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1. In order to fix our ideas an illustration of the theory for (a) 
a general elementary random process, (b) a compound Poisson 
process and (c) a Polya process shall be given here below following 
Ove Lundberg (On Random Processes and Their Application to 
Accident and Sickness Statistics, Inaug. Diss., Uppsala 194o). 

(a) The general elementary random process. 
Let the continuous parameter t* be measured on an absolute 

scale from a given point of zero and consider the random function 
N* (t*) which takes only non-negative and integer values with 
N* (o) = o. This function constitutes a general elementary random 
process for which the conditional probability that  N* ( t* )~ -n  
relative to the hypothesis that  N* (to*) = m shall be denoted 
P*m, (to*, t~*), while the absolute probability that N* (t) = n i.e. 
P*~ (o, t*) shall be written Pn* (t*). If quantities of lower order than 
dr* are neglected, we may write p~* (t*) dr* for the conditional 
probability that  N* (t* + dr*) = n + I relative to thehyp othesis 
that  N* (t*) = n, i.e. Pn*,n+l (t*, t* + dt*). Pn* (t*) is the intensity 
function of the process which is assumed to be a continuous function 
of t* (the condition of existence for the integral over the given 
interval of t* for every n > m may be substi tuted for the condition 
of continuity). The expectations for an arbitrary but  fix value of t* 
of N* (t*) and p* (t*) will be denoted by  the corresponding symbol 
with a bar so that  

N* (t*) = n Pn* (t*) and Pn* (t) = ~ p~ (t*) Pn (t*). 
n-O n-O 

(i) 

If p ~(t*)/n is uniformly bounded for all n in the interval o ~ t* < T*, 
where T* is an arbitrary but  fix value of t*, we have i.a. that  
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f *  

N* (t*) = f p* (u)d. (I a) 
0 

By the t ransformat ion t = N* (t*) in the functions N*  (t*) 

P~* (t*), p,~* (t*) and p~* (t*) functions will be obtained which will be 

designated N (t), P,~ (t), p .  (t) and p,~ (t) respectively. By  pu t t ing  

t o = N* (to*), t 1 = N* (t~*) the t ransformat ion  in P~*n (to*, t~*) leads to 
a corresponding function which will be denoted Pr~,, (to, tl). t is said to 
be measured  in the  operational scale. By  (I a) the  t ransformat ion 
to the  operational scale can be defined by  

t* 

f- t = p*~ (u*)du* (I b) 

0 

(b) The compound Poisson process. 
These processes form a part icular  class of the  e lementary  r andom 

processes defined in (a) for which the absolute probabilities fulfil the  
following relation with the pa ramete r  measured  on the operational  
scale : 

° (tx)'~e-'* dU(x) - -  (--t)'~P~ '0 (t), (2) P,~ (t) = n!  n!  
o 

where the integral is a Laplace-Stieltje 's integral, p~,0 (t) denotes 
the  n ,h derivat ive of P0 (t) with respect to t, and  U (x) has the prop- 
erties of a distr ibution function d~fining the  uncondi t ioned risk 
distribution. If, on the  other  hand,  Po (t) is a given funct ion which 
is completely monotonic,  i.e. (--t)'*P ('0 (t) > o, the first par t  of the  
equal i ty  follows from a general theorem and U (x) is, then, a non- 
decreasing funct ion and bounded in every  finite interval.  (Bern- 
stein, Acta  Math., 52, pp. 1-66; Feller, Duke Math. Journ.  1959, 
pp. 661-674 ). If, in addition, lira Po (t) = I, Pn (t) defines a com- 

t-to 
pound Poisson process in the  generalized sense (i.e. points where 
P,~ (t) = o are disregarded). 

The intensi ty  function, p,~ (t) of a compound Poisson process 
has i.d. the following properties:  

Pm (to) = ~ Pn (tl) P,nn (to, tx), m < n, t o < t x (2 a) 
~- - r a  
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For  m = o (2 a) leads, af ter  insert ion in (I b), to 
t* 

t = I P0 (u*) du* (2 b) 

o 

for the  t r ans fo rmat ion  to the operat ional  scale. 

p ,  (t) = - -  P( :  + ') (t) / pin) (t), (2 c) 

where pin) (t) is def ined under  (2). 

_ I ~ (n--m) Pran (to, tl) ,  m = o ,  x . . .  (2 d)  p,. (to) tl--to._  

P, + x (t) ---- Pn (t) p~ (t) , n =  o, I . .  (2 e) 
p. (t) " 

by  which,  if Po (t) is given by  the relat ion - -  P~ (t) = Po (t) Po (t), 
the  funct ions  pn (t) are un ique ly  defined for all n according to (2 c). 
We have ,  further ,  the  following proper t ies  of the probabi l i ty  
funct ions  

\ t l /  \ ~] . p,(To),  m < n, t o < t 1 ,  (2f) 

where  the  binomial  factor  represents  the  condi t ional  p robab i l i ty  
t h a t  m changes have  occurred in the  in terval  (o, to) of the  para-  
me te r  relat ive to  the  hypothes is  t ha t  n changes have  occurred in the  
in terval  (o, tl), where t 1 > t o (inverse probabil i ty) .  

tk~k=~ • ( n - - I )  . . .  ( n - - k ~ -  I) Pn (t) ( 2 g )  

k 

where ~k are the  m o m e n t s  about  zero of U (x). 
[Lundberg  1.c. (77), (78), (97), (8I), (88), (94), (I25)] 

(c) The Polya process 

A c o m p o u n d  Poisson process defined by  (2) will be called a Polya  
process, if U (x) is def ined by  the  Pearson densi ty  funct ion  T y p e  I I I  
(Lundberg,  1.c. pp.  I8-I9).  I t  can be der ived f rom a Polya-Eggen-  
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berger urn scheme by ascribing a time interval, t/h, to each drawing 
and by making a limit passage for h tending to infinity under two 
auxiliary conditions (1.c. pp. I6-I7). The same process is obtained 
from Lexis' urn scheme eithel by assuming the risks to form a 
continuous set distributed with Pearson density function Type I, 
which leads to the Polya-Eggenberger's probabilities, and a fol- 
lowing limit passage (I.e. pp. 13-I4) or by the direct application of a 
limit passage according to Poisson to the Lexis' probabilities 
(Ammeter, Skand. Akt. Tidskr. 1948, pp. i75, 178 ). Ammeter  
deducts, also (1.c. (12)) a process which may  be considered a trans- 
form of several Polya processes with equal variance of U (x). This 
transform gives, at the end of each finite unit period, the same 
result as a process constructed by Arfwedson (Skand. Akt. Tidskr., 
1955, pp. 97-1oo) based on the assumption that  the probability of 
more than one claim in the interval (t, t + dr) of the parameter is 
of the order dt (cf. Philipson, Skand. Akt. Tidskr., 1956, pp. 26-37; 
Trans. XVth Int. Cong.  Act., II, New York 1957, pp. 264-279). 

The intensity function, p~ (t), of a Polya process is defined by the 
following relation: 

(t) = (i + bn) / (1  + bt), (3) 

where b is the variance of U (x) (Lundberg, 1.c., (15)). 
Consequently by (2) the regression of N ( t l ) -  N (to) on N (to) is 
linear for a Polya process. The correlation coefficient between these 
values of a general compound Poisson process with mean and 
variance of U (x) equal to I, b respectively depends only on b, t 0, tl. 
Therefore, the first approximation to every compound Poisson 
process--the "best" approximation according to the principle of 
least square--has the form of a Polya process with U (x) of the same 
mean and variance (Lundberg, 1.c., p. I I I ) .  

2. Thyrion (The ASTIN Bull., I part  III, pp. 142-162; Trans. 
XVI,h Int. Congr. Act., II, Brussels 196o, pp. 25-36) reports on 
investigations of the distribution of claims in Motor Insurance. 
In beth of the papers formulae are deducted, which either are 
identical with those quoted above or are direct consequences of 
them, e.g. the last formula on page 28 of Thyrion's paper to the 
Congress of Brussels is by the last membrum of (2) and (2 c) a 
direct consequence of (2 d). On page 26 of the same paper he takes 



2 2 8  SICKNESS AND ACCIDENT STATISTICS 

into account the heterogeneity between groups, assuming that  the 
conditional probability of one claim in the interval (t*, t* + dt*) 
of the parameter relative to the hypothesis that  n claims have 
occurred in the interval (o, t*) can be expressed X~ (t*) where X is 
allowed to vary from group to group and ~ (t*) is identically the 
same for all groups for an arbitrary but fix value of t*. The devel- 
opment on this point seems to have been made more rigorous by 
taking the relations (I b), (2 b) into consideration. 

On pages 151-152 of the ASTIN paper and on page 29 of the paper 
to the Congress Thyrion refers to Hofmann (Bull. des actuaires 
suisses, 55, PP- 499-576) by quoting the last relation in (2), which 
holds for every compound Poisson process and by giving a partic- 
ular expression for P0 (t), which defines a subclass of these proc- 
esses. In the subsequent section the theory expounded by Hofmann 
will be separately considered. 

3. Hofmann gives, first, a generalization of an one-dimensional 
compound Poisson process to such a process constituted by two 
random functions (M (8), N (b), which may  be mutually dependent 
or independent. The probability that  M (s) = m, N (t) ~ n is here 
denoted ~ (m, n, s, t) and can be defined by the relation 

rc (m' n' s' t) = ; : e-ks-zt (ks)~'m! " (Xt)'z dU (k' (4) 

o o 

Hofmann deducts for an one-dimensional compound Poisson 
process a general expression for Pn(t) in terms of Po (t) (in his 
notations designated q,' (t)) and a recurrence formula for P,z (t). He 
defines, then, a subclass of the class of compound Poisson proc- 
esses by the approach: 

P0 (t) = q(I + __bt )~, where q, b, ~ are positive constants. (5) 

This relation is inserted into the expression for Pn (t) and in the 
recurrence formula. The recurrence formula for the process defined 
in (5) (4.1o in Hofmann's paper) has been directly deducted by 
Thyrion (AsTIN Bull., p. 156; Trans. XVIth Int. Congr. Act., p. 3 o) 
by the method used by Hofmann for the general compound 
Poisson process. 
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It is easily seen that  (5) for 0t = o defines a Poisson process and for 
= I a Polya process. Observing that  the characteristic function 

tiz 
F 7 

corresponding to U (x)is definedby Po (--iz) = exp. I-- _t- Po (v) dv I 
L J 

0 

Hofmann deducts dU (x) for different values of 0~. For 0t = o ,  I, oo 
U (x) is defined by I for x >/q, o for x < q; by  the Pearson density 
function Type II I  and the Poisson probability function respectively. 
For x = 2 dU (x)is equal to a modified Bessel function and for 
o < ~ < I equal to a product of an exponential function and a 
stable frequency function being a particular case of such functions 
defined by  L6vy (Th6orie de l 'addition des variables al6atoires, 
Paris 1937). For i < ~ < co dU (x) cannot generally be given in a 
closed form, but  is given in the form of a power series. For the 
particular case ~ = 1/2, finally, U (x) is defined by  the frequency 
function : 

v~ql e'/b x-3/2exp. [-- I x + ~)J  (5 a) 

i.e. a product of Pearson's density functions Type II I  and V multi- 
p~ed by  a constant. (Hofmann, 1.c. pp. 526-529). 

Hofmann (1.c.p. 531) deducts further from the characteristic 
function corresponding to U (x) of the process defined by  (5) the 
kth semi-invariant, ×k, of U (x) for k = i , . .  ; ×~ may  be expressed by  
the following relation 

• q for k = I 
k--it ( 

xh = i qb~-x II I + "~ 
,. v - 0  

for k > i. (5 b) 

The mean and variance of U (x) are, thus, equal to q, qb respectively 
and the mean and variance of P,, (t) for an arbitrary but  fix value 
of t equal to qt, qt (I + bt) respectively independently of 0t. Ac- 
cording to Lundberg (1.c. (I24), (14)) the last mentioned values are 
applicable to every compound Poisson process, if, q, qb denotes 
the mean and variance of a general unconditioned risk distribution. 
Thyrion gives in both papers quoted above the deductions of (5 b) 
according to Hofmann. 

It  can easily be proved by  inserting (5 b) into Pearson's criterion 
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(Elderton, Frequency Curves and Correlation, London 1927, pp. 
5 o, 53) that  if b > o.125 q, (5 a) can be approximated by a Pearson 
density function Type VI. In this connection it might be remarked 
that  the author of this note has, in a tentative application of 
Lundberg's theory to the growth of plants considered a random 
process constituted by the logarithm of the crop and with two 
parameters, the marginal processes being defined as Polya proc- 
esses, found that the distribution of the value (or quantity) of the 
crop may  be defined by a frequency function which approximately 
equals the Pearson density function Type VI. (Philipson, Skand. 
Akt. Tidskr., 1955, pp. 228-231, 234-235, 242-245 ). 

Hofmann also gives an integral equation for dU (x) of a process 
belonging to the subclass defined by (5 a) (1.c. pp. 529-530 ). Further, 
he gives a generalization of the subclass such as to contain also 
non-elementary processes. This generalization is developed for an 
example involving U (x), for the number of changes, equal to 
Pearson Type hi ,  and an exponential distribution :for the size of 
one change. The deductions lead to similar results as those given by 
Lundberg with a general distribution of the size of one change 
(1.c. chapter VI). 

4. In the numerical investigations reported by Hofmann the 
agreement between the estimated inverse probability and the 
binomial expression in (2/) is tested by the z~-method (binomial 
test). The test gave Z ~ equal to lO. 5, 11.6 for the two groups in- 
vestigated (accidents within and outside working time) respectively 
with 16, 12 degrees of freedom respectively, corresponding to 
probabilities for higher values of Z 2 of 83. 9, 44.6 % respectively. 
Further, the differences between the variance of U (x) for two 
adjoining periods within each of these groups have been calculated 
by (5 b) and compared with their random errors (computed by a 
method by Tschuprow). The differences are found to be less than 
twice respectively one time the random error for the two groups. 
The hypothesis that the material can be described by a general 
compound Poisson process could, thereiore, be accepted. The 
test of the agreement between the estimated P,~n (to, tl) with the 
expression in the right membrum of (2/) gave the same result. 
The frequencies fol I-year periods can, however, not be assumed to 
be constant, the variation being due neither to a trend nor to a 
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periodicity. It could, in fact, be explained by the assumption of 
a further distribution according to an idea by Ammeter (Bull. des 
actuaires suisses, 49). 

The binomial test and a s tudy of the estimates of the means and 
variances of the inverse probability function as applied by Lundberg 
to Sickness Insurance, at least for a part of the material investigated, 
lead to a rejection of the hypothesis of a compound Poisson process. 
The same result was obtained by a test of the estimated variances 
of U (x) for different periods, based on an assumption of normal 
sampling distribution of these estimates. An explanation of the 
systematic deviations in U (x) corresponding to the latter of these 
periods is given. Further, it is shown that  time homogeneous pro- 
cesses would give greater differences between observed and cal- 
culated frequencies. 

5. A compalison between the empirically ascertained trequen- 
cies with those calculated according to (5 a) with q, b and ~. as 
estimated from the data and with the estimates of q, b for 0t = I  
was made in Hofmann's paper. In the first comparison the esti- 
mates o.76603, 5.7232 were used for ~ of the two groups respectively. 
When using the estimated values for :t, X 2 was found to equal 9.o6, 
4.89 with 5, 3 degrees ot freedom respectively and, using ~ = I ,  X 2 
was 9.54, 5.57 with 6, 4 degrees of freedom respectively. These 
values correspond to probabilities of higher values for X 2 of IO.I, 
17.2 ~o for estimated ~: s, and 14. 3, 23.1 ~o respectively for 0t = I .  
Consequently, no choice with respect to ~ can be made on these 
tests. The comparison between the empirical frequencies of both 
groups--within and outside working t ime--with Hofmann's 
twodimensional example with marginal Polya-distributions lead to 
X ~ ~ 17. 3 for 12 degrees of freedom corresponding to a probability 
foc higher value of X 2 of 13.2 %. This test supports a statement 
that  models based on x = I can be used for the graduation. 

Thyrion has in his paper in the ASTIN Bulletin calculated the 
conditional means on different assumptions. Taking his figures 
for an earlier period of 1-3 years and a later period of I year the 
author of this note has calculated the relative differences between 
the calculated means with b = q = 0.25 for ~t = I and 0t = I/2 as 
related to the former values. These differences are given in the 
following table. 
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Rela t ive  differences in m e a n s  ca lcula ted  wi th  ~ ~- i and  1/2 

m t l - - t  o =  i 2 3 

o - -  0.025 - -  0.060 - -  0.096 

i 0.075 0.09 ° 0.098 
2 - -  o.o21 0.045 0.070 
3 - -  o.128 - -  o.034 o.o18 

4 - -  o.175 - -  O-lO9 - -  0.040 

These f igures ought  to be c o m p a r e d  wi th  the r a n d o m  errors in the  
empir ica l  frequencies used for the  gradua t ion .  I f  we disregard the  
r a n d o m  error  in m, the  r a n d o m  errors in n can be ca lcula ted  on the  
basis of  the  var iances  of P,n,n (to, tl). Using the  resul ts  of L u n d b e r g  
( l .c .p .  97) for the  " sub-process"  of a Po lya  process expressing this 
p robab i l i t y  as an absolu te  probabi l i ty ,  these var iances  can be 
c o m p u t e d  b y  the  expression 

I + b m  (tx__to) [i + b (tl__to) l 
q " I ~  o I + bt------o 

I + b i n  
obta ined  f rom qt (I + bt) b y  the  subs t i tu t ion  o f -  (t 1 - - t o ) ,  

l + b t  o 
b 

i + bm for t, b respect ively.  

Appl ied to  Thyr ion ' s  ma te r i a l  in his pape r  to the  Congress and  for 
b = q = o.25 this gives the  following re la t ive  s t anda rd  errors  in the  
frequencies,  if the  r a n d o m  errors in m are disregarded.  

RELATIVE STANDARD ERRORS IN n 

m t l - - to= I 2 3 

o O.Ol 5 o.o14 o.o16 
i 0.038 0.03 ° 0.028 

_> 2 0.092 0.050 0.045 

Tak i ng  regard  also to  the  s t anda rd  errors  in m the  figures of the 
last  tab le  should be mul t ip l ied  b y  a fac tor  exceeding ]/'2. Therefore ,  
i t  mus t  be concluded t h a t  the  mate r i a l  used for the  g r adua t i on  does 
not  pe rmi t  of a choice be tween  ~ = I and  ~ = 1/2. I f  b o t h  these 
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hypotheses had been adequately tested with the z2-method the test 
would probably have lead to an acceptance of both hypotheses. 
Thyrion says that  his reason for the choice of x =  1/2 is that  "les 
ajustements faits avaient montr6 que le param~tre ~ 6tait le plus 
g~n6ralement compris entre o et I e t  pouvait  moyennement ~tre 
pris 6gale k t/2; nous adopterons cette valeur par mesure de simpli- 
fication", (in his paper to the Congress p. 29). He discusses the same 
topic from the point of view of a passage to the limit of Po (t) for t 
tending to infinity, in his earlier paper (pp. 154-155 ) . I t  shall be 
observed that the estimates of ~ are computed by  the solution of the 
transcendental equation given by  Hofmann and quoted by Thynon 
(The ASTIN Bull., p. 153). Thyrion thinks, however, that  this 
relation is chosen rather arbitrarily and concludes, therefore, that  
the ordinary x2-method might not be applicable (1.c.p. 154). It  
might also be referred to the statement given in section 3 that  the 
mean and variance of U (x) and P,~ (t) are independent of ~, while 
the higher semi-invariants depend on x. Consequently, a change of 
leads to a change in the semi-invariants of higher order than the 
second order. It  is well-known that  a considerable number of 
observed cases must be demanded if the random errors in the semi- 
invariants of the 3 rd and 4 th order shall be small enough to permit of 
conclusions involving differences in these semi-invariants. 

6. Lundberg says in his book (1.c.p. 161) that  "What  our ana- 
lysis properly yields is not an answer to the question as to whether 
or not the hypothesis strictly reproduces reality but  the degree 
of approximation with which the random process reproduces reality. 
This is sufficient for us to be able to judge whether the process may 
be considered usable as a basis for re-grading sickness insurance 
premiums . • \ 

In spite of the fact that  the tests of Lundberg's material have 
lead to a rejection of the hypothesis, we may use a particular form 
of U (x) to describe the heterogeneity of a certain period. Such a 
description can always be made even though a compound Poisson 
process is not applicable, i.e. the hypothesis of a constant risk 
distribution cannot be accepted. The description of the hetero- 
geneity implies that  an endeavour is made to characterize the real 
course of the events with a special form of a compound Poisson 
process. Lundberg suggests tha t  U (x) shall be represented by  the 
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Pearson density function Type I I I  and gives two graphs each 
representing the regression lines for the number of claims of one sub- 
period with respect to that  of the other, for each one of the two 
longer periods investigated (1.c. pp. I62-I63). These graphs affords 
a better knowledge of the applicability of the Polya process, which 
is the only compound Poisson process with linear regression. These 
graphs may be directly compared with the corresponding graphs 
in Hofmann's paper (1.c. pp. 56o-56i). Taking regard to the larger 
random errors for higher number of claims the graphs both in 
Lundberg's book and in Hofmann's paper give the impression that  
the reality is fairly well represented by Polya processes. Finally, 
Lundberg compares estimates of the variance of U (x) as computed 
from the estimated variance and correlation coefficient oI P,~ (t) on 
the assumption that the process is a general compound Poisson 
process and from the estimate of Po (t) assuming the process to be a 
Polya process and obtains approximately 0.94, 0.80 and 0.84 for 
the first period and 0.46, 0.47 and 0.52 for the second period. 
Therefore, he tests the agreement between the observed frequencies 
with those calculated on the basis of a Polya process for each period 
with b equal to o.9416, o.4571 respectively as obtained from the 
estimated variances of P,~ (t). He obtains Z 2 = 14.1, 12.1 with 14, io 
degrees of freedom corresponding to probabilities for higher values 
of X 2 of 3o-50, 20-30 % respectively. Lundberg concludes that  "The 
heterogeneity of the two records may, thus, be said to be well 
described by a Polya distribution." Eggenberger (Bull. des actu- 
aires suisses, 1924, pp. 31-144 ) and Newbold (Journ. Roy Stat. 
Soc., 9 o, pp. 487-547) have come to the same result for similar 
records. 

Finally, Lundberg compared, also the observed frequencies with 
those calculated on the assumption of U (x) being a step function 
of 2 steps only ("a double Poisson"). The result of this test gave X 2 ---- 
53.4 for 9 degrees of freedom with a probability for higher values of 
Z z equal to I °/o, wherefore the hypothesis of a "double Poisson" 
must be rejected. (Cf., however, Depoid, Bull. Trim. de l'Inst. Act. 
Franc., 227, pp. 121-123). 

Consequently, Lundberg suggests that  the re-grading of sickness 
insurance premiums shall be based on a Polya process. 

Hofmann has (1.c. pp. 546-548) discussed the theoretical deduc- 
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tions by Greenwood and Yule (Journ. Rey. Stat. Soc., 83) and those 
of Neyman and Bates (Univ. Cal. Publ. Stat., I). The first-mentioned 
of these deductions is i.a. based on the hypothesis that  the differ- 
ent individuals in a statistical group from the beginning have dif- 
ferent probabilities, while Neyman assumes that  p,~(t) is equal to 
z (n) / (I Jr- ct), where z (n) ~ o and c ~ o. Observing that  by (2 e) 
here above, the Polya process can be deducted on both of these as- 
sumptions, Hofmann says (p. 549) that  "Der Nachteil der negativen 
Binominalverteilung" (P,~ (t) of a Polya process) "liegt darein, dass 
sic sowohl als Ansteckungsverteilung" (Neyman) "wie zusammen- 
gesetzte Poisson Verteilung" (Greenwood and Yule) "interpretiert  
werden kann". The author of this note finds this feature to be an 
advantage. The numerical results may be approximately and 
rationally explained in terms of a Polya process independently, 
whether to our knowledge one or both of the hypotheses--accident 
proneness and heterogeneity--is true. As Lundberg pointed out 
(see above in the beginning of this section) we are more interested 
in an approximative but adequate description of the material than 
to test whether a hypothesis strictly reproduces reality. Also Hof- 
mann seems to be more interested in a model apt to be used as a 
basis for the computations in accident insurance rather than in a 
tentative theoretical interpretation of the complicated psycho- 
logical phenomen involved (1.c.p. 555). Thyrion states that  a test 
of the agreement between theoretical and empirical values seems 
not to be necessary as the graduation even if not optimal seems to 
lead to a satisfactory description of the observed values (The 
ASTIN Bull. p. I54). On this point it might be of interest to refer 
to a discussion in Lundberg's book (1.c. pp. I3o-I3X) according to 
which the accident proneness is likely to be of very little importance 
in comparison with the effect of heterogeneity. Hofmann has in 
the discussion of the graduation based on his example of a two- 
dimensional Polya process presented an interesting statistical 
interpretation of the partition of the risk in his two groups into two 
components, the first component of each group constitutes a prob- 
ability which is independent of the other group, while the second 
component of the two groups are mutually dependent. 

Delaporte (Trans. XVDh Int. C o n g  r .  Act., II, Brussels I96o, pp. 
x27-I28) reports of a graduation (without test) in two groups of 
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motor accidents based on a Polya process. Evidently, the 3greement 
between observed and calculated number of vehicles with n claims, 
n = o, I . . .  5,--> 6 respectively o, I . . .  9 for the two groups 
respectively, is satisfactory for both groups, for one of the groups 
the agreement is excellent. (The deductions on page 123-124 of 
Del~porte's paper lead to Delaporte's formulae (I) and (2) for the 
moments of the unconditioned risk distribution. These formulae 
are, however, direct consequences of Lundberg's more general 
formulae, 1.c. (I22), (122')). 

7. To the judgement of the author of this note all investigations 
referred to do point to the conclusion that the empirical results in 
Sickness and Accident Statistics may be rationally approximated 
b y  Polya processes. The introduction of (5 b) as an alternative hypo- 
thesis has, so far, not improved the approximation. As the formulae 
for the Polya process are of a much simpler form, the author prefers 
the use of this process-~n the sense of the principle of least square 
the "best"  approximation to every compound Poisson process--  
until it can be proved that other more complicated models afford 
a better  fit. 

One advantage of the Polya process not mentioned here above is 
that  this process by the transformation u = -  log P0 (t) = 
t 
.f Po (v) dv can be transformed into a time homogeneous process. 

o 

(Lundberg 1.c. pp. 57-58, 68). The transform is space heterogeneous 
(Philipson, Skand. Akt. Tidskr., 1956, p. 36). The transform 
for a non-elementary Polya process has a distribution function of 
the sum total of all changes having occurred in the parameter  
interval (o, u), which may  for every fix value of u be asymptotically 
expanded in powers of u 11~ with a remainder term of the older of 
the first term neglected, on condition that  for u tending to infinity 
b u remains finite, b as before being the variance of U (x), and that, 
in addition, the conditioned distribution of the size of a change 
relative to the hypothesis that  one change has occurred contains 
only one absolutely continuous component and its moments exist 
up to an order needed for the expansion. (Ammeter, Skand. Akt. 
Tidskr., 1948, p. 19o; Philipson, Trans. XVth Int. Congr. Act., New 
York, 1957, p. 273 ). This statement holds also if the distribution 
function of the size of one change having occurred in the parameter 
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point u, depends on u (Philipson, 1.c. pp. 269-271 ). Lundberg has 
(l.c. pp. 57-58, 97) proved that  the Polya process is the only com- 
pound Poisson process with a homogeneous transform. Lundberg 
gives, further, (1.c. pp. I2I-I22) an asymptotical expansion on 
certain conditions in the case where lim bu is infinite for u tending to 
infinity in powers of t -1, in this case the expansion is based on 
Pearson density function Type III ,  while in the opposite case the 
expansions, described above, correspond to the expansions for 
the Poisson process, the normal approximation (Philipson) or the 
Esscher approximation (Ammeter), which have been described by 
Cram6r (Skandia Jubilee Volume, 1955, 4.2 and 4.3). 

The two cases of the Polya process treated in the last paragraph 
correspond to the cases ~ and ~ respectively as defined by Segerdahl 
in his survey in The Harald Cram6r Volume (Uppsala x959, p. 297). 
Segerdahl gives for these cases, only the limits of the distribution 
function for accumulated gains, when, for case ¢¢, t and, for case ~, n 
tend to infinity. Only for his case ~ which refers to the Ammeter  
transform of several Polya processes mentioned in section I (c) of 
this note, Segerdahl has pointed out that  the normal and the 
Esscher approximation to the distribution function may  be used 
(1.C.p. 298 ) . 


