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ABSTRACT 

This paper describes a technique to find the maximal stop-loss premiums in a 
given retention for a compound Poisson risk with known parameter, and 
known mean and variance of  the claims. Restricting to an arithmetic and finite 
support of  the claims, one gets an optimization problem of  a non-linear 
function with a computable gradient, under linear constraints. 

Numeraical results are given contrasting the method with the method of a 
previous paper, where only diatomic distributions were considered. 

1. INTRODUCTION 

At the XXII ASTIN-colloquium, Hans Schmitter provoked a discussion on the 
problem of  maximizing the ruin probability with given initial capital d and 
safety margin 0, and for the individual claims mean It, variance a 2 and known 
maximum b. In the article by KAAS (1991) this problem is tackled by restricting 
the feasible claim amount  distributions to be diatomic. Under these circum- 
stances one may use one-dimensional optimization techniques to find the 
optimal diatomic distribution. It is stated in that paper that the maximizing 
diatomic claim distributions tend to be so good that if one tries many random 
feasible solutions, only occasionally a higher ruin probability is found. The 
same restriction to diatomic distributions also leads to good results for the 
closely related problem of  finding maximal compound Poisson stop-loss 
premiums. In this paper we discuss a more sophisticated technique, only usable 
for the latter problem, of  finding the maximal stop-loss premium without the 
restriction to diatomic distributions. The results indicate, however, that this 
restriction is not very severe, so practically oriented readers do wise to use the 
much simpler diatomic method of KAAS (1991) instead of the one discussed here. 

In the case of  an n-point support for the claims distribution, there are n mass 
points and n probabilities, but three restrictions, viz. the sum of the probabil- 
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ities equals one, the mean claim is/z, and the mean squared claim is u 2 + a  2. So 
we are left with 2 n - 3  free variables, over which the compound Poisson 
stop-loss premium is to be maximized. Now suppose we assume the support  to 
be fixed in advance. Then the resulting restrictions on the probabilities are all 
linear. We will capitalize on this fact in choosing an appropriate  solution 
technique from the field of  operations research. I f  moreover we choose the 
support  to be arithmetic, we can exploit Panjer 's recursion algorithm to find 
the compound Poisson probabilities effortlessly. No such recursion exists to 
compute  the exact ruin probability, so this method cannot be used for 
Schmitter 's problem. 

In Section 2 we present the mathematical  model. In Section 3 we shortly 
describe the optimization technique used, and show how our problem, to be 
given in (2.7)-(2.11), can be rewritten in a suitable form, with as few variables 
and restrictions as possible. In Section 4 we give some examples for small n, 
which contributes to the insight in why this problem is a tough one. Note that 
since the objective is to approximate  the unrestricted opt imum, the method is 
only meaningful for a fine discretization, which means a large n. In Section 5 
we expand on the numerical examples of  KAAS (1991), and try to determine 
whether his diatomic opt ima are far removed from the global optima. 

2. THE MATHEMATICAL MODEL 

We study the following random variable, representing the total claims: 

(2.1) S = X i + X 2 +  ... +XN 

where the random variable N describes the number of  claims and is Poisson (2) 
distributed. The random variables Xi are iid and describe the claim sizes. They 
are assumed independent of  N. Their distribution is arithmetic with span h and 
maximum b = n.h,  so P[Xie  {0, h, 2h, . . . ,  nh}] = 1. In this note we will not 
study the role of  the maximum claim size closely, which means we take b to be 
' large enough ' .  We assume that E[Xi] = u and Var [Xi] = a 2, where It and a 2 
are known. 

We use the following notation for the probability functions of  X; and S: 

(2.2) pj = P[X; = jh] j = 0, l, . . . ,  n 

(2.3) f j  = P[S = jh] j = 0, l . . . .  

The probabilities f j  can be computed from the pj's by Panjer's recursion: 

(2.4) fo = e ; (P° -1 )  

(2.5) fj  = -- i .p , . f j_,  j = 1, 2 , . . .  
J i=l 

The stop-loss premium of  S can be computed as follows: 

[d/h] 
(2.6) ns(d) = Z ( h ' s - d ) ' f ~  = E [ S ] - d +  ~ ( d - h ' s ) ' f s  

s>d/h s=0 
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Of course by (2.1) we know that E [ S ]  = 2/.1. So to find maximal compound 
Poisson stop-loss premiums n s ( d )  we only have to maximize the last sum of 
(2.6) over the feasible values of  pj. Writing g(-) for this function, we must 
solve 

[d/hi 

(2.7) M a x g ( p  0 , . . . , p , , )  = Max E ( d - h . s ) . f ~  
s=0 

with .fs determined by (2.4)-(2.5). The conditions on the probabilities pj,  
j = 0, . . . ,  n, namely Z p j  = 1, E [ X ]  = It and Var [X] = a 2, can be written 
down as follows for a claims distribution on mass points 0, h . . . . .  n. h : 

(2.8) p0 + p t +  ... + p,, = I 

(2.9) 0"p0+ l ' p t +  ... + n . p ,  = lt/h 

(2.10) 02"p0 + 12"Pl + ... +n2"Pn = ( ,u2+a2)/h2 

Obviously we must require 

(2.11) pj>_0, j = 0 . . . .  ,n  

Note  that it is easy to incorporate information on higher moments  than the 
second, though this is not very important  for practical purposes. 

3. THE METHOD OF THE LINEAR COMBINATIONS 

To solve the problem presented in the previous section we use a so-called 
gradient method. In these methods one generates a sequence of  feasible 
solutions, choosing the next point in a direction determined with the help of  the 
gradient of  the objective function. This is done in such a way that the objective 
function increases. The iteration is stopped if such improvement  is no longer 
possible. The method we use is the method of  the linear combinations,  see 
TAHA (1987, § 19.2.5). We give a short description of  it, which should be 
adequate for those with some knowledge of operations research. A good 
introduction in this subject is TAHA (1987). See also Figure 1. 

P2 

rr% 

b,  P ~0 

0 Pl 

FIGUaE I. The method of linear combinations for it = 2. 
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Suppose the vector of  variables is P =  ( P o , P l , . . . , P n ) ' .  We want to 
determine the maximum of  g ( P ) :  

(3.1) Max g ( P )  

under the following linear restrictions on P: 

(3.2) A P  _< b 

P_>0  

Starting from a feasible solution p0, in the t+  1st iteration of this method pl+~ 
is determined as a linear combination of  two feasible solutions: 

(3.3) P'+ ~ = P' + r (P* - pt) 

for some r with 0 < r _< 1, with P* the vertex of  the feasible region which gives 
the optimal solution to the following linear programming problem: 

(3.4) Max V g ( p t )  • P 
P 

under the same conditions (3.2). The value of  r in (3.3) is taken to be the 
optimal solution to the one-dimensional optimization problem 

(3.5) Max h(r )  = g ( P t  + r ( p , _ p r ) )  
re (0 ,  I] 

so r is the 'bes t '  step-size in (0, l],  if a step is taken in the direction of  P*. 
Because the feasible region is convex, point Pt+ 1 is also a feasible solution. This 
procedure is repeated until 

(3.6) ~Tg(pt) • P* < ~Tg(U) .  P' 

In this point improvement can no longer be found by this method. The point 
P' might, however, well be a local maximum, so it is generally wise to repeat 
the whole process several times with different starting solutions p0. 

We can get rid of  the three linear equalities in problem (2.6)-(2.11) by 
elimination, and write it in the form (3.1)-(3.2). As dependent variables we 
choose P0, the probability of  a zero-claim, p , ,  the probability of  the maximum 
value b = h . n  and Pro, the probability of some point near the mean claim: 
h.m ,~ ~. This choice has the advantage that in general a feasible solution is 
found by taking all other probabilities equal to zero. 

Write V = {0, 1 . . . .  , n}\{0, m, n} for the set indices of  free variables, then 
(2.11) first gives the n - 2  non-negativity conditions 

(3.7) Pi >- 0 for i ~ V; 

the constraints Pn -> O, p,,, _> 0 and P0 -> 0 directly lead to three linear inequal- 
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ities in the probabilities p;, i ~ V, namely 

,{ (3.8) p.  - -  (0"2 q_ f12)/h2 _ mp/h  - 
/ /2 _ nm 

_ 1 f(t72+ltZ)/h2 np/h _ 
(3.9) Pm m 2 -- nm 

2 i 2 p i + m  Z iPi} >- 0 
i~V i~V 

Z i2p i+n  Z iPi} -> 0 
iEv i~v 

(3.10) P0 = I - ~ P i - P , - P m > - - O  
ieV 

where obviously (3.8) and (3.9) have to be inserted in (3.10). These three 
inequalities are the constraints of  the linear problem (3.4) that must be solved 
in each iteration. The objective function is 

(3.11) w,(pt  . . . .  ,Pm-~,Pm+l,  . . . , P , - 0  := (Vg) ' (P l  . . . . .  Pm-J,Pm+l,  " " , P , - l ) '  

The gradient ~ g  contains the derivatives of g( ' )  in (2.7) with respect to the free 
variables Pk, k ¢ V. The necessary partial derivatives o f f s  can be determined 
from the recursive relations (2.5): 

(3.12) Ofo _ eX(p o_ I) j. Op.____O_ 
apk apk 

± 0,, 1 Ofj _ )t/j i Pi "-I- f j - i  , 1,2 . . . .  
Opk i= I Opk Opk ] 

with api/OPk equal to the coefficient of Pk in (3.8)-(3.9) for i ¢ V, equal to one 
for i = k, and zero otherwise. 

Note that if (3.12) is computed successively for each k ~  V, k .h_< d, it 
suffices to store a vector afi/aPk, i = O, . . . ,  [d/h], rather than a matrix. 
Furthermore it looks as if the number of  computations involved in (3.12) 
increases with the third power of  the number of  mass points, so with h -3. Most 
of the terms in (3.12), however, can be shown to be equal to zero. The first 
term in the summation only contributes if Pi > 0, which is only for the mass 
points of  the current solution p,. There are three of  these if P'  is a vertex of the 
admissible region, six or less if it is a combination of two vertices, and so on. 
The partial derivative in the second term of  the summation is only non-zero for 
i e {n, rn, k}. 

The other maximization, required in each iteration step to compute the 
optimum step-size, is the one-dimensional maximization of (3.5). This can 
easily be performed using for instance golden section search or Brent's method, 
see PRESS et al. (1986, Ch. 10.1). 

4. ANALYSIS OF THE PROBLEM FOR SMALL VALUES OF n 

As stated before the method is meaningful for small values of  h only, which 
indicates that the number of  mass points n should be large. But for n = 3 and 
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d small,  we can write down explicit analytical  expressions for  the c o m p o u n d  
Poisson stop-loss  p remium.  There  remains  only one free variable,  for instance 
P0, over  which to optimize.  The  feasible region is a closed interval. We 
examined  t h e c a s e  u = 2, a 2 = 1, 2 = 1, h = 1 (so b = 3, and the range of  the 
claims is {0, 1, 2, 3}) and var ious  integer values o f  d. To  determine which values 
o f p j  are feasible, we first solve (3.8)-(3.10) for P0 = 0, and get Pl = ~, P2 = 0 

1 I I 
and P3 = ~- Fo r  pl = 0 we obta in  P0 = ~, P2 = ~ and 173 = 5" All admissible 
solut ions are convex combina t ions  o f  these two solutions. So the feasible region 

1 I 
is P0 ~ [0, -~], and we have Pl = i - 3 p 0 ,  P2 = 3p0 and P3 = ~ - P 0 .  With (2.4) 
and (2.5) we can express g(-),  see (2.7) and (3.1), in P0- This leads to:  

d = g ( P o )  = Max imum for:  
1 : e p  o - 1 

2 '  ep0-I (2½ - 3 P0) 
3: eP°-1(4~-- I J 2 4~po+  45po ) 
4: eP0-1(6~_ 7 I 2 J 3 5~p0+2~p0 - 4 i p 0  ) 

7, 10, 13: 

5, 6, 8, 9, 11, 12, 14, 15, .. .  

I 
P0 = 
p 0 = 0 : g ' - - < 0  fo rp0~[0 , -~ ]  

Po ~ ; g ' ( O ) < O ,  ' I = g (Z) > 0 

Interior  m a x i m u m '  g '  (0) < 0, g' (~) > 0 

Also interior maxima 

Boundary  max imum P0 = 0 

Fo r  each integer d, (2.7) is a p roduc t  o f  e p°- i t imes a po lynomina l  in P0 of  
degree d -  1. For  non- integer  d the values of  (2.7) as given above  can be found 
by linear interpolat ion.  F o r  different values o f  d, different op t ima  arise, 
fol lowing a ra ther  errat ic pat tern .  For  large d, one expects P0 = 0 to be the 
op t imal  solution,  since it maximizes  the skewness o f  S, see KAAS (1991) and 
GOOVAERTS et al. (1990). 

To  opt imize  over  P0 proves  wor thwhi le :  the relative difference between 
minimal  and maximal  s top-loss  p r emium for d = 3, 4, and 5 was 10%,  3 3 %  
and 2 1 %  respectively. 

Tak ing  n = 4, we obta in  a two-dimensional  p roblem,  for instance in Pl and 
P3. Opt imal  solut ions can now be found using graphical  methods.  The  
objective funct ion is a p roduc t  o f  a po lynomina i  in p~ and P3, and the exponent  
o f  some linear fo rm in Px and P3- As a rule, m a x i m a  for (2.7) will be found in 
the vertices o f  the admissible  region. A plot  o f  the case u = 3, a 2 = 1, 2 = 1, 
d = 10 and h = 1 can be seen in Figure 1. 

5. NUMERICAL RESULTS FOR LARGE t// 

In KAAS (1991) the claims dis tr ibut ion is not restricted to be ar i thmetic .  He 
considers  only the d ia tomic  distr ibutions,  which makes  it possible to solve the 
p rob l em using one-d imens ional  op t imiza t ion  techniques. One would think that  
apply ing  the me thod  o f  this paper  for large values o f  n, maximal  stop-loss 
p r emiums  would general ly be found that  are substant ial ly better  than those 
obta ined  under  the severe restriction to d ia tomic  solutions.  This proved to be 
false. Fo r  some cases it proved that  the d ia tomic  op t ima  were also global 
op t ima ,  see below. Fo r  o ther  cases some improvemen t  could be found,  but not  
a substant ia l  one. 
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In our  computa t ions  it emerged that quite often the optimal solutions were 
vertices o f  the feasible region (3.7)-(3.10) that  is, solutions with only three mass 
points. But the objective function (2.7) can be very irregular, because the 
polynomial  componen t  has degree [d/hi- I, so there might  be about  ~ [d/h]- 1 
local maxima to consider, apar t  f rom all the boundary  maxima.  

Sometimes two of  the three mass points appeared to be neighbors in the set 
o f  feasible mass points k.  h, k = 0, 1, . . . .  This remained so when the span h 
was refined, and then these mass points collapsed into one intermediate mass 
point. Thus  a two-point  solution proved to be optimal.  We consider the 
examples o f  KAAS (1991) more  closely. His optimal d ia tomic  solutions for the 
case ~ = 3, a 2 = 1, 2 = are given below:  

d = 2 d = 7 d = 20 
~s* = 4.332192 ~s* = 1.395435 ns* = 0.052178 

xl = 0 . 4 0 5 4  P 1 = - 1 2 9 3  x 1 = 2 . 6 6 6 7  P 1 = . 9 0 0 0  x 1 = 2 . 9 5 5 9  Pl = .9981  
x 2 = 3 . 3 8 5 4  P 2 = - 8 7 0 7  x 2 = 6 . 0 0 0 0  P 2 = . I 0 0 0  x 2 = 2 5 . 6 7 4  P 2 = . 0 0 1 9  

A better solution was found for the case d = 7; it contains a mass point  x0 = 0. 
If  the mass on x0 is P0, an identical problem arises by replacing the Poisson 
parameter  2 by 2 ( 1 - P 0 ) ,  the mean /t by ~ / ( 1 - P o )  and the variance cr 2 by 
a 2 / ( l - p o ) - P o { # / ( 1 - p 0 ) }  2. By varying P0 over p o t  [0, a2/(it2+a2)] one can 
find the best maximal diatomic solution, having two positive mass points. 
Allowing mass on d or any point  larger than d also only requires a minor  
modificat ion o f  the method.  

In the case at hand we found by trial and error  that the best choice is 
P0 = 0.03. The result: 

d = 7  
ns* -- 1.399613 

x0 = 0.0000 P0 = .0300 
xl = 2.7971 Pl -- .8680 
x2 = 5.6087 P2 = .1020 

give the results for the algori thm from this paper,  for the 
span h we tried that led to the highest maximal stop-loss 

Below we 
discretization 
premium. 

d =  2, h = .0204 
ns* = 4.332191 

xl = 0.4080 Pl = .1296 
x2 = 3.3660 P2 = .0257 
x 3 = 3.3864 P3 = .8448 

d =  7, h = 0.39958 d =  20, h =.1478 
ns* = 1.399609 Zs* = 0.052178 

xl = 0.0400 Pl = .0309 xl = 2.8082 Pl = .0001 
x 2=2 .7971  P 2 = . 8 6 6 0  x 2 = 2 . 9 5 6 0  P 2 = - 9 9 7 9  
x 3 = 5.5941 P3 = .1030 x 3 = 25.717 P3 = .0019 

It can be seen that the best diatomic solutions for d = 2 and d = 20 are indeed 
global opt ima;  the same holds for the solution with P0 = 0.03 at d = 7. The best 
arithmetic claims distribution is very similar to the best diatomic one. 

The spans h were optimal in the sense that both a small increase and a small 
decrease gave worse results. Note  that the problem can be solved in theory by 
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each time halving the value of  h. For  increasing values of  n = b/h, however, the 
computing process proved to become difficult for two reasons. First, the time 
required to compute the gradient is quadratic to cubic in n. Second, the number  
of  possible local maxima increases with n, also. 

For  the other numerical example in KAAS (1991), with u = 3, tr 2 = 1 and 
2 = 5, and d = 5, 20, 40, the results were analogous. In this case, too, for the 
middle retention d = 20 it was best to take P0 > 0. In this case P0 = 0.036 led 
to a maximal stop-loss premium of  1.139811 (for P0 = 0: 1.136463). 

An example where a diatomic solution, or a solution with two positive mass 
points, did not prove to be optimal was found taking u = 10, a2 = 3, 2 = 2 
and d = 60. The best solution with two positive mass points and the best one 
found with the method described above are: 

Diatomic solution Arithmetic with h = .4925 
ns* = 0.107084 ns* = 0.108495 

xl = 9.9514 Pl = .9992 xt = 9.8500 Pl = .9460 
x2 = 71.730 P2 = .0008 x2 = 11.820 P2 = .0533 

x3 = 72.397 P3 = .0007 

The arithmetic solution given can easily be improved : taking P3 and x3 fixed, 
one might replace Xl and x2 by the optimal diatomic feasible distribution for 
the remaining problem. By this method an optimal value of  Zrs* = 0.108535 
was found. 

Which of  the possibly many local maxima is found depends strongly both on 
the chosen starting point p0 and on the value of  h. The latter plays an 
unexpectedly and annoyingly important  role, as can be seen from the following 
table for values of  h and opt ima attained for the same example given 
above:  

Span h Opt imum reached Span h Opt imum reached 

1.0000 0.107165 0.5000 0.107697 
0.9900 0.108198 0.4950 0.108319 
0.9850 0.108493 0.4925 0.108495 
0.9800 0.108191 0.4900 0.108253 

Note  that by replacing h = I by h = .99, a much better maximum stop-loss 
premium was attained than by just halving it. As with every gradient method, 
one may have good or bad luck: at h = 0.4925 it took 10 runs with different 
starting solutions to improve upon the solution found in the first run with 
h = 0.985. 

In theory, the problem at hand is solved by the above method. It does, 
however, take a lot of  time. Moreover,  it has to be executed many times, with 
different starting values and span widths, in order to make sure that the 
maximum found is indeed close enough to the global optimum. In practice we 
think it is advisable to use the somewhat  cruder but much faster approach 
proposed in KAAS (1991), refinied if needed by admitting fixed mass on 0 
and/or  d. The reason is that in practice the data on ~, cr 2 and 2 are based only 
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rs(l°) 

0.071 

0.064 

0.67 

0.00 

FIGURE 2. Stop-loss premium, expressed in p~ and P3, for the case h = I, n = 4, b = 4, m = 2, 
ll = 3, o .2 = 1, 2 = I and d = 10. The support is {0, 1, 2, 3, 4}. 
Constraint P4 ~ 0 is always fulfilled, P2 ~ 0 gives Pl +P3 -< -~, P0 ~ 0 gives Pl -< ~P3. Criterion values 

2 I I in the vertices: Pl = 0, P3 = 3 ~ .064, Pz = Z, P3 = / ~  .069, and Pl = 0, P3 = 0 --.+ .068. There is 
a local maximum Pl = .0792, P3 = .2377---+ .07044. The global optimum is Pl = .0666, 
P 3  = . 2 5 1 5  ~ . 0 7 0 6 4 .  

on (often rather primitive) estimates. Furthermore, the compound Poisson 
model presupposes identically distributed claims, and independence of the 
claims and of the waiting times between them, which themselves must be 
exponential. All this might well not quite be fulfilled in practical situations. The 
method discussed in this paper has strengthened our belief that the diatomic 
maxima, though not always exactly optimal, are good enough. 
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