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ABSTRACT 

Excess clmms lead to an unsatisfactory behavior of  standard linear cre&bdlty 
estimators We suggest in this paper to use robust methods m order to obtain 
better esumators. Our first proposal ~s the linear credlbd~ty estimator with the 
clmms replaced by a robust M-esUmator of scale calculed from the clmms This 
corresponds to a truncation of the claims w~th a truncation point depending on 
the data and different for each contract We discuss the properties of  the robust 
M-esmnator and present several examples. In order to improve the perfor- 
mance for a very small number of years, we propose a second estmaator, which 
incorporates reformation from other clmms into the M-estimator. 
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1. INTRODUCTION 

This paper attempts to introduce robust methods into the area of  credibility. In 
many actuarial apphcations excess claims (outhers) which are much blggcr than 
ordinary claims do occur. Excess clatms inflate the variance of the claims 
within a contract and thus lead to a small credlblhty factor This means that 
linear credibility charges almost the same premium to contracts which did not 
recur an excess claim even when their individual experience is quite different 
otherwise On the other hand, despite the small credlblhty factor, those 
contracts which incurred by bad luck an cxcess claim have to pay a high 
premium. This unsatisfactory behavior of linear credibility is illustrated in 
Example 5 3 below. It is taken from GISLER (1980a, b) where he proposed the 
following soluhon to this problem : He truncates all claims above a certain level 
which is determined from the whole portfoho so as to mmmllze mean square 
error It seems howevcr that this method is &fficult to use m more complex 
situations, e.g. for hlerarch~cal credibility or when only clmm rates wJth 
different volume measures are avadable. As a theoret~cmn I also wondered ~f a 
single truncation level for all contracts ~s always approprmte For further 
discussion of excess claims m cre&bfllty we refer the reader also to the paper by 
GISLER and REINI-IARD (1990). 

Robust statistics has had an enormous development during the past 25 years. 
According to HAMPEL et al (1986) '" In a broad informal sense, robust statlshcs 
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IS a body  of  knowledge,  partly formalized into ' theories o f  robustness ' ,  relating 
to deviations from Idealized assumptions  m statist ics".  In particular this body  
o f  knowledge contains  some clever est imation methods  which are much less 
affected by outhers than their classical counterparts .  They were developed 
when s tudying heavy tailed deviations from distributional assumptions  These 
robust  esumators  are thus good candidates for deahng with the excess claims in 
credlbdity. In several respects the situation in credibility theory is, however, 
different from the one usually considered in robustness" For  instance in 
credibility nonparamet r lc  methods  prevail whereas robustness studies a neigh- 
bo rhood  o f  a specific parametr ic  model ,  cred,blhty is interested in all the data,  
not  only in the majority,  because p remmms have to cover all claims; the 
parameters  one is estimating in credibility theory are r andom and not  fixed like 
in the f ramework  of  robust  statistics. Maybe  for these reasons the two fields 
have been largely separated until now. Because o f  these differences we were not 
able to derive our  estimators from a general principle or  an optimali ty 
criterion We just  propose  some simple est imators which are based on heuristic 
considerat ions and seem to work reasonably well. In our  first proposal  we 
calculate a robust  est imator  from the claims of  each contract  and use then 
linear credibility based on these est imators instead o f  the original claims. In the 
second proposal  we incorporate  an a priori premium into a robust  est imator 
based on the claim s~zes in a nonlinear  way. Here we are inspired by some 
Bayesian estimator.  The resulting est imator  is, however, free from any distri- 
butional assumptions.  

With these proposals  I hope to convince actuaries that robustness can make 
a contr ibut ion to the problem of  excess claims and that further research ~s 
worthwhile.  In part icular  I am convinced that the methods  proposed here can 
be adapted to hierarchical credibility and models with different volumes. Some 
preliminary work is in GISt.ER and REINHARD (1990), but  this Is a topic for a 
future paper. 

2. MODELS AND ESTIMATORS 

Wc consider the basic credibility model with J contracts  and n years o f  
experience It contains  unobservable risk parameters  0j and claims sizes X,/_> 0 
(1 _< i _< n, 1 _<j_< J )  We make the following dlStrlbutional assumpt ions .  

(2.1) (0j, Xt: . . . .  X,/) are i.i d. (I < j  < J ) ,  

(2.2) Oa is distributed according to U(dO), 
(2.3) Given 0j, Xl: . . . .  X,j are i.i.d with distribution Fo,(dx). 

It wdl be convenient  to dlst.nguish between the following two situations.  

Case I . U and F0 are known.  In this case a single contract  is sufficient, and 
we drop  the index j. 

Case II U and Fo are unknown.  

Al though  Case I is not  realistic, it is useful for explainlg our  ideas. 
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(2 6) 

where ,~ 
o f  

Our  goal Is to esumate  llj = /t(0j) = Eo,[X,], the pure risk premium. In 
Case I we propose 

(2.4) ~ ~ ' ) " =  ,u + cz ( T(  X, , . , X,,) - E[ T] ) 

where It = E[/2(0)] = ~" ll(O) U(dO) is the overall mean and ~ is the cre&bility 
factor. With 0~ chosen to mmm~ze  the mean square error, this ~s the linear 
credibility e sumator  based on T instead o f  X ~ , . . ,  X,, As our  pure experience 
based est imator  T we take a robust  e sumator  defined irnphc~ty as the so luuon  
of  

(2 5) ~ z ( X , / T )  = 0 
t--] 

with Z(z)  = max ( - e l ,  mm ( z -  1, c2)) and 0 < c I < 1, 0 < c 2. In Case II we 
replace means by averages" 

~ = Y . . + ~ ( T j -  T.) 

= ( n J ) - I ~ j ~ , X , j ,  T. = J - I ~ j  Tsand Tj is defined as the so luhon 

(2.7) ~ z(X,j /Tj)  = 0 

with Z as above. 
We list here some simple properties o f  our  proposal  which serve as a first 

justification : 

a) It is scale equivar lant .  I f  all X,(X,j) are mulUplled by a constant  c, then 
~ ( ~ t ) )  is multiplied by the same constant .  

b) It includes the linear credibility es t imator :  If  cl = 1, c2 = m,  then 
T =  ,V = n- lE, , ,V,  and Tj = ,V.j = n-I,Y-,,X~ 

c) It is unbiased E [ ~ - ~ ]  = /1 and J-I.__E~'~'j = ,V.. In order  to achieve this, 
we had to use the nonrobus t  mean X.. m (2 6) F rom a pure robustness 
point  o f  view, it would be preferable to take/ t j '~= (1 -~z) T + ~ T j .  However  
for Insurance, unblasedness is indispensable Note  that we arrive at ~ by 
adding the excess ,~ _ j - i  ~,j/t~j = ~ . . _  ~ to all contracts .  

d) It Is related to the t runcat ion est imator  by GISLER (1980a, b)" (2.5) can be 
written as 

(2 8) T =  n -I  t max (( l - c]) T, m l n ( X , , ( l + c 2 ) T ) )  
t= l  

i.e claims on both ends are truncated if c I < 1 The main difference to 
G~SLER (1980a, b) is that the t runcat ion point  depends on the contracts  
experience and is given mapllcltly. 

The est imator (2.5) belongs to the class o f  so-called M-est imators  o f  scale. 
These are s tandard est imators In robust  stausucs,  see HAMPEL et al (1986, 
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Chap.  2) Their  most  impor tant  proper ty  is that  the change due to an 
addit ional  observat ion at x is approximate ly  propor t ional  to Z(x/T) .  Hence by 
t runcat ing claims on both ends we bound the influence not  only from large 
claims but also from small ones. In most  apphcat ions  t runcanon  from above 
alone will be sufficient. However  as will be shown in Section 3 2, the est imator 
may  become zero easily if c2 is very small and cl = I. F rom the discussion 
there the role o f  the constants  cl,c2 will become clearer. It will be seen that 
their choice is not  very crucial and can be done  beforehand without  having 
much informat ion about  the claims. The credibility factor  at on the other hand 
must  depend on the distributions U and F o in Case I and on all the data in 
Case II. H o w  this can be done is the content  o f  Section 4 

We use a scale est imator  instead o f  the more c o m m o n  location est imator 
because we think that in insurance applications it IS more reahstlc to choose 
Fo(dx ) as a scale than a location family This takes into account  that claims are 
necessarily nonnegat ive and that larger mean values entail also larger vari- 
ances. The scale equlvarlance (a) above is a direct consequence o f  using a scale 
estimator.  

3 DISCUSSION OF TIlE ROBUST ESTIMATOR 

We consider only a single contrac t  

3.1. Existence, uniqueness and calculation of the estimator 

Denote  by x m < x(2) < . < xoo the ordered sample and by k0 the number  o f  
zero values m the sample. Fur the rmore  we introduce the set o f  solutxons for the 
equat ion defining T 

L = L ( x , ,  . . , x , ) =  { t > 0 ,  ~,=, X ( x , / t ) = O }  

Existence and uniqueness o f  T xs covered in the following: 

Lemma 3.1:  If  ko < nc2/(cl + c2), then L Is a closed, finite, non-empty  interval. 
l f  k 0 = nc2/(cl+c2) then L = (O,x(ko+l)/(l+c2)]. l f  ko > nc2/(cl+c2), then L 
is empty.  

Proof: For  any x >_ O, t ~ Z(X/t) is cont inuous  and m o n o t o n e  decreasing 

For  t > x(,,), ZTZ(X,/t) < 0. For  t _< X(to+l)/(1 +c2) we have 

E 7.(x,/t) = - k o c l + ( n - k o ) c z .  

F r o m  this the lemma follows easily, q e d. 
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The case where L contains  more  than one point does occur,  e.g. n = 4, 
cl = c2 = 0.5, xl  = x2 = 0.4, x3 = x4 = 1.8 gwes L = [0.8, 1.2]. I f  a unique 
definition o f  T is needed, we will take the midpoint  o f  L In case where L is 
empty,  we take T = 0. 

The defin |ng equat ion for T can also be written m the following equivalent 
form with X(o ) ~ O, x(,,+ i) ----- oo, compare  (2.8): 

n - 12 

(3.1) T= ~ x~o/(n-l~ (I +~2)-/ , ( I  -c,)) ,  
I= / ]+1  

(3 2) xit 0 < (I - c l )  T <  x<6+O , 

(3.3) xl,,_/2 ) < (1 +c2) T <  x(,_L,+ i), 

For  gwen l I and 12, T c a n  be computed  from (3.1) and then (3.2) and (3.3) 
can be checked. Because / l ,  12 can take only a fimte number  o f  values, T can be 
found by trial and error, at least for n not too big. In a more systematic 
iteratlve procedure  one determines new values/ i  and 12 such that (3 2) and (3.3) 
are satisfied and then computes  a new T from (3.1) etc In our  experience this 
worked very well, but we & d n ' t  try to prove the convergence o f  the algorithm. 
Note  that if ~t converges, it does so in a finite number  o f  steps. An al ternatwe 
algori thm can be obtained by rewrmng (2 5) as 

n -I  ~ 2 ( x , / T ) =  I 
I m l  

with ~(z )  = max ( 1 - c ~ ,  min (z, 1 +c2)) This suggests the ateratwe algori thm 

T <m+') = n - '  2 ( x , / T  <'')1 T <"'). 
I= [  

Its convergence follows from HUBER (1981) Section 8.6. 

3.2. The breakdown point 

In Lemma 3.1 we have already seen that with less than nc2/(cl  +c2) zero claims 
the e sumator  stays away from zero Here we consider the opposi te  case What  
is the maximal number  o f  claims tending to infinity for which the est imator  
remains bounded?  In robustness th~s ~s called the finite sample b reakdown 
point,  c.f  HAMPEL et al (1986, Sec. 2 2a) The breakdown point  plus one is 
then the minimal number  o f  outlying claims needed to take the est imator  to 
mfimty. 

Lemma 3.2: Let k = mm { i t  IN; t > n Cl/(Ci+C2)} Then T remains bounded  if 
less than k observat ions tend to infinity, but It tends to infinity if k or  more  
observat ions tend to infinity. 
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Proof: By definition o f  k 

(3.4) 

and 

k(cl +c2) >_ n cl 

(3.5) ( k -  1) (cl +c2) < n cl 

First we assume that  x¢,-k+~) is fixed and derive an upper  bound for T: If  
ct < 1 we put t = x(,,_~+l)/(I-ct). Then by (3.5) 

~ Z(x, / t )< - ( n - k + l ) c l + ( k - 1 ) c 2 < O  
t= l  

Hence by monotonlc l ty  T < t 
I f  cl = 1, we put 

n - k + l  

t = L x( , ) / (n-(k- l ) (1+c2)  ) >_ x(, ,_k+,)/(n-(k-l)(l+c2) ). 
t=l  

By (3 4) we obtain (l +c2)t _> X¢,,-k-~l), hence 

n - k + l  

Z(x,/t)_< Z x o ) / t - ( n - k + l ) + ( k - l ) c 2  = 0 
t--I t= l  

Moreover  for t ' > t  we have Z(X~,_k+t)/t')<Z(Xl,_~+l)/t). Therefore 
E, Z (x,/t') < 0. This implies T < t and thus completes the p roo f  o f  the first 
part. 

Fo r  the second part  we put t =  x~,,_~+l)k/(nct+k(I-cl)) By (34)  
(1 +c2 ) t  >_ x~,,-k+t). Hence 

~'~ Z(x,/t) > - (n-k )c l+kz(xo , -~  +j)/t) 
t--I 

= - ( n - k ) c l + ( n c l + k ( l - c O - k )  = 0 

Hence the right endpoint  o f  L = {t ' ;  Y~,X(x,/t') = 0} is > t, and t ~  ov if 
X ( n _ k + l )  ~ (20. q . e d  

Lemmas  3.1 and 3 2 show that  the tolerance towards zero values and outhers 
are in conflict This ~s not &fficult to show in general for scale equlvarlant  
con t inuous  est imators A reasonable compromise  might  be to take c~ = c2, but 
if a priori knowledge about  the claims is available other  choices are possible. 

3.3. Linearization of the estimator 

For  the cre&blhty  factor  ~ in (2.4) and (2 5) we need the variance o f  T and Tj. 
Because o f  the imphclt  definition, this seems hopeless. There is, however, a 
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simple asympto t ic  approxmaat lon  With the help o f  the so-called influence 
function we can linearlze T (see HAMPEL et al , 1986, Chap.  2): 

(36)  T(Xi  . . . . .  X,,) = T(O)+n -I ~ I F ( X , , O ) + o p ( n  -112) 
t=l  

Here T(O) is defined implicitly by 

(3 7) I Z(x/T(O))  F°(dx)  = 0 

and the influence function IF is given by 

IF(x,  O) = Z(x/T(O))  T(0) 2 M(O) - '  (3 8) 

where 

i 
~( I + c2) T(O) 

(3.9) M(O) = Z ' (x /T(O))  vFo(dx)  = xFo(dx)  
V(I-c l )  T(O) 

In p a m c u l a r  we have Eo[IF(X ,, 0)] = 0, hence Eo[T(X i ,  , X.)] ~ T(0), 
and 

(3.10) Varo[T(X I, . , X.)] ~ n -~ Eo[IF(X,, 0) 2] 
= n - ' e o [ z 2 ( X , / T ( O ) ) ]  T(O)4M(O) -2. 

One can define optmaal constants  c~, c2 as those values which numm~ze the 
asympto t ic  variance of  the bias corrected es t imator  Tlz(O)/T(O), l e 
E[IF~(X,/T(O))] I t (Of  T(O) -2. This depends  on F o, but for tunate ly  a choice of  
c~ = I, c2 between 1 and 2 is typically not  much worse than the o p t t m u m  but 
often much better  than cl = I, cz = co (which gives T = X),  cf. the example  
in Section 5.1 and the results for the closely related robust  location es t imator  
In view of  th~s and the tolerance to zero 's  and outhers  investigated m the 
previous sections, we r ecommend  as a s tandard  choice c~ = c2 = 1 for Sl'nall 
samples  and ct = 1, cz = 1.5 or 2 for mode ra t e  samples.  

One  m~ght also object  that  for samples  sizes n < 10 typical m insurance,  the 
approx ima t ion  (3 6) imght  be rather  crude. However ,  we use (3 6) and ItS 
consequences only to determine ¢x We conJecture that  a subopt imal  choice o f  
does not have a great effect For  more  accura te  app rox ima t ions  o f  
Eo[T(X  I . . . . .  X,,)] and Varo[T(X ~ . . . .  X,,)] the boo t s t r ap  (EFRON, 1982) 
might be useful. 

4 THE CREDIBILITY FACTOR 

In Case I we obtain  by a s t ra ight forward  calculat ion for  the es t imator  (2 4) 

(4.1) E [ ( / ~ - / ~  (0)) 2] = Vat  [/z (0)] + off {E [Varo (T)] + 

+ Var  [Eo ( T ) ] t - 2  o¢ Coy  [Eo (T) ,  It (0)]. 
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Hence the ~ mlmmizing mean square error  is given by 

Cov lEo(T), It(0)] 
(4.2) 0% - 

E[Varo(T)] + Vat [Eo(T)] 

An unbiased es t imator  of  the denomina to r  in Case II is 

(4.3) 
J 

( J -  1 ) - '  Z ( T j -  T.) 2 
j=l  

Because 

we need an es t imator  o f  E[Cov0 , (T  J, X.j)] The  l ineanzat lon (3.6) suggests to 
u s e  

(4.4) n - '  j - i  (n - 1) - '  Z ~'/)(X,j, T~) (X,j - ,V.,) 
j = l  i=1  

where 

/ _ _  n 

(4.5) "~(x ,  Tj) = Z(x/Tj) TTn/Z XvlIc,_c,)T,~ X,,<C,+c2)Tjl 
I t=¿ 

We thus take the es t imator  (2 6) with 0~ = &0 where 

( J - 1 ) - '  Y~j(Tj-T)(X.j-X )-n-'J-'(n-1)-1Y',j Y.,']'F'(Xy, Tj) (X,j-X.j) 
(4.6) f0 = 

( J -  1-)-' E, ( T j -  T )  2 

In the case Tj = X j  (i.e. cl = 1, c2 = ~ ) ,  one usually mo&fies the unbiased 
est imators  for  the numera to r  and the denomina to r  of  (4.2) so that all estimated 
variances are >_ 0 and all est imated correlat ions are between - I and + 1 If we 
want  to do th~s here too,  we have to estimate E[Var0(T) ]  e g by 

(n- l ) - '  77(x, , 2. 
I=1  

Since this creates addmona l  complexi ty  and we have no evidence that one 
really gains by doing so, we use the version with ¢20 given by (4.6). 

In the In t roduct ion  we have ment ioned that excess clmms lead to a small 
cre&blll ty factor  in the case o f  linear credibility. Let us look at what  happens 
to ~0 in (4.6) when a single excess claim is present. Wi thout  loss of  generahty 
assume that  Xi~ is being replaced by an outlier Then Ta and thus also T. will 
change only a little bit For  lmp[lclty let us assume that they do not change at 
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all Then only the numerator  m (4 6) changes The terms contammg Xll m this 
n u m e r a t o r  a r e  

n- t (J  - I ) - ' ( T  I -  T.) X ~ l - n - I J - I  ( n -  1 ) - I ' ~ ' ( X , , ,  T,)Xl, 

Hence we see that also here ~0 decreases ff the outher occurs m a contract with 
otherwise smaller than average clanns. We conjecture that this decrease ~s 
usually smaller than in the case of  linear credlbdlty because there the outlier 
appears quadratically m the denominator  The example m Section 5.3 seems to 
confirm this. Stdl it might be worthwhile to find a more robust &0 than (4.6). 
An obvious alternative is to replace the averages m the numerator  and 
denominator  by robust locauon and covarmnce esumators.  The possible gains 
and losses of  doing so would have to be investigated. 

5 EXAMPLES 

The examples in this section are chosen for computa tmnal  slmphclty and for 
their abdlty to illustrate the advantages and &sadvantages of  our robust 
cre&blhty estimator We restrict ourselves to the Case I 

5 . 1 .  S c a l e  f a m i l i e s  

Here we assume that 

(5 I) Fo(x ) = F(x/O) 

for a fixed cumulatwe dlsmbut lon function F This implies 

Ito = mO with m = I xF(dx),  

I ( r - r n )  ~ F (dx) ,  Varo[X] = 0202 with v 2 = 

Eo[T] = d,,O for some d, ,e~ ,  
2 Var0[T] = a,~O 2 for some a,, ~ [R 

Moreover  the results from Section 33  show 
O't~ ~ H - I t 7  2 where 

tha t  a s  n ~ co 

o-2= I 

I Z(x/d)F(dx) = 0 

Z ( x / d ) 2 F ( d r ) d 4 ( I x x ' ( x / d ) F ( d x ) ) - 2  

G ~ d, 
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Insert ing these results into (4 2) gaves the opt imal  credablhty factor  

O~ 0 = 
md,, Vat  (0) 

,/,~ Var (0) + ~,~ E[0 ~1 

As a side r emark  we note  that  as n ~ oo, 0%--* m/d. Because T--, dO for 
n --* or, we see that  S(0~---, mO, a.e ~ as consistent  The  bias due to the 
t runcat ion  Is compensa t ed  by the credlblhty factor  With the credibility factor  
~0 we can also calculate the mean  square  error  (MSE) E l ( w - M - p ( 0 ) ) 2 ] .  We 
o b t a m  

M S E  (robust)  - 
2 2 E[02] Var (0) m o n 

an2 Va t  (O)+a d E[O 21 

On the other  hand the mean square  error  o f  the linear credaNhty e s n m a t o r  as 
known to be 

M S E  (linear) = 
m 2 o  2 El02] Var  (0) 

nm 2 Vat  (0) + o ~ E[b2] " 

Defining the relative efficiency [RE] as the ra tm of  the mean square errors  we 
thus have shown that  

0 2 d,~ Var (0)+o',~ e [ 0  2] 
RE ( r o b u s t : l i n e a r )  . . . . .  

ad nm 2Var(O)+o 2 E [ 0  2 ] 

Let t ing n tend to infinity we obtain  the asympto t i c  relative efficiency (ARE)  

A R E  ( robus t"  hnear)  = 
o2 d 2 

o 2 D12 

This is nothing else than the usual a sympto t i c  relative efficiency of  m d J T 
versus the ar i thmet ic  mean We illustrate this result numencal l ly  in the 
fol lowing si tuat ion 

(5.2) F(x)  = (I - e - ' )  (1 - e ) +  1[, >_~].e 

This  means  that  given 0 with probabi l i ty  1 - e  a claim is exponential  with mean 
0 (an ord inary  claim) and with probabi l i ty  ~ it is equal to a . 0  (an outher  
claim). Asympto t i c  relative efficiences are given in Table  1 for selected values 
o f e  and a We see that  the loss o f  efficiency m the c a s e e  = 0 is more  than 
compensa t ed  by cases where large outlier claims are possible Note  that  the 
t runcat ion  me thod  of  GISLER (1980a, b) canno t  handle this s i tuat ion if Var (0) 
is not  close to zero because the size of  the out lying claims is also propor t iona l  
to 0. 
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TABLE I 

ASYMPTOTIC RELATIVE EFFICIENCY OF TIlE ROBUST VERSUS TIlE LINEAR CREDIBILITY ESTIMATOR 
IN T I lE  MIXTURE MODEL (5 I)-(5 2) 

c = 0  
c = 0 1  

a = 10 a = 100 

cl = c2 = I 072 140 460 
c I = I, c z = 2 090 I 01 331 

5.2.  An e x a m p l e  with  two  radical ly  dif ferent  c la im s ize  d is tr ibut ions  

In  th i s  e x a m p l e  t he  r isk p a r a m e t e r  a n d  the  c l a i m  size t a k e  o n l y  two  v a l u e s '  

P[O = 1] = P[O = 2] = 0.5,  

P[X = 110 = 1] = 0.9,  P [ X  = 1010 = 1] = 0 I, 

P[X= 110 = 2] = 0, P[X= 10i0 = 2] = 1. 

T h i s  m e a n s  t h a t  o n e  g r o u p  o f  c o n t r a c t s  p r o d u c e s  o n l y  l a rge  c l a i m s  w h e r e a s  the  

f i rs t  g r o u p  p r o d u c e s  u s ua l l y  s m a l l  c l a i m s  w i t h  o c c a s i o n a l  o u t h e r s .  In th i s  c a se  

c a l c u l a t i o n s  c a n  be  m a d e  in c l o s e d  f o r m  w i t h o u t  a n y  a p p r o x m l a h o n s .  T h e  

r e su l t s  fo r  n = 10, a n d  ct = c2 = 1 a re  g i v e n  m T a b l e  2. W e  see that t he  

r o b u s t  c r e d l b l h t y  e s t i m a t o r  is q u i t e  c lose  to the  p o s t e r i o r  m e a n  w h i c h  is 

o p t i m a l  f o r  s q u a r e  loss  a t  l eas t  m t h o s e  cases  w h i c h  d o  o c c u r  In p r a c t i c e .  

T h e  l i n e a r  c r e d l b l h t y  e s t i m a t o r  ts o b v i o u s l y  b a d  I t  c a n  be  s h o w n  eas i ly  t h a t  the  

t r u n c a t i o n  e s t i m a t o r  o f  GISLER (1980a ,  b)  c o i n c i d e s  w t th  the  h n e a r  c r e d i b l h t y  

e s t i m a t o r .  I t  is a l so  m s t r u c t t v e  to see w h o  p a y s  fo r  the  o u t l l e r s  w h i c h  o c c u r  m 

the  f i rs t  g r o u p .  It ts the  l u c k y  p e r s o n  in the  s a m e  g r o u p  w h o  h a s  n o t  ye t  
r e c u r r e d  a l a rge  c l a im .  

TABLE 2 

CREDIBILITY ESTIMATORS IN THE EXAMPLE 5 2 I'OR II = ]0 

Number of claims Probabthty given Robust Postertor 
= I0 Lmear 

0 = I 0 =  2 c l = c2 = I mean 

0 0 3487 0 I 12 1 74 
I 0 3874 0 2 00 1 85 
2 0 1937 0 2 88 2 04 
3 0 0574 0 3 76 2 43 
4 00112 0 464 357 
5 0 0015 0 5 52 5 86 

10 0 1 9 92 9 99 

9 
9 
9 
9 
9 
9 

I00 
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5.3. An example by GISLER (1980a) 

This  is aga in  a case where  bo th  0 and X are d iscre te :  0 ~  {1, 2, 3, 4}, 
X ~  {0, 2, 4, 6, 40}. We have P[O = t] = 0.25 for all i. The  cond i t iona l  p roba -  
bdi t ies  for X given 0 are given m Table  3 We take  n = 3 so tha t  exact  
ca lcu la t ions  can be made  wi thou t  too  much work  We c o m p a r e  here four  
es t imators .  The  first one is the classical  l inear  credibi l i ty  e s t ima to r  

^ h a  /~j = 3 . 9 1 2 + 0 . 1 5 8 ( X j - 3 . 9 1 2 )  

The  second one Is our  robus t  c redib i l i ty  e s t ima to r  with c~ = c2 = I and ~ = o% 
given by (4.2):  

fi;ob = 3 .912+0.351 ( T , - 3 . 0 8 9 )  

The  third one is the semihnear  credibi l i ty  e s t ima to r  with op t ima l  t runca t ion  
po in t  o f  GISLER (1980a, b).  

= a (Xv) - 2.767 
3 t~] 

where  G ( x )  = mm (x, 4.89).  

F ina l ly  we cons ider  the op t ima l  e s t ima to r  

~ B~ycs = E[X4j lXi j ,  Xzj ,  X3j].  

TABLE 3 

CONDITIONAL PROBABILITIES IN TIlE EXAMPLE 5 3 

Po[X, = x] 
o 

a = 0 x = 2 x =  4 x =  6 x =  40 

1 05445 0 2475 0 0990 0 0990 0 0100 
2 0 2940 0 2940 0 2450 0 1470 0 0200 
3 0 0970 0 2910 0 3395 0 2425 0 0300 
4 00480 0 1440 0 2880 0 4800 00400 

The  mean  square  e r rors  for these e s t ima to r s  are 1.90, 1.47, 1.12 and I 09. The  
values  o f  e s u m a t o r s  for some reahza t ions  o f  ( X ~ , X 2 j ,  X3j) are gwen in 
Tab le  4 We see that  typical ly  the robus t  es tmaator  ~s between the l inear  and  
Gls le r ' s  e s t ima tor .  The  most  s t r ik ing except ion  occurs  for con t rac t s  with two or  
three c la ims o f  40. They  are  heavi ly  charged  by our  robus t  es t imator .  This  
difference will become i r re levant  for  somewha t  larges n 's  because then the 
p r o b a b i l i t y  for a con t r ac t  to p roduce  a ma jo r i ty  o f  out l ier  c la ims is prac t ica l ly  
zero.  Moreove r ,  if we change  the mode l  sl ightly and in t roduce  an add i t iona l  
risk class with Po,[Xu = 40] ~ O, then the above  bad  pe r fo rmance  o f  our  
e s t ima to r  turns  into an a d v a n t a g e :  Wheneve r  there is a m a j o n t y  o f  out l ier  
c laims,  we should  charge  the c o r r e s p o n d i n g  con t r ac t  heavily.  
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TABLE 4 

CREDIBILITY ESTIMATORS IN THE EXAMPLE 5 3 

CREDIBILITY 

Wlrll Ii = 3 AND ~,ELECIED CLAIMS 

45 

Robust  Postertor 
(Xi,  X2, X3) Linear Gisler 

c I = t. 2 = I medrt 

(0, 0, 0) 3 29 2 83 1 72 2 09 
(0, 0, 6) 3 61 2 83 3 01 2 50 
(0, 2, 2) 3 50 3 30 2 78 2 78 
(0, 2, 6) 3 72 3 53 3 54 3 25 
(0, 6, 6) 3 93 4 23 4 31 4 30 
(2, 4, 6) 3 93 4 23 4 60 4 69 
(6, 6, 6) 4 24 4 93 5 60 5 68 
(0, 0, 40) 541 283 301 258 
(0, 6, 40) 572 493  431 4 13 
(2, 4, 40) 5 72 4 93 4 60 4 53 
(6, 6, 40) 6 04 7 03 5 60 5 46 
(6, 40, 40) 7 84 12 86 5 60 5 58 

5.4. Discussion 

Our  est imator performs well if there are outlying clmms and the number  o f  
years available is not  very small In other  situations it seems to be al least 
acceptable in ~ts per formance  It can deal also well with situations where the 
outlying clmms vary considerably w~th the risk parameter.  The reason for this 
is that  our  est imator  determines a t runcation point  separately for each 
contract ,  based only on the experience o f  the contrac t  under consideration.  If  
the number  o f  years is small, one m~ght want to use also the experience from 
other contracts  to some extent. How this can be done m a robust  way ~s the 
topic o f  the next section 

6. A MORE SOPHISTICATED APPROACH 

We consider first Case I wlth known distributions and fix a measure r for the 
average claim size It could be E[X] ,  but it is preferable to choose r robust  so 
that ~t is not  affected by single outhers and atypical contracts .  A concrete 
proposal  is given below. We then suggest the following est imator  

(6 I) ~ =  /z+(T(X,, .,X,,,z)-E[T(X, . . . . .  X , ; r ) ] )  

where ,u = E[X,] and T is defined imphcltly as the solution o f  

(6.2) £ z(X, IT) = y ( 1 - r / T )  

Here Z(X) = m a x ( - c l ,  r a i n ( x - l ,  c2)) as before In order  to explain the 
character  o f  this estmaator, consider first the case c~ = I, c2 = oo Then by a 
simple calculation T =  7(n+7) -Ir+n(n+7)-IX and ~ - ' ~ =  7 ( n + y ) - t l l +  
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n ( n + y ) - I X  We thus recover the usual hnear  crediblhty est imator with 
credibility factor  n(n+?) -I. In the general case we Introduce the truncated 
clmms 

X,* = max ((I - c , )  T, rain (X,, (1+c2)  T)) .  

One then finds by the same a rgument  that 

(6.3) T =  n(n+y) - In  -I ~ X , * + y ( n + ) , ) - I r ,  
i=l 

i e T is a convex combina t ion  o f  the a priori value r and the mean of  the 
t runcated claims. The t runcat ion point  depends however  on T (and thus on r 
and Y~ . . . .  X,) so that (6 3) Js not an explicit solution. The est imator  T 
incorporates  already the a priori value r with the weight 7 ( n + y )  -~. The 
passage from T to ~ serves only to achieve unblasedness ; there ~s no need to 
introduce an addit ional credibility factor  there 

The mare advantage  o f  this proposal  is that  the a priori value r is used to 
find the t runca tmn points ( 1 - c l )  T and (1 + c 2 ) T  This improves the abihty o f  
the est imator  to detect and truncate outlying clmms It ~s most  wslble when we 
study the b reakdown points o f  T. With similar arguments  as in Section 3 I-2 
we can prove the following result. 

L e m m a  6.1 : 

I) Equat ion  (6 2) has always a unique solution m the interval 
[7(nc~ + ~ ) - '  r, o9) 

n) The breakdown point, i.e the maximal number  o f  claims tending to infinity 
the est imator  can tolerate wi thout  going to infinity, is given by mln {t e IN, 
t >_ (nc~ +~')/(ct + c 2 ) } -  1. 

Again a choice c I = 1, c2 between I and 2 is expected to work well m most  
cases. 

A different justification o f  our  est imator T can be obtained from the 
Bayesian viewpoint.  It is easily checked that (6.2) is the normal  equat ion for 
the est imator  maximizing the a posterlorl density if we choose Fo(dx)= 
O-I f (xO -I) dx with 

{C ~, X <  I + C  2 
f ( x )  = const  

(xe/(I + c2))- i - c2 x >_ 1 + ca, 

and 

U(dO) = const. C - 1 0  - y e x p  (-yr/O)dO 

provided c~ = 1, c2 > 0, y > I. We thus see that our  proposal  corresponds to 
heavy tails m both the distribution o f  claims and the distribution o f  the risk 
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parameter  No te  that the above prmr  U means that 0-1 ~ G a m m a  ( y -  1, yr). 
The assumption o f  scale famlhes for both F and U leads to an est imator  whmh 
Is scale eqmvar lan t :  I f  X~,.  , X,, and r are multiplied by a constant ,  then T i s  
mult~phed by the same constant .  

Next we discuss the choice o f  the a p n o n  wdue r. We propose  to use the 
solutmn of  the following equat ion 

I z (~ (o)/~) t: (,/o) = o 

where r(O) is determined by 

I z(x/r(o))  Fo(dx) = 0 

and Z is the by now well known truncated hnear function. F rom what  has been 
sand before, it is clear that  ~ ~s a robust  measure o f  the average claim size. The 
example o f  the hnear cre&Nli ty  e sumator  at the beginning showed that the 
chome o f  r ~s ~rrelevant if c~ = I and c2 = m Presumably  m other  cases too 
the value o f  ~ will not be crucml 

In Case I[ whmh is relevant for applications our  proposal  is as follows 

(6.4) ~ ' =  2 . . + ( T j -  T.) ( j  = 1,. , J )  

(6.5) ~ z(X~ITj)= y ( l - r / T a )  ( j  = 1 . . . . .  J )  
i= l  

J 

(6.6) 2 Z(rJ IT) = 0 
j = l  

(6 7) ~ z(X,j/r,) = 0 (j = 1 . . . .  J). 
/=1 

This is a s t ra ightforward modif icat ion o f  the previous definitions replacing 
expectations by averages Note  that ~j ~s nothing else than our  proposal  Tj f rom 
Secuon 2 Arguing hke for (2 8), we see that ~ ~s the mean of  the truncated v~'s. 

In order  to complete our  &scussion we have to determine ), by an objective 
procedure from the data.  We do th~s by minimizing an estimate o f  mean square 
error  In Case I it follows from (6 1) that 

(6.8) E [ ( p - " ~ - p  (0)) 2] = Vat  ( T ) +  Var ( p ( 0 ) ) -  2 Cov  (T, p(O)) 
= E[Var  0 ( T ) ] + V a r  (Eo[T])+ 

+ Var (It(O))-2 Cov (Eo[T], p(O)). 
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Because T is nonlinear, Eo[T] and Var0[T] are &fficult to evaluate. An 
approximation can be obtained like in Section 3.3 by llneanzing. If ~' is fixed 
and n tends to infinity, the influence of  r disappears as is easily seen in the 
example of hnear cre&bfl~ty Hence in order to obtain a nontnvlal asymptottcs, 
we take 7 = y(n) = ny<. Then we obtain by a Taylor expansion (cf HAMPEL 
et a l ,  1986, Chap. 2) 

(6.9) T(Xi, . , X , , r )  = T(0, r ) + n  -I £ IF(X,,O,r)+ot,(n k 1,2) 
t--I 

where T(O, r)  is defined imphcltly by 

(6.10) I Z(x/T(O, r))  Fo(dx) = ? ~ ( I - A T ( O ,  r)) 

and the influence function IF is now 

(6.11) IF(x,O,r) = {Z(¥/T(O,r))-)::(I-r/T(O, r))} T(O,r) 2 M(O,r)-'  

(6.12) with M(O, r)  = I Z'(x/T(O' z)) xFo(dx)+7-:_ r. 

Note that Eo[IF(X,,O, r)] = 0. Hence Eo[T] ~ T(O, r)  and Var0(T)  
n -I ~ IF(x, 0, r)  2 Fo(dV). This can be plugged into the formula for the mean 
square error which then can be minimized with respect to y. Details are left to 
the reader 

In Case II we need estimates for the different terms on the right hand sldc of 
(6.8). An unblascd esumator for Vat (T) is ( J - 1 )  -t  EJ=t ( Z / -  ~.)z. Because 

E, z 1 E ( T / - T . )  ( X j - Y )  = ( J - l )  {Cov(Eo[T ], I,(O))+E[Covo,(T~,Xj)]} 

we must estunate also E[Cov0, (T l, ,g:)] The llneanzatlon (6 9)-(6.12) suggests 
to do this by 

,£ 
- ' J - ' ( n - I ) - I  E ")ft'(X,,, L,z) (X , j -X : )  

i ~ l  I~ l  

where 

(6.13) 

and 

(6 14) 

Te(x, L ,  ~) = { z ( x lL ) - y , , -  ' ( I - , I T , ) } L  ~ ~ (T,, ~) ' 

J~/ (Tj ,z )  = n t £ X.ull( i :pT)<X, ~(t+c2)'r,l+Y n - l z .  
t--[  
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Taking  all this together we mm,m~ze the follow,ng express,on w~th respect to y 

J 

(615)  ( J -  1 ) - '  Z { ( T , - T ) 2 - Z ( T t - T ) ( X , - X ) } +  
j = l  

+ 2n i j - i ( n _ l ) - i  I F ( X u ,  T j , r ) ( X ~ j - 2 t ) .  
J - I  t=l 

A lengthy but  s t raightforward calculat ion shows that m the case c~ = 1, 

c2 = oo I F ( x ,  Tj, r )  = n ( n + 7 ) - I ( x - X . j ) .  Thus  (6 15) becomes 

(J-  l)-' ~ (2,-.g )2 (~2_2~)+2n-,j-,(,,_l)-, ~ (x,_~7.,)2~ 
j = l  /= l  /= l  

where ~ = n ( n + y )  - I .  So m this case the mm~mlzatmn can be done  m closed 
form and gives the classmal result. In general we will have to find the opt imal  y 
numerical ly  by eva lua tmn of  (6 15) for some values of y Since the exact value 
of 7 will not  mat ter  too much, a coarse search ought  to be sufficient. This 
completes the presen ta tmn of our  second proposal .  
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