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A B S T R A C T  

In this paper we give a recursive scheme, involving Panjer's recursion, to 
compute the distribution of  a compound sum of  integer claims, when the 
number of  summands follows a Generalized Poisson distribution. Also, an 
elegant derivation is given for some basic properties of  this counting distribu- 
tion. 

l .  THE G E N E R A L I Z E D  POISSON DISTRIBUTION 

The Generalized Poisson distribution, see CONSUL (1989), is an integer-valued, 
non-negative distribution with two parameters 0 and 2. A random variable N 
having this distribution with parameters 0 and 2 is also denoted as a GP (0, 2) 
random variable. In the first section we repeat the mathematical properties of  
this distribution, giving a short and elegant derivation. The second section 
contains a recursive algorithm to compute the probabilities of a compound 
Generalized Poisson distribution. This algorithm is obtained by the well- 
known technique of  differentiating the generating function and comparing 
coefficients of  resulting power series. This function, however, is known only in 
an implicit form, so the process is not as trivial as usual. 

An actuarial application of  the Generalized Poisson distribution, linking it to 
the ruin model, can be found in GERBER (1990). Other chance mechanisms 
generating this distribution are described in CONSUL (1989). One of  these is the 
Galton-Watson branching process, which is a model with many conceivable 
actuarial applications. In this process, the spreading of  a certain disease is 
modeled as follows. Suppose M individuals are originally infected. Each of  
these infects Li other individuals, i = 1 , . . . ,  M. These in turn infect L o. new 
victims, j = 1 . . . . .  Li, and so on. Now i f M  is a Poisson (0) distributed random 
variable, and the Li,  Lij . . . .  are independent Poisson (2) random variables, the 
total number N of people infected has a Generalized Poisson distribution with 
parameters 0 and 2. 

The parameters 0 and 2 are non-negative; the Poisson distribution is the 
special case with 2 = 0. Assume 2 < 1 to ensure that N remains finite with 
probability one. 

Consider the total number of individuals Bi infected by the ith person, 
including this person himself, and define B u analogously for the j th person 
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infected by i , j  = 1, . . . ,  Li. Obviously B; and B o are random variables with the 
same distribution. We can write Bi as: 

L, 

(1) B~= 1 + 2 BO" 
j=l 

Let B be distributed as B~ and Bo.. From relation (1), and using some 
well-known properties of compound Poisson (2) distributions, we can directly 
derive expressions for the mean, variance and generating function of  B. The 
mean can be computed as follows: 

1 
(2) E[B] = 1 + 2 E [ B ]  =~ E[B] - 

1 - 2  

The variance and the second moment can be computed from: 

1 
(3) Var [B] = 2E[B 2] ~ E[B z] - 

(1 - - 2 )  3 

If Gs(u)  = E[u B] is the generating function of  the Bi and B,j random variables, 
it must satisfy the following relation: 

(4) G s ( u )  = UGL~(GB (u))  = u e ~(cB(")-I) 

Writing t = t (u)  = GB(u), we obtain from (4): 
- 2 ( t -  1) 

( 5 )  u = t e 

The probabilities P [ B  = i] are the coefficients of the power series representa- 
tion of  t (u) .  To determine them from relation (4), we use a slightly simplified 
form of Relation 3.6.7 in ABRAMOWXTZ and STEGUN (1965; Lagrange's 
expansion): if u = f ( t ) , f ( O )  = 0, f ' ( 0 )  4= 0, and g is any function infinitely 
differentiable, then 

(6) g( , )  = g(0) + ,= ,E LJ-' so,)* J,=0 
The distribution of B is found by taking g ( t )  = t and using u = f ( t )  as in (5), 
resulting in the Borel distribution: 

(i2)i-i e-e~ 
(7) P [ B  = i ] -  , i =  i , 2  . . . . .  

i! 

Since a GP (0, 2) random variable is a compound Poisson (0) sum of Borei (2) 
random variables, its generating function equals e O(Gn(u)- I), SO the density of  a 
GP(0 ,  2) random variable N is found by taking g ( t )  = e °(t-l) in (6), leading 
t o :  

O(O+n2)" - l  e-O-,,;. 
(8) P [ N =  n] = , n = 0 , 1 , . . . .  

n! 
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To compute mean and variance of N directly from (8) involves rather tricky 
mathematics. Using (2) and (3), however, it is trivial exercise; note that for 
2 > 0 the mean exceeds the variance: 

0 0 
(9) E[N] - ; Var [N] - - -  

I - 2  ( 1 - 2 )  3 

Being a compound Poisson (0) sum (of Borel (2) distributions), a GP  (0, 2) 
random variable is easily seen to be infinitely divisible, as for any n = 1, 2 . . . .  (0) 
it can be written as the convolution of  n GP  - ,  2 variables. 

n 

2. A RECURSIVE ALGORITHM FOR THE PROBABILITIES 

OF A COMPOUND GP DISTRIBUTION 

To actuaries the total of  the incurred claims is more relevant than their 
number. I f  the costs associated with occurrence i, i = 1, . . . ,  N, are given by a 
random variable Z,., then the total costs are given by the following compound 
Generalized Poisson (0, 2) random variable: 

N 

(10) S-- E Zi" 
i=1 

Here the GP (0, 2) distributed counting variable N is assumed to be indepen- 
dent of  all Zi,  and the sequence Z l ,  Z2 . . . .  is i.i.d. We assume the Zi to be 
integer-valued and positive. (By excluding zero-claims, we avoid problems later 
on, when we have to compute P[S = 0] to start a recursion.) 

Actuaries prefer to use counting distributions that are suitable for computa-  
tions of  quantities like probabilities of  ruin and stop-loss premiums. Since 
PANJER (1981) actuaries are aware that there is a very efficient recursive 
algorithm to compute probabilities of  S as in (10) if N is Binomial, Negative 
Binomial or Poisson. SUNDT and JEWELL (1981) derive similar recursions for a 
wider class of  counting distributions. In this section we will derive recursion 
formulae expressing P[S = s] in P[S = j ] , j  = 0, I . . . . .  s -  I for the case of  a 
Borel and a GP counting variable, too. 

To this end, we will derive recursion relations for the coefficients of  the 
generating function Gs(u ). Using the fact that a GP (0, 2) distribution can be 
viewed as a compound Poisson (0) sum of  Borel (2) distributions, we can 
rewrite S as follows: 

M Bi 

(l l) S =  E Y/ where Yi = E ZO" 
i= l  j = l  
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Here M is a Poisson (0) random variable, Bi is a Borel (2) random variable and 
Z u is an i.i.d, sequence of  claim amounts. Each term Yi has a compound Borel 
distribution. 

If  N has a GP (0, 2) distribution, and S is as in (10), by (4) and (5) we 
have 

(12) G s ( u )  = e °(GB<Gz~u))-I) = e °~'-~) with t such that t e  -:'<'-I) = G z ( u ) .  

This implicit description of  the generating function of  a compound Generalized 
Poisson distribution will enable us to derive relations between its probabilities. 
We do so in two steps. The first and most important step is to compute the 
coefficients of  G B ( G z ( u ) ) ,  which amounts to computing the probability 
function of  the compound Borel distributed Y,. random variables. The second 
step uses these coefficients to compute the coefficients of  Gs(u) ,  simply by 
invoking Panjer's recursion formula. 

Taking the derivative with respect to u of  the logarithm of  the second part of  
(12) provides us with the following relation: 

d t ' ( u )  d G~(u )  
(13) - -  log ( t ( u )  e -:'~'~u)-l)) = _ _  _ 2 t ' (u )  = - -  log G z ( u )  - 

du t (u )  du Gz(U)  

Rearranging leads to the following equality: 

(14) t ' ( u )  - 
t (u )  G~(u )  

I - 2 t  (u) G z ( u )  

We introduce the following notation for the coefficients of  the power series 
representations for the three factors appearing in (14)" 

(15) t ( u )  = o~,u"; - u f l ,  u"; - r, . 
,=l 1 - 2 t ( u )  ,,=0 G z ( u )  u ,=0 

Since the coefficients of u" in (14) must be equal on both sides, we obtain the 
following relation" 

(16) ~ . + l ( n + l )  = ~ f l j rn-: .  
j=0 

The coefficients r,  depend on the known probability function of Z. We write 
p .  = P [ Z i  = n], n = 1, 2 . . . .  ; assume Pt > O. So we have 

(17) Gz(u)  = Z PnU~" 
n = l  

Using (17), rearranging the last equation of  (15) and comparing coefficients of  
u" leads to 
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~" (n+ l)p.+tu" 

( 1 8 )  = _1 u ° F n ~ 
~ n=0  

U 2 Pn+lUn 
n=O 

( n + l ) p . + l  = ~ rjp.+l-j ,  
j = 0  

Then the rn can be determined as follows: 

n - I  '( z ) (19) r n = - -  (n+ l )p .+j  - rjpn+l_ j 
Pi j=0 

n = 0 , 1  . . . . .  

n = 0 , 1  . . . . .  

The coefficients % are the probabilities of  Y~ to be determined. The auxiliary 
coefficients 8.  can be expressed in cq . . . .  , %+1, using the same technique 
leading to (18). Indeed the middle equation of (15) gives the result 

oo 

12 ~ OCk+l uk 
k=0  

(20) = u flk u~ 

1 - 2  ~ O~k uk k=O 

k=l 

ft. = ~ f l . - k2%+~ , ,+ t ,  n = 0,1 . . . . .  
k = l  

Using (20) and the fact that r 0 = 1, see (19), we may write (16) as follows: 

(21) %+l(n+l)= 2 rn-j f lJ  "1- fln-k'~'O~k-'l-O~n+l" 
j = 0  k = l  

The following expression for %+1 is found 

- ) '(z (22) ~+1 = - r._;flj + 2 fl.-kOCk , n = 1, 2 . . . . .  
n j=0 k=l 

The probabilities % can now be computed successively. Indeed, if the 
probabilities ~1 . . . . .  % and the auxiliary quantities ,80 . . . . .  fin-2 are known, 
one computes f l , - i  using (20), and next %+1 using (22). Since P[Zi = 0] = 0, 
the starting value ~l can be computed as follows: 

(23) ~1 = P I  ~'~,=1 Z ; =  I1 = P [ B =  I]P[Z ,  = 1 ] = p , e  -~. 

Note that by the requirement p~ > 0 we have 0q > 0. 
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Having computed the coefficients ~ ,  ~2 . . . . .  which are the probabilities of 
the random variables Y~, we can compute the probabilities of S simply by using 
Panjer's recursion formula for the Poisson (0) case, starting from P[S = 0] = 
P [ N =  0] = e - ° '  

(24) P [ S  = s] = - jo~jP[S = s - j ] ,  s = I, 2 . . . . .  
S j = I  

Remark 

Taking Pl = 1, pj = 0 otherwise, one gets rj = 0 f o r j  4: 0. Then (22) and (20) 
lead to a recursion for the Borel (4) distribution (7); combining it with (23) 
gives a recursion for the GP (0, 2) distribution (8). 

3. CONCLUSIONS 

The Generalized Poisson distribution may be a useful model when the chance 
mechanism used in the first section is appropriate, or any of the other models 
in CONSUL (1989). It can be used as an alternative to the Negative Binomial 
distribution when the tails of the counting distribution are thicker than those of 
the Poisson. It is mathematically a more complex distribution than the 
counting distributions usually assumed by actuaries (Binomial, Poisson or 
Negative Binomial), but we think that using the lines of thought given in the 
first section, actuaries will be able to use this distribution in their practical 
work. 

The possible objection that this counting distribution is not suitable for 
actuarial calculations, which mostly involve compound sums, is removed by the 
recursive algorithm given in Section 2. 
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