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ABSTRACT 

In the present paper, different estimators of  the Pareto parameter  ~ will be 
proposed and compared to each others. 

First traditional estimators of  ~ as the maximum likelihood estimator and 
the moment  estimator will be deduced and their statistical properties will be 
analyzed. It  is shown that the maximum likelihood estimator is biased but it 
can easily be modified to an minimum-variance unbiased estimator of  ~. But 
still the coefficient of  variance of  this est imator is very large. 

For  similar portfolios containing same types of  risks we will expect the 
estimated a-values to be at the same level. Therefore, credibility theory is used 
to obtain an alternative estimator of  ~ which will be more stable and less 
sensitive to random fluctuations in the observed losses. 

Finally, an est imator of  the risk premium for an unlimited excess of  loss 
cover will be proposed. It  is shown that this est imator is a minimum-variance 
unbiased estimator of  the risk premium. This estimator of  the risk premium 
will be compared to the more traditional methods of  calculating the risk 
premium. 

]. INTRODUCTION 

The Pareto model is very often used as a basis for Excess of  Loss quotations as 
it gives a pretty good description of  the random behaviour of  large losses - -  see 
for example BENKTANDER (1970). 

The distribution function can be written as 

(1.1) F (x )  l ( c )  ~ = - -  - -  , X > C  

X 

with oc > 0 and c > 0. The mean value E(X)  exists if ot > 1 and 

0C 
(1.2) E(X)  - c. 
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The variance Var (X) exists if ct > 2 and 

(1.3) Var (X) = 
( ~  - 1)  2 (c~ - 2 )  

The density function can be written 

f(x) = O~CetX-~t-I. 

¢2. 

The Pareto distribution belongs to the exponential family of  distributions as 
the density function can be written 

k 

P°(x)=C(O)exp( ~i=l Qi(O) ti(x))h(x), 

with 

0 = ~x, C(O)= otc ~, Qi(O)= - ( c t + l ) ,  ti(x)= lnx ,  h(x)= 1. 
See f. ex. SILVEY (1970). 

In the expression of  the distribution function two parameters  appear.  
Through the whole paper, we will assume that the lower limit c is known as 
very often will be the case in practice when the reinsurer receives information 
about  all losses exceding a certain limit which could for instance be the priority 
of  the excess of  loss treaty. 

I f  on the other hand c is unknown which is the case if the reinsurer receives 
only a list of  the largest losses and does not know if the list contains all losses 
exceding 100,000, 120,000 or 150,000. In this case we have to estimate the c. 

The maximum likelihood estimator of  c is very simple: 

= min Xi. 
i 

In other words, we choose the parameter  c to be equal to the smallest loss (see 
f. ex. MUKHOPADHYAY and EKWO (1987) about  estimation problems for c). 

All results in the following hold only true if c is known. I f  it is unknown and 
we have to estimate it, for instance all statements about  unbiased estimators of  
ct will not be true. 

The Pareto distribution with the distribution funtion at the form ( l . l )  is the 
common  used definition of  the Pareto distribution in Europe. In HOGG and 
KLUGMANN 0984)  we find a different definition of  the Pareto distribution 
function 

F(x)= 1-  ( b ) "-b+x x > O .  

This definition of  the Pareto distribution is the common used in America. I f  X 
is " E u r o p e a n "  Pareto distributed with parameters  (c, ~), then X-c is " A m e r -  
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ican" Pareto distributed with parameters (b, ct) where b = c. The results in the 
following are applicable to the American Pareto as well by replacing Xi by 
X i + c  and putting b = c in the formulas. 

A third version of  the Pareto distribution is known as the " sh i f t ed"  Pareto 
(see HOGG and KLUGMAN (1984)). The distribution function is 

F ( x )  = 1 - - -  , x > d >  0 
l + x  

with unknown parameters ~ and l. If X -  d is American Pareto with parameters 
(b, ct) then X is shifted Pareto with parameters (d, 0t, 1) where 1 = b - d .  Of 
course the shifted Pareto with 1 = 0 is equal to the European Pareto. If l > 0, 
two parameters have to be estimated. This estimation will require numerical 
techniques and the results in the following can no longer be applied. 

2. E S T I M A T I O N  O F  T H E  a - P A R A M E T E R  

Let X~, . . . ,  X, be independent identically Pareto distributed random variables. 
Hence, the maximum likelihood estimator of  ct is 

(2.1) ~t = n / ~  ln X~ 
/ i = l  C 

where In denotes the natural logarithm. 
It follows easily that In ( X / c )  will be exponentially distributed with mean 

value 1/ct when X is Pareto distributed (c, 0t). Then 

Xi 
(2.2) T = 2.., In 

i=1 C 

will be F-distributed with density function 

tX n 
f ( t )  - t n - t  e - ~ t ,  

(n- l)! 

As ~ = n / T  we get the following 

J (2.3) E ( a ) -  ( n - l )  o ( n - 2 ) !  

and 

t > 0 .  

n20c 2 I °° (x n - 2  

E ( ~ 2 ) -  ( n - l ) ( n - 2 )  0 ( n - 3 ) !  

n 
- -  l n -  2 e - a t  dt - -  O~ 

n - 1  

_ _  tn-3 e-CU dt = 
n 2 

( n - l )  ( n - 2 )  
0~ 2 . 
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Hence, the variance of  & is 

n2~2 ( 1 1 ) n 2 
. . . . .  • - -  _ 0~ 2 

(2.4) Var (&) - n - I n -  2 n - 1 (n - 1) 2 (n - 2) " 

The maximum likelihood estimator & of ~ is not unbiased - -  but so is the 
estimator 

(2.5) 

with T given by (2.2). 
Furthermore,  

(2.6) 

n - 1  

T 

1 
Var (~*) - ~2 < Var (o2). 

n - 2  

Thus, ~* is a better estimator of  ~ than & is - -  and in the following we shall 
concentrate on this estimator ~*. 

As the joint density function of  X~, . . . ,  X, can be written 

(2.7) p ( x l ,  . . . , x , )  = o :c  n~ Xi = ~ " c - " e  -(~+l)r  
i = 1  

with T as in (2.2). Therefore, T will be sufficient for ct as the Pareto distribution 
belongs to the exponential family of  distributions which are complete. Then 
every function g ( T )  of  T is a minimum-variance unbiased estimator of  its mean 
value E g ( T )  (see SILVEY (1970), p. 33, or RAO (1973), p. 321). Thus, ~t* is a 
minimum-variance unbiased estimator of  E(ct*) = ~. 

As X l , . . . ,  X, are independent, identically Pareto distributed random vari- 
ables, then Yi . . . . .  Y, with Yi = In (Xi /c)  are independent, identically expo- 
nentially distributed random variables with mean value l/ct and variance 1/a 2. 
It follows from the Central Limit Theorem (RAO (1973), p. 127) that 

Z n  - - Y i ,  n ~ ~ ,  
n 1 ~=l 

is asymptotically normally distributed ( l /a ,  i/(n~2)). As 1/(n~ 2) --. 0 for n ~ 
and the function f ( y )  = l /y  is differentiable with 

f ' ( 1 / ~ )  = _ ~ 2  ~ 0 ,  

it follows that 0t* = f ( z , )  is asymptotically normally distributed 

(See RAO (1973), p. 122-124). 
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Thus, a* is consistent. That  is, a* converges in probability to its estimated 
value as n converges to infinity (see RAO (1973), p. 344). 

3. THE MOMENT-ESTIMATOR OF 0~ 

When X is Pareto distributed (c, a), the mean value E ( X )  is given by (1.2). 
If we solve the equation 

cx ° 1 
- -  c with X = - Xi, 

X -  0~°-1 n i=t 

we get the following estimator of  a" 

X 
(3.1) a0 _ 

X - c  

We can only determine the asymptotical distribution of  a ° when a > 2. In this 
case we get: Let Xt . . . .  , Xn be independent identically Pareto distributed 
random variables with mean value and variance given by (1.2) and (1.3). Then 
according to the Central Limit Theorem (RAO (1973), p. 127) 

Y , , = -  Xi 
H i=1 

will be asymtotically normally distributed with parameters 

0C 0~ C 2 ) 
CC, - -  , 

a - I  ( ~ -  I)2 ( ~ - 2 )  n 
when a > 2. 

Consider the function f ( y )  = y / ( y -  c). As f '  ( y )  = - c / ( y -  c) 2, we get 

( ~ )  ( ~ - l ) 2 : k 0 ,  when a > 2 .  f '  - -  C 
0~-1 c 

0 The estimator an = f ( Y n )  is then asymptotically normallly distributed with 
parameters (RAO (1973), p. 122-124) 

~' n ( ~ - 2 )  = ~ z , - - + - -  . n n (oc - 2) 

a ° is then asymptotically unbiased for a, and usually, the asymptotical variance is 

As .var  (a0) > Var (a*). 

In some cases we do not know each and every single loss amount  but only the 
total amount of  losses and the number of  losses exceding a certain lower limit 
c. Then it is only possible to calculate the ~°-estimator of  ~. 
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In  the tables  below,  we c o m p a r e  the mean  value and  var iance  o f  the two 
e s t ima to r s  ~* and  ~0 for  different  values o f  ~ > 2. 

TABLE 3.1 
COMPARISON OF STANDARD DEVIATIONS AND COEFFICIENTS OF VARIANCE FOR ~ = 2.1 

V a ~ r  (~*) V a ~ r  (~*) ~ ~ EfficienCYof ~o 
E(a*) E(~ °) 

5 1.212 0.577 (2.254) (1.073) (1.859) 
10 0.742 0.354 (1.594) (0.759) (2.147) 
15 0.582 0.277 (1.302) (0.620) (2.234) 
20 0.495 0.236 (I.127) (0.537) (2.277) 
25 0.438 0.209 1.008 0.480 2.303 
50 0.303 0.144 0.713 0.339 2.353 

100 0.212 0.101 0.504 0.240 2.377 

TABLE 3.2 
COMPARISON OF STANDARD DEVIATIONS AND COEFFICIENTS OF VARIANCE FOR ~ = 2 .5  

V a ~ r  (~*) V a ~ r  (~*) ~ ~ EfficienCYof ~o 
E(O~*) E(~ °) 

5 1.443 0.577 (I .500) (0.600) (I .039) 
10 0.864 0.354 (I.061) (0.424) (I.200) 
15 0.683 0.277 (0.866) (0.346) (1.249) 
20 0.589 0.236 (0.750) (0.300) (1.273) 
25 0.521 0.209 0.671 0.268 1.287 
50 0.361 0.144 0.474 0.190 1.315 

100 0.253 0. 101 0.335 0.134 1.328 

TABLE 3.3 
COMPARISON OF STANDARD DEVIATIONS AND COEFFICIENTS OF VARIANCE FOR 0~ = 3 

EMcioncy 
o f  ~0 

E(oc*) E(a °) 

5 1.732 0.577 (1.549) (0.516) (0.894) 
10 1.061 0.354 (I.095) (0.365) (1.033) 
15 0.832 0.277 (0.895) (0,298) (1,075) 
20 0.707 0.236 (0.775) (0.258) (1.095) 
25 0.626 0.209 0.693 0.231 1.108 
50 0.433 0.144 0.490 0.163 1.132 

100 0.303 0.101 0.346 0.115 1.143 
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The (asymptotically) efficiency is defined as the squareroot of  the asymptotic 
variance of  ~0 divided with the variance of  ~*, i.e. 

~ /As .  var 6z °) 

Of course it makes no real sense to calculate the asymptotic variance and 
efficienty of  ~0 for small values of  n. 

4. ESTIMATION OF 0~ AS AN AVERAGE OF THE ACTUAL ESTIMATE 

AND THE " M A R K E T "  VALUE 

The minimum-variance unbiased estimator ~* is the best estimator, but even 
the variance of  this estimator is large if only few losses are known or available, 
which is often the case for practical purposes. Very often the basis for 
estimation of ~ is only 5 or 10 losses. But on the other hand, we often have a 
certain expectation about the right level of the a-value, having experience from 
other cases in the market. For  fire losses, we will usually expect an ~ near 1.5 
- -  for motor liability an ~ perhaps near 2.5. Some use of  credibility theory 
would therefore be natural. 

Again we assume Xm,. . . ,  Xn being independent, identically Pareto distri- 
buted random variables. Let 

Si = In Xi  
c 

Then 

S = I ~ s  
ni=l 

is an estimator of  I/a. We now regard 0 = I/~ as a random variable. 
Given 0 = 0 = 1/0¢, Si is exponentially distributed with a mean value 0. 
Furthermore, 

(4.1) E ( S A O  -- O) = in(O) = O, 

(4.2) Var ( S i l o  = O) = a2(O)  = 0 2. 

Let us assume we know by experience that for a given market and a given 
branch the average level of I/~ is 1/c%. For  each portfolio we will allow a 
certain variation from this average level. Then 

I 
(4.3) E L ( O ) )  = E ( O )  = - -  (say), 

~0 

k 
(4.4) Var (~u (O)) = Var (O) - (say). 
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with k depending of  which variation we will allow from the average level of  
1/~0. This corresponds to a structure function with mean l/ct and variance k/or 2. 

Alternatively, if we estimate the ~t 0 by e.g. the maximum likelihood estima- 
tor, we can estimate k by calculating the true variance of  1/ct 0 (see Example 4.1 
below). 

We get 

(4.5) E(cr2(O)) = E(O 2) = (E(O))2+Var  (O) - 

Furthermore (according to BOHLMANN (1970)), 

1 
Var (5) = - E(a 2 (O)) + Var (p (O)) 

n 

k + l  

1 k + l  k 

, ,  

Using the well-known credibility formula (BOHLMANN (1970)) we can approx- 
imate E ( p  (O)lSi,  . . . ,  Sn) by b S +  (l - b) E (p  (O)) where 

Var (/.t (0))  
b -  

Var (5)  

We will now define the "credibi l i ty"  estimator ff of ct by 

(4.6) 

and we get 

(4.7) 

1 
bS + (1 - b) E (/.t (O)) = - - ,  

b _ 
k kn 

k + ( k +  1)In 1 +k(n+ 1) 

In other words we will calculate ~ as the inverse of  

1 b 1 1 
- - =  - - + ( l - b ) - - ,  

~ ~o 

remembering the maximum likelihood estimator & in (2.1). 

E x a m p l e  4 .1  

Consider the losses larger than c = 1 mio for five fire portfolios: 
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Portfolio no i Number of losses T as in (2.2) 

1 17 10.5 
2 12 13.5 
3 30 19.5 
4 5 3.0 
5 10 5.5 

Total 74 52.0 

Then 

1 52.0 i 
- - -  - .703 = ~ 0  = 1.422. 

~0 74 1.422 

As the grand total of  the T's is F-distributed we can easily calculate the 
variance of  1/~0: 

' ( z ) '  Var (1/~0) = - ~  Var T ~2 " 

By estimating Var (O) by the estimate of  the variance of  l/a0 and using (4.4) we 
get k = 1/74 = 0.0135 giving us the following results '  

Portfolio no i a* b S 

1 1.524 0.1846 0.618 1.455 
2 0.815 0.1378 1.125 1.314 
3 1.487 0.2855 0.650 1.454 
4 1.333 0.0624 0.600 1.436 
5 1.636 0.1175 0.550 1.460 

Using this method to estimate ~, we obtain that extreme losses will not affect 
too much the estimate of  ~. 

Example 4.2 

When pricing excess of  loss treaties in practice the situation is not as is the case 
in example 2.1 above. The only available loss information is the loss informa- 
tion for the actual portfolio (if we ignore the possibility of  picking up 
information gradually). Let us therefore only consider the portfolio no. 1 in 
example 2.1. 

As said in the beginning of this chapter we do often have a certain more or 
less vague expectation of the level of  the a-value and then of  the level of  l/~z. 
For a fire portfolio we might expect to find 1/~ close to I/1.5 = 0.67 = I/~ 0. 
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N o w  let k = 0.01 and 0.02 corresponding  to that  we allow a coefficient o f  
variat ion o f  O o f  10% respectively 14.1%. 

We will then get the following estimate o f  ~ for portfol io no. I : 

k = 0.01 k = 0.02 

~* S b Y b ff 

1.619 1.524 0.618 0.1441 1.516 0.2500 1.528 

In this case the parameter  k is more  or  less "po l i t i ca l ly"  set: I f  we want  the 
individual estimates o f  ct to be close to the " m a r k e t  va lue"  we shall use a small 
value o f  k. But o f  course the weight factor  b depends on the number  o f  losses 
in the acutal  portfol io as well. I f  it is a very small portfol io the individual 
estimate o f  ~ will always be close to the market  value. 

5. E S T I M A T E  O F  THE RISK P R E M I U M  FOR AN U N L I M I T E D  C O V E R  

IN EXCESS OF X 

In excess o f  loss quota t ions  the impor tan t  quant i ty  to estimate is not  as much 
the a-value as it is the expected loss a m o u n t  for the layer. 

Consider  the unlimited layer in excess o f  x. The risk premium P ( x )  of  this 
layer is (see f. ex. BENKTANDER (1978)) 

x 
(5.1) P ( x )  = h - 6 r e ( x ) ,  

o~-1 

where ~ is the estimated loss frequency o f  the layer. Thus,  the interesting 
quant i ty  to estimate is not  ct but  rather m ( x ) ,  or just  m = re(l) .  We have 

I ! oo 1 ~ 1 

y', L (5.2) m - - - -  ( 1 / 0 0 -  - ( l / a )  0~ k - °~ k . 
c t -  I 1 - 1/ct k=0 k= I 

Let T be defined as in (2.2). Then T is F-distr ibuted (n, ~t) and 

(5.3) E ( T k  ) _ ( n + k -  I) Ik) 
t~ k 

with ( n + k -  1) (k) = ( n + k -  1) ... ( n +  l)n.  

As every funct ion g ( T )  of  the T which is sufficient is a minimum-var iance  
unbiased est imator  o f  its mean value (SILvE¥ (1970), p. 33, or  RAO (1973), 
p. 321), a minimum-var iance  unbiased est imator  o f  1let k is then 

(5.4) - T ~ = c~. T k . 
o~ k (n + k -  I) (k) 
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Then a minimum-variance unbiased estimator of  m is 

(5.5) rh - - Z ck T k '  
0~--1 k=~ 

since th is a function of  T - -wh ich  is suff ic ient--and E(&) = 1 / (~ -1 )  which 
follows from (5.2). As 

(5.6) 
I 

rh 2 = Ck T k = T k CjCk-j, 
k=l k=2 j= l  

we get 

oo 1 k - t  k - I  ( n + k - l )  U) 
(5.7) E(rh 2) = ~ ,4k with A k =  ~ c j c k - j _  

j=l ck y=J ( n + j -  l)(d) k=2 

On the other hand, 

t '-' (5.8) ( e ( , ~ ) y  = 1 2 I ~ 1 ( k - l )  1 
k=l k=2 ~ "  I k~2 O~ k j= 

Thus the variance of rh is 

1 
(5.9) Var(rh) = ~ ( A k - ( k - 1 ) )  

k=2 "~k 

= ~ I ~ l  ( n + k - I ) ~ J ) - ( n + j  - 1) 03 

k=2 ~ j=t ( n + j -  1) (j) 

It is rather troublesome to calculate the variance of  rh - -  but we know the 
CRAMER-RAO lower limit of the variance (SILVEY (1970), p. 35, or RAO (1973), 
p. 324). In the first place rh is a unbiased estimator of  m. Secondly 

dm m 2 o~ 

( ) (  )2 (n, nT,) . . . . . .  2 -  T+  ( ~ - I )  4 d l n p ( x ,  m) 2 n T (0~-- I )  4 0~ 2 

dm o~ ~x 

where p(x ,  m) denotes the simultaneous distribution (2.7) 

( l~i ) - o~ - I p(xl  . . . .  ,x,,) = o~" c "~ Xi = ~ c - "  e -C~+ O T. 
i=l 
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T h e r e f o r e ,  

E(dlnp(x ,m))2  (n  2 n 2 n ( n + l ) )  
= - - -  2 - - + - -  ( 0 t - l )  4 

dm ct 2 O~ 2 o~ 2 
(a - I ) 4  

- - ? ' / - -  - - / m "  O~ 2 

T h e  CRAMER-RAO l o w e r  l imi t  o f  the  v a r i a n c e  is then  

(5.10) V a r  (rh) >_ 
I ~t 2 

n (~- -  i) 4 

A s  

) ~2 (~_1)4 d l n p ( x , m )  _ _ ~ - T 

d m  ~ n(~_l)2 ~-2 n 
T a 2 a ) 

n ( a - l )  2 (~ l )  2 
r,,,, 

no u n b i a s e d  e s t i m a t o r  wi th  v a r i a n c e  equa l  to  the CRAMER-RAO lower  l imi t  is 
ex i s t ing  (SILvEY (1970),  p. 38). 

W e  can  f ind an  u p p e r  l imi t  o f  the  v a r i a n c e  o f  rh too .  U s i n g  (3.1) we get  
a n o t h e r  e s t i m a t e  o f  m 

l . ~ - c  
(5.11) m ° - - -  - 

~ o _  1 c 

I t  is e a sy  to  see t h a t  m ° is an  u n b i a s e d  e s t i m a t o r  o f  m. F u r t h e r m o r e ,  

Va,m°, Var(  ) c  
1 I 1 

- V a r  (X)  = - 
n c 2 n ( t x - I ) 2 ( 0 c - 2 )  

H e n c e  as  th is a m i n i m u m - v a r i a n c e  u n b i a s e d  e s t i m a t o r  o f  m 

1 ct I ct 2 
(5.12) - > V a r  (th) > 

n (0~-- 1)2(0~--2) /i' (~- -  1) 4 ' 

A th i rd  p o s s i b i l i t y  o f  e s t i m a t i n g  m is to  use  the  best  e s t inaa to r  ct* o f  a.  
W e  get  

1 ! 
(5.13) m* - - - ~'~ T k 

o c * - I  k=l ~ , k  k=~l ( n - - l )  k 
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Fur thermore ,  

c o  1 
(5.14) E(m*) E 

k=l (n-- 1) k 

This result follows directly 
g(x) = l / ( x -  1) is convex. 

As 

we get 

k - I  

m2 = Tk E 
k=2 j=l  

E(m .2) = 

and fur thermore ,  

(E(m*))2= ( ~  
k=l 

( n + k -  1) (k) 1 oo 
- -  E(Zk)  = ~ > Z 

k=l (n-- 1) k ~k k=l 

1 
- -  ~ m .  
~k 

f rom Jensen's inequality since the 

oo 

1 1 = E Tk k - 1  
(n -  1) j (n -  1) k-j k=2 (n-- 1) k ' 

o o  

E ( k - l ) ( n + k - 1 ) ( k )  1 
k = 2 (n - 1)k o~k ' 

( n + k -  1) (k) 1 / 2 

) ( n -  1) k ~k 

(n + j - -  1) (j) (n + k - j -  1) (k-j). 
~o 1 1 k-t 

k=2 0~ k (n 1) k j=l 

The  variance o f  the est imator  m* then is 

(5.15) 

function 

k-I  

1 1 Z ((n-t-k- 1)fk)--(n+j - l)(J)(n+k-j - 1) (k-j)) 
Var (m*) = k=2 0C k (n - - l )  k j=] 

oo k-I  

1 E ( n + k - j -  1)(k-J)((n+ k - 1 ) ( J ) - (n+ j  - 1) (j)) 
= (,,_ 1) . k=2 1 

1 k-l 1 
> ~ - -  ( (n+k-  l ) O ) - ( n + j  - 1) <j)) 

> ~ l k~ (n+k-1)(J)-(n+j-1)O') = Vat (rh). 

k=2 ~ j=l  (n+j-  I) (j) 

Summing up f rom (5.14)-(5.15) we have the following 

(5.14a) E(m*) > E(th) = m, 

(5.15a) Var (m*) > Var  (rh). 

If  we use the minimum-var iance  unbiased es t imator  o f  ~ in the formula  (5.1) 
we will overest imate the risk premium. The  best es t imator  o f  the risk premium 
for an unlimited layer with priori ty x is 

(5.16) P = fi th x .  
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This formula has been developed in the special case where it is possible to 
estimate the loss frequency directly. If  the excess point x is so high that only 
very few or no losses are exceeding x, we have to use the ct in calculating fi as 
described in BENKTANDER (1988). In such cases we will get a different " b e s t "  
estimator of  P(x). 

The formula (5.16) is only valid for unlimited layers excess x. We get a 
different and more complicated formula for limited layers. 

Therefore, this method to calculate unlimited layer has only a very limited 
value for practical purposes. It is more of theoretical interest that it is possible 
to calculate the " b e s t "  estimator of the risk premium. The traditional methods 
to calculate the risk premiums will be more convenient in practice. 

6. EXAMPLE 

Year 1 Year 2 Year 3 Year 4 Year 5 

2,495,000 1,985,000 3,215,000 (no losses) 19,180,000 
2,120,000 1,810,000 2,105,000 1,915,000 
2,095,000 1,625,000 1,765,000 1,790,000 
1,700,000 1,715,000 1,755,000 
1,650,000 

Let us consider a motor  portfolio. We are interested in finding the risk 
premium for an unlimited layer with a priority of  1.5 million. 

We have information about all single loss amounts (from ground up) 
exceding 1.5 million for the last five years (all the losses have been indexed for 
inflation). Furthermore,  we assume that no such problem as IBNR exists. 

The estimated loss frequencies for the layer is ~ = 3.2. 
In the first case, we calculate the risk premium using m ° in (5.11), that is the 

traditional way to calculate the risk premium. We get 

(6.1) p0 = 3.2 × (3,057,500- 1,500,000) = 4,984,000. 

Secondly, we estimate the ~*, setting c = 1,500,000, 

1 6 - 1  
~x* = = 2.314. 

6.482 

The risk premium is calculated using m* in (5.13). We get 

1 
( 6 . 2 )  P* = 3.2 1,500,000 = 3,652,968. 

2 .314-1  

In the third case, we will compute the rh(x)  for the layer. 
We get from (2.2) and (5.5.) 

T = 6.482, 
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(6.3) /5 = 3.2 x 0.6430 x 1,500,000 = 3,086,400. 

Finally, we estimate the ct using the credibility formulas  (4.6) and (4.7). 
We get 

1 6.482 1 
- -  = 0.1368 x _ _  + ( 1 - 0 . 1 3 6 8 )  ~ ff = 2.496, 
t~ 16 2.5 

using k = 0.01 and ct 0 = 2.5. The risk premium is in this case 

(6.4) P = 3.2 x 0.6684 x 1,500,000 = 3.208,320. 

Summing  up, we get the following risk premiums 

_ _  p0 based on m o m e n t  est imator  ct ° 4,984,000 
- -  P* based on best est imator  ct* 3,652,968 
- -  /5 based on rh 3,086,400 
- -  P based on credibility formula  3,208,200 

The risk p remiums /5  based on rh are the best o f  the three first risk premiums 
in the table, and they are in this case close to the risk premiums based on the 
credibility formulas.  

The tradit ional  me thod  to calculate the risk premium gives large risk 
premiums in this example. This is because o f  the very large loss a m o u n t  in 
year 5. I f  this loss has been 9,180,000, and not  19,180,000, we had the following 
risk premiums 

_ _  p0 based on momen t  est imator  ct ° 2,984,000 
- -  P* based on best est imator  ~t* 2,979,419 
__ t5 based on rh 2,570,015 
- -  ff based on credibility formula  3,125,999 
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