adJusted, in a process called marking to market,  so that 
the amended contract  again has a value of  zero at the end of day one. The 
same process of  paying capital gains, or collecting capital losses, occurs each 
trading day with a futures contract,  as does the marking to market  process 
needed to compensate for the payments. Thus in essence a futures contract is a 
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series of  forward contracts on which capital gains or losses are realized daily as 
they occur, rather than remaining unrealized until the dehvery date. 

5.1. Recursive calculation of futures prices 

Let Ht( J, T, M) be the futures price at ume t, when the spot factor is uJRt, on 
a contract with delivery date t written against a bill maturing at time M. On the 
delivery date, the futures price equals the value of  the underlying instrument; 
cf. Cox,  INGERSOL, ROSS [1981] Therefore, 

(5.1.1) HT(J, T, M) = Br(j,  T, M). 

In periods t ~ I0 r -  i, the futures price is defined as Hi(J, T, M) However, as 
with the underlying bills, the arguments T and M wd be suppressed whenever 
no ambiguity results, and the futures price will usually be written H t ( J ) ;  
t ~ [o F. 

Under the perfect markets, zero arbitrage opportunities assumptions of this 
paper, futures prices satisfy the condition 

(5.1.2) Ht( j )=ptHt+. ( j+I )+qtHt+~( j -1 ) ,  te l , r - I ;  

and 

(5 .1 .3 )  H r ( J )  = BT(J)  = l/[utRt] M-T, J ~ J r .  

Then Jt follows immediately that 

(5.1.4) HT(T-  2 k) = v 2k HT(T), 

where v = v(T, M ) =  u M-r, and k~l~'. 
Taking (5.1.3) with t = T - 1  and using (5 1.4) gives 

(5.1.5) HT_ I (j) = [PT_i-F V2 qT_i]" HT(J-F 1). 

Similarly, 

(5.1.6) HT_2(J)  = [PT_2+O2qT_2] [PT_lWO2qT_l] H T ( J + 2 ) ,  

for all admissible j It follows that 

(5.1.7) H i ( J )  = vZHt(j+2), and 

Ht(J) = [pt+v2 qt]" Ht+.(j+ 1), 

f o r j ~ J ~ a n d  for t~{0 ,1  . . . . .  T - I } .  
Finally, sett ingj = t and applying (5.1.7) recurslvely gives an explicit formula 

for the futures price at time zero: 
T - I  

(5.1.9) H0(0) = Br(T) H (pt+v2q') 
t=0 

The futures price depends on M, T, Br(T), and u, but not on {R,}, 
t ~ Ii r-~. 

It is also interesting to examine how the futures price behaves as a function 
of time to maturity. To discuss the maturity effect on ~ts own, it is necessary to 
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isolate it from the effect of  interest rate change 18. This is most  easily achieved 
by first establishing how the futures price behaves at the maximum interest 
rate. Then it is easy to use this result to see how the futures price behaves at a 
given spot rate. 

Proposition 5.1.1: The futures price Ht (t) xs a decreasing function of  t 
Inspection of (5.1.7) and (5 1 8) shows that 

(5.1.10) H,(t)  > H,+i (t+ 1) > H , + 2 ( t + 2  ). 

The next proposition uses (5.1.10) to determine the effect of  a shortened 
maturity on the futures price when j is held constant. 

Proposition 5.1.2: Let the spot factor remain unchanged between periods. Then 
the ratio of  futures prices decreases with time if and only if M > M*,  where 

(5. l . l l )  M * = T +  {[In (p,_ 2 P,- l /q,-  2 q,- 0]/2" In (u)}. 

Proof:  Use (5.1 7) and (5 1.8) to write 

(5.1.12) Ht( j ) /Ht_2(J)  = v2/[pt_2+v2qt-2] [pt- l+V2qt-i] .  

The behaviour of  the ratio on the right hand side of  (5.1 12) is revealed by 
defining 

X = I )  2, a = p t _ 2 " P t _ l ,  b = p t - 2 " q t - i + p t - i ' q t - 2 ,  c = q t - 2 " q t - i ,  

and considering the equation 

x =  a + b x + c x  2. 

Noting that a + b + c  = I, rewrite the quadratlc as 

(5.1.13) [ x - a / c ]  I x -  1] = 0 

Given the values o f p ~ - i ,  P , -z ,  q,-~ and q,-2 as assumed in (3.3.4), it follows 
that a > c Thus when v 2 hes between unity and a/c, the ratio (5 I 12) is greater 
than umty, and for values o f v  2 > a/c, (5.1.12) is less than unity. Since v 2 is an 
increasing function of  M, there ~s a critical value M *  which determines whether 
(5.1.12) is increasing or decreasing m t .  [] 

Straightforward calculation shows M* is defined by (5.1 11). Note  that M*  
is not necessardy an integer, as are M and T. 

~8 O f  course ,  ~t is poss ib le  to assess  m a t u r i t y  a n d  interest  ra te  effects m c o m b i n a t i o n  But  fo r  m o s t  
empi r ica l  p u r p o s e s  one  is in teres ted m ce t ens  p a n b u s  p red ic t ions  o f  the type  next es tab l i shed  
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5.2. Conditional variance of futures prices 

Conditional on a realization H t ( j )  , the futures price at time t + l  is either 

H,+~ ( j +  1), with probabili ty p, or 

H,+ ~ ( j -  1), with probabili ty q. 

Using methods similar to those of  Sections 3 and 4, the conditional variance 
of  the futures prices is found to be 

(5.2. I) V1t. t ( J )  = Pq{[ v 2 -  1]" [H,+ 1 (j--b 1)]} 2 . 

Then, using (5.1.8), (5.2.1) can be rewritten as 

(5.2.2) V,., ( j )  = pq.  {[v 2 - 1]. [H, (j)]}2/[p, + v2 q,]2. 

To see the effect on VH,,(J)  when t increases while interest rates are held 
constant,  recall from (5.1.7) that 

H t+2( j )  = v2Ht+2(J+2) .  

Then by (5.1.3) and (5.2.2) 

(5.2.3) V, . ,  (a)  = pq {(v 2 -  1) [p, + v 2 q,] H,+ 2 (j)/v2} 2 

Then, whether (5.2.3) increases or decreases m t depends on the behavlour of  
both p ,+vZq ,  and H , + 2 ( j ) ,  as well as on their relative sizes. Thus the change 
in VH.t ( j )  is in general ambiguous;  cf. Proposlton 5.1 2. 

Defining the conditional variance of  the rate of  change of  the futures price 
by 

VI~, t ( j )  -~ VH, , (J ) / [Ht (J )]  2 , 

it follows immediately from (5.2.2) that 

(5.2.4) Vt~., ( j )  = pq {(v 2 - l)/(p,  + v 2 qt)} z , 

independent o f j .  Also, V i * , ( j )  increases in t If and only if 

Pt+v2qt  > Pt+, +v2qt+ t ,  

as established in (3.3.5). In addition, considering successive terms in (5.2.4) 
shows that V~. , ( j )  is a convex function of t. 

5.3. Conditional risk premiums in futures prices 

Define the conditional risk premium in a futures price by 

(5.3.1) PH, t(J)--- E,{H,+ t (J)} - H, ( j ) ,  

where E, denotes the time t conditional expectation of  the time t + 1 futures 
prtce, and J e  { j +  l , j -  1}. 

Condition (5.3.1) can be rewritten 

(5.3.2) Pi-I.,(J) = { [ P + v 2 q ] - [ p t + v 2 q , ] } ' H , ( J ) / [ P , + v 2 q , ] .  



A DISCRETE TIME MODEL FOR PRICING TREASURY BILLS 19 

The risk premium can also be expressed in terms of the rate of  change of  
futures prices, 

(5.3.3) P,~. , ( J )  = Pn. , ( j ) / H ,  ( j ) .  

The risk premiums are positive in any period t for which p < Pt, as shown in 
(3.5.4). 

5.4. Relations between conditional risk premiums and variance 

From (5 3.2) and (5.3.3) 

P3,, (j)/[V~, ,(j)]l/2 = g n , ,  , ,  

where 

K~.,  = {[p + u 2 t g -  TI q ] _ [p, + U2tM - T] q,]}/(pq ) t/2 (u 2tM - T3_ 1). 

After slmplifymg, 

(5.4.1) Kit., = ( p t - p ) / ( p q ) U 2 .  

That  is, the proportionali ty constant K~., is the same for futures prices as 
for bond prices; cf. (3.6.2). The result is not surprising since a futures contract  
has the same rate of  return behaviour as a series of  investments in short term 
bonds, and since the rate of  return behavlour on long bonds is related to the 
rate of  return behavlour on short bonds by an absence of  arbitrage profit 
opportunities. 

5.5. Relations between forward and futures prices 

The formulae for futures and forward prices permit explicit comparisons.  
Recall (4.1.6) and (5.1.9), from which the ratio Go(O)/Ho(O) can readily be 
calculated In addition, by using (3.2.3), forming the ratio 
H0(0, T, M)/Bo(O, T, M ) ,  recalling that u > l, and that 

B0(0, T , T ) =  I / R o ' u R  I . . . 'U  r - l  R v - i ,  

it IS easy to see that 

G0(0, T, M)  = B0(0, T, M)/Bo(O, T, T)  > Ho(O, T, M )  

The last condition is a special case of  Cox  - I N G E R S O L L -  ROSS Propostion 9 
[1986, pp. 331-332] 

6. CONCLUSIONS 

This paper has presented a discrete tIme model for consistently pricing treasury 
bills as well as the futures and forward contracts written against them. For  
each instrument, the paper also finds formulae the conditional variance of 
return, the risk premium, and the ratio of  conditional variance to conditional 
risk premium. The formulae are consistent with observed time zero data, and 
the evolution of  future interest rates is less restricted than in other, similar 
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models. The paper also shows that single factor models imply relationships 
between the different factors affecting the term structure's evolutmn, and that 
other similar models have not recognized the dependencies created by these 
restrictions. Finally, we resolve a problem left open in HJM [1990a] by finding 
conditions under which the martingale probabilities wdl be unique. 

A P P E N D I X  I 
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Let Bt(T ) be a random variable reflecting the time t price of a zero coupon 
bond maturing at t~me T_> t. In this notation, unlike that of  the body of  the 
paper, the dependence of  the bond price on the interest rate IS left ~mphclt. 
Also, let 

uU,; with probabdl typ  
Ut+ I 

u - t  U,; with probability ( 1 - p ) .  

Theorem: The value of  a zero coupon bond is given by: 

T - I  

(A.I) Bt(T)= U7 ~T-') B°(T) H {PsU-(r-s-I)+(l-ps)ur-S-I} 
Bo(t) s=, 

Proof:  Fix T and proceed using backward induction on t. Equation (A.I) is 
trivially true for t = T, using the usual conventmn that an empty product 
equals unity. For  t < T, the definition of  the martingale probability p, means 
the expected return factor S, on a bill is given by 

(A.2) E* {Bt+ I (T)} = E* {St Bt (T)}, 

where S, ~s defined m (2.2.2) and the asterisk denotes expectation under the 
martingale. But 

(A.3) S, = U,R, = U,{Bo(t)/Bo(t+ 1)}. 

Then assuming under the induction hypothesis that (A.1) holds for t, 
T - I  

(A.4) E*{B,+t(T)}- B°(T) H {Psu-CT-s-I) 
Bo(t+ 1) s-t+l 

+ (1 -Ps)  u r - s -  l} E* { U,+¢I r- '- I)} 

from which it follows that, since the last term on the right hand side is an 

~9 We are indebted  to a referee for p rov id ing  the der iva t ion  and in te rpre ta t ion  given m th~s 
A p p e n & x  
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expectation given reformation at ttme t: 
(A .5 )  E *  {U,'~(1 r - ' - I ) }  = U7 (T- ' -I )  E * [ U t / U , + i ]  r - ' - I  

= U t - ( T - t - l ) { p t U - ( r - t - t ) + ( l - - p , ) u ( T - t - 1 ) } .  

Equation (A.I) then follows. [] 

In addition, the martingale probabthttes can be obtained by equating the 
reduction based prices to the known prices at time 0, producing the following 
spectalized verston of  (A 1): 

T 
(A.7) I = H { P ~ u - ~ T - O + ( I - - p ~ ) u r - ' } '  

v=0 

from which p, = u z t+ I/(1 + u 2t+ l) can be derived. 
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